
Deployment Modelling and Synthesis in a Component Model
for Distributed Embedded Systems1

Jan Carlson, Juraj Feljan, Jukka Mäki-Turja and Mikael Sjödin
Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

{jan.carlson, juraj.feljan, jukka.maki-turja, mikael.sjodin}@mdh.se

Abstract

We present an approach to combine model-driven and
component-based software engineering of distributed em-
bedded systems. Specifically, we describe how deployment
modelling is performed in two steps, and present an incre-
mental synthesis of runnable representations of model enti-
ties on various abstraction levels. Our approach allows for
flexible reuse opportunities, in that entities at different lev-
els of granularity and abstraction can be reused. It also per-
mits detailed analysis, e.g., with respect to timing, of units
smaller than a whole physical node. We present a concept,
virtual nodes, which preserves real-time properties across
reuse and integration in different contexts.

1 Introduction

Development of distributed embedded systems is a com-
plex and difficult task, influenced by factors such as re-
source limitations, safety concerns, real-time requirements,
interplay between software and hardware, etc. The com-
plexity of the functionality realized by software in these
systems is also steadily increasing, while at the same time a
short time-to-market is required to stay competitive in many
embedded system domains.

Model-driven engineering (MDE) and component-based
software engineering (CBSE) are two emerging approaches
to address these and other challenges. MDE advocates the
use of models, not only for capturing high-level design ideas
and for documentation, but as key artefacts throughout the
development process. The goal is to reduce development
time and efforts, and increase product quality by raising
the level of abstraction and automating some time consum-
ing and error prone activities, e.g., by generating code di-
rectly from detailed models instead of implementing it man-
ually [22]. The existence of explicit models at an early stage

1This work was supported by the Swedish Foundation for Strategic Re-
search via the research centre PROGRESS.

also permits various types of analysis to be performed in or-
der to quickly identify potential problems in the design.

In CBSE, systems are built by assembling components
with well-defined boundaries and explicitly specified inter-
faces and context dependencies [25, 7]. The initial goal
was to facilitate software reuse, but other advantages in-
clude reduced time-to-market, enhanced quality and sim-
plified maintenance [27]. With the strong encapsulation
comes also the possibility to apply modular and composi-
tional techniques for analysis and testing, which helps alle-
viate system complexity.

Most component-based approaches consider compo-
nents in the form of deployable binary entities, but some,
in particular those targeting resource constrained domains,
view components as design-time entities, and let the com-
ponent boundaries dissolve in later stages of the develop-
ment process in order to make the final system sufficiently
efficient.

In this paper we present an approach to incremental de-
ployment of model-concepts to runnable entities (i.e. syn-
thesis of runnable entities from model entities). The work
is presented within the context of ProCom component tech-
nology [5, 6, 23]. Previous work on ProCom has not pre-
sented our incremental approach to generating a runnable
system or how to test and analyse components on different
abstraction levels.

ProCom has been designed with the ambition to com-
bine model- and component-based development in order to
benefit from their respective advantages (i.e., the early anal-
ysis and the automated code synthesis from MDE, and the
strong encapsulation facilitating reuse and product line de-
velopment from CBSE). Two key aspects of this integration
can be observed in ProCom. First, for the early development
phases we propose a model-based design methodology cen-
tred around a notion of architectural design-time compo-
nents. Aspects such as functional behaviour, timing and re-
source usage are all modelled for individual components in
isolation, which facilitates reuse of models and analysis re-
sults. When components are composed to form larger units,
so are these models, resulting in models of the overall sys-

36th Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
2010, Lille, France. Copyright by IEEE.



tem behaviour. The second aspect of the integration con-
cerns the later phases of development, and is of greater sig-
nificance to this paper. Rather than a single synthesis step
where the entire system is generated, the synthesis is pre-
formed in smaller steps where individual parts of the final
system, e.g., runtime components, are created in isolation.

ProCom exploits both the reuse and encapsulation ben-
efits of CBSE, and the potential of MDE for early analysis
and automated generation of low-level artefacts. Moreover,
combining the two approaches results in the following ad-
ditional benefits:

Flexible reuse. Reuse of design-time components includ-
ing behavioural models, implementation and early
analysis and validation results; as well as concrete run-
time entities with predictable temporal behaviour also
in new contexts, which reduces efforts related to test-
ing, validation and certification.

Support for mixed maturity. Early analysis can take ad-
vantage of detailed analysis results (e.g., static code
analysis including also generated glue code) when
such results exist, for example when a part of the sys-
tem is reused as a runtime component or at a point
when some parts have been fully implemented and
synthesised while other parts remain high-level mod-
els.

Reuse and efficiency tradeoff. Performing synthesis on
small units in isolation before composing them re-
sults in more entities to reuse, while synthesising larger
units allows for more optimizations in each step.

This paper describes how the relations between design-
time components and run-time entities are modelled in Pro-
Com, and outlines the synthesis process where the different
run-time entities are created. In particular, it introduces the
notion of virtual nodes, an intermediate level in the allo-
cation of functional units to the physical nodes of the sys-
tem, that provides encapsulation of behaviour with respect
to timing and resource usage, and introduces another type
of reusable unit in addition to the design-time components.

The remainder of the paper is organised as follows.
Section 2 describes some important characteristics of the
embedded systems domain, and Section 3 surveys related
work. Section 4 outlines the overall approach, which is then
detailed in Sections 5 and 6, before Section 7 concludes the
paper.

2 Embedded Systems

An embedded system is a computer system, and its asso-
ciated software, built into some piece of equipment. The
vast majority of CPUs manufactured yearly (more than

99%) are used for embedded systems [12]. Also, a sig-
nificant portion of the global software development ef-
fort is put into developing and maintaining embedded sys-
tems. This paper primarily targets embedded control sys-
tems. Such systems are used to control the equipment
they are built into. Often this control is exercised under
stringent real-time and safety requirements. Examples of
equipment which, today, are software controlled include air-
planes, trains, cars, media-equipment, and industrial robots.

Conditions for development of embedded control sys-
tems differ significantly from development of desktop- and
Internet-software. We have previously investigated the key
requirements on component technologies for vehicular con-
trol systems [19] and some of the requirements addressed in
this paper are:

Maintainable and extendable. Many systems live for
many years (several decades) and need continuous up-
dates, e.g., in conjunction with upgrades of mechanical
and electrical parts of the systems.

Reusable. Many companies sustain a product line archi-
tecture with large amounts of reuse between different
products within a product family.

Testable and debuggable. Embedded systems are notori-
ously difficult to test and debug. Reasons for this
include limited observability of the real-time evolu-
tion of internal state, and difficulties in reproducing
execution-scenarios.

Resource constrained. The component technology and
the systems constructed using it should make efficient
use of computational resources (e.g. CPU, RAM and
flash). The reason for this is not only to keep hard-
ware cost to a minimum, but also e.g. to conserve en-
ergy during run-time and to avoid upgrading hardware
when adding new functionality to an existing product.

Analyzable. Key extra-functional properties, such as ex-
ecution delays and memory consumption, should be
predictable by analyzing the assembly of components.
Analysis is desired to avoid building systems with un-
feasible timing behaviour or which deplete resources
(such as RAM) at run-time.

Statically configured. Partly a consequence of the require-
ments above, partly to fit with existing development
and testing processes, and partly to comply with safety
standards (see below) it is desirable to make static
(i.e. pre-product shipping) configuration of software
and bindings between software components. Benefits
of static configuration include predictable boot behav-
ior, lower overhead, and increased determinism during
testing.



The ongoing introduction of safety certification accord-
ing to standards such as IEC 61508 [15] and ISO/DIS 26262
[16] also place increased burden on developers to argue cor-
rectness of systems. To this end mathematical analysis is
a favoured method to guarantee certain behaviours (or ab-
sence thereof). In lack of mathematical (or other) proof,
developers resort to testing, which is time consuming and
expensive; especially if the whole system has to be com-
pletely retested for each minor modification.

The approach proposed in this paper addresses all of the
above requirements. Maintenance, extensibility, testing and
reuse is supported by encapsulating run-time artefacts into
reusable entities which can be reused without renewed test-
ing of the entity. Analyzability of models is provided by
the ProCom component technology, and the encapsulation
of run-time entities allows reuse of the analysis results for
those entities during maintenance and upgrades. The re-
source efficiency and static configuration comes with the
ProCom component technology which has been specifically
designed to produce highly optimized, pre-configured sys-
tems.

3 Related Work

We present related work from the perspective of the
relation between functional/logical architecture elements
and elements in the final executable system. In line with
ProCom combining MDE and CBSE, we categorize the
surveyed technologies into two groups, namely compo-
nent models for embedded systems, and model-driven ap-
proaches.

3.1 Component models for embedded sys-
tems

CBSE has been successful mainly in domains such as
desktop- and enterprise applications, but recently many
component based approaches targeting embedded systems
have been developed both in academia and in industry.
Many of them are restricted to development of single node
systems, but some explicitly target distributed systems.
Here, we survey Rubus and Koala from the former category,
and AUTOSAR and COMDES-II from the latter.

Rubus [13] is a component model for dependable embed-
ded real-time systems, developed in cooperation between
Arcticus Systems and Mälardalen University. The Rubus
tool chain covers three key activities in real-time develop-
ment — design, analysis and synthesis. Rubus systems are
modelled using a graphical design tool, and different analy-
sis techniques are provided in the form of plug-ins. Finally,
the run-time infrastructure is generated for the desired run-
time platform. Rubus does not assume a particular platform,
as long as it preserves the semantics defined by the Rubus

component model. However, the current tool chain synthe-
sis results in a task set that can be executed in the Rubus
real-time operating system. Work on extending Rubus to
handle distribution is currently under way.

Koala [26] is a component model and architectural de-
scription language targeting consumer electronics, devel-
oped by Philips. It aims to achieve a strict separation be-
tween component- and system development, i.e., compo-
nent builders make no assumptions of the systems in which
the components are going to be used. From the model of a
system defined using the Koala architectural language, the
Koala compiler reads component- and interface definitions,
and generates header- and C code files. Koala does not im-
ply a particular deployment platform. Rather, there is a set
of makefiles that control how executables are built for par-
ticular platforms.

COMDES-II [17] is a component-based software frame-
work intended for efficient development of distributed em-
bedded control systems with hard real-time requirements.
The architectural model of COMDES-II consists of two
layers. At the system level, applications are modelled in
terms of actors that exchange asynchronous signals. Ac-
tors may be logically combined into subsystems, which are
then allocated to network nodes. The functionality is de-
fined inside actors, in terms of function blocks. There is an
apparent similarity between COMDES-II and ProCom re-
garding the two architectural levels, but COMDES-II lacks
an intermediate deployment level that ProCom has in terms
of virtual nodes. Deployment is handled by a tool that
parses COMDES-II models defined in XML and automati-
cally generates C source code.

AUTOSAR [1] is an initiative of a number of automotive
manufacturers and suppliers to handle the growing com-
plexity of developing vehicular embedded systems by defin-
ing a standardized architecture. The functional software
in AUTOSAR is defined in terms of software components.
According to the AUTOSAR methodology, in the first phase
of the deployment, components are mapped to particular
Electronic Control Units (ECUs), taking in account the sys-
tem constraints (extra-functional properties). Then, each
ECU is configured separately, based on the deployment of
components to the ECU. Finally, an executable is generated
for each ECU. A tool suite supporting the complete AU-
TOSAR methodology is still missing.

3.2 Model-driven approaches

Here we survey two model-driven technologies: AADL
and OMG’s Deployment and Configuration.

The Architecture Analysis and Design Language
(AADL) [11] is an architecture description language for de-
sign and analysis of embedded real-time systems, standard-
ized by SAE International. It comprises software abstrac-



tions in terms of software components (e.g., thread, data,
process, subprogram), and hardware abstractions in terms
of execution platform components (e.g., processor, mem-
ory, bus, device). The main purpose of AADL is to enable
verification of extra-functional system properties, by per-
forming analysis on an AADL model of the system. How-
ever, AADL can be used to aid the whole development pro-
cess — design, analysis and deployment. At Télécom Paris,
this is achieved by employing their Ocarina tool suite [14].
The development process with Ocarina is the following.
First, the application designer builds an AADL application
model and maps the application model to an AADL execu-
tion platform model. This mapping is then assessed (seman-
tic analysis, schedulability analysis and behavioral analy-
sis), before code is generated from the mapping. Finally,
middleware is selected and compiled together with the gen-
erated code and user code that implements AADL compo-
nents from the application model. Currently, Ocarina can
generate ADA code running on the PolyORB middleware,
and ADA or C code running on the PolyORB-HI middle-
ware.

The Deployment and Configuration specification [20]
defines mechanisms to facilitate the deployment of
component-based applications onto target systems. The
specification is standardized by Object Management Group.
It is compliant with model driven architecture and defines
a platform independent model (PIM) with three levels that
describe component-based applications, heterogeneous dis-
tributed target platforms, and mappings of an application to
a target, respectively; a deployment process, based on a set
of actors which manipulate the models; a UML profile pro-
viding a concrete syntax for the abstract syntax defined by
the PIM; and a platform specific model (PSM), specified for
the CORBA Component Model.

The Deployment and Configuration specification is
generic. However, an open-source implementation specif-
ically targeting distributed real-time embedded system ex-
ists [9].

4 Overview

Figure 1 depicts the main formalisms and artefacts, from
the perspective of this paper, of the ProCom development
process. We partition the concerns related to deployment
into deployment modelling, addressing how to capture and
represent deployment related design decisions, e.g., how
functionality is distributed over the nodes of the system; and
synthesis, the process of generating concrete runnable rep-
resentations of different modelling elements. In addition to
these, the full process also contains activities related to for
example behavior modelling, early analysis, testing, etc.,
that fall outside the scope of this paper (see [18]).

As shown in the figure, modelling is supported by four

Figure 1. Overview of deployment modelling
formalisms and synthesis artefacts.

distinct but related formalisms. ProSave and ProSys are
used to model the functional architecture of the system un-
der construction, addressing the different concerns that ex-
ist on different levels of granularity in distributed embedded
systems. In short, ProSys models a system as a collection
of active, concurrent subsystems communicating via asyn-
chronous message passing, and ProSave addresses the de-
tailed structure of an individual subsystem, by specifying
how data and control are transferred between passive com-
ponents. Both ProSys and ProSave allow composite com-
ponents, i.e., components that are internally realized by a
collection of interconnected subcomponents. For details on
ProSave and ProSys, including the motivation for separat-
ing the two, see [5, 6, 23].

The overall purpose of the deployment modelling activi-
ties is to capture how functionality, in the form of ProSys
subsystems, is divided between the nodes of the system.
This is performed in two steps, introducing an intermedi-
ate level where ProSys subsystems are allocated to virtual
nodes that, in turn, are allocated to physical nodes. This ap-
proach allows more detailed analysis to be performed with-
out full knowledge of other parts that will share the same
physical node in the final system. A realisation based on
hierarchical scheduling and resource budgets ensures that a
virtual node can be analysed independently from the rest of
the system, also with respect to timing. Section 5 describes
this further.

Note that the modelling activities are seen as indepen-
dent and potentially overlapping, rather than being per-
formed in a particular order. Allocation decisions can be
deferred until a full specification of the functional architec-
ture exists, or modelling the physical platform and identify-
ing virtual nodes can be done before functionality is elab-
orated. In many cases, some parts of the system will be
defined in detail at an early stage, for example subsystems
reused from previous projects, while other parts are elabo-
rated and implemented at a later stage.

The synthesis activities, on the other hand, are performed
in a fixed order since each step requires the results from the



Figure 2. The main deployment modelling concepts and relations.

previous step as input. Still, this does not mean that the
entire system must move to the next phase at the same time.
For example, as soon as runnables have been created for all
ProSys subsystems allocated to a virtual node, that node can
be synthesised regardless of the status of other parts.

5 Deployment modelling

As discussed in the previous section, deployment deci-
sions are captured in two steps where subsystems are allo-
cated to virtual nodes that, in turn, are allocated to the phys-
ical nodes of the system. Figure 2 depicts the key modelling
elements supporting this idea, and how they are related. The
rest of this section provides more detailed information about
the different parts, illustrated by a running example.

Example:

As our example, we consider the turntable drilling system
described by, e.g., Bos and Kleijn [4]. The system consists
of a rotating table that moves products between process-
ing stations where they are drilled and tested. Products are
placed on the table by a load station (not modelled as part
of the system) after which they are moved to the drill sta-
tion by rotating the turntable 90◦. Drilling requires that the
product is securely held in place by a clamp mechanism.
After drilling, the product is moved to a test station where
the depth of the drilled hole is measured. Finally, the unload
station removes the product from the table, provided that it
passed the test. If not, it remains on the table to be drilled
and tested again. The turntable has four slots, each capable
of holding one product, and thus the stations can operate in
parallel so that a second product can be drilled while the
first is being tested, etc.

Figure 3 depicts the ProSys design of the turntable ap-
plication, consisting of four components (called subsystems
in ProSys) and the messages they exchange in order to syn-
chronise their behaviour. The Driller subsystem is compos-
ite, and each of the remaining subsystems in the system, in-
cluding the two in Driller, can be further decomposed into
smaller ProSys subsystems or into entities in ProSave, and

Figure 3. The turntable system modelled in
ProSys.

at the bottom of the hierarchy the primitive ProSave com-
ponents can be given implementations in C.

5.1 Virtual node modelling

As a modelling concept, virtual nodes are not very
rich. Interfaces and interconnections, as well as information
about dependencies on libraries or physical devices, are de-
rived from the subsystems allocated to them. An important
aspect of the virtual nodes, however, are the resource bud-
gets defining a minimum level of resource availability that
will be provided to the contents of the virtual node. These
budgets introduce an important separation of concerns in
the deployment process in that they allow (i) detailed tim-
ing analysis of a virtual node in isolation, independent from
other functionality residing on the same physical node in the
final system; and (ii) the feasibility of a partial allocation to
be determined at an early stage, before all functionality has
been implemented.

The nature of the resource budgets depends on the anal-
ysis that should be supported and the type of resources
the analysis considers. Since we aim for a system realisa-
tion based on hierarchical scheduling [10] and correspond-
ing schedulability analysis techniques, we initially focus on
CPU budgets in a form that is appropriate for this approach.
For each virtual node, a CPU budget is specified as a pair



〈C, T 〉, with the interpretation that during each time period
of length T the virtual node is guaranteed access to the CPU
for at least C time units. The access may, however, be dis-
tributed arbitrarily over the period, and the distribution can
differ from one period to the next. For example, giving a
virtual node a budget of 〈50, 100〉 or 〈250, 500〉 both mean
that it is entitled to half of the CPU bandwidth over time, but
with the second budget it might have to wait much longer
for CPU access in some situations.

In order to handle other resources that are shared be-
tween virtual nodes, such as access to shared memory or
external devices, bounds for access time to each shared re-
source are also required. For information on how these bud-
gets can be used in the schedulability analysis see [3].

5.2 Allocation of subsystems to virtual
nodes

This allocation is a straightforward many-to-one map-
ping from subsystem instances to virtual nodes, but a re-
striction applies in the case of composites subsystems: If
two subsystem instances are related by means of composi-
tion (directly or indirectly through multiple levels of nest-
ing), at most one of them can be allocated. Instead, all con-
stituents of an allocated subsystem, on any level of nesting,
are said to be implicitly allocated to the same virtual node.

The derived interface of a virtual node consists of the
ports of all subsystem instances allocated to it. Implicitly
allocated subsystems do not contribute to the interface, al-
though their functionality will be part of the virtual node
when synthesised.

Dependencies, e.g., to physical devices, are also inher-
ited from the allocated subsystems, but in this case the im-
plicitly allocated constituent subsystems also contribute.

Example:

To illustrate the deployment modelling, we first define four
virtual nodes and allocate the subsystems to them as shown
in Table 1. Subsystems that we know must end up on dif-
ferent physical nodes, such as Turntable and Tester, should
be separated to different virtual nodes. The controller, al-
though not bound to a specific physical node, is put in a
separate virtual node to avoid grouping it with other sub-
systems at this stage.

For Driller, Clamp and Drill there are actually three op-
tions: We can (i) allocate Clamp and Drill to different vir-
tual nodes, which would permit more robust reuse; (ii) place
them in the same node, which increases efficiency and al-
lows for higher precision in the analysis of their interaction;
or (iii) allocate the composite subsystem Driller, which also
enforces the encapsulation so that for example the ports of
the Drill subsystem remain non-accessible also if the virtual
node is reused.

Table 1. Virtual nodes and allocation of sub-
systems.

Virtual node CPU budget Subsystem allocation
VN1 〈125, 500〉 Controller
VN2 〈60, 100〉 Turntable
VN3 〈80, 100〉 Clamp, Drill
VN4 〈60, 100〉 Tester

With the allocation specified in Table 1, the interface of
VN3 consists of three input- and three output ports. If, in-
stead, the composite Driller subsystem was allocated, the
interface would have one input- and one output port.

The budgets should be based on system requirements
and early resource usage estimates, since they influence the
responsiveness of the virtual node. In the turntable sys-
tem, the controller is the least time critical part, and also
less computationally demanding, which is why it is given a
smaller budget with a fairly long period.

5.3 Physical node modelling

This part of the deployment model defines the hardware
nodes of the system and how they are interconnected, cap-
turing all properties of the nodes and networks that are re-
quired by synthesis or analysis, including processor type,
available memory, network type, throughput, etc.

The details of this modelling formalism are currently be-
ing investigated, and it is possible that parts of some exist-
ing approach will be used (e.g., a subset of AADL [11] or
SysML [21]) rather that developing a new formalism. For
the purpose of this paper, we use a simple physical node
model consisting of physical nodes connected by networks.

5.4 Allocation of virtual nodes to physical
nodes

Similarly to the allocation between subsystems and vir-
tual nodes, this is represented by a many-to-one mapping.
In addition, dependencies refering to abstract devices in the
virtual nodes should be associated with concrete devices of
the physical nodes.

Although not covered in Figure 2, the allocation model
should also map the interconnections between virtual nodes
to physical network connections. Depending on the net-
work type, additional specification might be needed. For
example, in the case of a controller area network (CAN bus)
connection, priorities have to be assigned.



Example:

For the allocation to physical nodes, we assume a physi-
cal execution platform consisting of three identical nodes
connected to a common bus. The tree nodes are located
close to the turntable motor, the drill station and the test sta-
tion, respectively. Thus, the allocation of virtual nodes VN2,
VN3 and VN4 is straightforward, while VN1 can be placed
more freely. However, allocating it to the same node as VN3

would result in a CPU overutilisation (105%) and is thus not
permitted. Figure 4 shows one of the possible allocations.

Figure 4. Allocation of virtual nodes to phys-
ical nodes.

6 Runnable Representations

In this section we describe the different artefacts that
constitute runnable representations of ProCom model en-
tities and how these artefacts can be synthesised using
information from the models, and previously synthesised
runnables. We also show which properties can be estab-
lished for each type of artefact by means of analysis and
testing.

6.1 ProSave

A primitive component has one function for each service
it provides. When a service is activated, the corresponding
function is called with the values on the input ports. When
the function returns, the service is completed and returned
values are made available to any components that are con-
nected to the output ports of the service [5].

Composite ProSave components can be automatically
synthesised from their constituents. Conceptually, this syn-
thesis is straightforward; generating the necessary storage
areas for port-data, setting up pointers to those areas to be
passed to the service-functions, and resolving the order in
which to execute services. However, producing a resource-
efficient implementation requires several steps of optimisa-
tion (e.g. detecting the optimal order to execute services,
identifying port-data that can be stored on the stack and
those that need to be statically allocated). Regardless of
the amount of effort put into this synthesis step, the result
is the same simple representation: one C-function for each
service of the component.

6.2 ProSys

ProSys subsystems interact with each other using asyn-
chronous message channels. Subsystems can also react
to internal stimuli from timers and interrupts. A compos-
ite ProSys subsystem contains one or more interconnected
ProSys subsystems, while a primitive ProSys subsystem
typically is made up of a set of ProSave components (see
section 6.5 for other alternatives).

The runnable representation of a ProSys subsystem is a
set of tasks and parameters that reflect their execution re-
quirements and include information such as period, offset,
and deadline. Note however that it is not possible to ver-
ify these requirements in this step, since interference from
other ProSys subsystems cannot be accounted for.

When synthesising a ProSys subsystem from a set of
ProSave components, the main task is to identify how many
tasks are needed and which ProSave components should be
executed in which task. Within a synthesised ProSys sub-
system all communication is statically resolved and not vis-
ible outside of the subsystem. It is the responsibility of the
synthesis tool to ensure data-port integrity by, e.g., inserting
mutex-code before accessing port data, or by scheduling the
execution in such a way that integrity is guaranteed. The
only visible communication is that with the ProSys subsys-
tem’s message ports (which need to be protected by mu-
texes, since it is not known how these ports will be accessed
by the environment).

6.3 Virtual Node

Contrary to the model-concept of a virtual node, the run-
time representation of a virtual node is a rather strong con-
cept. A virtual node represents the functionality of a ProSys
subsystem combined with allocated execution resources2.

The runnable representation of a virtual node includes a
set of tasks, a resource allocation and a real-time scheduler
to be executed within a server in a hierarchical scheduling
framework [10]. The server will execute with a guaranteed
temporal behaviour, using its allocated CPU bandwidth, re-
gardless of any other execution on the physical node. Thus,
once a server has been configured for the virtual node, its
real-time properties will be preserved when the virtual node
is integrated with other virtual nodes on a physical node.
We do not prescribe what type of scheduler a virtual node
should use; it can be any type of scheduler that provides
real-time guarantees.

2Currently, we focus mainly on CPU-bandwidth and memory. How-
ever, in future work other resources, such as energy, could be added.



6.4 Physical Node

The runnable representation of a physical node is the fi-
nal compiled binary that can be downloaded and executed
on the target. The binary contains a set of virtual nodes,
a real-time scheduler, and an implementation of the asyn-
chronous message channels used to send ProSys messages
between virtual nodes. The scheduler is the top level sched-
uler in the hierarchical scheduling framework, and is re-
sponsible for dispatching the servers of each virtual node
according to their bandwidth reservation.

The synthesis of a physical node is conceptually straight-
forward and consists of generating code for inter- and intra-
task communication, and finally compiling and linking the
constituents of the node. However, there is also room
for a final optimization step where the parameters of the
servers may be tweaked to achieve maximum resource uti-
lization [2].

6.5 Legacy Support

In order to gain industrial acceptance, a component tech-
nology needs to enable integration of legacy functionality.
Our approach enables legacy functions to be integrated at
any of the aforementioned abstraction levels. The separa-
tion of model-concepts and runnable representation enable
virtually any legacy function to be integrated in a new sys-
tem.

The appropriate level to integrate a legacy function is
dictated by its runnable representation. The integrator
should choose to introduce the legacy function at the level
with the closest match between the legacy function a Pro-
Com runnable representation. That is, if the legacy function
is a simple procedure with run-to-completion semantics it
should be introduced as a ProSave component, and if it is a
set of tasks it should be introduced as either a ProSys sub-
system or a virtual node. The choice between ProSys or
virtual node depends on the real-time requirements of the
legacy function and how it is expected to interact with other
functions in the system (a relatively independent function,
or a function with tight real-time requirements, could favour
to be introduced as a virtual node).

One strong aspect of our approach is the possibility to
reuse a complete legacy node encapsulated in a virtual node.
Since the top level scheduler does not care about the inter-
nal scheduling of a virtual node a legacy node can have any
operating system and scheduling policy. Thus, if we want
to reuse a legacy node on a new and more powerful plat-
form, where it can coexist with other virtual nodes, we only
need to make sure that it is allocated to a virtual node with
resource budgets that match the original legacy platform.

6.6 Analysis, Testing and Validation

Our approach allows different types of analysis, testing
and validation on different levels. The analysis results of
one level are used as input to the next level. Thus, analysis
results for a component can be reused when a component is
reused in new context.

ProSave components can be unit-tested and their func-
tional mapping of input-data to output-data can be verified.
Analysis on ProSave components should include worst-
case execution time (WCET) and memory-usage (worst-
case stack usage and code-size are possible to determine at
this point).

ProSys subsystems can be unit-tested and the integra-
tion of their contained ProSave components can be veri-
fied. Using models of the ProSys environment some run-
time properties, such as proper sequencing of signals, can
be tested. However, the detailed timing of signals cannot be
verified at this point. Since the ProSys subsystem encapsu-
lates internal communication between ProSave components
it is possible to determine the memory need for commu-
nication buffers for such internal communication for each
ProSys subsystem. Also, since the sequencing of ProSave
components is known at this level, the WCET and maxi-
mum stack-usage for each task can be determined.

Since the functionality of a virtual node is just the sum of
the subsystems allocated to it, no further functional testing
is needed at this level. However, at this level we can deter-
mine the real-time behaviour of the virtual node. Thus, we
can now perform real-time analysis and testing of real-time
properties. Real-time analysis for a virtual node should use
techniques suitable for the real-time scheduler chosen for
the virtual node and which are suitable for analysing hierar-
chically scheduled systems; for fixed-priority and deadline-
scheduling, techniques such as [8, 24] can be used. Once
the physical node is completed, final integration testing is
possible. Analysis at this level is quite trivial; both for CPU-
bandwidth and memory it is a matter of adding allocated re-
sources for each virtual node (and the small overhead of the
top-level scheduler and message passing system) and verify
that the bandwidth and memory of the physical node are not
depleted.

7 Conclusion

We have presented an approach to incrementally synthe-
sise runnable representations of model entities on various
levels of abstraction and granularity. The purpose of our
approach is to combine the bottom-up process of assem-
bling, testing and analysing systems from existing compo-
nents (CBSE), and the process of gradually refining abstract
models into concrete models from which the final system
can be synthesised (MDE).



The approach proposed in this paper addresses key re-
quirements on a technology and process for industrial de-
velopment of embedded systems. Maintenance, extendibil-
ity, testing and reuse is supported by encapsulating run-time
artefacts into reusable entities which can be reused with-
out renewed testing of the entity. Analyzability of models
is provided by the ProCom component technology, and the
encapsulation of run-time entities allows reuse of the anal-
ysis results for those entities during maintenance and up-
grades. The notion of virtual nodes introduces an interme-
diate level between functional units and the physical nodes
of the system, with entities for which real-time properties
are preserved across reuse and integration in different con-
texts.

We have implemented the analysis and run-time tech-
niques used in this paper, and the synthesis tool-chain is
under development (currently synthesis of ProSave compo-
nents and ProSys subsystems exists at prototype stage). Our
ongoing work is to complete the synthesis tool-chain and
integrate it with the analysis techniques in the ProCom In-
tegrated Development Environment (PRIDE)3.

References

[1] AUTOSAR. http://www.autosar.org/, accessed
March 2010.

[2] M. Behnam, T. Nolte, M. Sjödin, and I. Shin. Overrun meth-
ods and resource holding times for hierarchical scheduling
of semi-independent real-time systems. IEEE Trans. on In-
dustrial Informatics, 6(1), 2010.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: A
synchronization protocol for hierarchical resource sharing
in real-time open systems. In Proc. of International Con-
ference on Embedded Software (EMSOFT’07), 2007.

[4] V. Bos and J. J. T. Kleijn. Automatic verification of a manu-
facturing system. Robotics and Computer-Integrated Man-
ufacturing, 17(3):185–198, 2001.

[5] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and A. Vul-
garakis. ProCom – the Progress Component Model Refer-
ence Manual, version 1.0. Technical Report MDH-MRTC-
230/2008-1-SE, Mälardalen University, June 2008.

[6] T. Bureš, J. Carlson, S. Sentilles, and A. Vulgarakis. A Com-
ponent Model Family for Vehicular Embedded Systems. In
The 3rd International Conference on Software Engineering
Advances. IEEE, October 2008.

[7] I. Crnković and M. Larsson. Building Reliable Component-
Based Software Systems. Artech House, Inc., 2002.

[8] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. In ”Proc. of IEEE Real-Time Systems
Symposium”, 2005.

[9] G. Deng. Deployment and configuration of component-
based distributed, real-time and embedded systems. PhD
thesis, Vanderbilt University, 2007.

3PRIDE web page: www.idt.mdh.se/pride

[10] Z. Deng and J. W.-S. Liu. Scheduling real-time applications
in an open environment. In ”Proc. of IEEE Real-Time Sys-
tems Symposium”, December 1997.

[11] P. Feiler, B. Lewis, and S. Vestal. The SAE Architecture
Analysis & Design Language (AADL): A Standard for En-
gineering Performance Critical Systems. In IEEE Conf. on
Computer Aided Control Systems Design, 2006.

[12] T. R. Halfhill. Embedded Markets Breaks New Ground. Mi-
croprocessor Report, (17), January 2000.

[13] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg,
J. Lundbäck, and K.-L. Lundbäck. The Rubus Component
Model for Resource Constrained Real-Time Systems. In 3rd
Int. Symposium on Industrial Embedded Systems, 2008.

[14] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the
prototype to the final embedded system using the Ocarina
AADL tool suite. ACM Transactions in Embedded Comput-
ing Systems, 7(4):1–25, 2008.

[15] IEC 61508 – Functional safety of electrical/electronic/ pro-
grammable electronic safety-related systems.

[16] ISO/DIS 26262 – Road vehicles - Functional safety.
[17] X. Ke, K. Sierszecki, and C. Angelov. COMDES-II: A

component-based framework for generative development of
distributed real-time control systems. In Proc. of the 13th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’07),
pages 199–208. IEEE Computer Society, 2007.

[18] R. Land, J. Carlson, S. Larsson, and I. Crnković. Towards
guidelines for a development process for component-based
embedded systems. In Proceedings of the International
Conference on Computational Science and Its Applications
(ICCSA’09), pages 43–58. Springer-Verlag, 2009.

[19] A. Möller, J. Fröberg, and M. Nolin. Industrial Require-
ments on Component Technologies for Embedded Systems.
In 7th International Symposium on Component-based Soft-
ware Engineering (CBSE’04). IEEE, 2004.

[20] OMG. Deployment and Configuration of Component-based
Distributed Applications, v4.0, 2006.

[21] OMG. SysML Version 1.1, 2008.
[22] B. Selic. Model-driven development: Its essence and

opportunities. In Proceedings of the Ninth IEEE Inter-
national Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pages 313–319.
IEEE Computer Society, 2006.

[23] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković. A Component Model for Control-Intensive
Distributed Embedded Systems. In 11th International Sym-
posium on Component Based Software Engineering, pages
310–317. Springer Berlin, October 2008.

[24] I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. In ”Proc. of IEEE Real-Time
Systems Symposium”, 2003.

[25] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley Longman Publish-
ing, 2002.

[26] R. van Ommering. Building product populations with soft-
ware components. In Proceedings of the 24th International
Conference on Software Engineering (ICSE ’02), pages
255–265, New York, NY, USA, 2002. ACM.

[27] P. Vitharana. Risks and challenges of component-based soft-
ware development. Commun. ACM, 46(8):67–72, 2003.


