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Abstract

This paper presents RapidRT, a novel statistical ap-
proach to Worst-Case Response-Time (WCRT) analysis tar-
geting complex embedded real-time systems. The pro-
posed algorithm combines Extreme Value Theory (EVT) and
other statistical methods in order to produce a probabilis-
tic WCRT estimate. This estimate is calculated using re-
sponse time data from either Monte Carlo simulations of a
detailed model of the system, or from response-time mea-
surements of the real system. The method could be consid-
ered as a pragmatic approach intended for complex indus-
trial systems with real-time requirements. The target sys-
tems contain tasks with many intricate dependencies in their
temporal behavior, which violates the assumptions of tra-
ditional analytical methods for response time analysis and
thereby makes them overly pessimistic. An evaluation is
presented using two simulation models, inspired by an in-
dustrial robotic control system, and five other methods as
reference.

1 Introduction

Many industrial embedded systems are very large, highly

configurable software systems, containing many event-

triggered tasks, triggered by other tasks in complex, nested

patterns. Consequently, they have a very complex runtime

behavior. Such systems may consist of millions of lines

of code, and contain hundreds of tasks, many with real-

time constraints. Examples of such systems include the

robotic control system IRC 5, developed by ABB [1], as

well as several telecom systems. In such systems, many

tasks have intricate dependencies in their temporal behav-

ior, which violates the assumptions made in most real-time

theory, i.e. the tasks are independent in the analysis model.

Such dependencies include asynchronous message-passing

and globally shared state variables which may decide im-

portant control-flow conditions with major impact on task

execution time. Other violations of these assumptions are

runtime changeability of priorities and periods of tasks. We

refer to systems with such characteristics as Complex Em-

bedded Real-Time Systems (CERTS). For such systems,

timing analysis methods, such as Response-Time Analysis

(RTA) [3], are often not applicable, as their assumptions do

not hold. They thereby become overly pessimistic; often too

pessimistic to be useful. Moreover, methods like RTA relies

on the existence of a Worst-Case Execution-Time (WCET)

for each task. Correspondingly, the quality of the analysis is

directly correlated to the quality of the WCET estimates. In

order to perform a safe analysis covering system worst-case

scenarios, static WCET analysis has to be adopted in the

context, but today’s WCET tools cannot analyze the com-

plex high-performance CPUs used by many industrial sys-

tems.

An alternative approach is to use simulation-based meth-

ods, where the simulation model contains execution time

data from measurements. The first type of simulation tech-

nique to use is Monte Carlo simulation, which can be de-

scribed as keeping the highest result from a set of random-

ized simulations. Examples of tools implementing Monte

Carlo simulation include the commercial tool VirtualTime

[22] and the academic tool ARTISST [7]. However, the

main drawback of Monte Carlo simulation is its low state-

space test coverage, which subsequently decreases the con-

fidence in the results of finding rare worst-case scenarios.

The other category is to apply an optimization algorithm

(e.g. a (meta)heuristic search algorithm) on top of Monte

Carlo simulation, as in [15] and [4], which yields substan-

tially better results, i.e. tighter lower bounds, but not upper

bounds of the WCRT estimation.
Another interesting approach features the use of stochas-

tic task execution times in RTA of priority-driven soft

real-time systems [13] and schedulability analysis [20].

Nonetheless, this approach currently does not allow for

execution dependencies between tasks in the analysis.

[5] presents another probabilistic framework extending RTA

The Sixteenth IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/10 $26.00 © 2010 IEEE

DOI 10.1109/RTCSA.2010.13

153

The Sixteenth IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

1533-2306/10 $26.00 © 2010 IEEE

DOI 10.1109/RTCSA.2010.13

153



to incorporate a probabilistic characterization of task ar-

rivals and execution times. However, task execution de-

pendencies such as runtime changeability of task priorities

and periods, and message-passing, are not taken into con-

sideration. Other related work includes [11] presenting how

likely a WCET estimate generated by Extreme Value The-

ory (EVT) [10] will be exceeded in the future. Here, the

search algorithm concerning the best-fit Gumbel distribu-

tion parameters is done in a simple way, by only doubling

the block size. A tool for statistical analysis of hard real-

time scheduling algorithms is introduced in [9], where the

data used for the statistical analysis can be collected from

simulations. However, the simulation models described do

not include task behavior and thereby do not capture execu-

tion dependencies between tasks.

In earlier work [19] we presented a first approach for us-

ing statistical response time analysis of complex embedded

systems containing task execution dependencies, based on

EVT. In this paper, we extend our work by bringing in a

more systematic way of using a combination of EVT and

other statistical methods with the purpose of producing a

WCRT estimate of tasks on focus in system models under

a hard statistic constraint, i.e. a certain probability of being

exceeded. More importantly, the statistical conviction on

using the new improved method as a tighter upper bound of

WCRT estimate is carried out and confirmed by our eval-

uation on two models depicting a fictive but representative

real industrial robotic control system.

Contributions: The contributions of this paper are four:

1. We introduce a new method of constructing a sampling

distribution for best-fit Gumbel Max parameters esti-

mation, by eliminating the dependencies between each

response time data caused by tasks execution depen-

dencies, which is not considered in our previous work.

2. We propose a new search procedure focusing on us-

ing more samples in the best-fit Gumbel Max parame-

ters estimation, which could produce more precise es-

timated parameters.

3. We bring in a new systematic way of combining EVT

with other statistics in order to assure that the result

given by our proposed method can statistically be con-

sidered as a tight upper bound of the WCRT estimate

of tasks under analysis in the system model. This also

highlights how statistical analysis methods can be used

to assess relevant issues in the real-time realm.

4. We evaluate the proposed method RapidRT, and show

that it can find an accurate WCRT estimation in the

cases where the true WCRT is known, and the highest

WCRT estimate when compared to the ones obtained

using other simulation-based methods when the true

WCRT is unknown (i.e. when applying RTA is infea-

sible).

Organization: The remaining part of the paper is orga-

nized as follows: Section 2, at first, briefly presents a new

type of system model used in our analysis, where the WCET

of each data-driven task is represented as an expression con-

taining parameters. Then we show how the modeling lan-

guage is used in practice, and give the problem definition.

Section 3 presents the proposed method, i.e. RapidRT, and

Section 4 describes the implementation of our developed

testbed and a tool chain. The evaluation by using two case-

study models with five methods as reference is presented in

Section 5, before conclusions are drawn in Section 6.

2 Modeling of CERTS

The novelty of the system model used in this paper is to

represent the WCET of tasks as a symbolic formula center-

ing around i) the number of messages in the buffers con-

sumed by, or sent by, a task and ii) the value of the Globally

Shared State Variables (GSSVs) used in selecting control

branches. A WCET dependent on external context is often

referred to as a parametric WCET [6]. Moreover, the sys-

tem model uses job-level1 WCET estimates, which makes

static WCET analysis feasible on job-level as, even though

there may be dependencies among tasks, there will be no

execution dependencies inside jobs.

Hence, the system S contains a set of non-blocking

tasks, each of which consists of n jobs, where

n ∈ N. Each deadline-constrained task τi is a tuple

τi(Ti,C
p
i ,Di,Oi, Ji, Pi), where Ti is the task period with

maximum jitter Ji, constant offset Oi and a priority Pi, Cp
i

is the WCET expression as a function of b buffers (i.e.

Ui,1, ...,Ui,b) and g GSSVs (i.e. Vi,1, ...,Vi,g) associated with

task τi and execution time on jobs, Di is the relative deadline

(max(Cp
i ) ≤ Di ≤ Ti). For sake of space (interested readers

can refer to [18]), we only give the WCET expression of

task τi as shown in Equation 1:

Cp
i =

b∑
j=1

Cp
i (Ui, j) +

g∑
j=1

Cp
i (Vi, j) +

c∑
j=1

Ci,nv j (1)

where c is the number of non-volatile (NV) sections which

do not contain any buffers U and GSSVs V in task τi.

In practice, such system models are described by the

modeling language used by RTSSim, which describes both

architecture and behavior of task-oriented systems devel-

oped in C. An RTSSim simulation model consists of a set

of tasks, sharing a single processor. Each task in RTSSim

is a C program, which executes in a “sandbox” environ-

ment with similar services and runtime mechanisms as a

normal real-time operating system, e.g. task scheduling,

inter-process communication (message queues) and syn-

chronization (semaphores). The default scheduling policy

1A task consists of a sequence of jobs.
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Figure 1. Illustration of applying different WCRT analy-

sis methods in the system model presented in Section 2.

of RTSSim is Fixed-Priority Preemptive Scheduling (FPPS)

and each task has scheduling attributes such as priority,

period, offset and jitter. A more thorough description of

RTSSim can be found in [14].

In this paper, we present a new approximation method,

RapidRT, based on Extreme Value Theory (EVT) [10], with

the purpose of determining a tight and meaningful upper

bound of the WCRT of tasks in complex real-time systems,

where basic RTA [12] cannot be applied in practice. Con-

sequently, the problem can be defined as follows. We are

given a model, which can be simulated as RTSSim simula-

tion instance s. Let R(s) denote the highest response time

measured for the task under analysis in the simulation in-

stance s. Given m simulation instances s1, ..., si, ..., sm as the

samples in space S , i.e. S ← s1, ..., s j, ..., sn, where n ∈ N,

the goal of the problem is then to find an estimation that is

bigger than any R(s j) in space S . Moreover, the relationship

between the results obtained by different analysis methods

and the exact value of the WCRT of the task on focus in the

system model is illustrated in Figure 1.

3 RapidRT

Extreme Value Theory (EVT) was first codified in 1958

and is a separate branch of statistics for dealing with the tail

behavior of a distribution. It is used to model the risk of

the extreme, rare events, without the vast amount of sample

data required by a brute-force approach. Example applica-

tions of EVT include risk management, insurance, hydrol-

ogy, material sciences, telecommunications etc.

There are three models in EVT, i.e. Gumbel (type I),

Frechét (type II) and Weibull distributions (type III), which

are intended to model random variables that are the maxi-

mum or minimum of a large number of other random vari-

ables. It is worth noting that the Frechét distribution is

bounded on the lower side (x > 0) and has a heavy up-

per tail, while the Weibull model relates to minima (i.e. the

smallest extreme value). Since the purpose of this work is to

find the higher response time of tasks concerning rare worst-

case scenarios, we use the maximum case in the Gumbel

distribution, referred to as Gumbel Max in the reminder of

the paper. Further, the curve in Figure 2 shows the shape of

Gumbel Max.

The proposed method, RapidRT, is shown in Algo-

rithm 1. It is a recursive procedure which, as the first two ar-

guments, takes n reference data sets each of which contains

m samples of the response time of the task under analysis.

For each reference data set, the algorithm returns the WCRT

estimation with a probability of being exceeded, i.e. 10−9,

which is the third algorithm argument. For instance, Air-

bus [2] uses such a value 10−9 in the safety-critical system

domain. Next, RapidRT will verify if the sampling distri-

bution consisting of n WCRT estimates given by EVT for

all n reference data sets (we refer to such a sampling distri-

bution as EVT distribution hereafter) conforms to a normal

distribution or not, according to the result given by the non-

parametric Kolmogorov-Smirnov test [16] (KS test here-

after, and the reason for why we are using KS test in this

work is given in Section 3.2). If it is, then RapidRT will

calculate the confidence interval (i.e. CI hereafter) of the

EVT distribution, at the given confidence level 99.7%, and

choose the upper bound of CI as the final WCRT estimate.

This invents a new hard statistic constraint, i.e. in the statis-

tical perspective, given the modeled system, the possibility

of the existence of a higher WCRT estimate than the WCRT

estimate given by RapidRT is no more than 1.5× 10−12 (i.e.

(100%−99.7%)/2×10−9 ). Otherwise, if the EVT distribu-

tion cannot be fitted to a normal distribution, a resampling
statistic bootstrap will be adopted to obtain the upper bound

of CI of the EVT distribution. Further, in our evaluation, the

EVT distributions for both two evaluation models conform

to a normal distribution, therefore the bootstrap test will not

be introduced in this paper. However, interested readers can

find the details in Chapter 16 in [21].

3.1 Algorithm Outlined

The outline of the RapidRT algorithm is as follows,

which is discussed in greater detail in the following sec-

tions.
1. Construct n reference data sets for the WCRT esti-

mates by running m Monte Carlo simulations for each

reference data at first, and then choosing the highest

maximum value of response time of the task under

analysis in each simulation. Consequently, the sam-

pling distribution of response-time (RT) data per ref-

erence data set consists of the m highest maximum RT

data of m simulations.

2. Perform the WCRT estimates on the task under analy-

sis per each reference data set.

(a) Set the initial block size b to 1, for each reference

data set.

(b) If the number of blocks k =
⌊m

b

⌋
is less than 30,

the algorithm stops as there are not enough sam-

ples to generate an estimate.
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(c) Segment m response times into blocks of size b,

and for each of the

⌊m
b

⌋
blocks find the maximum

values.

(d) Estimate the best-fit Gumbel parameters μ and

β to the block maximum values by using a

proposed search algorithm introduced in Sec-

tion 3.3.3.

(e) Calculate a WCRT estimate based on the best-fit

Gumbel Max parameters estimated through Step

d), i.e. μ, β, and a target acceptance probability

Pe, i.e. 10−9.

3. After verifying if the EVT distribution (i.e. ES T ←
est1, ..., esti, ..., estn) can successfully be fitted to a nor-

mal distribution by using KS test, RapidRT will return

a result, i.e. ES T + 3σES T (the sum of mean value and

3 standard deviation of ES T at the confidence level

99.7%).

3.2 Construction of the Reference Data Sets

Due to the execution dependencies between tasks in the

system model introduced in Section 2, the sampling distri-

bution for each reference data set cannot be constructed by

just collecting RT data given by running a single shot of

Monte Carlo simulation. The reason for this is inherent in

that such RT data are not from a random variable due to

task execution dependencies such as globally shared state

variables. In order to assess this issue, in this paper, we pro-

pose to run m Monte Carlo simulations in RTSSim at first,

then select the highest value of response time per each sim-

ulation to construct a new sampling distribution per each

reference data set. The construction is showed in row 2 in

Algorithm 1, where rti,1 in line 2 is the highest response

time of the task under analysis observed in the first simula-

tion instance out of m simulation runs for the reference data

set i. Moreover, because the search algorithm (to be intro-

duced in Section 3.3.3) is not fully implemented in our tool

chain (presented in Section 4), we choose 50 as the value

of n, which is required by the non-parametric KS test in the

verification process of fitting the EVT distribution to a nor-

mal distribution.

3.3 WCRT Estimation of the Reference Data Sets

3.3.1 Blocking of m Samples per Reference Data Set

In order to avoid the risk of mistakenly fitting raw re-

sponse time data for each reference data set, that may

not be from random variables, to Gumbel Max, we use

the method of block maxima [10] as proposed in [11].

This is done by grouping m response time samples in

each reference data set into k blocks of size b, and then

choosing the maximum value from each block to con-

struct a new set of sample “block maximum” values, i.e.

Y ← yi,1, ..., yi,k, yi,k ← maxima(S ) ← m(k−1)×b+1, ...,mkb

as shown in line 7 and 8 in Algorithm 1. The samples

at the end of the execution sequence in a simula-

tion that do not completely fill a block are discarded.

For instance, if there are 9 samples per data set, i.e.

{1119, 1767, 2262, 2287, 1792, 2687, 1942, 1842, 1692},
and b (i.e. the size of the blocks) is 2, then the last sample

(i.e. 1692) in the sequence is discarded since it can not be

grouped in the 4 (i.e.

⌊
9

2

⌋
) blocks.

3.3.2 Search Space of Block Size b

The search space of block size b is the range of [1,
⌊ m
30

⌋
].

Since in order to use the Chi-squared test in finding the best-

fit Gumbel Max parameters, the number of blocks should

not be less than 30; Otherwise, there are not enough samples

in block maxima Y used in the estimation (to be introduced

in Section 3.3.3). It is also interesting to notice that the

value of m also impacts the success ratio of using our search

algorithm introduced in the following section. For instance,

for the evaluation model M1, the value of m is 20 000, which

is sufficient enough to give a good coverage of the under-

line population. However, if the same value of m is used in

another model MV, then our proposed search algorithm is

not efficient in finding the best-fit Gumbel Max parameters,

in terms of having a few failures. Therefore, we propose

a solution with the intention of diminishing the number of

samples in a sampling distribution fitting to Gumbel Max,

by decreasing the number of simulations by half, i.e. 10 000

(i.e. 20 000 ÷ 2) which ensures that the proposed search al-

gorithm can find the best-fit parameters for each reference

data set. Further, the cost of collecting 10 000 and 20 000

samples for each reference data set in the different evalu-

ation models is quite reasonable, i.e. 27.126 seconds and

96.118 seconds respectively. Note that we use mean value

here due to low variance of computation time cost by simu-

lation.

3.3.3 Best-fit Gumbel Max Parameters

The estimation of the parameters of the Gumbel Max dis-

tribution is the core of RapidRT, which is also an iterative

procedure as shown in rows 6-36 in Algorithm 1. The in-

tention of such a search procedure is to focus on searching

for the value of block size b to be as low as possible. In this

way, there are more blocks, i.e. the bigger value of blocks k,

used as samples in the best-fit Gumbel Max parameters es-

timation. To achieve this, in this paper, we propose a search

algorithm including a simple procedure of doubling block

size b and a lower-part binary search algorithm [23], which

are invoked as shown in rows 10-35 in Algorithm 1. For a

better understanding and sake of space, we will illustrate the
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entire search procedure by using a concrete example based

on the data shown in Table 1. Moreover, the best-fit test is,

in terms of examining the estimated Gumbel parameters, a

goodness-of-fit (GOF) test, i.e. Chi-squared test at α-value

of 0.05. Chi-squared test is used to determine if a sample

comes from a population with a specific distribution [8], i.e.

the Gumbel Max distribution in this work. Further, the null

and alternative hypotheses are:

• H0: the data, i.e. the maxima of the blocks follow the

Gumbel Max distribution;

• Ha: the data, i.e. the maxima of the blocks do not

follow the Gumbel Max distribution.

Table 1. Illustration of using a proposed search algorithm

to find the best-fit Gumbel Max parameters.

step b ALG χ2 step b ALG χ2

1 1 db × 8 128 db
√

2 2 db × 9 96 lwb ×
3 4 db × 10 112 lwb ×
4 8 db × 11 120 lwb ×
5 16 db × 12 124 lwb

√
6 32 db × 13 122 lwb

√
7 64 db × 14 121 lwb

√

The columns b, ALG and χ2 in Table 1 represents block
size, search algorithm and result of Chi-squared test at α-
value of 0.05 respectively (Chi-squared test at α-value of

0.05 is referred to as χ2 test without indicating α-value of

0.05 in the following context). Moreover, lwb stands for the

algorithm lwbsearch, db means the algorithm which dou-

bles the block size b,
√

is not reject χ2 test and × is reject
χ2 test. At the beginning, Algorithm 1 will try to find a valid

upper bound of the search space used later in the lower-part

binary search, by doubling block size b as shown through

Steps 1 to 8 in Table 1. At step 8, such bound is found

which is equal to 128. Then lwbsearch will start searching

for the lowest value of b∗ in the range of [1, 128], under the

condition that the corresponding χ2 test is not rejected. b∗ is

used to estimate the parameters for the Gumbel Max distri-

bution which are considered as the best-fit parameters. For

example, at Step 8, blwb (i.e. the lower bound of b) is set to

be 1 and bupb (i.e. the upper bound of b) is 128. The new

value of b to be verified by using χ2 test at Step 9 is 64, i.e.⌊
1 + 128

2

⌋
. However, since 64 is already checked at Step 7,

therefore blwb is updated to 64. Correspondingly, the new b

value to be verified at Step 9 is 96, i.e.

⌊
64 + 128

2

⌋
. lwb-

search will not stop searching for b∗ until at Step 14, when

the value of b is 121 which succeeds in χ2 test. While at

Step 11, its preceding ordered number 120 fails in χ2 test.

Hence b∗ is ensured to be 121 (in bold in Table 1). The

corresponding block maxima is shown in Figure 2.

Figure 2. The block maxima obtained by our proposed

search algorithm conforms to Gumbel Max distribution.

3.3.4 The WCRT Estimation Formula

The two parameters of the Gumbel Max distribution: a lo-

cation parameter μ and a scale parameter β, are used in

the Gumbel percent-point function as shown in Equation 2,

which returns the WCRT estimate that the block maximum

Y cannot exceed with a certain probability Pe. Its im-

plementation is the function wcrtevt with the arguments b
(block size), l (location parameter), s (scale parameter) and

Pe (acceptance probability) (refer to lines 13 and 18 in Al-

gorithm 1). The process of determining the best-fit Gum-

bel Max parameters practically by using the tool chain we

developed in this work, are explained in the following Sec-

tion 4.

est = μ − β × log(−log((1 − Pe)b)) (2)

3.3.5 WCRT Estimation Given by RapidRT

Due to the different sampling distribution collected by run-

ning Monte Carlo simulation that are used in the best-fit

Gumbel Max parameters estimation, the WCRT estimate

given by EVT for each reference data set is therefore differ-

ent with another. Consequently, it is worth applying other

statistics on top of EVT, which ensures that the results given

by EVT will not exceed a specific value at the certain con-

fidence level that is considered as the final result given by

RapidRT. In this work, we try to fit the EVT distribution

to a normal distribution at first (one important underline as-

sumption of the conventional statistical procedures is that

the sampling distribution conforms to a normal distribution,

which further enables application of parametric tests, such

as analysis of variance (ANOVA) and t-test, to infer the pa-

rameters of the population), then use an upper bound of the

CI of EVT distribution at the confidence level 99.7% as the

final result given by RapidRT. Moreover, if the EVT distri-

bution cannot be fitted to a normal distribution, which is not

the case in the evaluation work later in this paper, we use

a bootstrap test to obtain the upper bound of the CI of the

EVT distribution.

4 Implementation

In this section, our testbed and the tool chain includ-

ing the implemented tools are introduced in details. Our
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testbed is running Microsoft Windows XP Professional, ver-

sion 2002 with Service Pack 3. The computer is equipped

with the Intel Core Duo CPU E6550 processor, 2GB RAM

and a 4MB L2 Cache. The processor has 2 cores and 1 fre-

quency level: 2.33 GHz.

RTSSim is a Monte Carlo simulation framework used to

construct the sampling distribution for the WCRT estimate

using EVT for each reference data set. It generates one text

file out.txt which contains m lines of simulation results rep-

resenting the highest value of response time for a specific

task observed during each simulation in m simulation runs

for each reference data set.

The core part of the tool chain, ThinkStati, is a prototype

of RapidRT as an executable program with a simple user

interface developed using Microsoft C# programming lan-

guage and .NET framework 2.0. The software 1) reads one

output of the RTSSim simulator, i.e. the reference data set

file containing m (i.e. either 20 000 or 10 000 for the differ-

ent evaluation models as explained in Section 3.2) samples

of response times of the task on focus, at first, then 2) gen-

erates a text file yblock.txt for each reference data set after

segmenting the samples as introduced in Section 3.3.1, then

3) produces the WCRT estimation on tasks under analysis

according to the best-fit Gumbel Max parameters (verified

and returned by EasyFit introduced in the following con-

text) and the acceptance probability, i.e. 10−9 in this work.

Due to limited time, the investigation on how to use the in-

terfaces in EasyFit, concerning the verification result of the

estimated Gumbel Max parameters, has not been done yet.

Correspondingly, one proposed search algorithm has not

been implemented in ThinkStati. The output of ThinkStati

is a text file containing the EVT distribution, which is used

by EXCEL 2007 to construct the confidence interval at the

confidence level 99.7%. Last but not least, we choose the

upper bound of such an interval as the final result given by

RapidRT.

Concerning the Chi-squared test required by ThinkStati,

it is done by using a commercial software EasyFit [8].

Specifically, given the text file yblock.txt which contains a

certain number of samples generated by ThinkStati, as the

input, the Chi-squared test engine embedded in EasyFit will

return the results in terms of the success or failure of the

hypothesis test concerning the acceptance of H0 or null hy-
pothesis.

5 Empirical Results

In this section, we firstly introduce two models used

for method evaluation, including one validation model, and

then we compare our solution against five other methods as

reference: Monte Carlo simulation, MABERA, HCRR, ba-

sic RTA, and our previously proposed method WCRTEVT.

Worth noting is that all models are inspired by real indus-

RTSSim

out.txt

ThinkStati

EasyFit
Chi-square test engine

A WCRT Estimation

Best-fit Gumbel Max 
parameters estimation

Monte Carlo simulation

yblock.txt

Excel 2007

EVT Distribution

Figure 3. The toolchain in this work.

trial control systems.

5.1 Evaluation Models

The two models, i.e. Model 1 (M1) and Model for

Validation (MV), have similar architecture and analysis

problems as one industrial real-time application in use at

ABB [1]. M1 is representing a control system for industrial

robots developed by ABB Robotics, which is not possible

to analyze using methods such as RTA [3, 17]. We also use

a simplified version of Model 1, making RTA is applicable,

for validation (MV). The sole purpose of this model is to

investigate how close the response time estimation given by

RapidRT is to the true known WCRT derived by RTA. The

scheduling policy is FPPS for all models, apart from M1

(where FPPS is used as base but one task changes its prior-

ity during runtime); MV uses fixed priorities. Furthermore,

both M1 and MV can be described (modeled) by the system

model proposed in Section 2.

This model represents a control system for industrial

robotics, developed by ABB. M1 is designed to include

some behavioral mechanisms from the ABB system which

RTA can not take into account: 1) tasks with intricate de-

pendencies in temporal behavior due to Inter-Process Com-

munication (IPC) and globally shared state variables, 2) the

use of buffered message queues for IPC, where triggering

messages may be delayed, and 3) tasks that change schedul-

ing priority or periods dynamically, in response to system

events.
The modeled system controls a set of electric motors

based on periodic sensor readings and aperiodic events. The

calculations necessary for a real control system are, how-

ever, not included in the model; the model only describes

behavior with a significant impact on the temporal behavior

of the system, such as resource usage (e.g., CPU time), task

interactions and important state changes. The details of the

model are described in [14].

MV is constructed based on M1, but the adhering task

execution dependencies are simplified in that 1) globally

shared state variables have been removed, 2) priority and

period are strictly static, 3) explicit loop bounds have been

added manually, and 4) the constant offset of tasks is re-
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moved. As a consequence, MV has considerably lower

complexity, which makes both using the RTCF in basic RTA

to calculate the WCRT of tasks under analysis, and achiev-

ing the exact WCRT by using simulation-based methods,

e.g., Monte Carlo simulation and HCRR [4], feasible.

5.2 Results Comparison

For sake of space in Table 2 and Table 3, MC and MAB
represent Monte Carlo simulation and MABERA respec-

tively, and RTA stands for Basic RTA (without blocking).

As shown in Table 2, when different simulation budgets

(refer to Table 3) are given to different methods in or-

der to obtain the highest WCRT estimate of the task un-

der analysis, for MV, the result achieved by RapidRT is

19.96% (i.e. (5 196.68 − 4 332)/4 332 × 100%) more pes-

simistic than the known WCRT estimate 4 332, but 13.13%

(i.e. (5 982 − 5 196.68)/5 982 × 100%) less pessimistic

when compared to the value obtained by basic RTA. Fur-

ther, when compared to the results given by the method

proposed in our previous work WCRTEVT, RapidRT is

13.60% (i.e. (5 196.68 − 4574.56)/4574.56 × 100%) more

pessimistic than the result given by WCRTEVT. This is be-

cause in WCRTEVT, we only chose the lowest RT estimate

among all reference data sets which could intentionally pro-

duce a lower WCRT estimate that is closer to the known

WCRT, without any statistical confidence, e.g., CI. While in

RapidRT, a more systematic way is adopted in terms of con-

structing a CI at the confidence level 99.7% of the EVT dis-

tribution for all reference data sets at first, then choosing the

upper bound of such CI. This also brings in a harder statis-

tic constraint, i.e. 1.5 × 10−12, than the one in WCRTEVT,

i.e. 10−9. More importantly, for M1 where the true WCRT

estimate of the task on focus is unknown, the result given

by RapidRT does not only cover all the best results given

by MC, MABERA and HCRR, but also is higher than the

one given by WCRTEVT in terms of 1% more pessimistic

(i.e. (8698.289−8610.766)/8610.766×100%). Further, not

only because of the complexity of M1 (to which basic RTA

cannot be applied) is much higher than MV, but also due to

that RapidRT is designed in a more systematic way and is

under a harder statistic constraint, we therefore believe that

RapidRT can return a better (safer) WCRT estimate com-

pared to the one achieved by WCRTEVT, specially when

basic RTA cannot be applied.
Regarding the computation time consumed by each

method used in the evaluation, Table 3 shows that the

computation time cost by RapidRT is either 8.35% (i.e.

(1 716.73−1 573.36)/1 716.73×100%) (for MV) less than,

or 180% (i.e. (4 805.90 − 1 716.73)/1 716.73 × 100%)

(for M1) more than, the computation time consumed by

WCRTEVT. This is because the number of samples in each

reference data set in MV and M1 required by RapidRT is

Table 2. Results comparison for two evaluation models,

when the different simulation budgets, i.e. the number of

simulations to run, are given to the methods.

MC MAB HCRR RTA WCRTEVT RapidRT

MV 4332 4332 4332 5982 4574.56 5196.68

M1 7682 8065 8474 NA 8610.766 8698.289

Table 3. The computation time corresponding to the num-

ber of simulations required to execute by each method.

MC & MAB HCRR WCRTEVT RapidRT

MV 36133.46 s 44.39 s 1716.73 s 1573.36 s

M1 36133.46 s 44.39 s 1716.73 s 4805.90 s

different, as introduced in Section 3.3.2. However, in or-

der to have a tighter WCRT estimate when compared to

WCRTEVT, such extra computation time on the construc-

tion of sampling distribution is worthwhile and the cost is

reasonably acceptable, i.e. 1.33 hours at most. Further, to

optimize such number of samples used in total by RapidRT

is part of our future work.

6 Conclusions and Future Work

In this paper, we have proposed a method for Worst-

Case Response Time (WCRT) analysis for system models

with intricate task execution dependencies using a statis-

tical approach, which has been developed inspired by the

complexity of real systems. For this purpose, we meticu-

lously described an algorithm that combines Extreme Value

Theory with other statistics to produce a tight upper bound

of WCRT estimates, considering a probability of being ex-

ceeded commonly used in the industrial safety-critical sys-

tem domain. We have evaluated the method on two mod-

els depicting a fictive but representative industrial control

system. The focus of our future work includes addressing

the optimization of the number of samples required by each

reference data set in RapidRT, as well as tool chain automa-

tion. Moreover, we will investigate the possibility of eval-

uating RapidRT on real systems via non-trivial industrial

case-studies, and applying more industrial standards on the

tool chain.
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Algorithm 1 ThinkS tati(n,m, Pe)

1: for all esti such that 1 ≤ i ≤ n do
2: Xi ← rti,1, ..., rti,m ← MonteCarlo(m, rnd inst())
3: b← 1

4: k ←
⌊m

b

⌋
5: success← f alse, bdouble← 0, lwb← 0, upb← 0

6: while k ≥ 30 and success = f alse do
7: S i ← si,1, ..., si,k ← segment(m, b)

8: Yi ← yi,1, ..., yi,k ← maxima(S i)

9: if passChiS quaredTest(Yi,GumbelMax) > 0 then
10: if b = 1 or b = 2 then
11: success← true
12: l, s← ChiS quaredTest(Yi)

13: esti ← wcrtevt(b, l, s, Pe)

14: else
15: if b − 1 = lwb then
16: success← true
17: l, s← ChiS quaredTest(Yi)

18: esti ← wcrtevt(b, l, s, Pe)

19: else
20: if bdouble = 0 then
21: upb← b
22: lwb← 1

23: b← upb + lwb
2

24: bdouble← 1

25: else
26: upb← b

27: lwb← b
2

28: b← upb + lwb
2

29: end if
30: end if
31: end if
32: else
33: b← 2b
34: k ←

⌊m
b

⌋
35: end if
36: end while
37: end for
38: ES T ← est1, ..., esti, ..., estn

39: if passKS (ES T,Normal) then

40: ES T ← 1

n
×

n∑
i=1

esti

41: σES T ←
√

1

n

n∑
i=1

(esti − ES T )2

42: rtest ← ES T + 3σES T

43: else
44: rtest ← bootstraptest(ES T )

45: end if
46: return rtest
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