A loadable task execution recorder for Linux

Mikael Asberg, Johan Kraft and Thomas Nolte

MRTC/Milardalen University
P.O. Box 883, SE-721 23,
Visteras, Sweden

{mikael.asberg,johan.kraft,thomas.nolte } @mdh.se

Abstract—This paper presents a task recorder for Linux-based
operating systems, in the form of a loadable kernel module. To
the best of our knowledge, this is the first Linux task recorder
which does not require kernel patches (kernel modifications).
This complies with the requirements in the area of embedded
systems where reliability and stability are important properties,
hence, proven versions of Linux are therefore preferred.

The implementation is based on the loadable real-time sched-
uler framework RESCH (REal-time SCHeduler). RESCH uses
only exported Linux kernel primitives as a means for controlling
scheduling. The disadvantage with this solution is that it can only
detect scheduling events of the tasks being scheduled by RESCH
itself, since it can not directly manipulate nor have knowledge of
the tasks in the Linux task ready queue. In order to verify the
correctness of the task recording, a comparison has been made
with a second recorder, which uses a kernel patch. Our tests
indicate that the new, RESCH-based, recorder gives identical
results'.

I. INTRODUCTION

The overall aim of our research is the development of
hierarchical scheduling. Hierarchical scheduling has several
advantages, stretching from enabling design time parallel de-
velopment of system parts, simplifying integration, to runtime
temporal partitioning and safe execution of tasks. Our previous
work includes practical issues of this kind of scheduling [1]
as well as the theoretical advantage [2] of this scheduling
technique, in real-time systems. However, the hierarchical
scheduling technique is rarely an integrated part of an op-
erating system (except for, e.g., ARINC653 compliant op-
erating systems that are commonly found in avionics appli-
cations). Indeed, there is a need to develop/implement new
scheduling algorithms, such as hierarchical scheduling, in the
area of real-time systems. Looking from a practical point
of view, it is an advantage if hierarchical scheduling (and
other scheduling techniques) can be implemented easily and
efficiently without modifying the kernel. The latter makes it
easier for both developers and users since there is no need
to maintain/apply kernel patches (kernel modifications) every
time the kernel is replaced/updated. Moreover, keeping the
scheduler isolated in a kernel module, without modifying the
kernel, simplifies debugging and potential certification of its
correctness (component-based development advantages). We
see that RESCH [3] is useful because it has the advantages
mentioned.

IThe work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS.

Shinpei Kato
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan
shinpei @il.is.s.u-tokyo.ac.jp

RESCH is a scheduling framework intended to make life
easier for scheduler developers in Linux based RT/GP OSs
(Real-Time/General Purpose Operating System). A key moti-
vation for using RESCH is that it does not need any kernel
modifications, secondly, it makes scheduler development eas-
ier because it abstracts the complexity of scheduling aspects
and presents a simple and easy scheduling interface to the user.
However, while development of schedulers are simplified with
this framework, it lacks support for debugging the schedulers.
Our vision is to make the RESCH framework a complete
scheduler development base. We want it to have all necessary
tools for creating schedulers, and everything should be totally
independent of kernel patches. This also has the advantage
that it is easy to develop RESCH for other platforms, hence,
making scheduler development platform independent. In order
to comply with our vision, we want the integrated debugger
in RESCH to be free of kernel patches as well.

With this paper, we present a task execution recorder, which
is capable of debugging schedulers. The task recorder (we will
refer to it as a recorder for the rest of the paper), is able to
record the following scheduling events during run-time:

1) The time instance when a task is released (even though
it might not start to execute).

2) The time instance when a task starts to execute.

3) When there is a task switch, the recorder distinguishes
between preemption and non-preemption.

4) The time instance when a task finishes its execution.

The output from the recorder is a simple text-file containing
task switch events. We have converted this file format to fit
the trace visualization tool Tracealyzer?.

A. System model

We assume fixed priority preemptive scheduling of pe-
riodic tasks, according to the periodic task model [4].
A task ¢ is presumed to have the following parameters,
(T;, WCET;, D;,pr;), where the period T; represents the
frequency in which the task is released for execution, WCET;
is the worst case execution time of the task, the relative
deadline D; (within the period) is when the task must complete
its execution (RESCH monitors this) and pr; is the task
priority (higher value represents higher priority). Also, all tasks
are assumed to execute on the same core, i.e., single-core.

2For more information about Tracealyzer, see
http://www.tracealyzer.se/

B. RESCH

As mentioned previously, RESCH is a patch-free scheduling
framework for Linux. It supports periodic tasks which can
be scheduled in a fixed-priority preemptive manner. RESCH
runs as a kernel module (in kernel space), giving both an
interface to users in user space (e.g. a task specific interface
like rt_wait_for_period()) as well as in kernel space.
The kernel space API (Application Programming Interface)
has the interface shown below:

1) task_run_plugin()

2) task_exit_plugin()

3) job_release_plugin()

4) job_complete_plugin()

These functions can be implemented by a RESCH plugin
(Figure 1), i.e., a kernel module that has access to the RESCH
kernel API. These functions are called in RESCH core at
certain events. Functions 1) and 2) are executed every time a
task registers/unregisters to RESCH. With register we mean
that the task does a RESCH API call, transforming it to a
RESCH task, which creates a RESCH TCB (Task Control
Block) and puts it in the RESCH ready-queue etc. A RESCH
TCB has, among other real-time specific data, a reference to its
corresponding Linux task TCB (task_struct). The primitives
3) and 4) are called whenever a RESCH task is released
for execution or when it has finished its execution. The
plugins get these scheduling notifications and can thereby
affect scheduling, trace tasks etc.

(=

ESCH

plugin

RESCH
plugin

l

RESCH\

plugin

l

RESCH core detecting it. A simple solution to this problem
is to schedule all real-time tasks with RESCH.

C. Task-switch hook patch

Our previous work [5] includes an implementation of a
task_switch_hook (Figure 3), residing in a kernel module,
which is called by the Linux scheduler at every scheduler tick.
This solution requires modification of two code-lines in two
separate kernel source files (sched_rt.c and sched_fair.c).
The modification of file sched_rt.c is illustrated in Figure 3
(a similar change is done in sched_fair.c). Linux has (since
kernel version 2.6.23) two scheduling classes, namely the fair
and the real-time scheduling classes. When a new task should
be released, the Linux scheduler iterates through its scheduling
classes (first the real-time class, secondly the fair class) in
order to find the next task to release. This is shown in Figure 2.

1: class = sched_class_highest;

2:for ;) {

3: p = class->pick_next_task(rq);
4: if (p)

5: return p;

6: class = class->next;

7:}

Fig. 2. Kernel function: pick_next_task

The modification (Figure 3) makes it possible to re-direct
a scheduling class’ function pick_next_task to a user defined
function (i.e., our function task_switch_hook), in a kernel
module. This function (hook) can be inserted and removed
during runtime.

RESCH core

|

RESCH task

Qc ‘enst struct sched_class rt_sched_class = {

A\

Y
real-time task

/

Linux kernel fair task

-

Kemel space

Fig. 1. RESCH framework

In Linux, since kernel version 2.6.23 (October of 2007),
tasks can be either a fair task or a real-time task. The
latter group has higher priority (0-99 where 0 is highest)
than fair tasks (100-140). A task that registers to RESCH
is automatically transformed to a real-time task. RESCH is
responsible for releasing tasks, and tasks registered to RESCH
must notify when they have finished their execution in the
current period. In this way, RESCH can control the scheduling.
RESCH uses an absolute-time clock, i.e., it does not wrap
around. Also, release times are stored as absolute values, so
release patterns are exact.
The cost of having a patch-free solution is that RESCH can
only see scheduling events related to its registered tasks, i.e.,
higher priority real-time tasks, which are not registered in
RESCH, can thereby interfere with RESCH tasks without the

patch Linux kernel
pick_next_task = pick_next_task rt, rt_sched_class)
N, N /’, rI .pick_next_task " pick_next_task_rt I(-
AN e
AN 7 Jre-compile\[i i before |

Loadable kernel module

Execution time monitor

after

]

\ sched_rt.c

/

Fig. 3. Hook patch
In this paper our overall goal is to implement a patch-free
task execution recorder in Linux for debugging purposes, i.e.,
which can be useful for a scheduler or application developer.
Our solution enables debugging on any Linux-based RT/GP
OS, as long as the Linux interface is not changed, since
RESCH and the recorder are both loadable kernel modules
that calls the Linux kernel functions. Hence, our recorder is
more general than patched solutions since it is difficult to port
these between different platforms.
The main contributions of this paper are:
1) We have implemented a (patch-free) task recorder with
the use of RESCH, which enables debugging at task
level, in Linux based RT/GP OS.

2) We have evaluated our solution by implementing yet an-
other (patched) recorder, using the technique presented
in [5], and compared the results from the two recorders.

The outline of this paper is as follows: in Section II
we describe the two recorder implementations. Section III
compares the trace result from the two recorders. Section IV
presents related work, and finally, Section V concludes.

II. IMPLEMENTATION

The following section presents a recorder implementation
based on RESCH, and a second implementation based on a
hook patch [5].

A. RESCH plugin recorder

The recorder is implemented as a plugin (see Figure 1) in
RESCH. Although, it could also become an integrated part of
RESCH core at a later stage.

It is important to note that in order for the recording to be
correct with this plugin, no higher priority real-time tasks (that
are not registered by RESCH) are allowed to run. Also, the
current recorder implementation does not support multi-core,
hence, load balancing must be disabled (a function in Linux
that migrates tasks to other CPUs based on load). Support
for multi-core is possible, but without load balancing. The
reason is that RESCH cannot detect task migrations made by
the Linux scheduler.

Figure 4 shows the necessary data needed to store a
scheduling event (i.e. task switch). The member rid is the
index to the RESCH task TCB. We use this identifier because
is has a smaller range than the Linux task id (PID), and
thereby require less memory. The timestamp is stored in
micro-seconds, i.e., our recorder can record approximately 35
minutes (assuming we have 32 bits) since we use one bit for
storing the preemption flag (informing whether there has been
a preemption or not).

1: struct task_switch_event {

2: char next_rid; // rid (0 — 64) is the RESCH task id.

3: char prev_rid;

4: unsigned int timestamp; // Bit nr 31 hold preempt. flag.
5. 1.

):

Fig. 4. Event structure

task_run_plugin, line (1) Figure 5, is called every time
a task registers to RESCH. Since the current version of our
recorder does not support multi-core, we migrate all tasks to
one CPU (CPU #0 in this case).

Figure 5 show parts of the recorder implementation (in
simplified form) in RESCH. Line (4) and (18) (Figure 5)
are called by the RESCH core at every task release and
completion. In this way, not only can we record task switches,
but also detect when a task is released and also show this
information graphically in the Tracealyzer.

1: void task_run_plugin(resch_task_t *rt) {
migrate_task(rt, 0); // Migrate all tasks to CPU 0.

: void job_release_plugin(resch_task_t *rt) {

5. resch_task_t *curr;

6: int timestamp;

7: timestamp = linux_timestamp_microsec();

8: curr = active_highest_prio_task(rt->cpu_id);

9: if(curr == NULL) {

10: store_event(IDLE, rt, NO_PREEMPT, timestamp);
11: return;

13: if(rt->prio > curr->prio)

14: store_event(curr, rt, PREEMPT, timestamp);

15: else

16: store_event(curr, rt, NO_PREEMPT, timestamp);

18: void job_complete_plugin(resch_task_t *rt) {
: resch_task_t *next;
20: int timestamp;
21: timestamp = linux_timestamp_microsec();
22: next = active_highest_prio_task(rt->cpu_id);
23: if(next == NULL)
24: store_event(rt, IDLE, NO_PREEMPT, timestamp);

25: else

26: store_event(rt, next, NO_PREEMPT, timestamp);

27:

28: void store_event(resch_task_t *prev, resch_task_t *next,
29: char preempt, unsigned int timestamp) {

Fig. 5. Recorder implementation

B. Hook patch recorder

As mentioned previously, our patched recorder is based on
a task-switch hook implementation [S]. This implementation
consists of two hooks. One hook is executed when Linux calls
the scheduling class real-time, the other one when fair class
is called. The two hooks are never called in the same scheduler
tick, only one of them (depending on if there are any real-time
tasks eligible to execute). We use the similar data-structures
in this implementation as the one presented in section II-A. A
difference between the two approaches is that the hook patch
implementation only detects a switch between tasks, i.e., it
cannot know when a task is released (for which the RESCH
implementation can). This will differentiate the trace results a
bit.

III. EVALUATION

We have tested our RESCH plugin recorder by running
it in parallel with the hook patch implementation, i.e., the
two recorders recorded the same trace at the same time. The
recorder we compare with [5] was chosen because of its
simplicity (easy to install, load/unload, modify source code
etc.), small amount of source code and the fact that it records
correctly since its hook is placed at the point where the Linux
scheduler does the task context switches. We ran the task set
in Table I on an Intel Pentium Dual-Core (E5300 2,6GHz)
platform, equipped with a Linux kernel version 2.6.31.9,
running with load balancing disabled. The recorded tasks ran
on the same core, i.e., all tasks were migrated to CPU #0 at
initialization phase. The trace from both implementations are
visualized in Figure 9 and 10 with the Tracealyzer application.
The tasks were scheduled by the RESCH core scheduler (i.e.,

we used no plugin scheduler) according to the parameters in
Table L.

Name T | WCET | D | pr
rt_taskl 4 1 4 4
rt_task2 | 5 1 5 3
rt_task3 8 2 8 2
rt_task4 | 9 2 9 1

TABLE I

TASK SET USED IN THE EXPERIMENTS

Note that the absolute time-line in Figure 9 is 1 second
behind Figure 10, but the relative time should match eachother
since they were executed at the same time. The task ID:s in
Figure 6 are the new modified PIDs (which are needed in
order to reference RESCH TCBs from native Linux TCBs)
and therefore different than the ones in Figure 7, which are
the native PIDs.

If the user marks a task fragment, Tracealyzer will display a
red box (e.g. task rt_taskd4 in Figure 9 and 10) around the task
instance, if it can detect the instance (which is not the case in
Figure 10). In Figure 9 though, the Tracealyzer can separate
between task instances, since the plugin recorder records task
releases, e.g. line 20-21 in Figure 7, which represents the
fourth fragment of rt_task4 in Figure 9.

Figure 6 and 7 shows the data recorded by both recorders.
The data is represented in the format: prev: <idl> <namel>
next: <id2> <name2> <t-stamp> <preempt>, where id1l and namel
represents the task id and name of the task that is finishing
(possibly preempted), id2 and name2 represents the task id
and name of the task that is starting to execute, t-stamp is
the timestamp in absolute time when this event has occurred
and the flag preempt is set to 1 or O depending on if there
is a preemption (1=preemption). The recorded data (Figure 6
and 7) corresponds to the graphical representation (Figure 9
and 10) from the start of the graphs (4.350.156 respectively
3.350.160) to the marked time-lines (14.354.148 respectively
13.354.149). The time in the graphs are represented in the
format second.milli-second.micro-second. The difference in
time (1 second) is due to that both recorders record absolute
timestamps (and the tool visualizes in absolute time) and one
recorder was started approximately 1 second before the other
one.

prev: 0 idle next: 32769 rt_task1l 3350160 1

R

prev:
prev:
prev:
prev:
prev:
prev:
prev:
prev:
prev:
10: prev:
11: prev:
12: prev:
13: prev:
14: prev:
15: prev:
16: prev:
17: prev:
18: prev:
19: prev:
20: prev:
21: prev:

0 idle next: 3900 rt_task1 4350156 1

3900 rt_taskl next:
3901 rt_task2 next:
3900 rt_taskl next:
3902 rt_task3 next:
3900 rt_task1 next:
3903 rt_task4 next:
3900 rt_taskl next:
3901 rt_task2 next:
3902 rt_task3 next:
3903 rt_task4 next:
3900 rt_taskl next:
3903 rt_task4 next:
3901 rt_task2 next:

3903 rt_task4 next

3901 rt_task2 4354149 1
3900 rt_task1 4354159 0
3902 rt_task3 4354150 1
3900 rt_task1 4354160 0
3903 rt_task4 4354151 1
3900 rt_task1 4354161 0
3901 rt_task2 5266627 0
3902 rt_task3 6183025 0
3903 rt_task4 8038576 0
3900 rt_task1 8350148 1
3903 rt_task4 9266561 0
3901 rt_task2 9354147 1
3903 rt_task4 10270905 0
: 0 idle 11726633 0

0 idle next: 3900 rt_taskl 12350153 1

3900 rt_taskl next:
3902 rt_task3 next:
3900 rt_taskl next:
3902 rt_task3 next:
3903 rt_task4 next:

3902 rt_task3 12354149 1
3900 rt_task1 12354159 0
3902 rt_task3 13266243 0
3903 rt_task4 13354147 1
3902 rt_task3 13354157 0

eElanswhr

12: prev

prev:
prev:
prev:
prev:
prev:
prev:
prev:
: prev:
10: prev:
11: prev:

32772 rt_task4 next:

32769 rt_taskl next:
32770 rt_task2 next:
32771 rt_task3 next:
32772 rt_task4 next:
32769 rt_taskl next:
32772 rt_task4 next:
32770 rt_task2 next:

32770 rt_task2 4266631 0
32771 rt_task3 5183029 0
32772 rt_task4 7038580 0
32769 rt_taskl 7350149 1
32772 rt_task4 8266565 0
32770 rt_task2 8354148 1
32772 rt_task4 9270908 0
: 0 idle 10726636 0

0 idle next: 32769 rt_taskl 11350157 1
32769 rt_taskl next: 32771 rt_task3 12266246 0
: 32771 rt_task3 next: 32770 rt_task2 13354149 1

Fig. 6.

Recorded data (Hook patch)

22: prev: 3902 rt_task3 next: 3901 rt_task2 14354148 1

Fig. 7. Recorded data (RESCH plugin)

The difference between the two traces is that the RESCH
plugin recorder records task releases by recording a fake pre-
emption and running the released task for 10 micro-seconds,
e.g., lines 1-7 in Figure 7, though this is not the case (its just
for visualization). Although, this enables the Tracealyzer to
calculate and show the response time of a task. Other than
that the preemption depth differs in the two traces (due to that
the two recorders record preemption differently), the traces are
almost identical (the recorded time points may differ a few
micro-seconds at most). Figure 8 shows the RESCH plugin
trace, visualized with the tool Grasp [6]. The tasks vertical
positions are ordered by priority with the lowest priority at
the top (including the idle task) and the time is scaled down
100000 times. The figure clearly shows the task frequency.

IV. RELATED WORK

The idea of our solution is based on the replay debugging
approach [7], which records system events online and replays
them offline. In later work [8], the replay debugging has
been extended to be compiler- and OS-independent. While
the replay debugging works with off-the-shelf compilers for
application-level debugging, our solution is self-contained
software using Tracealyzer [9] for OS-level debugging, and
it is primarily focused on real-time scheduler debugging.

The SCHED_DEADLINE project [10], which is in charge
of the EDF scheduler implementation for Linux, has used the
sched_switch tracer provided by the Ftrace toolkit [11] to
output the records of context switches. The output logs are then
converted to the VCD (Value Change Dump) format so that
GtkWave can visualize the task execution traces. The trace can
of course be converted to the Tracealyzer or Grasp [6] format.
Given that Ftrace is supported by the Linux community, it is
reasonable to use this toolkit to trace task executions for kernel
debugging, but it is dedicated to the Linux kernel, so it is
not necessarily suitable for real-time scheduler debugging. For
instance, sched_switch does not catch job releases, however,

idle

rt_task4

rt_task3

rt_task2

rt_taskl

-

S

B B b & T

Lttt ottt ittt koot todtontitiatontia ittt tatiaditiad ottt ittt ottt ettt ot oot ottt et

0

50 100 150 200

Fig. 8. RESCH plugin trace

r_tesk] 5 7 ?g_?'

rt_tash2 5 2| 4
3 o=

rt_tazk3 @ |

rt_task2

rt_task4

Htask 14.354.145

rt_task2

rt_taski

rt_taskd

rt_taski

rt_task3

rt_task1

rt_task4

rt_task2

rt_taski

rt_taskd

rt_taski

rt_task3

rt_taski

rt_taskd

ET=talyzertracereschi td, &t time: 4350156 to 44 354 168

Fig. 9. Example trace with RESCH plugin

context switches are precisely traced and it can distinguish
between task completions and task preemptions. Our solution
is more flexible and integrated in that it is available not only
for the Linux kernel but also for other OSs, once the RESCH

250 300 350 400

visualized with Grasp [6]

ri_taskl
ri_task2

ri_task3

el)

spea]
suodaaxg
IEEREERE

ri_task2
rt_task4

1 &

ri_taskl
rt_task 13354149
rt_task2

ri_taskl
rt_taskd

ri_taskl
rt_tazk3

rt_taskd
rt_taskl

rt_task4
idle

rt_tazk2
ri_task3

'
-

rt_taski
rt_taskd

n
i N

rt_taski
rt_tazk3

rt_taski
rt_taskd

ETxtalyzertraceipatchi txd, ot time: 3.350.160 to 43.350.331

Fig. 10. Example trace with hook patch

framework is ported.

DTrace [12], SystemTrap [13], LTT [14], and LTTng [15]
are advanced tools for OS debugging. They are oriented
for tracing entire kernel events, so it is required that the

developers, in a high degree, understand how to use them.
Meanwhile, our solution is more simplified by focusing on
real-time scheduler debugging, and it is very easy to use in
practice.

Real-Time Application Interface for Linux (RTAI) [16] is
a collection of loadable kernel modules and a kernel patch
which together provides a rich real-time API to the user. It
gives the possibility to add/delete hooks for every task-start,
task-switch and task-delete. These hooks give the possibility
to monitor task execution in a detailed level.

V. CONCLUSION

We have implemented a task execution recorder in a stock
Linux kernel, without applying kernel patches, with the use
of the loadable real-time scheduler framework RESCH. The
recorder is able to record task releases (with or without
preemption) and task switches. The recorded data is later
converted, offline, to a format suitable for the visualization
tool Tracealyzer. In this way, the trace can be visualized
graphically. The assumptions made, in order for the tracing
to be correct, are that there should not exist any (unregistered
RESCH) tasks that have higher priority than the (RESCH)
tasks to be recorded, and that load balancing is disabled.
Our results indicate that our recorder does a correct trace,
by comparing the results with a trace made by a patched
recorder. The second (patched) recorder is assumed to trace
correct, since it is called by the Linux scheduler at every
scheduler tick. The two recorders were executed in parallel,
i.e., they recorded the same trace. Hence, an exact comparison
is possible since the execution time of the tasks will be
the same in both cases, and will therefore not affect the
comparsion results. We showed that our recorder got the same
trace result as the patched solution (with only a few micro-
seconds of difference).

As future work we will continue with evolving the RESCH
framework. This includes the development of new scheduler
plugins, such as hierarchical scheduling (for both uni- and
multi-core), adjust our recorder to fit with multi-core and
implement RESCH for other platforms. In this way, plugin
schedulers, recorders etc. can be moved to other platforms
(supported by RESCH) without modification. We will also
explore the possibilities of doing visualizations of the trace
during run-time, rather than offline as in this paper.

REFERENCES

[1] M. Behnam, T. Nolte, I. Shin, M. Asberg, and R. J. Bril, “Towards
hierarchical scheduling on top of VxWorks,” in Proc. of the OSPERT
workshop, 2008.

[2] M. Asberg, M. Behnam, F. Nemati, and T. Nolte, “Towards
Hierarchical Scheduling in AUTOSAR,” in Proc. of the ETFA
conference, 2009. [Online]. Available: http://www.mrtc.mdh.se/index.
php?choice=publications&id=1793

[3] S. Kato, R. Rajkumar, and Y. Ishikawa, “A Loadable Real-Time
Scheduler Suite for Multicore Platforms,” Technical Report CMU-
ECE-TR09-12, 2009. [Online]. Available: http://www.contrib.andrew.
cmu.edu/~shinpei/papers/techrep09.pdf

[4] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” ACM, vol. 20, no. 1, pp. 46-61, 1973.

[5] M. Asberg, T. Nolte, C. M. O. Perez, and S. Kato, “Execution Time
Monitoring in Linux,” in Proc. of the W.I.P. session in the ETFA
conference, 2009. [Online]. Available: http://www.mrtc.mdh.se/index.
php?choice=publications&id=1792

[6] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, Visualizing and Measuring the Behavior of
Real-Time Systems,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems, July 2010.

[7] H. Thane and H. Hansson, “Using Deterministic Replay for Debugging
of Distributed Real Time Systems,” in Proc. of the ECRTS conference,
2000, pp. 265-272.

[8] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson, “Replay

Debugging of Real-Time Systems Using Time Machines,” in Proc. of

the IPDPS conference, 2003, pp. 288-295.

T. Maragria and B. Steffen, editors, “Leveraging Applications of Formal

Methods,” 15t International Symposium, 1SoLA. Springer, pp. 140-141,

2004.

D. Faggioli and F. Checconi, “An EDF scheduling class for the Linux

kernel,” in Proc. of the Real-Time Linux Workshop, 2009.

T. Bird, “Measuring Function Duration with Ftrace,” in Proc. of the

Japan Linux Symposium, 2009.

[12] B. Cantrill, M. Shapiro, and A. Leventhal, “Dynamic Instrumentation

of Production Systems,” in Proc. of the USENIX conference, 2004, pp.

15-28.

V. Prasad, W. Colhen, F. Eigler, M. Hunt, J. Keniston, and B. Chen,

“Locating System Problems Using Dynamic Instrumentation,” in Proc.

of the Ottawa Linux Symposium, 2005, pp. 49-64.

K. Yaghmour and M. Dagenais, “Measuring and characterizing system

behavior using kernel-level event logging,” in Proc. of the USENIX

conference, 2000, pp. 13-26.

M. Desnoyers and M. Dagenais, “The LTTng Tracer: A low impact

performance and behavior monitor of GNU/Linux,” in Proc. of the

Ottawa Linux Symposium, 2006, pp. 209-223.

D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza and S.

Papacharalambous, “RTAI: Real Time Application Interface,” Linux

Journal, vol. 29, no. 10, 2000.

[9

—

[10]

(11]

[13]

[14]

[15]

[16]

