TOWARDS WCET ANALYSIS OF MULTICORE
ARCHITECTURES USING UPPAAL !

Andreas GustavssrAndreas Ermedahl
Bjorn LispeF, and Paul Pettersstn

Abstract

To take full advantage of the increasingly used shared-nmgmalticore architectures, software al-
gorithms will need to be parallelized over multiple threa@lkis means that threads will have to share
resources (e.g. some level of cache) and communicate andreyiize with each other. There already
exist software libraries (e.g. OpenMP) used to explicidygllelize available sequential C/C++ and
Fortran code, which means that parallel code could be eashiyained.

To be able to use parallel software running on multicore @exttures in embedded systems with hard
real-time constraints, new WCET (Worst-Case Executioreanalysis methods and tools must be
developed. This paper investigates a method based on rabdeking a system of timed automata
using the UPPAAL tool box. It is found that it is possible tofpen WCET analysis on (small)
parallel systems using UPPAAL. We also show how to modeddhsgnchronization using spinlock-
like primitives.

1. Introduction

The execution of hard real-time systems must be predictabteder to ensure a certain system
behavior. In particular, the WCETs (Worst-Case Execution€B) of the hard real-time tasks are
assumed to be known and given as input to different real-iys¢em scheduling algorithms [4, 10,
17]. The WCET of a task is dependent both on the propertieeeotoftware which is executed as
well as the underlying hardware. Today, there are algosthnmd tools which strive to derive a safe
and tight bound on the WCET of a task, using the task code anddeinof the (single-core) target
hardware. Some examples of such tools are aiT [9, 27], SWBEZ7] and RapiTime [23, 27].

Over the past years, there has been (and there will probalbiyntie to be) a rapid increase in the
usage of multicore architectures in embedded real-timesys These architectures have several in-
dependent processing units (cores) on each chip. The ggiealty share some resources (e.g. some
level of on-chip cache) which introduces dependencies grtiwacores. Thus the cores could experi-
ence delays due to simultaneous access to these sharetess@.g., if the L1 caches are non-shared
and the L2 cache is shared, two simultaneous misses in thadlties will cause one of the cores to
delay while the other core is granted access to the L2 catliegerk are one or more levels of core-
individual (non-shared) caches, some memory coherencea@mistency model will probably be
implemented. This means that a line in the local cache of one may be invalidated by another
core’s cache, thus introducing a cache miss if the line isnagéerenced [1].

1This work was funded by VR through the project 2008-4650 \W@a@se Execution Time Analysis of Parallel Systems.
2School of Innovation, Design and Engineering, Malard&deiversity, Box 883, S-721 23 Vasteras, Sweden.
{andr eas. sg. gust avsson, andr eas. er redahl , bj orn. | i sper, paul . pettersson}@rdh. se

To take full advantage of these new kinds of architecturlggrahms will need to be parallelized
over multiple threads. This means that the threads will Havghare resources and communicate
and synchronize with each other. There already exist sodtlilararies used to explicitly parallelize
sequential code — one example available for C/C++ and Fodoale running on shared-memory
machines is OpenMP [20]. The conclusion is that paralleMg® running on parallel hardware is
already available today and will probably be the standarg @f@omputing in the future.

This means that new algorithms, methods and tools for WCEHilyais are needed to guarantee the
schedulability and predictability of this new kind of syst® where a task could consist of several
cooperating threads running in parallel on individual sofghis paper presents a method for WCET
analysis of parallel (or sequential) code executing onesiranemory multicore (or single-core) archi-
tectures, using verification techniques (model-checkorga system of timed automata. The paper
shows that it is possible to model and analyze the impact eWIRET from having a memory hi-
erarchy consisting of core-individual L1 instruction aretalcaches, and a shared L2 cache. It also
shows how a mutual exclusion software primitive similar spanlock could be modeled.

The organization of the rest of this paper is as follows. 8@ presents some related research per-
formed on analysis of multicore architectures. Sectionr@aios an introduction to timed automata
and the modeling tool box UPPAAL [5]. Section 4 describesriti@dels and verification queries
used to calculate the WCET estimate of an example prograstiofieb contains a discussion of the
proposed method. It also suggests several aspects of thedribiat should be further investigated.

2. Related Work

The idea of using model-checking to perform WCET analyss leen investigated and shown to
be adequate for analyzing parts of a single-core systemdihdad [19]. However, to the best of
our knowledge, no prior research has been conducted regamlilticores with complete (and non-
perfect) memory hierarchies. This aspect is investigatelis paper.

In [18] and [28], model-checking is used to perform WCET gge&l. Both papers are closely related
to the work presented herein, but mainly propose methodsdoce the state space by altering the
program model without affecting the true WCET of the progrdur approach is more focused on
analyzing the impact on the WCET from allowing synchronggziasks. In [28], a perfect data cache
is assumed (i.e., all accesses are assumed to be hits), shgemerally not the case. In contrast,
this paper assumes a complete and non-perfect memorydhigrain [29] and [30], static analyses of
shared L2 instruction caches are presented. Also in thggrqgerfect L1 data caches are assumed.

Other than this, to the best of our knowledge, there mainisteifferent techniques used to increase
the predictability and analyzability (e.g. to tighten theC®T estimate) of multicore systems. In an
extension to the method presented in [29], memory bits feheastruction are used to determine
whether the instruction should be cached or not [12] — eogavbid pollution of the shared cache,
“Static Single Usage” [12] instructions should not be cathEhis generates the possibility to deter-
mine a tighter WCET estimate.

In [21], arbiters (hardware circuits) are added to a shanediory multicore processor to synchronize
the memory accesses in order to increase the timing-pedality of the system. The result is a
multicore architecture that can be analyzed with existingle-core WCET analysis tools.

GAMC [22] is an SDRAM controller which upper bounds the dedagore can suffer from memory-
interferences from other cores. This is an important asgiace the largest memory access latency
will occur when accessing the main memory. The result ista WgCET estimate which only differs
at most 13% from the largest measured execution time. Sigmila [4] and [24], TDMA-based
memory bus access policies are introduced to make all meawosss latencies predictable, regarding
the WCET.

3. Timed Automata & UPPAAL

Timed automati[3] can be used to model real-time systems. An automaton eaelved as a state
machine with locations and edges [15]. A state represeniaicealues of the variables in the system
and which location of an automaton is active, while the edgpsesent the possible transitions from
one state to another [15]. (Continuous) time is expressedsas of real-valued variables modeling
clocks. In UPPAAL, all clocks are initialized to zero andhiacrease with the same rate [7].

A transition is enabled (i.e., it is possible to perform tlagtigular transition from one state to another)
if its accompanying guard is satisfied. A guard can simplyiee/gd as a boolean expression (which
can include variables and clocks) which enables or disabke®dge. The guard cannot force the
transition to be taken however [7]. When a transition istaketions can be performed (e.g., variables
can be updated and clocks can be reset to zero).

UPPAAL* [5, 16, 26] is a tool used to model, simulate and verigtworksof timed automata [5, 7,
15]. The automata can synchronize via channels on transiti®nly two automata are allowed to
synchronize via a given regular channel at a time. Chanrelsatso be declared as being broadcast,
which means that one issuing automaton can synchronizeanitirbitrary number (including zero)
of waiting automata. Another possibility is to declare argie as being urgent, which means that
when a transition is enabled, it will be performed witholbaing any time to pass.

Locations in an UPPAAL timed automaton can have specialgn@s as well; urgent or committed.
When a location with one of these properties is active, tisneat allowed to pass. The difference
between urgent and committed locations is that if there anengitted locations active, an outgoing
transition from one such location must be taken in the next stif such a transition does not exist or
is not enabled, the system will deadlock. A location in thesmaton can have an invariant associated
with it. An invariant is a clock constraint which limits then@unt of time for which the location is
allowed to be active.

Some other features of UPPAAL are a C-like programming fater to ease the modeling task, and
meta-variables [5]. If the only difference between two estat the values of variables declared as
meta, then the states are considered to be the same. Thifis ios reducing the size of the state
space while verifying properties of the system. Care shbeltihken to avoid using meta-variables
in a way that could eliminate states from the analysis thatadly should be taken into account,
though. Verification of system properties (requiremerggdrformed by formulating queries used by
the UPPAAL verifier. The query language is described in &pof in the help session accompanying
the UPPAAL binaries [26].

3The formal syntax and semantics of timed automata can belfugg. [2] and [15].
4An introduction to UPPAAL and the formal semantics of netksonf timed automata are given in [5] and [15] respectively.

e | o Property L1 L1D L2
Lines 4 4 8

v v Words/Line 2 2 4

’ L2: Shared $ ‘ Sets 2 4 2
Latency 1 1 10

Main Memory Replacement Policy) LRU LRU LRU

Figure 1: The modeled architecture. Table 1. Cache Properties.

N lwait_for_datalid]
exec_instr[id]! 1 exec_instr_donelid]? ! finished!

I"
. init_task() E:. set access info(id, M)
: instr_address, ~ \/

[data_address,
Initialization : data_access,
\

write_data)

Terminating Synchronization

Figure 2. Model of the task interface.

4. WCET Analysis Using UPPAAL

To model a fictitious shared-memory multicore architectaraetwork of timed automata is created
in UPPAAL®. The architecture is assumed to have the properties ddpictEigure 1; i.e., core-
individual L1 instruction and data caches, and a shared tBealn the figure, the arrows between
the cores and the caches show the possible flow of memoryrdsrtes., instructions and data). The
core is assumed to be very simple, only incorporating a pipalimilar to a basic five-stage, in-order
RISC-pipeline. The caches are assumed to have the prapfertied in Table 1.

The resulting models are presented in Figure 3. For a muodtiacchitecture with cores, there will
ben sets of the models in Figures 3a—3c (i.e., one set per cotenbul set of the models in Figures
3d-3d. For the current approach, no value analysis is used. Tovergh the below given models, no
actual memory contents is ever transferred or kept track tfie memory hierarchy. The only thing
considered is what memory locations (addresses) are nefsildoy the program. A limitation of this
approach is that dynamic memory references cannot be easdgled.

4.1. The Program Model Interface

The interface for modeling a thread is shown in Figure 2. Tihéialization” part is optional and the

i nit_task() function could simply be empty. The “Terminating Syncheation” part ensures
that no time is missed by the WCET analysis. If the pipelineusth be emptied at the end, a delay
should be inserted to account for this in this part of the rhode

The middle (framed) part depicts the instruction execuinberface. The instructions are assumed to
be assembly instructions and are executed one by one. Amdtish is executed by synchronizing
with the core automaton viatlexec_i nstr[i d] urgent channel and setting information about the
access via the function callet _access_i nf o() . The arguments should be interpretediad:—

the core on which the instruction should be executedst r _addr ess —the memory address where

SUPPAAL version 4.0.10 (rev. 4417) has been used in this paper
5With one exception regarding the Lock handler automatoreretis one Lock handler per lock, i.e., per critical section.

the instruction is storedjat a_addr ess — the address in memory on which the data accessed by
the instruction is stored (only used for instructions suth@AD and STORE etc.jjat a_access

— a boolean telling whether the instruction is a data acegdsstruction (e.g., a LOAD or STORE
etc.);wr i t e_dat a — a boolean distinguishing between read and write instast{i.e., whether the
instruction is a LOAD or STORE etc.).

Other types of instructions, such as branch instructiors iastructions not referencing memory
locations, should be accounted for by adapting the straatithe automata modeling the program.
Thus, the structure of the program should be representethdgttucture of the automata. This
representation could be automatically generated usingffots generated by a static analysis tool,
such as SWEET [8]. The translation would be close to 1:1 ofits&ruction-level CFG (Control
Flow Graph) [18]. To account for hazards, extra stalls camberted into the pipeline by setting the
stal | s[i d] variable to the desired value before executing the instmct

To account for the possible memory locations that a givetniogon could reference, a value analysis
could be used [27]; and to account for the possible valuegfefent variables affecting the execution
pattern of the program, a control flow analysis could be u2&dl [The structure of the automata
modeling the program could then be adapted accordingly (bygadding one transition for each
possible memory reference or variable value). This meaatsdtRPAAL will automatically account
for the (global) worst-case memory reference or variableera This approach could also avoid
unwanted effects from timing anomalies since UPPAAL sessche entire state space when finding
the WCET estimate.

4.2. The Model of the Core

The model of the core is depicted in Figure 3a. This automepresents the timing model of the core
(the pipeline etc.) and is the automaton with which the progautomaton synchronizes to execute
instructions. When an instruction should be executed, tre accesses the memory hierarchy to
fetch it and then steps the pipeline. If the instruction ases data, the pipeline is stepped (stalls are
inserted) until the memory access stage is reached, thadathds accessed. This leads to an over-
approximation of the execution time. However, to avoidhertover-approximation (which could be
much larger), another instruction can be fetched while tita & accessed.

Theexec_i nstr_done[i d] channels are declared as broadcast so that the programatatdo
not have to synchronize via these channels before a requessttute a new instruction can be issued.
This is to minimize the number of locations in the progranmanaton (to make the interface as clean
as possible and to minimize the state space).

4.3. The Models of the Caches

The models of the L1 instruction and data caches are depittédure 3b and 3c respectively. The
main difference between these cache models is that a ddta bas the ability to invalidate a line in
the other data caches. Otherwise the models are quitergfiaigard. All the cache content handling
is performed by theccess_cache L1 {instr,data}(),update_cache L1 data()
andi nval i date_L1() functions.

If the accessed data is not available in the L1 cache, it chést from the L2 shared cache, which
is depicted in Figure 3d. This model is even more straightéod — all the cache content handling

dache(id)

Idle

exec_|nstr[id]? access| I[id]?

hit=access_dache_L1_instr(id)

' Get_instruction apcess_|_donefid]! G Check_cache

QD

ec_instr_done[id]!
access_|[id]!

Wait_for_|_cache
access[id].data &&
Iwait_for| data[id]
access_|| done[id]?
tCorg=0

Step_pipeline

access_cgche_s!

laccess[id].flata && shared_cqller=id,

Iwait_for_datalid]
access_|_dpne[id]?
tCore3

tCore<=12D_delay
tCore>=IPD_delay
Step_Pipeline

Touch_data - Signal_Done

access_D[id]!
calc_access_ipfo_for_level(id,1,
true, true),
wait_for_datal[jd]=true

(b) L1 Instruction cache

U) Signal_Done

(a) Core init_dache()

Idle

access_cgche_s?
hit=access_cgche_L2(),
tCache=0

init Iock(id)
' Unlocked

go_lockpd]! go\lock[id]?
locked[id]=false logked[id]=true

' Locked
(e) Lock handler

access |cache_s_done!

. Delay

tCache<=cache_hit_time[hit?2:3]
tCache>=cache_hit_time[hit?2:3]

Signal_Done

(d) L2 Shared cache

all_tgsks_finished()
finished?

(f) Finisher

dache(id)

Idle

access_Dlid]?
hit=access_cadhe_L1_data(id)

(C) check_nhit

ait_for_data[id]=false

update_cache_L1 data(id)

G Check_write

access_data[id].write
tCache=0
calc_acceps_info_for_level(
d, 1, true, false)

laccess_dpata[id].write
Invalidate

tCache<=invaljdation_delay[0]
tCache>=invaliglation_delay[0]
invalidate_L1(id)

@Signal_Done

(c) L1 Data cache

(9) Go

-

@ Wait

e Stop_Time

Figure 3. Timing model of the considered multicore architecture.

is performed by th@access _cache_L2() function. If the accessed data is not located in the L2
cache, it is fetched from the main memory (which is assumeditays hit).

All the caches in the system can be individually defined, ndigg set-associativity, cache size, block
size and replacement policy (the used cache propertiesectouhd in Table 1).

4.4. The Auxiliary Automata

These automata, depicted in Figures 3e—3g, are implenmansgtecific. The Lock handler-automaton
can be (and is) used to implement spinlocks. The Finishimaaton is used to stop the time and
deadlock the system when all tasks have finished executing. fikally, the Go-automaton is very
versatile. It simply waits to synchronize via an urgent aier(thus not allowing any time to pass
when the transition is enabled). This can be viewed as atwielchieve the desired system behavior

(e.g. to achieve system progress).

4.5. WCET Analysis by Verification

Given the above described network of timed automata,
UPPAAL can verify if different properties hold for the

system. The verification property that is used to find the| | = ren-eesrionineiss
WCET estimate looks like Al] t <= X. ThiS Prop- |rem adodessirst address
erty should be interpreted as: “For every possible state ot aoe oY resser 4 alse fale)
the value of the clock is always less than or equalxé.

The WCET analysis is easily performed by running the
model-checker (verifier) in a binary search style by alter-
ing the value ofk until the WCET estimate is fousid

LD_instruction_and_data_lock

exec_instifid]!

Test_instruction

. Branch_instruction

exec_instffid]!
set_access_info(igl,mnem_address++,-1,false,false)

Check_Lock

tlocked[0
In order for this approach to work, some other proper- o sl
ties of the system must also be verified; otherwise there
might exist some amount of time that is not accounted
for when calculating the WCET estimate, or the overalh-<s
system behavior could be incorrect. It must be verifie@h airess-irst_adress
that: whenever the system is in a deadlock state, the Fin: o e 1067 e)
isher automaton is in its Stopime location; the system S :

will always reach a state where the Finisher automaton is

in its StopTime location; when the Finisher automaton cet_accoss. io(H. mem_address++1073,rue tue)
is in its StopTime location, all other automata modeling
the hardware are in their Idle locations, and all automata
modeling the program have finished; and mutual exclu-
sion is guaranteed on critical sections. By using similar -
verification properties to the one above, UPPAAL can count =3
check these properties automatically

Lock

exec_instffid]!
set_access_info(if,mem_address++,1073,true,true)

CS_ST_instruction_and_data

Unlock_Instruction

Unlock

go_Jock[0]?

Wait_for_Core

4.6. Experimental Evaluation exec_inst_donefid]?
An example model of a program (using the interface wait_for]datali]
given in Figure 2) is given in Figure 4. The task of fnished_thokalid] = true
the modeled program is very simple; it just acquires a
spinlock-like lock and then writes to a shared variable A

before releasing the lock, and it executes this proced,glig%jre 4. Model of a program with
three times before finishing its execution.

Finished

spinlock-like synchronization.

The same task is run on two cores (both tasks are released aathe time) and the result of the
analysis is a WCET estimate equal to 636 clock cycles (therqtifoperties mentioned above are also
satisfied); using the specific values of the cache sizes€THbdnd latencies etc. The main memory
is assumed to have a latency of 80 clock cycles. Each step iniiary search approach is performed
within 1 second and the total number of steps is 11 (this iedéent on the initial values af in the
verification property from section 4.5, however).

An initial investigation of some potential problems regagithe scalability of the model-checking

"The UPPAAL verifier syntax can be found in [5] or in the onlirehsession accompanying the UPPAAL binaries [26].
8Similar approaches to WCET analysis using model-checkieglascribed in [18], [19] and [28].
9To guarantee a safe verification, the UPPAAL option “Exttagion” should be set to “None”.

approach has been conducted. By increasing the numbered tifour and running one instance of
the same example program as above on each core, we get altavgewn in the analysis time. An-
other investigation, where the release time of the secaidsanade general in the intenjal 1000],
has also been performed. The same result, a large slowdote enalysis time, was observed. In-
creasing the sizes of the (meta-declared) caches to 208finthe L1 caches and 8192 lines for the
L2 cache, does not seem to have an equally large impact om#igse time though. The memory
usage increases drastically, however. The required tioregdrforming one binary search step are
summarized in the table below (a dual-core processor, ngnati 2.66GHz, with 4GB of RAM was
used). The “2 Cores” column represents the original expanirand is the base for comparison. The
total time is an approximation of the total time needed tdgrar the analysis, assuming 11 iterations,
and that the binary search strategy for invoking the UPPAAiLifier is handled by a script.

\ 2 Cores\ 4 Cores Release Time $ Sizes
Time| <1s | >3h (aborted) 44s 14s
Total Time 11s >33h 500s 150s

A consequence of these results is that the complexity of thdefs and the size of the analyzed
program (and thus the achievable tightness of the WCET ast)nhave to be balanced to avoid
making the state space explode. The case with 4 cores wasdldier approximately 3 hours when
the virtual memory demands exceeded the available amouAbf (4GB).

5. Discussion & Future Work

Modeling systems is very easy using UPPAAL, which also sffeuseful interface for performing
model-checking. This paper has shown that WCET analysiaraillel code and hardware can be per-
formed using the model-checking techniques availablegn @PPAAL. There are some limitations
imposed by using UPPAAL to perform the WCET analysis, howeV¥ée C-style interface is a bit
limited regarding function calls; e.g., an array-argunranst have a known size — this limits the level
to which the code can be written in a generical way. Howewer[{PPAAL C-functions are meant to
be very simple and small and the C-style interface offered BiPAAL is in general very rich, so the
pros very much outweighs the cons.

Another drawback is the binary search strategy that has tesed for finding the WCET estimate.
This could lead to unnecessarily large overheads in thesisalOne way to avoid the binary search
approach is to use the neswp'®-operator, implemented in (and described in the help sessio
companying) the development version (4.1) of UPPAAL [2&)eE up-operator finds the maximum
value of an expression evaluating to either an integer ooekcl To find the WCET estimate using
the sup-operator, the following property could simply be verifieslaip: t. This property should
be interpreted as: “Find the maximum value of the clotk This approach works for the proposed
system model since the system is deadlocked and the timegpexd when all tasks have finished
executing. The reason to why this approach is not used imptper is because of the development
(unstable) state of the UPPAAL-version (4.1) in which shep-operator is implemented.

However, an initial investigation using tlseip-operator has been performed on the system described
in section 4.6. By verifying the propersup: t, itis found that the WCET estimate is 636 clock
cycles (the same result as achieved by using the binaryrsegmroach). The total time needed to
verify the property is in the order of 1 second — this is supeo the binary search approach where

s up is an abbreviation of suprema.

approximately 1 second (plus the overhead needed to adpiparameters) is needed for each binary
search step.

An investigation of thesup-operator’s impact on the scalability has also been cordifor the same
system setups that were described in section 4.6. The isgu#isented in the table below.

| 2Cores| 4 Cores Release Time $ Sizes
Time 1s >3h (aborted) 42s 14s
Total Time 1s >3h 42s 14s

As for the binary search approach, the case with 4 cores waseabafter approximately 3 hours
when the virtual memory demands exceeded the available mnodtiRAM (4GB). As can be seen,
the total time needed to perform the entire analysis usieg tip-operator is quite comparable to
the time needed to perform one binary search step (excluadiggparameter adjustment overhead).
This makes thasup-operator a very promising feature of UPPAAL,; since thererginalysis can be
performed automatically (in one step) and the implied ogad) if any, is negligible.

Further investigations should be performed, regarding Well/this method (model-checking) scales
with the size of the modeled program and the complexity ofttaelware model. It would also be

worth investigating the impact on the size of the state sfaue thus the analysis time) by transferring
more of the cache handling functionality from the cache m@uatia to the cache handling C-functions,
and vice versa. On one extreme, all the cache handling cauttbhe by the C-functions, while the

automaton only is used to perform the cache access delay.

Another way of (hopefully) increasing the scalability oetmethod is to extend the use of scalars.
When scalars are used, UPPAAL can apply symmetry reductiaihe® model [13], which can lead
to a dramatic decrease in the size of the state space. Syynraétrction eliminates redundant paths
in the model. Considering the models presented in sectitimede are lots of redundant paths. The
same program is executed on several homogenous cores with@genous memory hierarchy. This
means that the same execution pattern exists several tinths state space, the only difference is
which program (and core and caches) it concerns. As a sirrplage, either program O is considered
to start before program 1, or vice versa — only one of the pdais needs to be considered since the
models are equal; this is what symmetry reduction tries toese. Scalars and symmetry reduction
are also described in more detail in the UPPAAL help sedsion

The granularity of the proposed interface in this paper isheninstruction level. This increases the
size of the state space compared to using a basic block grégulOne way of reducing the size of
the state space, and keep the instruction level granul@avhgn considering non-preemptive tasks at
least), could be to merge instructions on the same cachéhatelo not access data and add some
additional delay in the program model to represent the mgrgirhis would be possible since the
lines in the (non-shared) instruction cache never areiotatdd by another cache; if one instruction is
available, all other instructions in the same line are alsdlable. This approach can be viewed upon
as a manually performed partial order reduction [6, 11].

The static WCET analysis tool SWEFTis already capable of generating models in the UPPAAL

The UPPAAL help session accompanies the UPPAAL binariessilable at [26]. It is also available at
http://ww. uppaal . or g/ hel p. php?fi |l e=WebHel p (for the official release of UPPAAL).

2SWEET uses basic blocks by default [8], but does also haveapability of using an instruction level granularity. This
makes interaction possible.

syntax on a special format [25]. Performing minor changehitogeneration could adapt SWEET to
also being able to create models on the format specified byptper. This means that benchmarks
could be easily translated and analyzed together with tresnaae models presented herein.

Other suggestions for future work are to implement a moraildet timing model to avoid over-
approximating the WCET, to implement a model of a real-warldlticore architecture, such as
e.g. the ARM Cortex, and to investigate the possibilitiegngblementing models of more synchro-
nization primitives, e.g. mutexes and condition variables

A final and very important conclusion is that WCET analysishaf inter-thread communication and
interferences on shared resources can be made quite sisiplp the suggested model-checking
method, compared to static analysis (see e.g. [29]). Howéweill probably be quite difficult to
make the model-checking method scale well.

References

[1] ADVE, S. V., AND GHARACHORLOO, K. Shared Memory Consisiey Models: A Tutorial. Tech. rep., Rice
University and Western Research Laboratory, 1995.

[2] ALUR, R. Timed Automata. IrComputer Aided Verificatio@dan. 1999), vol. 1633/1999, Springer Berlin / Heidel-
berg.

[3] ALUR, R., AND DILL, D. L. A theory of timed automataTheoretical Computer Science 125(Apr. 1994), 183
—235.

[4] ANDRELI, A., ELES, P., PENG, Z., AND ROBN, J. Predictable Implementation of Real-Time Applicati@n
Multiprocessor Systems-on-Chimternational Conference on VLSI Design 2008), 103—-110.

[5] BEHRMANN, G., DAVID, A., AND LARSEN, K. G. A Tutorial on URPAAL.

[6] BENGTSSON, J., JONSSON, B., LILIUS, J., AND YI, W. Patti@rder Reductions for Timed Systems. In
CONCUR’98 Concurrency Theoffeb. 1998), vol. 1466/1998, Springer Berlin / Heidelbgm,41-49.

[7]1 BENGTSSON, J., AND YI, W. Timed Automata: Semantics, &fghms and Tools. Iihectures on Concurrency
and Petri NetgJuly 2004), vol. 3098/2004, Springer Berlin / Heidelbeyg, 87-124.

[8] ERMEDAHL, A. A Modular Tool Architecture for Worst-Case Execution Timealksis PhD thesis, Uppsala
University, Dept. of Information Technology, Sweden, J20683.

[9] FERDINAND, C., HECKMANN, R., AND FRANZEN, B. Static Memy and Timing Analysis of Embedded
Systems Code. I18"¢ European Symposium on Verification and Validation of Sa#v@ystems (VVSS'0far.
2007), pp. 153-163.

[10] GUAN, N., STIGGE, M., YI, W., AND YU, G. New Response TinBounds for Fixed Priority Multiprocessor
Scheduling. IrProc. 30" IEEE Real-Time Systems Symposium (RTS$®). 2009), pp. 387-397.

[11] HAKANSSON, J., AND PETTERSSON, P. Partial Order ReductionVerification of Real-Time Components.
In Formal Modeling and Analysis of Timed Systef8spt. 2007), vol. 4763/2007, Springer Berlin / Heidelberg
pp. 211-226.

[12] HARDY, D., PIQUET, T., AND PUAUT, I. Using Bypass to Tigén WCET Estimates for Multi-Core Processors
with Shared Instruction Caches. Broc. 36" IEEE Real-Time Systems Symposium (RTS$08P), pp. 68—-77.

[13] HENDRIKS, M., BEHRMANN, G., LARSEN, K. G., NIEBERT, PAND VAANDRAGER, F. Adding Symmetry
Reduction to UPPAAL. IrFormal Modeling and Analysis of Timed SystgiMay 2004), vol. 2791/2004, Springer
Berlin / Heidelberg, pp. 46-59.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

HUBER, B., AND SCHOEBERL, M. Comparison of Implicit FeREnumeration and Model Checking Based WCET
Analysis. InProc. 9" International Workshop on Worst-Case Execution Time Asigiy’VCET’2009§2009).

KATOEN, J.-P. Concepts, Algorithms, and Tools for Mb@aecking. InLecture Notes of the Course “Mechanised
Validation of Parallel Systems” (course number 1033@mester 1998/1999, at Friedrich-Alexander Universitat
Erlangen-Nurnberg.

LARSEN, K. G., PETTERSSON, P., AND YI, W. UPPAAL in a Niisll. International Journal on Software Tools
for Technology Transfer (STTT) 1-2 (Dec. 1997), 134-152.

LIU, C. L., AND LAYLAND, J. W. Scheduling Algorithms foMultiprogramming in a Hard-Real-Time Environ-
ment. Journal of the ACM 201 (1973), 46—61.

LV, M., GUAN, N., YI, W., DENG, Q., AND YU, G. Efficient Intruction Cache Analysis with Model Checking. In
Proc. 16" IEEE Real-Time and Embedded Technology and Applicatiomp8sium (RTAS’10), Work-in-Progress
SessiorfApr. 2010), pp. 33-36.

METZNER, A. Why Model Checking Can Improve WCET Analysin Computer Aided Verificatio@uly 2004),
vol. 3114/2004, Springer Berlin / Heidelberg, pp. 298-301.

OPENMP. OpenMP Application Program Interface, Vensgo0, May 2008.
htt p: //ww. opennp. or g/ np- documnent s/ spec30. pdf .

PAOLIERI, M., QUINONES, E., CAZORLA, F. J., BERNAT, G., AND VALERO, M. Hardwasupport for WCET
analysis of hard real-time multicore systems. Aroc. 36" International Symposium on Computer Architecture
(ISCA 2009)2009), pp. 57—68.

PAOLIERI, M., QUINONES, E., CAZORLA, F. J., AND VALERO, M. GAMC: A Generic Angable Memory
Controller for Hard Real-Time Multicore Processors. Te@p., Departament d’Arquitectura de Computadors,
Universitat Politecnica de Catalunya, May 2009.

RAPITIME. Rapitime white paper, 2009.
www. r api t asystens. com systeni fil es/ Rapi Ti me- Wi t ePaper . pdf.

ROSEN, J., ANDREI, A., ELES, P., AND PENG, Z. Bus Access Optintiaa for Predictable Implementation of
Real-Time Applications on Multiprocessor Systems-ongCHin Proc. 28" IEEE Real-Time Systems Symposium
(RTSS'07)2007), pp. 49-60.

SUNDMARK, D. Structural System-Level Testing of Embedded Real-TinterSy$hD thesis, Malardalen Uni-
versity, Department of Computer Science and Electroniegden, 2008.

UPPAAL. UPPAAL Website, 2010ht t p: / / uppaal . or g.

WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N., THEING, S., WHALLEY, D., BERNAT, G.,
FERDINAND, C., HECKMANN, R., MITRA, T., MUELLER, F., PUAUT])., PUSCHNER, P., STASCHULAT, J.,
AND STENSTROM, P. The Worst-Case Execution Time Problem — Overview ofidds and Survey of Tools.
ACM Transactions on Embedded Computing Systems (TEGSp008), 1-53.

WU, L., AND ZHANG, W. Bounding Worst-Case Execution Ténfor Multicore Processors through Model Check-
ing. In Proc. 168" IEEE Real-Time and Embedded Technology and Applicatiomp8sium (RTAS’10), Work-in-
Progress SessiofApr. 2010), pp. 17-20.

YAN, J., AND ZHANG, W. WCET Analysis for Multi-Core Pragssors with Shared L2 Instruction CachesPiac.
14" |EEE Real-Time and Embedded Technology and Applicatiomp8sium (RTAS'0§June 2008), pp. 80-89.

YAN, J., AND ZHANG, W. Accurately Estimating Worst-Cas£xecution Time for Multi-Core Processors with
Shared Direct-Mapped Instruction CachesPtoc. 13" International Conference on Real-Time Computing Systems
and Applications (RTCSA’09Aug. 2009), pp. 455-463.

