
What Does Research Say About Agile and Architecture?

Hongyu Pei Breivold
Industrial Software Systems

ABB Corporate Research
721 78 Västerås, Sweden

Hongyu.pei-breivold@se.abb.com

Daniel Sundmark, Peter Wallin and Stig Larsson
Mälardalen University

Box 883, 721 23 Västerås, Sweden
{daniel.sundmark, peter.wallin, stig.larsson}@mdh.se

Abstract— Agile has been used to refer to a software
development paradigm that emphasizes rapid and flexible
development. In the meanwhile, we have through our practical
experiences in scaling up agile methods, noticed that
architecture plays an important role. Due to the inter-
relationship between agile methods and architecture, as well as
divergent perceptions on their correlation stated in numerous
sources, we are motivated to find out how these perceptions are
supported by findings in the research community in general
and in empirical studies in particular. To fully benefit from
agile practices and architectural disciplines, we need empirical
data on the perceived and experienced impacts of introducing
agile methods to existing software development process, as well
as correlations between agile and architecture. In this paper,
we survey the research literature for statements made
regarding the relationship between agile development and
software architecture. The main findings are that there is a
lack of scientific support for many of the claims that are
concerned with agile and architecture, and more empirical
studies are needed to fully reveal the benefits and drawbacks
implied by an agile software development method.

Keywords-Agile; Agile methodology; Architecture

I. INTRODUCTION
To cope with the fact that development and maintenance

of software is characterized by constant evolution, a number
of methodologies and practices have been developed to
embrace change. These methodologies are designated as
being “agile”, referring to a software development paradigm
that emphasizes rapid and flexible development. Through
our involvement in scaling up agile methods (e.g., in the
FLEXI project [42]), we noticed that architecture is an
important topic, especially when development is distributed
over several sites, and/or when the development is based on
legacy systems. As an example, interfaces, being an
important component of the architecture, are vital to create
an understanding of the interaction between the different
parts of the system. In addition, we have through our earlier
research seen that changes in architecture influence
processes, and vice versa [1, 2], prompting organizations to
consider changes in both areas when one of them is altered.
We have also observed a discrepancy between the literature
on software architecture (e.g., [3] and [4]) and agile methods
(e.g., [5] and [6]). An extreme way of describing this
difference is that either one has to make a number of key
decisions that will decide the characteristics of a system
before building it, or one has to work with the basic structure

throughout the life-time of the system ensuring that only
supported features are accommodated.

Although agile software development methodologies
have received great positive attention in recent years, there
exist divergent perceptions on the correlation between agile
methods and architecture. While considered to be able to
improve performance in development projects, agile methods
have also been criticized by some practitioners and
academics for their lack of architectural focus [7, 8]. As
stated in [9], ”agile methodologies advocate many good
engineering practices, although some practices may have an
extreme implementation that is controversial and
counterproductive outside a narrow domain”. For instance,
as change is inevitable and planning for future functions is a
waste of effort, eXtreme Programming (XP) advocates doing
extra work to eliminate architectural features that are not
related to the system’s current version [5]. It could be argued
whether such a practice jeopardizes the architectural support
for customers’ potential requirements. Another fear is that an
over-focus on early results in large systems can lead to major
rework when the initial architecture does not scale up [10].
Agile proponents generally suggest that these issues can be
handled using agile practices and techniques, e.g., test-driven
development (TDD) and refactoring. Critics however claim
that such practices are too lightweight and do not meet the
architectural needs to a sufficient degree. Accordingly, an
interesting research question that is posed becomes:

 RQ1: Is architecture sufficiently emphasized in agile
methods?

By looking into agile practices, e.g., TDD and refactoring
in particular, we explore into a related research question:

RQ2: Do agile practices improve software architecture?
 In this article, we survey the research literature for

statements and claims made regarding the relationship
between agile development and software architecture. Our
main contribution is a summary of research findings on the
relationship between agile development and software
architecture. Our main observation is that there is a lack of
scientific support for many of the claims made by the agile
community. Many claims are solely based on expert opinion,
and often, the adoption of an agile approach is tested in
student projects. Even though there are some articles
describing the adoption of agile methods in industrial cases,
these often focus on specific agile practices, e.g., TDD, pair
programming, etc. More empirical research is therefore
essential to fully exploit the relationship between agile
development and software architecture.

II. RESEARCH METHOD
This study was undertaken as a systematic literature

review during March 2009, based on the original guidelines
as proposed by Kitchenham [11]. The study includes several
stages: (i) the identification of inclusion and exclusion
criteria for primary studies; (ii) the search process for
relevant studies; and (iii) the extraction and synthesis of data
from the selected primary studies.

A. Inclusion and Exclusion Criteria
We consider full papers in English from peer-reviewed

journals, conferences and workshops. We exclude studies
that do not relate to software engineering, software
architecture and agile methodologies. We also exclude
prefaces, articles in the controversial corner of journals,
editorials, summaries of tutorials, panels and poster sessions.

B. Search Process
We searched in scientific databases, i.e., ACM Digital

Library, Compendex, IEEE Xplore, ScienceDirect –
Elsevier, SpringerLink, Wiley InterScience and ISI Web of
Science. The search terms that were used to find relevant
studies are presented in Table 1. All these search terms were
combined by using the Boolean OR operator.

Table 1. Summary of Search Terms Used in the Review

 Search Terms

S1 “software architecture” AND agile

S2 “software architecture” AND “extreme programming”

S3 “software architecture” AND XP

S4 “software architecture” AND lean

S5 “software architecture” AND DSDM

S6 “software architecture” AND “dynamic systems development
method”

S7 “software architecture” AND FDD

S8 “software architecture” AND “feature driven development”

S9 “software architecture” AND scrum

S10 “software architecture” AND crystal

S11 “software architecture” AND ASD

S12 “software architecture” AND “adaptive software
development”

After an initial search in electronic databases, we did an

additional reference scanning and analysis by going through
the references from the included papers, in order to find out

if we were able to detect any studies that had been
erroneously omitted or missed, thus to guarantee a
representative set of studies. The study selection process was
performed through several steps:

(i) Search in databases and conference proceedings to
identify relevant studies; 842 studies (after
removing duplicates) were identified in this step.

(ii) Exclusion of studies based on the formal exclusion
criteria (e.g., exclusion of non-peer-reviewed
papers); 409 studies were excluded in this step.

(iii) Exclusion of studies based on titles and abstracts;
238 studies were excluded in this step.

(iv) Exclusion of studies based on full text. 159 studies
were further excluded.

In the paper selection process, there were always at least
two researchers involved in order to decide whether to
include or exclude a paper. A paper is excluded if both
researchers consider it irrelevant. When there were any
discrepancies in whether to include or exclude a paper,
discussions were then initiated in order to reach an
agreement. In the end, we had in total 36 studies that were
included in the systematic review for synthesizing the
relation between agile and architecture.

C. Data Extraction and Synthesis
In the data extraction process, we focused on statements

made on how architecture and agile development influence
each other. The primary data for extraction is concerned with
the claims that are made regarding agile and architecture as
well as the rationale and validation for these claims. The data
extracted from each study include the source and full
reference, objectives and focus of the study, research method
descriptions, data collection and analysis, findings and
conclusions. The data synthesis process included identifying
the main concepts from each study and analyzing how they
relate to our research questions. Accordingly, the statements
made on agile and architecture in the included 36 papers
were categorized into different themes based on their
similarities in terms of contents. Similar to the paper
selection process, at least two researchers were involved in
the data synthesis process to ensure an unbiased
categorization of these statements.

III. SURVEY FINDINGS
After examining and synthesizing the data from the

included studies, we present a summary of the findings that
address the two research questions.

A. RQ1: Is architecture sufficiently emphasized in agile
methods?
Two aspects are addressed in this section: (i) claims on

the interplay of agile and architecture; and (ii) empirical
studies concerned with agile and architecture interplay.

1) Agile and architecture: As agile methods in general
describe very sparsely how to handle architecture, several
studies have advocated the need to synthesize and extend

agile development with methods supporting architecture.
Nord and Tomayko [12] argue that software architecture-
centric methods can enhance XP practices and add value to
agile methods by emphasizing quality attributes and their
role in shaping the architecture’s design through scenarios.
In addition, as agile approaches emphasize face-to-face
communication to convey information, the risk of making
irrecoverable architectural mistakes because of
unrecognized shortfalls in its tacit knowledge can be
complemented with usage of common concepts, e.g., quality
attributes, architectural tactics and views-based architecture
documentation approach from architecture-centric methods.
According to Boehm, agile approaches have home-ground
areas that they are appropriate for [10]. The difference in the
architecture area is that agile methods are designed for
current requirements, whereas plan-driven and architecture-
centric methods are designed for current and foreseeable
requirements. Accordingly, Boehm states that hybrid
approaches which combine both agile and plan-driven
methods are feasible and necessary for projects that have a
mixture of agile and plan-driven characteristics.

It has been reported that synthesizing agile practices with
architectural methods requires that care is taken so as not to
jeopardize agile philosophies. Specifically, Sharifloo et al.
[13] cast doubts on practical integration of these architecture-
centric methods, and argues for the need of using
architectural methods in XP without disobeying the
atmosphere of the XP development team and XP’s values. A
successful integration is described by Clements et al. [14],
who present an example in reconciling the traditional and
agile approaches capturing software architectural
information in a manner consistent with agile philosophies.

Several researchers address the topic of augmenting
specific software engineering practices and agile methods.
Abrahamsson et al. [15] describe the experiences of
augmenting agile methods by systematically using an
architectural practice called Architectural Lines to capture
“current architectural knowledge about the patterns and
solutions that have proven to be useful”. The combination of
agile methods and the new architectural practice led in the
case study to “increased progress visibility, early
identification and solving of technical problems, shared
responsibility, efficient information sharing, high process
practice coherence, low defect density in released products,
and constant development rhythm”. Several other studies
suggest that existing agile methodologies can be integrated in
other software engineering paradigms, e.g., model-driven
development [16, 17], product line engineering [18, 19], and
service-oriented technologies [20].

Some examined studies describe the values of using agile
methods and the necessity of applying agile thinking to
existing architectural activities. For instance, Davide et al.
[21] advocate the need to use lightweight and agile methods
to reduce the effort both in creating and consuming
architectural knowledge. Moreover, Hadar and Silberman
[22] propose an Agile Architecture methodology which

combines quick feedback by delivering in short incremental
releases with the use of an architectural roadmap.

In summary, the current research in the area of agile
methods and architecture-centric methods claims that there is
a need to combine these two areas to ensure both quick
response to changing market needs, and long-term survival
of product assets. This synthesis should be done with care to
work well together with the existing good developmental
practices. However, this claim is insufficiently supported by
empirical work, and is mostly backed up by expert opinion.
Moreover, the cited articles in this subsection are motivated
by an assumption that agile methods insufficiently meet
architectural demands. This assumption is further analyzed in
the next subsection. On the other hand, the observations
regarding architecture and agile are most likely based on
practitioners’ experiences, and has been observed as an area
where additional practices are needed. Based on this, we
think that there would be value in additional research to
understand the influence between architecture and agile
before additional practices are proposed.

2) Empirical studies in agile and architecture: A
commonly stated assumption and motivation for research
focusing on agile and architecture, is that the lack of
emphasis on architecture in agile practices leads to
architectural problems [8, 13, 19, 22-30]. However, when
searching for empirical findings that actually support this
assumption, we find that such results are sparse. On the
other hand, equally few empirical results support the
opposite position: that agile development supports
architectural development better than traditional software
development methods. The empirical studies conceiving that
architecture is insufficiently emphasized in agile methods
include a longitudinal case study by Hanssen and Faegri
[25] on agile development in a small software company. In
the study, developers state that “the continuous focus on
direct customer value weakens the focus on engineering
handcraft such as thorough general design”. The concern is
that the focus on short-term goals may lead to development
shortcuts, resulting in a degradation of the architecture.
Moreover, based on a study of nine US internet software
development organizations, Ramesh et al. [31] observe a
tendency for developers to “move towards more traditional
approaches to software development as their products and
markets matured and the complexity of the development
grows”, indicating that agile methods are insufficient in
supporting complex architecture. It should be noted that the
study by Hanssen and Faegri actually reports from a case
where the developers involved felt that the agile method at
hand was unable to cope with architectural integrity,
whereas observations in the study by Ramesh et al. [31] can
be interpreted as a symptom of this inability. However, there
may be other interpretations of these observations.

The empirical results that advocate that architecture is
sufficiently emphasized in agile methods include
observations from a study by Wellington [32], where two
student teams were assigned to work in a software

development project. One team worked according to a
traditional life cycle (TLC) development process, whereas
the other team used XP. According to the study, an over-
complicated up-front architecture of the TLC team resulted
in a significantly lower quality than that delivered by the XP
team, who “took advantage of multiple iterations and
automated tests to refactor their code on multiple occasions”.
A similar observation is made by Ambler in [33]. Based on
experiences from introducing agile in two Internet startups,
the author concludes that “big up-front design isn’t
required”. The only architectural work needed is a “few
afternoons” to formulate an initial high-level design.

In summary, it is hard to conclude anything based on the
sparse empirical results supporting or contradicting the
assumption that architecture is insufficiently emphasized in
agile methods. The studies that do exist are small, diverging
and, in some cases, performed in an artificial setting. This is
noteworthy considering the large number of articles using
this assumption, or subtle variants thereof, as a motivation
for research contributions acting to solve the issue.

B. RQ2: Do agile practices improve software
architecture?
This section presents research studies that are concerned

with the correlation between architecture/TDD and
architecture/refactoring.

1) TDD and architecture: TDD is a technique that
encourages simple designs [34]. As XP originator Kent
Beck asserts, “Test-first code tends to be more cohesive and
less coupled than code in which testing isn’t a part of the
intimate coding cycle” [35]. However, George and Williams
[24] argue that the lack of upfront design, as well as the
emphasis on implementation rather than logical structure in
TDD might be a concern for software practitioners, and that
these issues call for the need of empirical analysis of TDD.

In fact, the effect of TDD on software architecture, and
on software quality in general, is an area where statements
are rooted in empirical findings to a greater extent than the
other findings in this paper. Moreover, contrary to an
existing assumption that agile methods and architecture do
not mix, most findings actually support the view that TDD
acts to strengthen architectural development.

George and Williams [24], and Janzen and Saiedian [36]
observe a tendency for TDD programmers to write simpler,
less complex software. In the case of [36], this conclusion is
based on observations of lower complexity metrics in code
produced by TDD programmers in a set of quasi-controlled
experiments and a case study. In the case of [24], it is based
on results from a post-experimental survey. The authors state
that "TDD proponents argue that reduced coupling occurs
because the practice guides them to the building of objects
that are actually needed (to pass test cases based on the
requirements) rather than building objects that are thought to
be needed". It should be noted that [36] were unable to
confirm a reduced coupling in TDD-developed code.

An improved design and modularity in code produced by
TDD developers has been observed in a case study by
Cordeiro et al. [37]. This conclusion is also supported by the

survey results reported by George and Williams [24]. There
is however no detailed description of what actually is meant
by the term “improved design”. As an indirect effect of
improved modularity, a more resource-efficient testing is
reported by Nelson and Kim [30].

A clear indication from empirical results regarding TDD
concerns increased external code quality (e.g., reduced defect
density), which, per se, is not a direct property of software
architecture. However, if TDD systematically would produce
poorer software architecture than more traditionally
developed code, arguably, we would not consistently observe
an increased external code quality in TDD-developed
software. A defect reduction of 40% in TDD-developed code
compared to traditionally developed baseline code has been
observed in a case study at IBM performed by Williams et
al. [38]. Moreover, George and Williams report that
approximately 18% more functional test cases are passed
than in the control group pairs [24], when TDD is compared
to software developed in a waterfall-like manner. In the same
study, notably high structural code coverage measures were
observed. The increased code quality effect of TDD has also
been described in a recent study by Marchenko et al. [39].

For fairness sake, it should be noted that TDD comes
with a price; problems reported with introducing TDD
include an increased time to develop test cases [24],
transitioning problems for individual developers [24], and
loss of design and architecture decision traceability [17]. It
has also been stated that TDD can only be successfully
introduced when there is a good understanding of the code
base, and the code base is in good shape [40].

As a summary, even though there is no massive body of
evidence, the perception that TDD has a positive effect on
architectural quality has the highest scientific validity from
empirical study perspective. It is also interesting to note that
most statements in favor of TDD when it comes to
developing software with high-quality architecture are based
on empirical evidence, whereas most authors speaking
against TDD in this matter solely base their statements on
expert opinion, i.e., non-justified or ad hoc statements
instead of based on evidence.

2) Refactoring and architecture: In a software life-cycle
perspective, refactoring will presumably be inevitable at
some point, regardless of development method used.
However, as Van Gurp et al. [41] conclude, the iterative
nature of agile approaches is likely to increase the need for
an early refactoring of the architecture. In their study, Van
Gurp et al. categorize two extremes of iterative
development, i.e., the minimal effort strategy, and the
optimal design strategy. The former uses a more agile
approach where only the next iteration is considered and
changes are kept to a minimum. This approach will cause an
architectural drift and erosion that will drive a refactoring of
the architecture since the integrity is violated. The optimal
strategy, on the other hand, hypothesizes that all necessary
changes to the software are made for each new set of
requirements. “However, even the optimal strategy does not
lead to an optimal design. It just delays inevitable problems

like design erosion and architectural drift." [41]. In [27],
Juric identifies similar experiences with XP, stating that the
early converting of unit tests to production code will require
more frequent and early refactoring. Further, George [24]
argues that one of the shortcomings of TDD is the reliance
on refactoring as a mean to reduce or maintain complexity.

In summary, synthesis of the above statements leads to
the conclusion that refactoring is inevitable, but using
architectural principles and at the same time understanding
the requirements posted by the architecture can limit both its
magnitude and frequency. Nonetheless, these statements are
based on expert opinion rather than empirical results, and
this is a field where future research is encouraged.

IV. DISCUSSION
Based on somewhat contradictory findings it is hard to

conclude neither that agile and architecture is like oil and
water, nor that the two are the perfect marriage.

A. Related Non-Scientific Work
In addition to the scientific contributions on agile and

architecture, there is an ongoing discussion about this topic
in the software engineering community. One example is a
reoccurring workshop in conjunction to the XP-series of
conferences, supported by a wiki [43]. Moreover, researchers
and practitioners exchange experiences and ideas in other
wikis such as in the Agile 2.0 section of the OBJECTWARE
Open Community [44], and in social networks, such as the
Saturn group in LinkedIn. A lot of information regarding
architecture and agile is available from work-in-progress
workshops, seminars, company presentations, and websites
(including blogs). However, as most of this information is
based on non peer-reviewed expert opinion, we have not
considered it in the scope of this paper. This limits the
amount of information that we have used for the conclusions,
but ensures a certain level of quality.

B. Validity Threats
In addition to the fact that software engineering is a

young and fairly difficult area for empirical research (it is,
e.g., hard to establish causality due to the many different
factors that may affect outcome), there are well-founded
claims that study design, and methodological rigor could be
improved in this area [11]. Hence, it may come as no
surprise that the vast majority of statements made about the
effect on architecture by agile development (and vice versa)
hold a limited scientific validity. While some of the collected
data is based on empirical evidence, the largest part of the
data is based solely on expert opinion. Specifically, out of
the 130 statements collected in our study, 39 are based on
empirical evidence (33 are based on case studies and 6 on
experiments). The remaining 91 statements are based on
expert opinion. In addition, only 15 of the 34 selected
publications based their reasoning, or parts thereof, on any
type of explicit empirical evidence.

A threat to construct validity is the use of not clearly
defined terms, e.g., agile and architecture. We dealt with this
threat by making sure that all the researchers participating in

this review had the same definition in case of unclear terms.
In some cases it was hard to know how the authors of the
reviewed papers defined for example agile or architecture.
By ensuring that two researchers were part of the exclusion
of papers as well as the data analysis part we could discuss
possible interpretations and agree on it.

To ensure that we actually used the correct search strings
to answer our research questions we did a protocol including
a description of the study, search strings that we intended to
use and the research questions we sought to answer. This
protocol was sent to three senior researchers for feedback
and the protocol was modified based on their comments.

Regarding external validity, it is hard to make any
general claims about architecture and agile. Basically, the
lack of empirical studies makes it hard or even impossible to
generalize any of the conclusions.

V. SUMMARY AND FUTURE RESEARCH DIRECTIONS
As noted above, the research performed in the

intersection of agile and architecture is scattered, often
performed in small settings, seldom based on agreed-upon
supporting metrics, and sometimes tends to draw conclusions
outside the scope of the study. Hence, we think that larger
studies, based on defined metrics, performed in the industrial
domain, are necessary in order to increase our understanding
of how agile and architecture interrelate. This understanding
would be beneficial in determining when agile methods are
suitable, when they need to be complemented, and when
other development method are more suitable.

Even though the included publications in our survey vary
in focus, domain, study type and study quality, we have
made no such considerations when synthesizing our claims,
apart from the distinction made between statements based on
empirical evidence, and those based on expert opinion. A
more detailed analysis considering the above factors might
provide more clear results, but at the present time, we
consider the accumulated body of empirical evidence too
small for such an analysis, which remains to be our future
research when there is a wide range of empirical data.

REFERENCES
[1] S. Larsson, A. Wall, and P. Wallin, "Assessing the influence on

processes when evolving the software architecture," in Ninth
international workshop on Principles of software evolution: in
conjunction with the 6th ESEC/FSE joint meeting Dubrovnik,
Croatia: ACM, 2007.

[2] R. Land, J. Carlson, S. Larsson, and I. Crnković, "Towards
Guidelines for a Development Process for Component-Based
Embedded Systems," in Computational Science and Its Applications
– ICCSA 2009, 2009, pp. 43-58.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecutre in
Practice, 2nd ed. Boston, MA: Addison Wesley, 2003.

[4] D. Garlan, "Software architecture: a roadmap," in Proceedings of the
Conference on The Future of Software Engineering Limerick,
Ireland: ACM, 2000.

[5] K. Beck, Extreme Programming Explained: Embrace Change:
Addison-Wesley Professional, 1999.

[6] K. Schwaber and M. Beedle, Agile Software Development with
Scrum: Prentice Hall PTR, 2001.

[7] T. Dybå and T. Dingsøyr, "Empirical studies of agile software
development: A systematic review," Information and Software
Technology, 2008.

[8] L. Hochstein and M. Lindvall, "Combating architectural
degeneration: a survey," Information and Software Technology, vol.
47, pp. 643-656, 2005.

[9] M. C. Paulk, "Agile methodologies and process discipline," Crosstalk,
pp. 15-18, 2002.

[10] B. Boehm, "Get ready for agile methods, with care," Computer, vol.
35, pp. 64-69, 2002.

[11] B. Kitchenham, "Procedures for performing systematic reviews,"
Keele University TR/SE-0401/NICTA Technical Report 0400011T,
vol. 1, 2004.

[12] R. L. Nord and J. E. Tomayko, "Software architecture-centric
methods and agile development," IEEE Software, vol. 23, pp. 47-53,
2006.

[13] A. A. Sharifloo, A. S. Saffarian, and F. Shams, "Embedding
Architectural Practices into Extreme Programming," in Software
Engineering, 2008. ASWEC 2008. 19th Australian Conference on,
2008, pp. 310-319.

[14] P. Clements, J. Ivers, R. Little, R. Nord, J. Stafford, and I. Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering, Documenting
Software Architectures in an Agile World: Carnegie Mellon
University, Software Engineering Institute, 2003.

[15] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M.
Korkala, J. Koskela, P. Kyllönen, and O. Salo, "Mobile-D: an agile
approach for mobile application development," in Companion to the
19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, Vancouver, BC,
CANADA, 2004, pp. 174-175.

[16] F. Chitforoush, M. Yazdandoost, and R. Ramsin, "Methodology
support for the model driven architecture," in 14th Asia-Pacific
Software Engineering Conference (APSEC), Los Alamitos, CA
90720-1314, United States, 2007, pp. 454-461.

[17] D. E. Perry and P. S. Grisham, "Architecture and design intent in
component & COTS based systems," in Commercial-off-the-Shelf
(COTS)-Based Software Systems, 2006. Fifth International
Conference on, 2006, p. 10 pp.

[18] M. Karam, S. Dascalu, H. Safa, R. Santina, and Z. Koteich, "A
product-line architecture for web service-based visual composition of
web applications," Journal of Systems and Software, vol. 81, pp. 855-
867, 2008.

[19] M. Raatikainen, K. Rautiainen, V. Myllärniemi, and T. Männistö;,
"Integrating product family modeling with development management
in agile methods," in Proceedings of the 1st international workshop
on Software development governance, Leipzig, Germany, 2008, pp.
17-20.

[20] I. H. Krueger, M. Meisinger, M. Menarini, and S. Pasco, "Rapid
Systems of Systems Integration Â¿ Combining an Architecture-
Centric Approach with Enterprise Service Bus Infrastructure," in
Information Reuse and Integration, 2006 IEEE International
Conference on, 2006, pp. 51-56.

[21] F. Davide, C. Rafael, and C. Giovanni, "A value-based approach for
documenting design decisions rationale: a replicated experiment," in
Proceedings of the 3rd international workshop on Sharing and reusing
architectural knowledge Leipzig, Germany: ACM, 2008.

[22] E. Hadar and G. M. Silberman, "Agile architecture methodology:
long term strategy interleaved with short term tactics," in Companion
to the 23rd ACM SIGPLAN conference on Object-oriented
programming systems languages and applications Nashville, TN,
USA: ACM, 2008.

[23] D. Assmann and T. Punter, "Towards partnership in software
subcontracting," Computers in Industry, vol. 54, pp. 137-150, 2004.

[24] B. George and L. Williams, "A structured experiment of test-driven
development," Information and Software Technology, vol. 46, pp.
337-342, 2004.

[25] G. K. Hanssen and T. E. Faegri, "Agile customer engagement: a
longitudinal qualitative case study " in Proceedings of the 2006
ACM/IEEE international symposium on Empirical software
engineering, Rio de Janeiro, Brazil, 2006, pp. 164-173.

[26] G. K. Hanssen and T. E. Fægri, "Process fusion: An industrial case
study on agile software product line engineering," Journal of Systems
and Software, vol. 81, pp. 843-854, 2008.

[27] R. Juric, "Extreme programming and its development practices," in
Information Technology Interfaces, 2000. ITI 2000. Proceedings of
the 22nd International Conference on, 2000, pp. 97-104.

[28] H. Obendorf and M. Finck, "Scenario-based usability engineering
techniques in agile development processes," in CHI '08 extended
abstracts on Human factors in computing systems, Florence, Italy,
2008, pp. 2159-2166.

[29] K. R. Schougaard, K. M. Hansen, and H. B. Christensen, "SA@Work
- A Field Study of Software Architecture and Software Quality at
Work," Apsec 2008:15th Asia-Pacific Software Engineering
Conference, Proceedings, pp. 411-418, 2008.

[30] C. Nelson and J. S. Kim, "Integration of software engineering
techniques through the use of architecture, process, and people
management: An experience report," Rapid Integration of Software
Engineering Techniques, vol. 3475, pp. 1-10, 2005.

[31] B. Ramesh, J. Pries-Heje, and R. Baskerville, "Internet Software
Engineering: A Different Class of Processes," Annals of Software
Engineering, vol. 14, pp. 169-195, 2002.

[32] C. A. Wellington, T. Briggs, and C. D. Girard, "Examining team
cohesion as an effect of software engineering methodology," in
Proceedings of the 2005 workshop on Human and social factors of
software engineering, St. Louis, Missouri, 2005, pp. 1-5.

[33] S. W. Ambler, "Lessons in agility from Internet-based development,"
Software, IEEE, vol. 19, pp. 66-73, 2002.

[34] Beck, Test Driven Development: By Example: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[35] K. Beck, "Aim, Fire," IEEE Softw., vol. 18, pp. 87-89, 2001.
[36] D. S. Janzen and H. Saiedian, "Does Test-Driven Development

Really Improve Software Design Quality?," Software, IEEE, vol. 25,
pp. 77-84, 2008.

[37] L. Cordeiro, C. Mar, E. Valentin, F. Cruz, D. Patrick, R. Barreto, and
V. Lucena, "An agile development methodology applied to embedded
control software under stringent hardware constraints," SIGSOFT
Softw. Eng. Notes, vol. 33, pp. 1-10, 2008.

[38] L. Williams, E. M. Maximilien, and M. Vouk, "Test-driven
development as a defect-reduction practice," in Software Reliability
Engineering, 2003. ISSRE 2003. 14th International Symposium on,
2003, pp. 34-45.

[39] A. Marchenko, P. Abrahamsson, and T. Ihme, "Long-Term Effects of
Test-Driven Development A Case Study," in Agile Processes in
Software Engineering and Extreme Programming, 2009, pp. 13-22.

[40] A. van Deursen, "Program comprehension risks and opportunities in
extreme programming," in Reverse Engineering, 2001. Proceedings.
Eighth Working Conference on, 2001, pp. 176-185.

[41] J. van Gurp and J. Bosch, "Design erosion: problems and causes,"
Journal of Systems and Software, vol. 61, pp. 105-119, 2002.

[42] http://www.flexi-itea2.org/index.php (visited April 2010)
[43] http://www.lmsa-

community.org/wikis/index.php/Architecture-
Centric_Methods_and_Agile_Approaches (visited April
2010)

[44] http://wiki.community.objectware.no/display/smidigtonull/Ag
ile+and+Software+Architecture (visited April 2010)

http://www.lmsa-community.org/wikis/index.php/Architecture-Centric_Methods_and_Agile_Approaches
http://www.lmsa-community.org/wikis/index.php/Architecture-Centric_Methods_and_Agile_Approaches
http://www.lmsa-community.org/wikis/index.php/Architecture-Centric_Methods_and_Agile_Approaches
http://wiki.community.objectware.no/display/smidigtonull/Agile+and+Software+Architecture
http://wiki.community.objectware.no/display/smidigtonull/Agile+and+Software+Architecture

	I. Introduction
	II. Research Method
	A. Inclusion and Exclusion Criteria
	B. Search Process
	C. Data Extraction and Synthesis

	III. Survey Findings
	A. RQ1: Is architecture sufficiently emphasized in agile methods?
	1) Agile and architecture: As agile methods in general describe very sparsely how to handle architecture, several studies have advocated the need to synthesize and extend agile development with methods supporting architecture. Nord and Tomayko [12] argue that software architecture-centric methods can enhance XP practices and add value to agile methods by emphasizing quality attributes and their role in shaping the architecture’s design through scenarios. In addition, as agile approaches emphasize face-to-face communication to convey information, the risk of making irrecoverable architectural mistakes because of unrecognized shortfalls in its tacit knowledge can be complemented with usage of common concepts, e.g., quality attributes, architectural tactics and views-based architecture documentation approach from architecture-centric methods. According to Boehm, agile approaches have home-ground areas that they are appropriate for [10]. The difference in the architecture area is that agile methods are designed for current requirements, whereas plan-driven and architecture-centric methods are designed for current and foreseeable requirements. Accordingly, Boehm states that hybrid approaches which combine both agile and plan-driven methods are feasible and necessary for projects that have a mixture of agile and plan-driven characteristics.
	2) Empirical studies in agile and architecture: A commonly stated assumption and motivation for research focusing on agile and architecture, is that the lack of emphasis on architecture in agile practices leads to architectural problems [8, 13, 19, 22-30]. However, when searching for empirical findings that actually support this assumption, we find that such results are sparse. On the other hand, equally few empirical results support the opposite position: that agile development supports architectural development better than traditional software development methods. The empirical studies conceiving that architecture is insufficiently emphasized in agile methods include a longitudinal case study by Hanssen and Faegri [25] on agile development in a small software company. In the study, developers state that “the continuous focus on direct customer value weakens the focus on engineering handcraft such as thorough general design”. The concern is that the focus on short-term goals may lead to development shortcuts, resulting in a degradation of the architecture. Moreover, based on a study of nine US internet software development organizations, Ramesh et al. [31] observe a tendency for developers to “move towards more traditional approaches to software development as their products and markets matured and the complexity of the development grows”, indicating that agile methods are insufficient in supporting complex architecture. It should be noted that the study by Hanssen and Faegri actually reports from a case where the developers involved felt that the agile method at hand was unable to cope with architectural integrity, whereas observations in the study by Ramesh et al. [31] can be interpreted as a symptom of this inability. However, there may be other interpretations of these observations.

	B. RQ2: Do agile practices improve software architecture?
	1) TDD and architecture: TDD is a technique that encourages simple designs [34]. As XP originator Kent Beck asserts, “Test-first code tends to be more cohesive and less coupled than code in which testing isn’t a part of the intimate coding cycle” [35]. However, George and Williams [24] argue that the lack of upfront design, as well as the emphasis on implementation rather than logical structure in TDD might be a concern for software practitioners, and that these issues call for the need of empirical analysis of TDD.
	2) Refactoring and architecture: In a software life-cycle perspective, refactoring will presumably be inevitable at some point, regardless of development method used. However, as Van Gurp et al. [41] conclude, the iterative nature of agile approaches is likely to increase the need for an early refactoring of the architecture. In their study, Van Gurp et al. categorize two extremes of iterative development, i.e., the minimal effort strategy, and the optimal design strategy. The former uses a more agile approach where only the next iteration is considered and changes are kept to a minimum. This approach will cause an architectural drift and erosion that will drive a refactoring of the architecture since the integrity is violated. The optimal strategy, on the other hand, hypothesizes that all necessary changes to the software are made for each new set of requirements. “However, even the optimal strategy does not lead to an optimal design. It just delays inevitable problems like design erosion and architectural drift." [41]. In [27], Juric identifies similar experiences with XP, stating that the early converting of unit tests to production code will require more frequent and early refactoring. Further, George [24] argues that one of the shortcomings of TDD is the reliance on refactoring as a mean to reduce or maintain complexity.

	IV. Discussion
	A. Related Non-Scientific Work
	B. Validity Threats

	V. Summary and Future Research Directions
	References

