
Faculty of Information and Communications Technologies

An Evaluation of the Architecture
Analysis and Design Language for
Automobile Applications

Technical Report: C4-01 TR M52

Stefan Björnander, Mälardalen University, Sweden
Lars Grunske, Swinburne University of Technology, Australia
March 2, 2009

An Evaluation of the Architecture Analysis and

Design Language for Automobile Applications

Stefan Björnander1,2 and Lars Grunske2

1School of IDE, Mälardalen University, Box 883, 72123 Väster̊as, Sweden,
Phone: +46 21 101 689, stefan.bjornander@mdh.se

2Faculty of ICT, Swinburne University of Technology Hawthorn,
VIC 3122, Australia, Phone: +61 3 9214 5397, lgrunske@swin.edu.au

March 2, 2009

Abstract

Due to the growing complexity of software systems in modern automo-
biles, the software architecture design phase becomes more and more
important. Useful tools and languages are specifically needed to man-
age this complexity. Recently, the Architecture Analysis and Design
Language (AADL) has been proposed as a modeling language for crit-
ical systems and this language is becoming increasingly popular in the
automobile industry. In order to test whether AADL is suitable for
modeling software in automobile systems, we provide in this technical
report a critical evaluation of the capabilities and features of this new
language. Specifically, we evaluate AADL against a set of requirements
that have been identified based on an exhaustive literature review and
experiences gained from modeling an Adaptive Cruise Control (ACC)
in AADL. The objective of this paper is to evaluate the suitability of
AADL and identify gaps that would require future research and devel-
opment.

Keywords: AADL.

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 2
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Contents

1 Introduction 4

2 Requirements on an Architecture Description Language for
Automobile Systems 5
2.1 Language Related Requirements 5
2.2 Method Related Requirements 7
2.3 Tool Related Requirements 9

3 Evaluation of the AADL Modeling Language 10
3.1 Language Related Requirements 10
3.2 Method Related Requirements 10
3.3 Tool Related Requirements 14

4 Conclusions 14

References 15

A Code Listings and Examples 17

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 3
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

1 Introduction

As software systems in modern automobiles become increasingly complex, it
is important to appropriately structure the software to ease its development.
In the eighties, when the automobiles originally become equipped with soft-
ware, it was divide into modules and hence relatively easy to install even
thought the modules were developed by different manufactures.

Today, however, a automobile can hold two thousand functions, fifty con-
trollers, and ten million lines of source code [10]. Moreover, in many cases
different systems need to communicate with each other through buses. Of-
ten the communication is delegated to only a few buses.

A useful tool to manage the complexity is the Architecture Design Lan-
guages (ADLs). They allow the developer to model the system at a high
level. In this way, potential design errors will hopefully be detected before
the implementation phase.

One of the most popular ADLs in the industry is the Architecture Analysis
and Design Language (AADL) [9], which supports the modeling of system
hardware and software. It is based on MetaH [21] and UML 2.0 [1, 17, 18].
AADL was originally developed for the avionic industry, but has later on
been adapted by the automobile industry.

In order to evaluate AADL’s suitability to model an automobile system, we
have defined a set of requirements based on a literature review on software
development methods for automobile systems. Furthermore, requirements
are derived from experiences gained from modeling an Adaptive Cruise Con-
troller (ACC) [4]. The ACC is a part of an automobile which purpose is to
control the vehicle speed with regards to the surrounding environment. The
requirements are grouped into three categories: language support, tool sup-
port and process support.

The objective of this paper is to evaluate AADL against the set of require-
ments. The rest of this technical report is structured as follows: Section 2
describes the requirements for an architecture description language for auto-
mobile systems and Section 3 evaluates AADL against these requirements. If
AADL fulfills a requirement, evidence is provided that shows the fulfillment.
Section 4 draws some conclusions and describes some future works.

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 4
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

2 Requirements on an Architecture Description
Language for Automobile Systems

To analyze the suitability of AADL in the automobile domain, we have
assembled a set of specific requirements for that domain. The basis for the
requirements was a comprehensive literature review focussed on software
engineering research for automobile systems and the experience we have
gained from modeling example systems such as an adaptive cruise control
system with AADL. The requirements will be grouped into the following
three categories: Language support, Tool support and Process support. The
main requirements in these categories will be labeled with Req-Lx, Req-
Tx, and Req-Px, where L, T, and P indicate the categories and x is a
running number. Furthermore, each of these main requirements may be
associated with one or more sub-requirements. The sub-requirements will
be abbreviated with the labels Req-Lx.y, Req-Tx.y, and Req-Px.y, where
L, T, and P indicates the categories and x and y are running numbers.
Some requirements may fit into multiple categories; in that case, multiple
labels will also be associated with the requirement. Furthermore, to ensure
traceability we will for each of the requirements indicate the source. This
will make the process of analyzing AADL with these requirements more
transparent.

2.1 Language Related Requirements

The language-related requirements for an architecture description language
in the automobile domain are mostly associated with specific required no-
tations and diagram types:

Req-L1. An architecture description language for automobile systems
should be able to specify the functionality required by the user in the
Functional Design/Analysis Architecture (FAA/FDA) [2].

Req-L2. An architecture description language for automobile systems
should be able to specify the environment in which the system operates
in the Operational Architecture (OA) [2].

Req-L3. An architecture description language for automobile systems
should be able to specify the high level structure of the system in
the Logical Architecture (LA) [2], or Logical Component Architecture
(LCA) [5]. The logical architecture is also specified in a Structure
Diagram [2].

Req-L4. An architecture description language for automobile systems
should be able to specify the hardware platform that is used to exe-
cute the software in the Technical/Hardware Architecture (T/HA) [2],
Hardware Architecture (HA) [5] or Platform Architecture [16].

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 5
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Req-L5. An architecture description language for automobile systems
should be able to specify the software structure in the Software Archi-
tecture (SA) [5, 16].

Req-L6. An architecture description language for automobile systems
should be able to specify the deployments structure that maps soft-
ware elements that are part of the software architecture to hardware
elements that are part of the hardware architecture in the Deployment
Architecture (DA) [5, 16].

Req-L7. An architecture description language for automobile systems
should be able to specify the intra-component behavior (interactions
between components), e.g in a Dataflow Diagram [2].

Req-L8. An architecture description language for automobile systems
should be able to specify the component behavior, e.g with a State
Chart (SC) [14] or a Mode and State Transition Diagram (MSTD) [2].

For the Functional Design/Analysis Architecture (FAA/FDA) (Req-L1) the
following sub-requirements are further relevant:

Req-L1.1. An architecture description language for automobile sys-
tems should be able to specify requirements in a structured way, e.g.
with a Functional Requirements Specification Architecture [5].

Req-L1.2. An architecture description language for automobile sys-
tems should be able to specify interaction and interdependencies be-
tween requirements [5].

For the Hardware Architecture (HA) (Req-L4) and Software Architecture
(SA) (Req-L5) the following sub-requirements are further relevant:

Req-L4.1 and Req-L5.1. An architecture description language for
automobile systems should be able to specify middleware and operat-
ing systems [16].

Req-L5.2. An architecture description language for automobile sys-
tems should be able to specify a Software Architecture that defines
software elements as software tasks [5].

Req-L5.3. An architecture description language for automobile sys-
tems should be able to specify a Software Architecture that distin-
guishes class versus instance concepts [16].

Req-L5.4. An architecture description language for automobile sys-
tems should be able to specify a Software Architecture that is able to
define type hierarchies [16].

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 6
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

For the specification of the intra-component behavior (Req-L7) and compo-
nent behavior (Req-L8), the following sub-requirements are relevant:

Req-L7.1 and Req-L8.1. An architecture description language for
automobile systems should be able to specify not only state changes
but also changes in different operational modes [2].

Req-L7.2 and Req-L8.2. An architecture description language for
automobile systems should be based on a sound communication scheme
(well defined semantics) [2]. Examples of these communication schemes
are time triggered architectures or event triggered architectures [2,16].

2.2 Method Related Requirements

The development of automobile systems requires specific methods to be
used in the development process. Specifically mentioned are the follow-
ing methods that are either required by law or certification authorities or
desirable to save development costs: consistency checking between different
diagram types [2], model-based development [10], tracing (e.g. requirements
tracing) [10], modular construction and verification [5, 6], product line en-
gineering [5] and variability management [16], cost estimation [10], change
management [10], architecture evaluation [10], quality assurance and quality
management [10], supplier management [5], and software acquisition man-
agement [10]. Consequently, for the method support of an architecture de-
scription language for automobile systems, we would define the following
requirements:

Req-M1 and Req-T5. An architecture description language for au-
tomobile systems should provide support for checking consistency be-
tween architectural views and diagram types [2].

Req-M2. An architecture description language for automobile sys-
tems should provide support for model-based development [10].

Req-M3. An architecture description language for automobile sys-
tems should provide support for tracing including requirements trac-
ing and tracing to documents in later phases like implementation and
test [10].

Req-M4. An architecture description language for automobile sys-
tems should provide support for modular construction of the systems
and modular verification [5, 6].

Req-M5. An architecture description language for automobile sys-
tems should provide support for product line engineering [5] and vari-
ability managements [16] since each car is adapted to the specific needs
of the customer.

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 7
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Req-M6. An architecture description language for automobile sys-
tems should provide support for cost estimation [10].

Req-M7. An architecture description language for automobile sys-
tems should provide support for change management [10]. Reasons
for changes are among others: requirements changes, changes in the
legal environment or changes in the business environment.

Req-M8. An architecture description language for automobile sys-
tems should provide process support for evaluating the quality of the
software architecture and the system to be build [10]. This process is
also known as quality assurance and quality management [10].

Req-M9. An architecture description language for automobile sys-
tems should provide support for supplier management [5] and software
acquisition management [10].

The quality assurance at the architectural level may include several different
aspects [11]. Based on our experience and the literature review, the following
sub-requirements are the most important ones of the automobile industry:

Req-M8.1. An architecture description language for automobile sys-
tems should provide a process support for evaluating the quality of the
software architecture with respect to the system and function reliabil-
ity [5, 10].

Req-M8.2. An architecture description language for automobile sys-
tems should provide a process support for evaluating the quality of the
software architecture with respect to the system safety [5,10] to avoid
fatal car accidents.

Req-M8.3. An architecture description language for automobile sys-
tems should provide a process support for evaluating the quality of the
software architecture with respect to real-time properties [5, 16].

Req-M8.4. An architecture description language for automobile sys-
tems should provide a process support for evaluating the quality of the
software architecture with respect to reusability and portability [5] of
the implemented software.

Req-M8.5. An architecture description language for automobile sys-
tems should provide a process support for identifying harmful feature
interactions [5].

With respect to the supplier management and software acquisition man-
agement (Req-M9): the architecture description language should be able to

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 8
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

define clear requirements and clear component interfaces for the subcontrac-
tors and component/software suppliers [5]. As a result, the following two
sub-requirements have to be considered:

Req-M9.1. An architecture description language for automobile sys-
tems should provide process support within the supplier management
and software acquisition management to create clear and precise re-
quirements for components to be developed outside the companies
development project [5].

Req-M9.2. An architecture description language for automobile sys-
tems should provide process support within the supplier management
and software acquisition management to create clear and precise in-
terfaces for components to be developed outside the companies devel-
opment project [5].

2.3 Tool Related Requirements

Due to the complexity of automobile software, tools are really important in
the automobile industry. Over the years, several tools have become de-facto
standards in the development of automobile software. These tools include
Telelogic/IBM DOORS for requirements management and Matlab Simulink
and Mathworks State Flow for designing the system. An architecture de-
scriptions language for automobile systems should be able to interface with
these legacy tools and consequently the following requirements are added
for the tool support:

Req-T1. A tool that is associated with an architecture description
language for automobile systems should provide an upward interface
to the requirement management tools (e.g. Telelogic/IBM DOORS)
that are used to model software for automobile systems [10].

Req-T2. A tool that is associated with an architecture description
language for automobile systems should provide a downward interface
to the design tools (Matlab Simulink and Mathworks State Flow) that
are used to model software for automobile systems [2, 16].

The tool that is used for modeling and specifying software for an automobile
system in the architecture description language should furthermore fulfill the
following requirements:

Req-T3. A tool that is associated with an architecture description
language for automobile systems should provide an easy-to-use graph-
ical user interface for the graphical representation of the models [16].

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 9
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Req-T4. A tool that is associated with an architecture description
language for automobile systems should be extendable and tolerable
to provide support for additional feature that are required by the com-
pany that uses this tool [16].

Req-T5. A tool that is associated with an architecture description
language for automobile systems should be able to automate certain
task that are required be the associated methods [16]. The relevant
tasks are defined in the requirements Req-M1-9.

3 Evaluation of the AADL Modeling Language

In this section, to the best of our knowledge, we evaluate AADL against the
requirements of Section 2.

3.1 Language Related Requirements

The fulfillment of the language related requirements of Section 2.1 are indi-
cated in Table 1.

Req-L3, Req-L4, and Req-L6. AADL supports components, ports,
channels (called connections in AADL), bus systems, sensors, and ac-
tuators as first class modeling concepts. The AADL sample model in
Listing 1 is part of an Adaptive Cruise Controller originally developed
in [4]. It specifies hardware and software, defines connections between
ports, and deploys a process onto an processor.

Req-L5. AADL supports declaration and implementation of compo-
nent types as well as component hierarchies. See Listing 2 for an
example that defines scheduling protocols of the process ConsolePro-
cessor and also defines the declaration and implementation of the Pro-
ductionCell system component. Moreover, it does also specify that
ProductionCell inherits from the Base component. The components
are parts of a Production Cell system originally defined in [3].

Req-L7 and Req-L8. AADL with its behavior annex, supports the
definition of component behavior by defining an abstract state machine
that communicates with the surrounding system through ports. See
Listing 3 for an example.

3.2 Method Related Requirements

The fulfillment of the language related requirements of Section 2.2 are indi-
cated in Table 2.

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 10
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Table 1: The AADL Support for the Language Related Requirements.

Requirement Supported
Req-L1 No, functional design, analysis architecture, and

operational architecture were not intended to be included
in AADL, see [9].

Req-L1.1 - L1.2
Req-L2
Req-L3 Yes, AADL supports the Logical Structure of the specifica-

tion, such as:
Req-L3.1 - 3.3 Networks of components, Ports, Channels (Connections).
Req-L3.4 - 3.5 Bus Systems, Sensors and Actuators.
Req-L3.6 Interfaces between subsystems and devices.

Req-L4 Yes, AADL supports the specification of hardware and
software structure of the specification as well as its
deployment architecture, such as:Req-L5

Req-L5.1 Scheduling of Components.
Req-L5.2 Component Type and Implementation.
Req-L5.3 Component Hierarchies.

Req-L6 Yes, AADL supports deployment between hardware and
software components.

Req-L7 Yes, AADL supports the specification of logical data flows,
execution in different modes, and event triggered
architecture. However, time triggered architecture is not
supported.

Req-L7.1 - L7.2
Req-L8

Req-L8.1 - L8.2

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 11
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Table 2: The AADL Support for the Method Related Requirements.

Requirement Supported
Req-M1 Yes, the Eclipse plug-in OSATE supports consistency checks

between architectural views and diagrams.
Req-M2 No, model-based development (such as source code genera-

tion) is currently not fully supported by AADL.
Req-M3 No, requirement tracing is currently not supported by

AADL.
Req-M4 Yes, modular construction is supported. However, modular

verification is not supported.
Req-M5 Yes, product line engineering and variability management is

supported by software modes.
Req-M6 No, cost estimation is currently not fully supported by

AADL. Only basic examples are provided in models that
are associated with the tools OSATE [7].

Req-M7 No, change management is currently not supported by
AADL.

Req-M8 Yes, the quality of the software can be evaluated with the
Error Annex.Req-M8.1 - L8.2

Req-M8.3 Yes, the Eclipse plug-in OSATE provides the possibility to
perform scheduling analysis.

Req-M8.4 No, evaluation of the quality with respect to reusability and
portability is currently not supported by AADL.

Req-M8.5 No, process support for identifying harmful feature interac-
tion is currently not supported by AADL.

Req-M9 Yes, the creation of component interfaces is supported by
AADL. However, supplier management software
acquisition is not supported.

Req-M9.1 - M9.2

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 12
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Figure 1: The OSATE Graphical Environment (Req-M1 and Req-T3).

Req-M1. In the Eclipse plug-in OSATE, it is possible to support
consistency checks between architectural views and diagrams [7]. See
Figure 1.

Req-M4. Modular construction is supported in AADL [9]. See List-
ing 2. However, modular verification is not supported.

Req-M5. Product line engineering and variability management is sup-
ported by AADL. See Listing 4 for an example that defines the sub-
components and the connections between the components, based on
the component modes. Furthermore, [20] describes an approach to
generate fault trees for product lines based on an AADL product line
model.

Req-M8. The AADL Error Annex [8] is an extension to AADL with
which the quality (probabilistic quality attributes [12]) of the software
can be evaluated. Listing 5 shows an example of an abstract state
machine modeling the console of an instrument panel. To analyze an
AADL error model there are currently two approaches available. The
first approach automatically translates an error model into a standard
fault tree [15]. The second approach generates Generalized Stochastic

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 13
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Table 3: The AADL Support for the Tool Related Requirements.

Requirement Supported
Req-T1 No, currently there is no upward interface to model software

requirement management tools.
Req-T2 No, currently there is no downward interface to design tools.
Req-T3 Yes, the Eclipse plug-in OSATE provides a graphical user

interface for AADL.
Req-T4 Yes, the Eclipse plug-in OSATE provides a Java class library

for developing plug-ins.
Req-T5 No, automatic code generation is currently not supported

by AADL. However, automatic fault tree generation and
evaluation model (GSPNs) generation is currently supported
for the error annex, see [15] and [19].

Petri Nets (GSPNs) from error model specifications and uses existing
GSPN tools for quantitative analysis [19].

Req-M9. The creation of component interfaces is supported by AADL.
However, supplier management software acquisition is not supported.

3.3 Tool Related Requirements

The fulfillment of the language related requirements of Section 2.3 are indi-
cated in Table 3.

Req-T3. The Eclipse plug-in OSATE (please see Figure 1) provide
a rich set of functions, among them a graphical editor for graphical
development.

Req-T4. Eclipse provides a class library to extend the environment
with graphical textures. The Eclipse plug-in OSATE further extends
the library with AADL specific classes. See Listing 6.

Req-T5. Automatic fault tree generation and GSPN generation is
currently supported for the Error Annex, see [15] and [19].

4 Conclusions

The evaluation has provided evidence that AADL indeed is a language suit-
able for modeling software in automobile systems. It supports the archi-
tecture modeling at the right level of abstraction. The language is well

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 14
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

designed and contains all relevant aspects. Especially, the tool provides a
good capability for graphical modeling and allows to evaluate the created
models.

For future work, better support for modeling functional architectures
and upward tracing to requirements management tools like Telelogic/IBM
DOORS and downward tracing to low-level design tools like Matlab Simulink
and Mathworks State Flow would be important. Furthermore, the method-
ological support could be improved.

References

[1] J. Arlow and I. Neustadt. UML 2 and the Unified Process: Practi-
cal Object-Oriented Analysis and Design. Addison-Wesley Professional,
second edition edition, 2005.

[2] A. Bauer, M. Broy, J. Romberg, B. Schätz, P. Braun, U. Freund,
N. Mata, R. Sandner, and D. Ziegenbein. AutoMoDe notations, meth-
ods, and tools for model-based development of automotive software.
Technical Report 2005-01-1281, Institut für Informatik, Technische Uni-
versität München, 2005.

[3] S. Björnander, L. Grunsk, and K. Lundqvist. Timed Simulation of Ex-
tended AADL-Based Architecture Specifications with Timed Abstract
State Machines. Submitted Draft, 2009.

[4] S. Björnander and L. Grunske. Modeling an Adaptive Cruise Controller
in the Architecture Analysis and Design Language: A Case Study.
Technical Report C4-01 TR M51, Faculty of Information and Commu-
nications Technologies, Swinburne University of Technology, Hawthorn,
VIC 3122, Australia, 2008.

[5] M. Broy. Automotive software and systems engineering. In MEM-
OCODE ’05: Proceedings of the 2nd ACM/IEEE International Con-
ference on Formal Methods and Models for Co-Design, pages 143–149,
Washington, DC, USA, 2005. IEEE Computer Society.

[6] M. Broy. Challenges in automotive software engineering. In ICSE ’06:
Proceedings of the 28th international conference on Software engineer-
ing, pages 33–42, New York, NY, USA, 2006. ACM.

[7] P. Feiler and A. Greenhouse. Plug-in Development
for the Open Source AADL Tool Environment. Avail-
able from http://la.sei.cmu.edu/aadlinfosite/OSATEPlug-
inDevelopmentPresentationSerie.html#Topic19, 2005.

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 15
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

[8] P. Feiler and A. Rugina. Dependability modeling with the architecture
analysis and design language (AADL). Technical Report CMU/SEI-
2007-TN-043, Carnegie Mellon University, 2007.

[9] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture Analysis
and Design Language (AADL): An Introduction. Technical Report
CMU/SEI-2006-TN-011, Society of Automotive Engineers, 2006.

[10] K. Grimm. Software technology in an automotive company: major
challenges. In Proceedings of the 25th International Conference on Soft-
ware Engineering (ICSE-03), pages 498–505, Piscataway, NJ, May 3–10
2003. IEEE Computer Society.

[11] L. Grunske. Early quality prediction of component-based systems - A
generic framework. Journal of Systems and Software, 80(5):678–686,
2007.

[12] L. Grunske. Specification patterns for probabilistic quality properties.
In Robby, editor, 30th International Conference on Software Engineer-
ing (ICSE 2008), Leipzig, Germany, May 10-18, 2008, pages 31–40.
ACM, 2008.

[13] L. Grunske and J. Han. A Comparative Study into Architecture-Based
Safety Evaluation Methodologies Using AADL’s Error Annex and Fail-
ure Propagation Models. In 11th IEEE High Assurance Systems Engi-
neering Symposium, HASE 2008, pages 283–292. IEEE Computer So-
ciety, 2008.

[14] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci-
ence of Computer Programming, 1987.

[15] A. Joshi, S. Vestal, and P. Binns. Automatic Generation of Static
Fault Trees from AADL Models. In DSN Workshop on Architecting
Dependable Systems, Lecture Notes in Computer Science, page to ap-
pear. Springer, 2007.

[16] H. Lönn, T. Saxena, M. Nolin, and M. Törngren. FAR EAST: mod-
eling an automotive software architecture using the EAST ADL. In
ICSE 2004 workshop on Software Engineering for Automotive Systems
(SEAS). IEE, May 2004.

[17] R. Miles and K. Hamilton. Learning UML 2.0. O’Reilly Media, 2006.

[18] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. O’Reilly Media,
second edition edition, 2005.

[19] A.-E. Rugina, K. Kanoun, and M. Kaâniche. A System Dependabil-
ity Modeling Framework Using AADL and GSPNs. In Architecting

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 16
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Dependable Systems IV, volume 4615 of LNCS, pages 14–38. Springer,
2007.

[20] H. Sun, M. Hauptman, and R. R. Lutz. Integrating Product-Line
Fault Tree Analysis into AADL Models. In Tenth IEEE Int. Symp.
on High Assurance Systems Engineering (HASE 2007), pages 15–22.
IEEE Computer Society, 2007.

[21] S. Vestal. Formal verification of the metaH executive using linear hybrid
automata. In Proceedings of the Sixth IEEE Real-Time Technology
and Applications Symposium (RTAS ’00), pages 134–144, Washington
- Brussels - Tokyo, June 2000. IEEE.

A Code Listings and Examples

The code listing are extract of three case studies: an steam boiler system [13],
a adaptive cruise controller [4] and a industrial production cell [3]. To get
an overview of these case studies we refer to the original literature [3,4,13].

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 17
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Listing 1 Hardware Communication and Deployment (Req-L3, Req-L4, and
Req-L6).

−− Req−L4 . S p e c i f i c a t i o n o f the Hardware .
processor Cont ro l l e rP ro c e s s o r

features
−− Req L3 . 4 . The memory i s connected to the bus .
memoryBus : requires bus access MemoryBus ;

end Cont ro l l e rP ro c e s s o r ;

−− Req L3 . 5 . The dev i ce e s t a b l i s h a way to
−− communicate with the surrounding environment .
device PanelDevice

features
−− Req−L3 . 2 . These por t s are used to communication
−− with other components .
outToggle : out event port ;

end PanelDevice ;

system implementation ConsoleSystem . impl
subcomponents
−− Req−M4. Modular Construct ion .
−− Req−L3 . 1 . These subcomponents are forms
−− a network o f communicating components .
con so l eProce s s : process Conso leProcess . impl ;
c on so l eProc e s s o r : processor Conso leProcessor . impl ;
panelDevice : device PanelDevice ;

connections
−− Req−L3 .3 and Req−L3 . 6 . These connect ions (a l s o known as
−− channels) e s t a b l i s h communications between components and
−− between dev i c e s and components .
event port panelDevice . outToggle −> outToggle ;
data port conso l eProce s s . outSpeed −> outData ;
event port panelDevice . outPlus −> conso l eProce s s . inPlus ;
event port panelDevice . outMinus −> conso l eProce s s . inMinus ;

properties
−− Req−L . 6 . The process (so f tware) i s
−− connected to the processor (hardware) .
Actua l Proce s so r B ind ing => reference c on s o l e p r o c e s s o r

applies to conso l eProce s s ;
end ConsoleSystem . impl ;

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 18
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Listing 2 Software Structure (Req-L5 and Req-M4).

−− Req−L5 . S p e c i f i c a t i o n o f the Software .
−− Req−L5 . 1 . S p e c i f i c a t i o n o f the schedu l ing
−− p ro t o co l s .
processor implementation
Conso leProcessor . impl

properties
Schedu l ing Protoco l => (RMS, EDF, Sporad i c se rve r , S lackServer , ARINC653) ;

end Conso leProcessor . impl ;

−− Req−L5 .2 and Req−M4. Component type .
system Base

features
InBlockReady : out event port ;
OutBlockLoaded : out event port ;

end Base ;

−− Req−L5 . 3 . Extension render i t p o s s i b l e
−− to e s t a b l i s h component h i e r a r c h i e s .
system Product ionCe l l extends Base
end Product ionCe l l ;

−− Req−L5 .2 and Req−M4. Implementation o f component type .
system implementation
Product ionCe l l . impl

subcomponents
Loader : system RobotArm ;
FeedBelt : system ConveyorBelt ;

end Product ionCe l l . impl ;

Listing 3 Behavior Annex (Req-L7 and Req-L8).

−− Req−L8 . The annex de f i n e s the component
−− behav ior as an ab s t r a c t s t a t e machine .
−− Req−L7 . The a b s t r a c t s t a t e machine
−− communicates with the surrounding system by
−− sending and r e c e i v i n g data thought por t s .
system ConveyorBelt extends Base

annex ConveyorBelt
{∗∗

states
BeltEmpty : i n i t i a l state ;
BlockAtBeginning , BlockAtEnd : state ;

transitions
BeltEmpty −[InBlockLoaded?]−> BlockAtBeginning ;
BlockAtBeginning −[OutBlockReady?]−> BlockAtEnd

{ InBlockPicked ! ; OutBlockLoaded ! ; }
BlockAtEnd −[OutBlockPicked?]−> BeltEmpty { InBlockReady ! ; }

∗∗} ;
end ConveyorBelt ;

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 19
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Listing 4 Software Modes (Req-M5 and Req-M9).

−− Req−M5 and Req−M9. Product Line Engineering
−− and Va r i a b i l i t y Management are supported by
−− Software Modes .
process Cont ro l l e rP ro c e s s . impl

subcomponents
radarSampleThread : thread RadarSampleThread in modes

(RADAR UP CONSOLE UP, RADAR UP CONSOLE DOWN) ;
connections

data port inRadarData −> radarSampleThread . inData in modes
(RADAR UP CONSOLE UP, RADAR UP CONSOLE DOWN) ;

modes
RADAR UP CONSOLE UP: i n i t i a l mode ;
RADAR UP CONSOLE DOWN: mode ;
RADAR DOWN CONSOLE UP: mode ;
RADARDOWNCONSOLEDOWN: mode ;

end Cont ro l l e rP ro c e s s . impl ;

Listing 5 Error Annex (Req-M8).

process Conso leProcess
features

inPlus : in event port ;
inMinus : in event port ;
outSpeed : out data port AccTypes : : Stream ;

−− Req−M8. The AADL Error Annex i s an ex tens ion to AADL with
−− which the q u a l i t y o f the so f tware can be enhanced .
annex e r r o r s p e c i f i c a t i o n
{∗∗

error model ConsoleError
features

Ok: i n i t i a l error state ;
PanelDown , DisplayDown , PanelDisplayDown : error state ;
Pane lFai lure , D i sp l ayFa i lu r e : error event ;

end ConsoleError ;

error model implementation ConsoleError . impl
transitions

Ok−[Pane lFa i lu re]−>PanelDown ;
DisplayDown−[Pane lFa i lu re]−>PanelDisplayDown ;
Ok−[D i sp l ayFa i lu r e]−>DisplayDown ;
PanelDown−[D i sp l ayFa i lu r e]−>PanelDisplayDown ;

properties
Occurance => fixed 0 .01 applies to Pane lFa i lu re ;
Occurance => fixed 0 .1 applies to Disp layFa i lu r e ;

end ConsoleError . impl ;
∗∗} ;

end Conso leProcess ;

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 20
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

Listing 6 OSATE Plug-In (Req-T4).

import java . u t i l . ∗ ; import
edu . cmu . s e i . o sa te . u i . a c t i on s . ∗ ;

public f i n a l c l a s s Plugin extends AaxlReadOnlyActionAsJob
{

public void doAaxlAction (IProgressMonitor monitor , AObject aRoot)
{

CMap componentMap = new OrderedMap () ;
I t e r a t o r i t e r a t o r = aRoot . getChi ldren () . i t e r a t o r () ;

whi l e (i t e r a t o r . hasNext ())
{

AObject aObject = (AObject) i t e r a t o r . next () ;

i f (aObject i n s t an c e o f ComponentType)
{

ComponentType componentType = (ComponentType) aObject ;
S t r ing parentName = componentType . getExtendedQualif iedName () ;

CSet subcomponentSet = new OrderedSet () ;
CSet connect ionSet = new OrderedSet () ;
CMap annexMap = new OrderedMap () ;

t r a v e r s e (componentType . getChi ldren () . i t e r a t o r () ,
subcomponentSet , connect ionSet , nu l l , nu l l , annexMap) ;

Component component = new Component (subcomponentSet ,
connect ionSet , inPortSet , nu l l , nu l l) ;

componentMap . put (componentType . getName () , component) ;
}

}
}

}

An Evaluation of the
Architecture Analysis and Design Language for Automobile Applications
Page 21
Prepared by: Stefan Björnander, Lars Grunske
March 2, 2009

