
TOWARDS WCET ANALYSIS OF MULTICORE
ARCHITECTURES USING UPPAAL 1

Andreas Gustavsson2, Andreas Ermedahl2,
Björn Lisper2, and Paul Pettersson2

Abstract
To take full advantage of the increasingly used shared-memory multicore architectures, software al-
gorithms will need to be parallelized over multiple threads. This means that threads will have to share
resources (e.g. some level of cache) and communicate and synchronize with each other. There already
exist software libraries (e.g. OpenMP) used to explicitly parallelize available sequential C/C++ and
Fortran code, which means that parallel code could be easilyobtained.

To be able to use parallel software running on multicore architectures in embedded systems with hard
real-time constraints, new WCET (Worst-Case Execution Time) analysis methods and tools must be
developed. This paper investigates a method based on model-checking a system of timed automata
using the UPPAAL tool box. It is found that it is possible to perform WCET analysis on (small)
parallel systems using UPPAAL. We also show how to model thread synchronization using spinlock-
like primitives.

1. Introduction

The execution of hard real-time systems must be predictablein order to ensure a certain system
behavior. In particular, the WCETs (Worst-Case Execution Times) of the hard real-time tasks are
assumed to be known and given as input to different real-timesystem scheduling algorithms [4, 10,
17]. The WCET of a task is dependent both on the properties of the software which is executed as
well as the underlying hardware. Today, there are algorithms and tools which strive to derive a safe
and tight bound on the WCET of a task, using the task code and a model of the (single-core) target
hardware. Some examples of such tools are aiT [9, 27], SWEET [8, 27] and RapiTime [23, 27].

Over the past years, there has been (and there will probably continue to be) a rapid increase in the
usage of multicore architectures in embedded real-time systems. These architectures have several in-
dependent processing units (cores) on each chip. The cores typically share some resources (e.g. some
level of on-chip cache) which introduces dependencies among the cores. Thus the cores could experi-
ence delays due to simultaneous access to these shared resources; e.g., if the L1 caches are non-shared
and the L2 cache is shared, two simultaneous misses in the L1 caches will cause one of the cores to
delay while the other core is granted access to the L2 cache. If there are one or more levels of core-
individual (non-shared) caches, some memory coherence andconsistency model will probably be
implemented. This means that a line in the local cache of one core may be invalidated by another
core’s cache, thus introducing a cache miss if the line is again referenced [1].

1This work was funded by VR through the project 2008-4650 Worst-Case Execution Time Analysis of Parallel Systems.
2School of Innovation, Design and Engineering, MälardalenUniversity, Box 883, S-721 23 Västerås, Sweden.
{andreas.sg.gustavsson,andreas.ermedahl,bjorn.lisper,paul.pettersson}@mdh.se

To take full advantage of these new kinds of architectures, algorithms will need to be parallelized
over multiple threads. This means that the threads will haveto share resources and communicate
and synchronize with each other. There already exist software libraries used to explicitly parallelize
sequential code – one example available for C/C++ and Fortran code running on shared-memory
machines is OpenMP [20]. The conclusion is that parallel software running on parallel hardware is
already available today and will probably be the standard way of computing in the future.

This means that new algorithms, methods and tools for WCET analysis are needed to guarantee the
schedulability and predictability of this new kind of systems, where a task could consist of several
cooperating threads running in parallel on individual cores. This paper presents a method for WCET
analysis of parallel (or sequential) code executing on shared-memory multicore (or single-core) archi-
tectures, using verification techniques (model-checking)on a system of timed automata. The paper
shows that it is possible to model and analyze the impact on the WCET from having a memory hi-
erarchy consisting of core-individual L1 instruction and data caches, and a shared L2 cache. It also
shows how a mutual exclusion software primitive similar to aspinlock could be modeled.

The organization of the rest of this paper is as follows. Section 2 presents some related research per-
formed on analysis of multicore architectures. Section 3 contains an introduction to timed automata
and the modeling tool box UPPAAL [5]. Section 4 describes themodels and verification queries
used to calculate the WCET estimate of an example program. Section 5 contains a discussion of the
proposed method. It also suggests several aspects of the method that should be further investigated.

2. Related Work

The idea of using model-checking to perform WCET analysis has been investigated and shown to
be adequate for analyzing parts of a single-core system in [14] and [19]. However, to the best of
our knowledge, no prior research has been conducted regarding multicores with complete (and non-
perfect) memory hierarchies. This aspect is investigated in this paper.

In [18] and [28], model-checking is used to perform WCET analysis. Both papers are closely related
to the work presented herein, but mainly propose methods to reduce the state space by altering the
program model without affecting the true WCET of the program. Our approach is more focused on
analyzing the impact on the WCET from allowing synchronizing tasks. In [28], a perfect data cache
is assumed (i.e., all accesses are assumed to be hits), whichis generally not the case. In contrast,
this paper assumes a complete and non-perfect memory hierarchy. In [29] and [30], static analyses of
shared L2 instruction caches are presented. Also in these papers, perfect L1 data caches are assumed.

Other than this, to the best of our knowledge, there mainly exist different techniques used to increase
the predictability and analyzability (e.g. to tighten the WCET estimate) of multicore systems. In an
extension to the method presented in [29], memory bits for each instruction are used to determine
whether the instruction should be cached or not [12] – e.g., to avoid pollution of the shared cache,
“Static Single Usage” [12] instructions should not be cached. This generates the possibility to deter-
mine a tighter WCET estimate.

In [21], arbiters (hardware circuits) are added to a shared-memory multicore processor to synchronize
the memory accesses in order to increase the timing-predictability of the system. The result is a
multicore architecture that can be analyzed with existing single-core WCET analysis tools.

GAMC [22] is an SDRAM controller which upper bounds the delaya core can suffer from memory-
interferences from other cores. This is an important aspectsince the largest memory access latency
will occur when accessing the main memory. The result is a tight WCET estimate which only differs
at most 13% from the largest measured execution time. Similarly, in [4] and [24], TDMA-based
memory bus access policies are introduced to make all memoryaccess latencies predictable, regarding
the WCET.

3. Timed Automata & UPPAAL

Timed automata3 [3] can be used to model real-time systems. An automaton can be viewed as a state
machine with locations and edges [15]. A state represents certain values of the variables in the system
and which location of an automaton is active, while the edgesrepresent the possible transitions from
one state to another [15]. (Continuous) time is expressed asa set of real-valued variables modeling
clocks. In UPPAAL, all clocks are initialized to zero and then increase with the same rate [7].

A transition is enabled (i.e., it is possible to perform the particular transition from one state to another)
if its accompanying guard is satisfied. A guard can simply be viewed as a boolean expression (which
can include variables and clocks) which enables or disablesthe edge. The guard cannot force the
transition to be taken however [7]. When a transition is taken, actions can be performed (e.g., variables
can be updated and clocks can be reset to zero).

UPPAAL4 [5, 16, 26] is a tool used to model, simulate and verifynetworksof timed automata [5, 7,
15]. The automata can synchronize via channels on transitions. Only two automata are allowed to
synchronize via a given regular channel at a time. Channels can also be declared as being broadcast,
which means that one issuing automaton can synchronize withan arbitrary number (including zero)
of waiting automata. Another possibility is to declare a channel as being urgent, which means that
when a transition is enabled, it will be performed without allowing any time to pass.

Locations in an UPPAAL timed automaton can have special properties as well; urgent or committed.
When a location with one of these properties is active, time is not allowed to pass. The difference
between urgent and committed locations is that if there are committed locations active, an outgoing
transition from one such location must be taken in the next step – if such a transition does not exist or
is not enabled, the system will deadlock. A location in the automaton can have an invariant associated
with it. An invariant is a clock constraint which limits the amount of time for which the location is
allowed to be active.

Some other features of UPPAAL are a C-like programming interface to ease the modeling task, and
meta-variables [5]. If the only difference between two states is the values of variables declared as
meta, then the states are considered to be the same. This is useful for reducing the size of the state
space while verifying properties of the system. Care shouldbe taken to avoid using meta-variables
in a way that could eliminate states from the analysis that actually should be taken into account,
though. Verification of system properties (requirements) is performed by formulating queries used by
the UPPAAL verifier. The query language is described in e.g. [5] or in the help session accompanying
the UPPAAL binaries [26].

3The formal syntax and semantics of timed automata can be found in e.g. [2] and [15].
4An introduction to UPPAAL and the formal semantics of networks of timed automata are given in [5] and [15] respectively.

Figure 1: The modeled architecture.

Property L1-I L1-D L2

Lines 4 4 8

Words/Line 2 2 4

Sets 2 4 2

Latency 1 1 10

Replacement Policy LRU LRU LRU

Table 1: Cache Properties.

Figure 2: Model of the task interface.

4. WCET Analysis Using UPPAAL

To model a fictitious shared-memory multicore architecture, a network of timed automata is created
in UPPAAL5. The architecture is assumed to have the properties depicted in Figure 1; i.e., core-
individual L1 instruction and data caches, and a shared L2 cache. In the figure, the arrows between
the cores and the caches show the possible flow of memory contents (i.e., instructions and data). The
core is assumed to be very simple, only incorporating a pipeline similar to a basic five-stage, in-order
RISC-pipeline. The caches are assumed to have the properties found in Table 1.

The resulting models are presented in Figure 3. For a multicore architecture withn cores, there will
ben sets of the models in Figures 3a–3c (i.e., one set per core) but only 1 set of the models in Figures
3d–3g6. For the current approach, no value analysis is used. Therefore, in the below given models, no
actual memory contents is ever transferred or kept track of in the memory hierarchy. The only thing
considered is what memory locations (addresses) are referenced by the program. A limitation of this
approach is that dynamic memory references cannot be easilymodeled.

4.1. The Program Model Interface

The interface for modeling a thread is shown in Figure 2. The “Initialization” part is optional and the
init_task() function could simply be empty. The “Terminating Synchronization” part ensures
that no time is missed by the WCET analysis. If the pipeline should be emptied at the end, a delay
should be inserted to account for this in this part of the model.

The middle (framed) part depicts the instruction executioninterface. The instructions are assumed to
be assembly instructions and are executed one by one. An instruction is executed by synchronizing
with the core automaton via theexec_instr[id] urgent channel and setting information about the
access via the function callset_access_info(). The arguments should be interpreted as:id –
the core on which the instruction should be executed;instr_address– the memory address where

5UPPAAL version 4.0.10 (rev. 4417) has been used in this paper.
6With one exception regarding the Lock handler automaton – there is one Lock handler per lock, i.e., per critical section.

the instruction is stored;data_address – the address in memory on which the data accessed by
the instruction is stored (only used for instructions such as LOAD and STORE etc.);data_access
– a boolean telling whether the instruction is a data accessing instruction (e.g., a LOAD or STORE
etc.);write_data – a boolean distinguishing between read and write instructions (i.e., whether the
instruction is a LOAD or STORE etc.).

Other types of instructions, such as branch instructions and instructions not referencing memory
locations, should be accounted for by adapting the structure of the automata modeling the program.
Thus, the structure of the program should be represented by the structure of the automata. This
representation could be automatically generated using flowfacts generated by a static analysis tool,
such as SWEET [8]. The translation would be close to 1:1 of theinstruction-level CFG (Control
Flow Graph) [18]. To account for hazards, extra stalls can beinserted into the pipeline by setting the
stalls[id] variable to the desired value before executing the instruction.

To account for the possible memory locations that a given instruction could reference, a value analysis
could be used [27]; and to account for the possible values of different variables affecting the execution
pattern of the program, a control flow analysis could be used [27]. The structure of the automata
modeling the program could then be adapted accordingly (e.g. by adding one transition for each
possible memory reference or variable value). This means that UPPAAL will automatically account
for the (global) worst-case memory reference or variable value. This approach could also avoid
unwanted effects from timing anomalies since UPPAAL searches the entire state space when finding
the WCET estimate.

4.2. The Model of the Core

The model of the core is depicted in Figure 3a. This automatonrepresents the timing model of the core
(the pipeline etc.) and is the automaton with which the program-automaton synchronizes to execute
instructions. When an instruction should be executed, the core accesses the memory hierarchy to
fetch it and then steps the pipeline. If the instruction accesses data, the pipeline is stepped (stalls are
inserted) until the memory access stage is reached, then thedata is accessed. This leads to an over-
approximation of the execution time. However, to avoid further over-approximation (which could be
much larger), another instruction can be fetched while the data is accessed.

Theexec_instr_done[id] channels are declared as broadcast so that the program-automata do
not have to synchronize via these channels before a request to execute a new instruction can be issued.
This is to minimize the number of locations in the program-automaton (to make the interface as clean
as possible and to minimize the state space).

4.3. The Models of the Caches

The models of the L1 instruction and data caches are depictedin Figure 3b and 3c respectively. The
main difference between these cache models is that a data cache has the ability to invalidate a line in
the other data caches. Otherwise the models are quite straightforward. All the cache content handling
is performed by theaccess_cache_L1_{instr,data}(), update_cache_L1_data()
andinvalidate_L1() functions.

If the accessed data is not available in the L1 cache, it is fetched from the L2 shared cache, which
is depicted in Figure 3d. This model is even more straightforward – all the cache content handling

Step_Pipeline

tCore<=1+stalls[id]

Step_pipeline

tCore<=I2D_delay

Signal_Done

Touch_data

Wait_for_I_cache

Get_instruction

Idle

tCore>=1+stalls[id]

exec_instr_done[id]!

tCore>=I2D_delay

access[id].data &&
!wait_for_data[id]
access_I_done[id]?

tCore=0

!access[id].data &&
!wait_for_data[id]
access_I_done[id]?

tCore=0

access_D[id]!
calc_access_info_for_level(id,1,
 true, true),
wait_for_data[id]=true

access_I[id]!

exec_instr[id]?

init_core(id)

(a) Core

Wait_for_L2

Signal_Done

!hit_go_to_L2

hit_delay

tCache<=cache_hit_time[0]

Check_cache

Idle

access_cache_s_done?

access_cache_s!
shared_caller=id,
shared_call_data=false

tCache>=cache_hit_time[0]

hit
tCache=0

!hit
calc_access_info_for_level(id,2,
 false, false)

access_I_done[id]!

access_I[id]?
hit=access_cache_L1_instr(id)

init_cache(id)

(b) L1 Instruction cache

Invalidate

tCache<=invalidation_delay[0]

Signal_Done

Check_write

Wait_for_L2

Hit_delay

tCache<=cache_hit_time[1]

!hit_go_to_L2

Check_hit

Idle

wait_for_data[id]=false

tCache>=invalidation_delay[0]
invalidate_L1(id)

access_data[id].write
tCache=0,
calc_access_info_for_level(
 id, 1, true, false)

!access_data[id].write

tCache>=cache_hit_time[1]

access_cache_s_done?
update_cache_L1_data(id)

access_cache_s!
shared_caller=id,
shared_call_data=true

hit
tCache=0

!hit
calc_access_info_for_level(id,2,
 true, false)

access_D[id]?
hit=access_cache_L1_data(id)

init_cache(id)

(c) L1 Data cache

Signal_Done

Delay

tCache<=cache_hit_time[hit?2:3]

Idle

tCache>=cache_hit_time[hit?2:3]

access_cache_s_done!

access_cache_s?
hit=access_cache_L2(),
tCache=0

init_cache()

(d) L2 Shared cache

Locked

Unlocked

go_lock[id]!
locked[id]=false

go_lock[id]?
locked[id]=true

init_lock(id)

(e) Lock handler

Stop_Time

Wait

all_tasks_finished()
finished?

(f) Finisher

go?

(g) Go

Figure 3: Timing model of the considered multicore architecture.

is performed by theaccess_cache_L2() function. If the accessed data is not located in the L2
cache, it is fetched from the main memory (which is assumed toalways hit).

All the caches in the system can be individually defined, regarding set-associativity, cache size, block
size and replacement policy (the used cache properties can be found in Table 1).

4.4. The Auxiliary Automata

These automata, depicted in Figures 3e–3g, are implementation specific. The Lock handler-automaton
can be (and is) used to implement spinlocks. The Finisher-automaton is used to stop the time and
deadlock the system when all tasks have finished executing. And finally, the Go-automaton is very
versatile. It simply waits to synchronize via an urgent channel (thus not allowing any time to pass
when the transition is enabled). This can be viewed as a trickto achieve the desired system behavior
(e.g. to achieve system progress).

4.5. WCET Analysis by Verification

Branch_instruction

Lock

Wait_for_Core

Unlock

Finished

Unlock_Instruction

CS_ST_instruction_and_data

Check_Lock

Test_instruction

LD_instruction_and_data_lock

exec_instr[id]!
set_access_info(id,mem_address++,-1,false,false)

exec_instr[id]!
set_access_info(id,mem_address++,1073,true,true)

exec_instr_done[id]?

count == 3

exec_instr[id]!
set_access_info(id,mem_address++,1073,true,true)

finished!

!wait_for_data[id]
go!

finished_tasks[id] = true

count < 3
count++,
mem_address=first_address

locked[0]
go!

mem_address=first_address

go_lock[0]?

exec_instr[id]!
set_access_info(id,mem_address++,1097,true,true)

!locked[0]
go_lock[0]!

exec_instr[id]!
set_access_info(id,mem_address++,-1,false,false)

exec_instr[id]!
set_access_info(id,mem_address++,1073,true,false)

init_task()

Figure 4: Model of a program with
spinlock-like synchronization.

Given the above described network of timed automata,
UPPAAL can verify if different properties hold for the
system. The verification property that is used to find the
WCET estimate looks like7: A[] t <= x. This prop-
erty should be interpreted as: “For every possible state,
the value of the clockt is always less than or equal tox”.
The WCET analysis is easily performed by running the
model-checker (verifier) in a binary search style by alter-
ing the value ofx until the WCET estimate is found8.

In order for this approach to work, some other proper-
ties of the system must also be verified; otherwise there
might exist some amount of time that is not accounted
for when calculating the WCET estimate, or the overall
system behavior could be incorrect. It must be verified
that: whenever the system is in a deadlock state, the Fin-
isher automaton is in its StopTime location; the system
will always reach a state where the Finisher automaton is
in its StopTime location; when the Finisher automaton
is in its StopTime location, all other automata modeling
the hardware are in their Idle locations, and all automata
modeling the program have finished; and mutual exclu-
sion is guaranteed on critical sections. By using similar
verification properties to the one above, UPPAAL can
check these properties automatically9.

4.6. Experimental Evaluation

An example model of a program (using the interface
given in Figure 2) is given in Figure 4. The task of
the modeled program is very simple; it just acquires a
spinlock-like lock and then writes to a shared variable
before releasing the lock, and it executes this procedure
three times before finishing its execution.

The same task is run on two cores (both tasks are released at the same time) and the result of the
analysis is a WCET estimate equal to 636 clock cycles (the other properties mentioned above are also
satisfied); using the specific values of the cache sizes (Table 1) and latencies etc. The main memory
is assumed to have a latency of 80 clock cycles. Each step in the binary search approach is performed
within 1 second and the total number of steps is 11 (this is dependent on the initial values ofx in the
verification property from section 4.5, however).

An initial investigation of some potential problems regarding the scalability of the model-checking

7The UPPAAL verifier syntax can be found in [5] or in the online help session accompanying the UPPAAL binaries [26].
8Similar approaches to WCET analysis using model-checking are described in [18], [19] and [28].
9To guarantee a safe verification, the UPPAAL option “Extrapolation” should be set to “None”.

approach has been conducted. By increasing the number of cores to four and running one instance of
the same example program as above on each core, we get a large slowdown in the analysis time. An-
other investigation, where the release time of the second task is made general in the interval[0, 1000],
has also been performed. The same result, a large slowdown inthe analysis time, was observed. In-
creasing the sizes of the (meta-declared) caches to 2048 lines for the L1 caches and 8192 lines for the
L2 cache, does not seem to have an equally large impact on the analysis time though. The memory
usage increases drastically, however. The required times for performing one binary search step are
summarized in the table below (a dual-core processor, running at 2.66GHz, with 4GB of RAM was
used). The “2 Cores” column represents the original experiment and is the base for comparison. The
total time is an approximation of the total time needed to perform the analysis, assuming 11 iterations,
and that the binary search strategy for invoking the UPPAAL verifier is handled by a script.

2 Cores 4 Cores Release Time $ Sizes
Time <1s >3h (aborted) 44s 14s

Total Time 11s >33h 500s 150s

A consequence of these results is that the complexity of the models and the size of the analyzed
program (and thus the achievable tightness of the WCET estimate) have to be balanced to avoid
making the state space explode. The case with 4 cores was aborted after approximately 3 hours when
the virtual memory demands exceeded the available amount ofRAM (4GB).

5. Discussion & Future Work

Modeling systems is very easy using UPPAAL, which also offers a useful interface for performing
model-checking. This paper has shown that WCET analysis of parallel code and hardware can be per-
formed using the model-checking techniques available in e.g. UPPAAL. There are some limitations
imposed by using UPPAAL to perform the WCET analysis, however. The C-style interface is a bit
limited regarding function calls; e.g., an array-argumentmust have a known size – this limits the level
to which the code can be written in a generical way. However, the UPPAAL C-functions are meant to
be very simple and small and the C-style interface offered byUPPAAL is in general very rich, so the
pros very much outweighs the cons.

Another drawback is the binary search strategy that has to beused for finding the WCET estimate.
This could lead to unnecessarily large overheads in the analysis. One way to avoid the binary search
approach is to use the newsup10-operator, implemented in (and described in the help session ac-
companying) the development version (4.1) of UPPAAL [26]. Thesup-operator finds the maximum
value of an expression evaluating to either an integer or a clock. To find the WCET estimate using
thesup-operator, the following property could simply be verified:sup: t. This property should
be interpreted as: “Find the maximum value of the clockt”. This approach works for the proposed
system model since the system is deadlocked and the time is stopped when all tasks have finished
executing. The reason to why this approach is not used in thispaper is because of the development
(unstable) state of the UPPAAL-version (4.1) in which thesup-operator is implemented.

However, an initial investigation using thesup-operator has been performed on the system described
in section 4.6. By verifying the propertysup: t, it is found that the WCET estimate is 636 clock
cycles (the same result as achieved by using the binary search approach). The total time needed to
verify the property is in the order of 1 second – this is superior to the binary search approach where

10sup is an abbreviation of suprema.

approximately 1 second (plus the overhead needed to adjust the parameters) is needed for each binary
search step.

An investigation of thesup-operator’s impact on the scalability has also been conducted for the same
system setups that were described in section 4.6. The resultis presented in the table below.

2 Cores 4 Cores Release Time $ Sizes
Time 1s >3h (aborted) 42s 14s

Total Time 1s >3h 42s 14s

As for the binary search approach, the case with 4 cores was aborted after approximately 3 hours
when the virtual memory demands exceeded the available amount of RAM (4GB). As can be seen,
the total time needed to perform the entire analysis using the sup-operator is quite comparable to
the time needed to perform one binary search step (excludingany parameter adjustment overhead).
This makes thesup-operator a very promising feature of UPPAAL; since the entire analysis can be
performed automatically (in one step) and the implied overhead, if any, is negligible.

Further investigations should be performed, regarding howwell this method (model-checking) scales
with the size of the modeled program and the complexity of thehardware model. It would also be
worth investigating the impact on the size of the state space(and thus the analysis time) by transferring
more of the cache handling functionality from the cache automata to the cache handling C-functions,
and vice versa. On one extreme, all the cache handling could be done by the C-functions, while the
automaton only is used to perform the cache access delay.

Another way of (hopefully) increasing the scalability of the method is to extend the use of scalars.
When scalars are used, UPPAAL can apply symmetry reduction on the model [13], which can lead
to a dramatic decrease in the size of the state space. Symmetry reduction eliminates redundant paths
in the model. Considering the models presented in section 4,there are lots of redundant paths. The
same program is executed on several homogenous cores with a homogenous memory hierarchy. This
means that the same execution pattern exists several times in the state space, the only difference is
which program (and core and caches) it concerns. As a simple example, either program 0 is considered
to start before program 1, or vice versa – only one of the possibilities needs to be considered since the
models are equal; this is what symmetry reduction tries to achieve. Scalars and symmetry reduction
are also described in more detail in the UPPAAL help session11.

The granularity of the proposed interface in this paper is onthe instruction level. This increases the
size of the state space compared to using a basic block granularity. One way of reducing the size of
the state space, and keep the instruction level granularity(when considering non-preemptive tasks at
least), could be to merge instructions on the same cache linethat do not access data and add some
additional delay in the program model to represent the merging. This would be possible since the
lines in the (non-shared) instruction cache never are invalidated by another cache; if one instruction is
available, all other instructions in the same line are also available. This approach can be viewed upon
as a manually performed partial order reduction [6, 11].

The static WCET analysis tool SWEET12 is already capable of generating models in the UPPAAL

11The UPPAAL help session accompanies the UPPAAL binaries, available at [26]. It is also available at
http://www.uppaal.org/help.php?file=WebHelp (for the official release of UPPAAL).

12SWEET uses basic blocks by default [8], but does also have thecapability of using an instruction level granularity. This
makes interaction possible.

syntax on a special format [25]. Performing minor changes tothis generation could adapt SWEET to
also being able to create models on the format specified by this paper. This means that benchmarks
could be easily translated and analyzed together with the hardware models presented herein.

Other suggestions for future work are to implement a more detailed timing model to avoid over-
approximating the WCET, to implement a model of a real-worldmulticore architecture, such as
e.g. the ARM Cortex, and to investigate the possibilities ofimplementing models of more synchro-
nization primitives, e.g. mutexes and condition variables.

A final and very important conclusion is that WCET analysis ofthe inter-thread communication and
interferences on shared resources can be made quite simple using the suggested model-checking
method, compared to static analysis (see e.g. [29]). However, it will probably be quite difficult to
make the model-checking method scale well.

References

[1] ADVE, S. V., AND GHARACHORLOO, K. Shared Memory Consistency Models: A Tutorial. Tech. rep., Rice
University and Western Research Laboratory, 1995.

[2] ALUR, R. Timed Automata. InComputer Aided Verification(Jan. 1999), vol. 1633/1999, Springer Berlin / Heidel-
berg.

[3] ALUR, R., AND DILL, D. L. A theory of timed automata.Theoretical Computer Science 126, 2 (Apr. 1994), 183
– 235.

[4] ANDREI, A., ELES, P., PENG, Z., AND ROŚEN, J. Predictable Implementation of Real-Time Applications on
Multiprocessor Systems-on-Chip.International Conference on VLSI Design 21(2008), 103–110.

[5] BEHRMANN, G., DAVID, A., AND LARSEN, K. G. A Tutorial on UPPAAL.

[6] BENGTSSON, J., JONSSON, B., LILIUS, J., AND YI, W. Partial Order Reductions for Timed Systems. In
CONCUR’98 Concurrency Theory(Feb. 1998), vol. 1466/1998, Springer Berlin / Heidelberg,pp. 41–49.

[7] BENGTSSON, J., AND YI, W. Timed Automata: Semantics, Algorithms and Tools. InLectures on Concurrency
and Petri Nets(July 2004), vol. 3098/2004, Springer Berlin / Heidelberg,pp. 87–124.

[8] ERMEDAHL, A. A Modular Tool Architecture for Worst-Case Execution Time Analysis. PhD thesis, Uppsala
University, Dept. of Information Technology, Sweden, June2003.

[9] FERDINAND, C., HECKMANN, R., AND FRANZEN, B. Static Memory and Timing Analysis of Embedded
Systems Code. In3rd European Symposium on Verification and Validation of Software Systems (VVSS’07)(Mar.
2007), pp. 153–163.

[10] GUAN, N., STIGGE, M., YI, W., AND YU, G. New Response TimeBounds for Fixed Priority Multiprocessor
Scheduling. InProc. 30th IEEE Real-Time Systems Symposium (RTSS’09)(Dec. 2009), pp. 387–397.

[11] HÅKANSSON, J., AND PETTERSSON, P. Partial Order Reduction for Verification of Real-Time Components.
In Formal Modeling and Analysis of Timed Systems(Sept. 2007), vol. 4763/2007, Springer Berlin / Heidelberg,
pp. 211–226.

[12] HARDY, D., PIQUET, T., AND PUAUT, I. Using Bypass to Tighten WCET Estimates for Multi-Core Processors
with Shared Instruction Caches. InProc. 30th IEEE Real-Time Systems Symposium (RTSS’09)(2009), pp. 68–77.

[13] HENDRIKS, M., BEHRMANN, G., LARSEN, K. G., NIEBERT, P.,AND VAANDRAGER, F. Adding Symmetry
Reduction to UPPAAL. InFormal Modeling and Analysis of Timed Systems(May 2004), vol. 2791/2004, Springer
Berlin / Heidelberg, pp. 46–59.

[14] HUBER, B., AND SCHOEBERL, M. Comparison of Implicit Path Enumeration and Model Checking Based WCET
Analysis. InProc. 9th International Workshop on Worst-Case Execution Time Analysis (WCET’2009)(2009).

[15] KATOEN, J.-P. Concepts, Algorithms, and Tools for Model Checking. InLecture Notes of the Course “Mechanised
Validation of Parallel Systems” (course number 10359)Semester 1998/1999, at Friedrich-Alexander Universität
Erlangen-Nürnberg.

[16] LARSEN, K. G., PETTERSSON, P., AND YI, W. UPPAAL in a Nutshell. International Journal on Software Tools
for Technology Transfer (STTT) 1, 1-2 (Dec. 1997), 134–152.

[17] LIU, C. L., AND LAYLAND, J. W. Scheduling Algorithms forMultiprogramming in a Hard-Real-Time Environ-
ment.Journal of the ACM 20, 1 (1973), 46–61.

[18] LV, M., GUAN, N., YI, W., DENG, Q., AND YU, G. Efficient Instruction Cache Analysis with Model Checking. In
Proc. 16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’10), Work-in-Progress
Session(Apr. 2010), pp. 33–36.

[19] METZNER, A. Why Model Checking Can Improve WCET Analysis. InComputer Aided Verification(July 2004),
vol. 3114/2004, Springer Berlin / Heidelberg, pp. 298–301.

[20] OPENMP. OpenMP Application Program Interface, Version 3.0, May 2008.
http://www.openmp.org/mp-documents/spec30.pdf.

[21] PAOLIERI, M., QUIÑONES, E., CAZORLA, F. J., BERNAT, G., AND VALERO, M. Hardware support for WCET
analysis of hard real-time multicore systems. InProc. 36th International Symposium on Computer Architecture
(ISCA 2009)(2009), pp. 57–68.

[22] PAOLIERI, M., QUIÑONES, E., CAZORLA, F. J., AND VALERO, M. GAMC: A Generic Analyzable Memory
Controller for Hard Real-Time Multicore Processors. Tech.rep., Departament d’Arquitectura de Computadors,
Universitat Politècnica de Catalunya, May 2009.

[23] RAPITIME. Rapitime white paper, 2009.
www.rapitasystems.com/system/files/RapiTime-WhitePaper.pdf.

[24] ROSÉN, J., ANDREI, A., ELES, P., AND PENG, Z. Bus Access Optimization for Predictable Implementation of
Real-Time Applications on Multiprocessor Systems-on-Chip. In Proc. 28th IEEE Real-Time Systems Symposium
(RTSS’07)(2007), pp. 49–60.

[25] SUNDMARK, D. Structural System-Level Testing of Embedded Real-Time Systems. PhD thesis, Mälardalen Uni-
versity, Department of Computer Science and Electronics, Sweden, 2008.

[26] UPPAAL. UPPAAL Website, 2010.http://uppaal.org.

[27] WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N., THESING, S., WHALLEY, D., BERNAT, G.,
FERDINAND, C., HECKMANN, R., MITRA, T., MUELLER, F., PUAUT,I., PUSCHNER, P., STASCHULAT, J.,
AND STENSTRÖM, P. The Worst-Case Execution Time Problem — Overview of Methods and Survey of Tools.
ACM Transactions on Embedded Computing Systems (TECS) 7, 3 (2008), 1–53.

[28] WU, L., AND ZHANG, W. Bounding Worst-Case Execution Time for Multicore Processors through Model Check-
ing. In Proc. 16th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’10), Work-in-
Progress Session(Apr. 2010), pp. 17–20.

[29] YAN, J., AND ZHANG, W. WCET Analysis for Multi-Core Processors with Shared L2 Instruction Caches. InProc.
14th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’08)(June 2008), pp. 80–89.

[30] YAN, J., AND ZHANG, W. Accurately Estimating Worst-Case Execution Time for Multi-Core Processors with
Shared Direct-Mapped Instruction Caches. InProc. 15th International Conference on Real-Time Computing Systems
and Applications (RTCSA’09)(Aug. 2009), pp. 455–463.

