Comparison of Priority Queue algorithms for Hierarchical
Scheduling Framework

Mikael Asberg mag04002@student.mdh.se

August 28, 2008

The Time Event Queue (TEQ) is a datastructure
that is part of the implementation of a Hierarhcial
Scheduling Framework (HSF) [1]. It’s main func-
tion is to store future task scheduling events (rep-
resented as absolute time values) in a sorted man-
ner, thus, it implements a Priority Queue (PQ).
A PQ is a queue with elements that are sorted by
their priority [3]. The two main operations on a
PQ is insert and delete-min. The first mentioned
operation will insert an item based on its prior-
ity. The second operation will extract an item with
highest (or lowest) priority.

As of now, the PQ structure is implemented as a
sorted linked list with o median pointer and where
binary search is used for insertions.

The efficiency of the current implementation is
not up to standard so there is a requirement that
the current implementation should be replaced or
optimized. An investigation should be made so
that other PQ implementations are considered that
are well suited for hard real-time systems.

When choosing a suited PQ for the hard real-time
scheduler HSF, considerations such as a low num-
ber of queue items in combination with good worst
case performance is of importance.

This paper will motivate and choose a group of
suited PQ algorithms and present empirical tests
of each of these algorithms. Based on these re-
sults and our requirements, one algorithm will be
chosen to be integrated with the HSF.

Related work

In [2] the authors compare suitable PQ algorithms
which support both sequential and parallel access.
Comparisons are based on the empirical tests
of these algorithms. The tests are performed
by measuring the amount of time to remove
the highest priority item and insert it (with a
new priority) into the queue (hold operation).
Hold operations are performed with different
queue sizes and with different element priority
increment distributions (bias). The distribution
increment will affect the new location (in the
queue) when inserting items. For simplicity, we
are only interested in three of these distributions:

e Biased, FIFO-like distribution where most
elements are inserted in the end part of the queue.

e Bimodal, LIFO-like distribution where most
elements are inserted in the head part of the
queue.

e Exponential, this distribution tends to in-
sert most elements in the middle part of the
queue.

The following facts can be obtained from
this paper [2]:

e Best algorithm with biased distribution and
element size 1-1000 is Splay tree, SPEEDESQ and
Henriksens (Linked list with median pointer is
fastest when element size is around 100 elements
and below).

e DBest algorithm with bimodal distribution
and element size 1-1000 is Splay tree (though
in general it is good no matter which distribution).

e Best algorithm with exponential distribu-
tion and element size 1-1000 is Splay tree or
Calendar queue (quite even but Splay tree is
better when element size is around 100 elements
and below).

PQ algorithm

Most ef fective (bias)

Most ef fective (# items)

Comment

Binary heap even - Even curve (O(log(n)))
Linked list Biased 1-100 Good biased curve (1-600)
Skew heap even - | Better than Binary heap (O(log(n)))
Splay tree even (Biased) - | Outperforms Binary and Skew heap

Calendar queue even (except Camel) - Best performance (flat curve)
Lazy queue even (except Camel) - Near Calendar performance
Henriksens even (Biased) 1-1000 | Near Calendar performance (1-1000)

Skip lists Exponential - Uneven bias distributions
SPEEDESQ even (Biased) 1-100 | Even bias, good performance (1-100)

Table 1: Properties of PQ algorithms

e Best algorithm for biased, bimodal and
exponential distribution and element size 1-1000
is Splay tree, Calendar queue and Henriksen.
Calendar might be slightly worse than the other
two.

The paper [2] also show that Skew heap and
Splay tree have very good worst case performance
with element sizes ranging up to 1000 and where
exponential distribution is used. Binary heap has
slightly worse performance but it has a worst
case performance of O(log(n)) for individual
operations (queue insert and remove). Authors
conclude that Binary heap is the best choice for
hard real-time applications.

The authors conclude that SPEEDESQ and
Linked list with median pointer are good choices
when elements are less than 50.

The strong algorithms that performed best
with the bimodal distribution are Calendar
queue, Splay tree and Skew heap, where Splay
tree is slightly better than the other two.

The conclusion from [2] is that Linked list
with median pointer is the best alternative for
biased distribution if we assume that task sets
range from 1 to about 100 tasks.

Splay tree is the best choice considering bimodal,

exponential and all three distributions together.
Finally, because Binary heap show good adap-
tation to hard real-time applications, this
implementation is a good choice.

Table 1 presents properties of the algorithms
analyzed in [2] which are interesting considering
the TEQ implementation for HSF.

In [3] the author present and compares different
sequential algorithms that are suited for discrete
event simulations.

Some interesting facts concering the TEQ is
that Binary heap, Leftist tree and Binomial queue
have worst case O(log(n)) for single operations.
A notation is that Binary heap are among the
worst implementations when number of elements
are less than 20.

The following facts can be obtained from this

paper [3]:

e DBest algorithm with biased distribution
and element size 1-1000 is Splay tree, which is
marginally better than Henriksens.

e Best algorithm with bimodal distribution
and element size 1-1000 is Splay tree, followed by
Skew heap.

e Best algorithm with exponential distribu-
tion and element size 1-1000 is Splay tree.

PQ algorithm

Most ef fective (Bias)

Most ef fective (# items)

Comment

Linked list Bimodal 1-10 Best alg. in all bias (1-10)
Binary heap even - Even cons. bias and # items
Leftist trees even (Bimodal) - Worse than Binary heap
Two list Bimodal 1-200 | Among the best impl. (1-200)
Henriksens Biased 1-100 | Worst case is near Binary heap
Binomial queue even - | Most complex and effec. impl.
Pagodas even - Near Binomial performance

Skew heap even - Near Binomial performance

Splay tree even (Biased) - | Better biased than Henriksens

Pairing heaps

even (Biased)

Among best biased distr.

Table 2: Properties of P(Q) algorithms

e Best algorithm for biased, bimodal and
exponential distribution and element size 1-1000
is Splay tree followed by Pagodas and Skew heap.

The conclusion from [3] is that Splay tree is
the best choice no matter which element dis-
tribution and when element size is below 1000.
Considering the best worst case implementations,
Leftist tree, Binary heap and Binomial queue are
the only implementations that have a O(log(n))
bound for single operations. The most effective of
these are Binary heap and Binomial queue while
Binomial is the best. An important notation
is that the code complexity is much higher for
Binomial queue than Implicit heap.

Finally, a last comment concerning [3] is that the
bimodal distribution in [3] is more bimodal (lower
bias value) than the corresponding distribution
in [2]. The first mentioned paper has a bias
value of 0.13, the second has 0.34 for bimodal
distribution. This is why the bimodal distribution
for Linked list in [3] is very effective compared
with the other paper ([2]). The Linked list in [3]
does not use a median pointer which makes the
implementation less memory consuming but the
biased distribution is thereby ineffective.

Table 2 shows an overview of the algorithms

presented in [3].

In [4] the author show that Binary heap is
the most effective algorithm for bimodal and
exponential distributions and second best after
Henriksens in biased distribution when element
size is 10.

[5] compares four algorithms for discrete event
simulation. Their tests show that the Post-order
tree is effective when element size rang to up to
200 items.

In [6], Henriksens algorithm has the best result
for biased, bimodal and exponential distribution.

Chosen algorithms

Based on the results from the papers [2] and [3],
the Splay tree show great efficiency for all three
distributions (biased, bimodal and exponential)
when element size range up to 500-1000 elements.
This is why we have chosen this algorithm for our
own testcases.

The most efficient algorithms that have a bounded
worst case time for single operations are Binary
heap and Binomial queue [3]. Since the HSF
is meant the schedule hard tasks, worst case
bounded algorithms are of great interest.

Finally, [2], [3] conclude that Linked list with

median pointer has good performance when
element size is below 50 and that it actually is
the best algorithm when the size of the queue is
around 10. It is not rare that tasks-sets might be
around 100 tasks, this is why the Linked list is
chosen for our tests.

Our chosen algorithms will be tested together
with the original TEQ implementation.

The following algorithms will be tested and
compared:

e Splay tree

e Binary heap

e Binomial queue

e Linkes list with median pointer
e TEQ

Splay tree [8] is implemented as top-down.
The Binomial queue [§] insert function is not
optimized for O(1) amortized performance. The
Binary heap [7] implementation stores the binary
heap in a one dimensional array. The TEQ
[1] implementation is implemented as a double
linked list and uses binary search for insertions.
Linked list with median pointer is implemented
with three pointers (front, middle and back) and
insertions can be made from the head, end and
middle of the queue.

Results

The time measurements were made on a ABB
robotics controller equipped with VxWorks 5.2
operating system and a pentium pro 200 Mhz
CPU.

During the measurements, the test-code executed
in a task with the highest system priority and all
system interrupts were disabled.

The code section that was to be measured
included a removal of the highest priority node,
updating its value and insertion of the node (with
new value) in the queue.

Time measurements were made with a high reso-
lution hardware timer with 12 000 000 ticks/sec.

The timer was read in the beginning and end
of the code section trough a memory mapped
address. Each measurement was subtracted
with 1499 hardware ticks (approximately 12,5
microseconds) in order to remove measurement
overhead. This value was obtained by measuring
1000000 timer read, and then dividing this value
with 1000000.

Updating a node involves calculating a new value
(priority) for that node, the newly calculated
value is then added with the previous value of
the node. The calculation of a new value is
dependant on which priority distribution that is
used. Biased, bimodal and exponential distribu-
tion have different calculations. The calculation
algorithms for these three distributions are taken
from [3], where each algorithm is shown with its
corresponding bias value.

10000 measurements were made for each queue
size, involving an amount of two times the queue
size 'warm up’ hold operations before each main
measurement.

All implementations were optimzed so that no
memory allocation operation was performed
during the hold operations.

Time measurements of the algorithms corre-
sponds quite well to previous studies [2, 3|, with
the exception that Binomial queue and Splay tree
are inefficient (especially Binomial queue). The
only explanation for this behaviour is that our
implementation might not be as efficient as in
previous papers.

Figure 1-3 show that Binary heap has the lowest
max values and that the priority distribution
does not affect the measurement values. This
algorithm has been favoured as one of the best
worst case algorithms for individual operations,
and well suited for hard-real time systems. The
test results do not contradict these facts.

Figure 4-6 display the minimum values. Linked
list with median pointer has the best results,
especially with biased distribution.

Finally, a comment on the diagrams in Figure 7-9.
Linked list with median pointer has best result in
biased and exponential distribution no matter the

queue size, and with bimodal distribution when
queue size is 1-300. The diagram data can also
be viewed in table form Table 3-5.

Conclusion

Based on these empirical tests, Binary heap and
Linked list with median pointer are interest-
ing candidates. The first mentioned algorithm
has slightly worse median performance, but it is
more reliable considering that it has better worst
case performance. In hard real-time systems,
best worst case performance is of interest, while
soft real-time systems prefer good median perfor-
mance. The conclusion is that Binary heap is best
suited for the HSF, while Linked list with median
pointer belongs in a soft real-time system.

120

100

, —binomial queue

— linked list
50 —+/— binary heap
) “ splay tree
40 / —TEQ

Hold operation (us)

10 50 100 150 200 250 300 350 400 450 500
Queue size

5 _—

= —binomial queue
5 — linked list

E binary heap

g —splay tree

o —TEQ

o

o

T

10 50 100 150 200 250 300 350 400 450 500

Queue size

5 -

- —binomial queue
5 — linked list

E binary heap

8 —splay tree

o —TEQ

o

[

T

10 50 100 150 200 250 300 350 400 450 500
Queue size

Figure 1-3: Biased, bimodal and exponential distribution with maz values

35
30

25
—binomial queue

20 — linked list
binary heap
15 —splay tree
—TEQ

10

Hold operation (us)

10 50 100 150 200 250 300 350 400 450 500

Queue size

35

30
’(7; 25
35 . .
- —binomial queue
S 2 — linked list
‘é binary heap
g 15 —splay tree
o —TEQ
E 10
0
T R —

5

0

10 50 100 150 200 250 300 350 400 450 500
Queue size

40

35
~—~ 30
(9]
3 . .
— —binomial queue
5 — linked list
T 2 binary heap
P
[—splay tree
Q 15 play
9 —TEQ
ke
6 10
0 - S —

10 50 100 150 200 250 300 350 400 450 500
Queue size

Figure 4-6: Biased, bimodal and exponential distribution with min values

40

T

’(IT 30
3 . .
- —binomial queue
6 — linked list
E 20 binary heap
o —splay tree
o —TEQ
ke
5}
T

0

10 50 100 150 200 250 300 350 400 450 500
Queue size

45

40

3 ¥/~_—/—/
—
5
= % — binomial queue
5 — linked list
E binary heap

20
g —splay tree
O 15 —TEQ
ke
5}
T

0

10 50 100 150 200 250 300 350 400 450 500
Queue size

45

40 \JJN

35
5
= % —binomial queue
C . .
0 — linked list
© binary heap
20
8 —splay tree
o —TEQ
ke
5}
T

10 50 100 150 200 250 300 350 400 450 500
Queue size

Figure 7-9: Biased, bimodal and exponential distribution with median values

10

PQ algorithm | q:10 | ¢:50 | ¢:100 | q:150 | ¢:200 | g:250 | ¢:300 | q:350 | q:400 | q:450 | q: 500

Linked list 4.4 4.4 4.4 4,7 4,7 4,8 438 4,9 5,0 5,2 5,3

Binary heap 6,1 6,8 7,0 7,2 7,3 7,3 7,3 7.4 7,5 7,4 7,5

Splay tree 8,0 8,3 8,4 8,5 8,6 8,7 8,8 8,8 8,8 8,9 8,9

TEQ 5,4 6,3 7,0 7,5 8,3 8,8 9,8 10,4 11,2 12,6 14,3

Binomial queue | 34,9 | 33,5 34,7 35,6 35,8 36,2 37,2 37,5 37,3 37,2 38,0
Table 3: Test results (median) with biased distribution and different queue sizes

PQ algorithm | q:10 | ¢:50 | ¢:100 | q:150 | ¢:200 | q:250 | ¢:300 | q:350 | q:400 | q:450 | q: 500

Linked list 4,6 5,0 5,3 5,5 5,9 6,5 6,9 7,5 8,5 9,3 9,8

Binary heap 6,4 6,8 7,2 7,3 7,3 7.4 7,5 7,5 7,5 7,5 7,6

Splay tree 8,0 8,6 8,8 9,0 9,1 9,2 9,3 9,3 9,4 9,5 9,5

TEQ 5,4 6,3 7,2 7.7 8,3 8,9 9,7 10,3 11,1 12,1 13,5

Binomial queue | 39,2 | 34,8 34,8 36,0 36,3 36,4 37,5 37,6 37,6 37,5 38,2
Table 4: Test results (median) with bimodal distribution and different queue sizes

PQ algorithm | q:10 | ¢:50 | ¢:100 | q:150 | q:200 | q:250 | ¢:300 | q:350 | q:400 | q:450 | q: 500

Linked list 5,8 6,1 6,3 6,4 6,5 6,8 7,4 7,5 8,3 8,9 9,6

Binary heap 7.8 85 9,0 9,3 94 94 9,5 9,7 9,7 9,7 9,6

Splay tree 9,5 10,0 10,8 11,0 11,3 11,4 11,5 11,7 11,7 11,8 11,8

TEQ 6,7 7,5 8,4 8,9 9,7 10,3 10,9 11,8 12,6 13,9 16,0

Binomial queue | 39,9 | 35,9 35,8 36,5 36,8 36,7 37,9 37,6 38,3 37,6 38,5

Table 5: Test results (median) with exponential distribution and different queue sizes

Bibliography

[1] M. Behnam T. Nolte I. Shin M. Asberg, R. [8] M. A. Weiss Source Code for Data
Bril Towards Hierarchical Scheduling on top Structures and Algorithm Analysis in C
of VxWorks In Proceedings of the 4th Inter- <http://www.cs.fiu.edu/ weiss/dsaa_ c2e/files.html>,
national Workshop Operating System Plat- 15 Aug 2008.

forms for Embedded Real-Time Applications
(OSPERT"08), 2008.

[2] R. Ronngren R. Ayani A Comparative Study
of Parallel and Sequential Priority Queue Al-
gorithms, ACM Transactions on Modeling
and Computer Simulation (Vol. 7, No. 2, p.
157-209): New york, 1997.

[3] D. W. Jones An empirical comparison of
priority-queue and event-set implementa-
tions, Communications of the ACM (Vol. 29,
Issue 4, p. 300-311): New york, 1986.

[4] M. Marin An empirical comparison of prior-
ity queue algorithms, Programming research

group, Computing laboratory, University of
Oxford.

[5] J. G. Vaucher P. Duval A comparison of
stmulation event list algorithms, Communi-
cations of the ACM (Vol. 18, Issue 4, p. 223-
230): New york, 1975.

[6] W. M. McCormack R. G. Sargent Analy-
sis of future event set algorithms for dis-
crete event simulation, Communications of
the ACM (Vol. 24, Issue 12, p. 801-812): New
york, 1981.

[7] S. Saunders Binary Heap Implementation
<http:/ /www.cosc.canterbury.ac.nz/tad.takaoka/alg /heaps/bheap.c>,
15 Aug 2008.

11

