
A resource-efficient event algebra

Jan Carlson and Björn Lisper

School of Innovation, Design and Engineering
Mälardalen University, Väster̊as, Sweden
{jan.carlson, bjorn.lisper}@mdh.se

Abstract

Events play many roles in computer systems, ranging from hardware interrupts, over
event-based software architecture, to monitoring and managing of complex systems.
In many applications, however, individual event occurrences are not the main point
of concern, but rather the occurrences of certain event patterns. Such event patterns
can be defined by means of an event algebra, i.e., expressions representing the
patterns of interest are built from simple events and operators such as disjunction,
sequence, etc.

We propose a novel event algebra with intuitive operators (a claim which is sup-
ported by a number of algebraic properties). We also present an efficient detection
algorithm that correctly detects any expression with bounded memory, which makes
this algebra particularly suitable for resource-constrained applications such as em-
bedded systems.

Key words: Event detection, event notification, embedded systems

The final version of this article is: doi:10.1016/j.scico.2010.06.010

1 Introduction

The notion of events can appear in many different contexts in a computer
system, often representing significant occurrences in the system environment,
but also as a means of internal communication. For example, embedded sys-
tems are typically designed to react either to events generated by external
sensors, or by periodically occurring timer events [1]. This event-driven execu-
tion model is also found in other types of applications, for example graphical
user interfaces and web server programs.

On a higher level, large complex systems can be designed according to an
event-based architectural style, where the communication between different

Preprint submitted to Elsevier Science 22 June 2010

parts of the system is based on a publish/subscribe interaction paradigm [2].
Event consumers express an interest in certain events by registering a sub-
scription with an intermediary event manager. When an event is published, it
is matched against the current subscriptions and relayed to the appropriate
consumers.

For distributed systems, and in particular those consisting of heterogeneous
subsystems (written in different programming languages, running on differ-
ent hardware, etc.), the communication functionality can be structured as
a separate middleware layer between the operating system and the applica-
tions [3], to hide low-level details related to distribution and the underlying
operating system and hardware. Event-based middleware, e.g., Hermes [4] and
READY [5], provide a uniform high-level interface of event related services,
which allows seamless event handling also between heterogeneous subsystems.

On an even higher level, event handling is useful when managing, monitoring or
exploring complex systems, including large software systems or networks but
also real-world systems like stock markets or news report services. Here, a main
concern is dealing effectively with very large volumes of event occurrences, and
to filter out only those that are of interest in a particular situation. Examples of
work in this category include monitoring of real-time systems [6], supervision
of telecommunication networks [7] and air traffic control [8].

1.1 Event patterns and event algebras

In many applications, individual event occurrences are not the main point of
concern, but rather the occurrences of certain event patterns. To support this,
an event framework can provide means to specify event patterns, and allow
these patterns to be used by the application in the same way as ordinary
events. This means that the details of pattern detection are moved from the
application to the event framework. For example, a subsystem might subscribe
to the pattern “A and B occur within 2 seconds”, instead of subscribing to A
and B, and perform the detection of the desired situation internally.

Event patterns can be defined in many ways, e.g., in some temporal or modal
logic, by finite state machines, or as ordinary program code. Some techniques
have high expressiveness, allowing a wide range of patterns to be defined.
Other methods can only express a limited set of patterns, but instead provide
very efficient detection of the patterns within this set.

Naturally, the nature of a certain domain determines how the tradeoff be-
tween expressiveness and efficiency should be chosen. We have focused on
resource-constrained applications, such as embedded systems, where low and
predictable resource usage is vital. Furthermore, we consider applications

2

where usability and simplicity is favoured over high expressiveness.

When patterns grow in complexity, a compositional method is favourable,
where complex patterns can be constructed by composing smaller patterns.
One type of technique that achieves this is event algebras, where an event
pattern is defined by an expression built recursively from atomic events and
algebra operators. This approach is commonly used in languages for active
databases, such as Snoop [9,10], Ode [11] and SAMOS [12,13], but also in
some general, high-level event notification systems [14].

Common to many event specification methods is that they consider event
pattern occurrences to be instantaneous, i.e., each occurrence is associated
with a single time instant, normally the time at which it can be detected. As
shown by Galton and Augusto [15], this results in unintended semantics for
some operator combinations. As an example, consider the sequence operator,
with the intuitive interpretation of A;B being “A occurs and then B occurs”.
With single point semantics, an occurrence of A followed by B and then C,
is accepted as an occurrence of the composite event B;(A;C), since B occurs
before the occurrence of A;C. Consequently, B;(A;C) has exactly the same
meaning as A;(B;C), which does not match the intuitive meaning of sequential
composition.

As a solution to this problem, Galton and Augusto propose that occurrences
are associated with intervals rather than single time points, following the prac-
tice of knowledge representation techniques such as Event Calculus [16] and
Interval Calculus [17]. Although this allows for a more intuitive operator se-
mantics, it is not clear how this property can be preserved if we also impose
significant resource constraints.

We propose an event algebra with a semantics based on time intervals, and
show that it complies with algebraic laws that intuitively ought to hold for the
algebra operators. To achieve resource efficiency, we define the semantics in
two steps: a simple but inefficient operator semantics, and a formal restriction
policy that specifies a subset of the simple semantics that should be detected.
This allows any event expression to be correctly detected with bounded mem-
ory, while at the same time retaining the desired properties of the algebra
operators. For an extended version of this paper, addressing also for example
its impact on real-time schedulability analysis, see [18,19].

The paper is organised as follows: The event algebra is defined in Section 2,
and Section 3 presents a number of important algebraic properties. In Section 4
we present an imperative detection algorithm, and prove that it is consistent
with the algebra semantics. The algorithm is also analysed with respect to
time and memory complexity. Section 5 surveys related work, and Section 6
concludes the paper.

3

2 The Algebra

For simplicity, we assume a discrete time model and thus let the temporal
domain (denoted T) be the set of natural numbers. The declarative semantics
of the algebra can be used with a dense time model as well, under restric-
tions that prevent primitive events that occur infinitely many times in a finite
time interval. The simple event types from which more complex patterns are
constructed, are represented by a finite set P of identifiers.

Definition 1 If A ∈ P, then A is a primitive event expression. If A and B
are event expressions (primitive or composite), and τ ∈ T , then A∨B, A+B,
A−B, A;B and Aτ are composite event expressions.

Informally, a disjunction A∨B represents that either of A and B occurs. A
conjunction means that both events have occurred, in any order and possibly
not simultaneously, and is denoted A+B. The negation, denoted A−B, occurs
when there is an occurrence of A during which there is no occurrence of B. A
sequence A;B is an occurrence of A followed by an occurrence of B. Finally,
there is a temporal restriction Aτ which occurs when there is an occurrence of
A shorter than τ time units.

Example 2 As a running example, we consider a system with a button B,
a pressure alarm P and a temperature alarm T, where some action should be
performed when the button is pressed twice within two seconds, unless either
of the alarms occurs in between. For this system we have P = {B,P,T}, and
the described situation can be defined by the expression (B;B)2−(P∨T) in the
algebra.

Occurrences are represented by event instances. Since the information asso-
ciated with an occurrence varies between different applications, we define an
underlying abstract framework rather than providing a concrete representa-
tion. Primitive event occurrences are instantaneous and atomic, but composite
occurrences are associated with time intervals rather than single time points.
This is necessary to achieve some of the desired algebraic properties. The in-
terval of an event instance e is captured by the functions start(e) and end(e),
where end(e) corresponds to the time of occurrence, and the full interval from
start(e) to end(e) represents the smallest interval containing everything that
caused the occurrence. The framework also contains an operator ⊕ by which
composite instances can be constructed. E.g., each instance of A;B will be
constructed from one instance of A and one instance of B.

Definition 3 An instance framework consists of:

• a domain D of event instances;
• a commutative and associative constructor function ⊕ : D ×D → D;

4

• a function start : D → T such that start(e ⊕ e′) = min(start(e), start(e′))
for any e, e′ ∈ D; and

• a function end : D → T such that end(e ⊕ e′) = max(end(e), end(e′)) for
any e, e′ ∈ D.

Example 4 For systems where no additional information is associated with
event occurrences, event instances can simply be represented as start and end
time tuples. This would correspond to an instance framework where:

• D = {〈τs , τe〉 | τs , τe ∈ T };
• 〈τs , τe〉 ⊕ 〈τ ′s , τ ′e〉 = 〈min(τs , τ

′
s),max(τe , τ

′
e)〉;

• start(〈τs , τe〉) = τs ; and
• end(〈τs , τe〉) = τe .

Example 5 In some applications it is useful to tag each occurrence with ad-
ditional information, e.g., to be used in the responding action. For A ∈ P, we
let dom(A) denote the domain of values associated with occurrences of A, and
define the following instance framework:

• D is the powerset of {〈p, υ, τ〉 | p ∈ P , υ ∈ dom(p), τ ∈ T };
• e⊕ e′ = e ∪ e′;
• start(e) = min({τ | 〈p, υ, τ〉 ∈ e}); and
• end(e) = max({τ | 〈p, υ, τ〉 ∈ e}).

In our example system, the temperature alarm occurrences might carry the
measured temperature value, while the pressure alarm is less sensitive and
only indicates whether the pressure is too high or too low. The button instances
carry no additional information, which is represented by a dummy value ⊥ in
the framework. This corresponds to dom(T) = R, dom(P) = {high, low} and
dom(B) = {⊥}. Then {〈T, 38.5, 6〉}, {〈P, low, 4〉} and {〈P, low, 4〉, 〈B,⊥, 6〉}
are three examples of event instances in this framework.

For some applications, it might be more convenient to use a construction op-
erator that does not satisfy the commutativity and associativity requirements.
Most results in this article hold for such frameworks as well (see Remark 26
on page 12).

Together, all occurrences of a certain event (primitive or composite) form an
event stream. We require that primitive event occurrences are instantaneous,
and that the occurrences of each primitive event are separated in time, al-
though two different primitive events can occur simultaneously.

Definition 6 An event stream is a set of event instances. A primitive event
stream is an event stream S for which the following holds:

1. ∀e (e ∈ S ⇒ start(e) = end(e))

5

2. ∀e ∀e′ (e ∈ S ∧ e′ ∈ S ∧ end(e) = end(e′) ⇒ e = e′)

An interpretation represents a particular scenario, as it captures one of the
possible ways in which the primitive events can occur.

Definition 7 An interpretation is a function I mapping each identifier in P
to a primitive event stream.

Example 8 Using the framework from Example 4, the following interpreta-
tion corresponds to a particular scenario with two occurrences of T and one
occurrence each of P and B:

I(B) = {〈6, 6〉} I(P) = {〈4, 4〉} I(T) = {〈1, 1〉, 〈6, 6〉}

In the more detailed framework of Example 5, the same scenario might be
represented as

I(B) = {{〈B,⊥, 6〉}}
I(P) = {{〈P, low, 4〉}}
I(T) = {{〈T, 38.2, 1〉}, {〈T, 38.5, 6〉}}

The naming convention is to use S, T and U for event streams, and A, B
and C for event expressions. Lower case letters are used for event instances.
In general, we use s for instances of an event stream S, and a for instances of
the event stream defined by an event expression A, etc.

2.1 Semantics

The following functions over event streams form the core of the algebra se-
mantics, as they define the basic functionality of the five operators.

Definition 9 For event streams S and T , and for τ ∈ T , define:

dis(S, T) = S ∪ T
con(S, T) = {s⊕ t | s ∈ S ∧ t ∈ T}
neg(S, T) = {s | s ∈ S ∧ ¬∃t(t ∈ T ∧ start(s) ≤ start(t) ∧ end(t) ≤ end(s))}
seq(S, T) = {s⊕ t | s ∈ S ∧ t ∈ T ∧ end(s) < start(t)}
tim(S, τ) = {s | s ∈ S ∧ end(s)− start(s) ≤ τ}

The semantics of the algebra is defined by recursively applying the correspond-
ing function for each operator in the expression.

6

Definition 10 The meaning of an event expression for a given interpretation
I is defined as follows:

[[A]]I = I(A) if A ∈ P
[[A∨B]]I = dis([[A]]I , [[B]]I)

[[A+B]]I = con([[A]]I , [[B]]I)

[[A−B]]I = neg([[A]]I , [[B]]I)

[[A;B]]I = seq([[A]]I , [[B]]I)

[[Aτ]]
I = tim([[A]]I , τ)

To simplify the presentation, we will use the notation [[A]] instead of [[A]]I

when the choice of I is obvious or arbitrary.

Example 11 Let I be the interpretation defined in Example 8. This scenario
gives the following result, for the simple framework and for the framework with
values, from Examples 4 and 5, respectively:

Simple framework Framework with values

[[B∨P]]I={〈4, 4〉, [[B∨P]]I={{〈P, low, 4〉},
〈6, 6〉} {〈B,⊥, 6〉}}

[[P+T]]I={〈1, 4〉, [[P+T]]I={{〈P, low, 4〉, 〈T, 38.2, 1〉},
〈4, 6〉} {〈P, low, 4〉, 〈T, 38.5, 6〉}}

[[T;B]]I={〈1, 6〉} [[T;B]]I={{〈T, 38.2, 1〉, 〈B,⊥, 6〉}}
[[(P+T)−B]]I={〈1, 4〉} [[(P+T)−B]]I={{〈P, low, 4〉, 〈T, 38.2, 1〉}}

[[(P+T)2]]I={〈4, 6〉} [[(P+T)2]]I={{〈P, low, 4〉, 〈T, 38.5, 6〉}}

Figure 1 presents this scenario graphically.

Time: 0 1 2 3 4 5 6 . . .

Primitives: T P TB

B∨P

P+T

T;B

(P+T)−B

(P+T)2

Fig. 1. Graphical representation of Example 11.

These definitions result in an algebra with simple semantics and intuitive al-
gebraic properties, but which cannot be implemented efficiently. In particular,

7

sequence and conjunction result in many simultaneous occurrences, and de-
tecting all of them correctly requires that all occurrences of some constituent
events are stored throughout the system lifetime.

Example 12 Figure 2 shows the detection of the expression T+P. Whenever
there is an occurrence of T it should be combined with all previous occurrences
of P to create instances of T+P, and vice versa. Thus, each occurrence of T
and P must be stored for future use.

Time: 0 1 2 3 4 5 6 . . .

Primitives: T T P P T

T+P

Fig. 2. Detection of T+P.

To deal with resource limitations, we introduce a formal restriction policy
that defines a subset of instances that must be detected. The basic idea is to
ignore simultaneous occurrences, while at the same time retaining the desired
properties of the semantics.

The restriction policy is defined as a binary relation rem over event streams,
where rem(S, S ′) means that S ′ is a valid restriction of S. Alternatively, it can
be seen as a non-deterministic restriction function, or a family of acceptable
restriction functions. Rather than computing [[A]] for a given event expression
A, an implementation of the algebra should compute an event stream S ′ for
which rem([[A]], S ′) holds.

Definition 13 For two event streams, S and S ′, rem(S, S ′) holds if the fol-
lowing conditions hold:

1. S ′ ⊆ S
2. ∀s (s ∈ S ⇒ ∃s′(s′ ∈ S ′ ∧ start(s) ≤ start(s′) ∧ end(s) = end(s′)))
3. ∀s′1, s′2 ((s′1 ∈ S ′ ∧ s′2 ∈ S ′ ∧ end(s′1) = end(s′2)) ⇒ s′1 = s′2)

Example 14 Figure 3 shows the detected instances of (T+P);B in a particular
scenario, and two valid restrictions S ′1 and S ′2, (i.e., both rem([[(T+P);B]], S ′1)
and rem([[(T+P);B]], S ′2) hold). To see this, consider first the two instances
with end time 4. The third criterion in the definition of rem demands that
only one of them is included in the restricted stream. The first and second
criteria states that one of them must be included, and that we must in fact
select the one that starts at time 2. In the same way, from the three instances
with end time 6 we must include exactly one in the restricted stream, and it
must be one of the two with start time 2. The choice between them, however,

8

is arbitrary, and thus there are two valid restrictions, S ′1 and S ′2.

Time: 0 1 2 3 4 5 6 . . .

Primitives: P T P B P B

(T+P);B

S ′1

S ′2

Fig. 3. Detection of (T+P);B, and the two valid restrictions S′1 and S′2.

For the user of the algebra, a significant property of this policy is that at any
time when there are one or more occurrences of A according to the seman-
tics defined above, one of them will be detected (as ensured by the second
criterion).

The fact that it is always an instance with maximum start time that is de-
tected is probably less significant to the user. However, this choice is crucial to
achieve the desired efficiency since it allows the restriction policy to be applied
recursively to all subexpressions, without affecting the overall result.

Applying restriction at all levels of nesting would normally require a user of the
algebra to understand how the restrictions of different subexpressions interfere
with each other, and their effect on different operator combinations. To avoid
this, the restriction policy has been designed in such a way that applying it to
all subexpressions gives a result which is consistent with applying it only at
the top level. This property is formalised by Theorem 15 below. As a result,
from the point of view of a user, the restriction policy is applied only once
to the whole expression, but an implementation can freely apply it to the
subexpressions as well.

Theorem 15 If rem(S, S ′) and rem(T, T ′) hold, than for any event stream U
and τ ∈ T the following implications hold:

• rem(dis(S ′, T ′), U) ⇒ rem(dis(S, T), U)
• rem(con(S ′, T ′), U) ⇒ rem(con(S, T), U)
• rem(neg(S ′, T ′), U) ⇒ rem(neg(S, T), U)
• rem(seq(S ′, T ′), U) ⇒ rem(seq(S, T), U)
• rem(tim(S ′, τ), U) ⇒ rem(tim(S, τ), U)

9

PROOF. The proof can be found in Appendix A. 2

Although a single stream may have several valid restrictions, they all share an
important characteristic: They are equivalent with respect to instance start
and end times.

Proposition 16 If rem(S, T) and rem(S, T ′) then for each t ∈ T there exists
a t′ ∈ T ′ with start(t) = start(t′) and end(t) = end(t′).

PROOF. Since T ⊆ S, t∈S. By the second condition in the definition of rem,
there exists some t′ ∈ T ′ such that start(t)≤start(t′) and end(t)=end(t′). We
also have t′ ∈ S, and thus there is some t′′ ∈ T such that start(t′)≤ start(t′′)
and end(t′)=end(t′′). According to the third condition in the definition of rem
this implies t= t′′, which means that we have start(t)≤start(t′)≤start(t) and
thus start(t′)=start(t). 2

3 Properties

To aid a user of this algebra, we present a selection of algebraic laws. These
laws facilitate formal and informal reasoning about the algebra and a system in
which it is embedded, and show to what extent the operators behave according
to intuition. For this, we first define expression equivalence.

Definition 17 For event expressions A and B we define A ≡ B to hold if
[[A]]I = [[B]]I for any interpretation I.

Trivially, ≡ is an equivalence relation. Moreover, the following proposition
shows that it satisfies the substitutive condition, and hence defines structural
congruence over event expressions.

Proposition 18 If A ≡ A′, B ≡ B′ and τ ∈ T , then we have A∨B ≡ A′∨B′,
A+B ≡ A′+B′, A;B ≡ A′;B′, A−B ≡ A′−B′ and Aτ ≡ A′τ .

PROOF. This follows directly from Definition 10. 2

The laws presented later in this section identify expressions that are semanti-
cally equivalent with respect to the operator semantics, but in order to deal
with resource limitations, we expect an implementation of the algebra to com-
pute an event stream S such that rem([[A]], S), rather than the full [[A]]. Since
rem is a predicate and not a function, detecting A might potentially yield a

10

different stream than detecting A′, even when A ≡ A′. Consequently, it should
be clarified to what extent restriction policy affects expression equivalence.

Proposition 19 If A ≡ A′ and rem([[A]], S), then rem([[A′]], S).

PROOF. Since A ≡ A′ implies that [[A]]=[[A′]], this holds trivially. 2

Thus, A ≡ A′ ensures that for any implementation consistent with the restric-
tion policy, the detected occurrences of A is always a valid result for A′ as
well. Any reasoning based on the algebra semantics and the restriction policy,
and not on the details of a particular detection algorithm, will be equally valid
for equivalent expressions.

The next proposition ensures that although the detection of A and A′ may
not be exactly identical, they must be equivalent with respect to time.

Proposition 20 If A ≡ A′, rem([[A]], S) and rem([[A′]], S ′), then for any s ∈ S
there exists a s′ ∈ S ′ with start(s) = start(s′) and end(s) = end(s′).

PROOF. This follows straightforwardly from Proposition 16. 2

The algebraic properties are given in the following theorems. Derived laws are
indicated by an asterisk (∗), and the proofs can be found in Appendix B.

Theorem 21 For event expressions A, B and C, the following laws hold:

1. A∨A ≡ A
2. A∨B ≡ B∨A
3. A+B ≡ B+A
4. A∨(B∨C) ≡ (A∨B)∨C
5. A+(B+C) ≡ (A+B)+C

6. A;(B;C) ≡ (A;B);C
7. (A∨B)+C ≡ (A+C)∨(B+C)
∗8. A+(B∨C) ≡ (A+B)∨(A+C)
9. (A∨B);C ≡ (A;C)∨(B;C)

10. A;(B∨C) ≡ (A;B)∨(A;C)

Theorem 22 For event expressions A, B and C, the following laws hold:

11. (A∨B)−C ≡ (A−C)∨(B−C)
12. (A+B)−C ≡ ((A−C)+B)−C
∗13. (A+B)−C ≡ (A+(B−C))−C
14. (A−B)−C ≡ A−(B∨C)

∗15. (A−B)−B ≡ A−B
∗16. (A−B)−C ≡ (A−C)−B
17. (A;B)−C ≡ ((A−C);B)−C
18. (A;B)−C ≡ (A;(B−C))−C

Theorem 23 For event expressions A and B, and τ ∈T , the following laws
hold:

11

19. (A∨B)τ ≡ Aτ∨Bτ

20. (A+B)τ ≡ (Aτ+B)τ
∗21. (A+B)τ ≡ (A+Bτ)τ
22. (A−B)τ ≡ Aτ−B
23. (A−B)τ ≡ (A−Bτ)τ

24. (A;B)τ ≡ (Aτ ;B)τ
25. (A;B)τ ≡ (A;Bτ)τ
26. A ≡ Aτ if A ∈ P
27. (Aτ)τ ′ ≡ Amin(τ,τ ′)
∗28. (Aτ)τ ′ ≡ (Aτ ′)τ

Finally, we introduce the notion of an empty event that never occurs, and laws
related to this.

Definition 24 Let the constant 0 denote the empty event, semantically de-
fined as [[0]]I=∅ for any interpretation I.

Theorem 25 For an event expression A the following laws hold:

29. 0∨A ≡ A
∗30. A∨0 ≡ A
31. 0+A ≡ 0
∗32. A+0 ≡ 0
33. A−A ≡ 0

34. 0−A ≡ 0
35. A−0 ≡ A
36. 0;A ≡ 0
37. A;0 ≡ 0
38. 0τ ≡ 0

PROOF. These laws follow straightforwardly from the operator semantics
and the definition of 0. 2

Alternatively, 0 can be defined as shorthand for an expression A−A, where A
is an arbitrary event expression (compare with law 33).

Remark 26 For instance frameworks with a construction operator that does
not satisfy the commutativity and associativity requirements, all laws except
number 3 (requires commutativity), 5 and 6 (require associativity) still hold.
Note that the laws derived from these three laws (8, 13, 21, 30 and 32) hold
anyway, since they can be proven individually.

4 Detection algorithm

In this section, we present an imperative algorithm that, for a given event
expression E and interpretation I, computes an event stream S for which
rem([[E]]I , S) holds. Throughout this section, E denotes the event expression
that is to be detected. The numbers 1 . . .m are assigned to the subexpressions
of E according to a postorder traversal of the expression 1 , and we let Ei

1 In fact, any ordering where a subexpression is given a higher number than its
constituents would be acceptable.

12

denote subexpression number i. Consequently, we always have Em = E and
E1 ∈ P . For example, with E = (T + P)−B, we have E1 = T, E2 = P,
E3 = (T+P), E4 = B, and E5 = E.

The algorithm is given in Figure 5. It is executed once every time tick, and
computes the current instance of E from the current instances of the primitive
events, and from stored information about the past. The main loop from 1
to m corresponds to a postorder traversal of E. The symbol 〈〉 is used to
represent a non-occurrence, and we define start(〈〉)=end(〈〉)=−1 to simplify
the algorithm.

The variables used in the algorithm can be divided into three categories (see
Figure 4). Persistent variables store information that must be remembered
from one time tick to the next in order to detect the event properly. Since each
subexpression requires its own persistent variables, they are indexed from 1
to m. For conjunction, variables li and ri are used to store significant past
instances of the left and right subexpression, respectively. The li variable is
also used in a similar way for sequence, together with Qi which holds a set
of other significant past instances of the left subexpression. For negation, ti
stores the latest start time of the past instances of the left subexpression.

Auxiliary variables are indexed in the same way as the persistent variables, but
pass information from a subexpression to its parent within a tick. In particular,
ai is used to store the current instance of Ei. The Si variables are one of the
keys to ensuring that there are static memory bounds for the algorithm, and
their role is discussed below.

Finally, there are temporary variables that are used locally within a single
subexpression. Since these are not intended to store values until next tick, nor
between subexpressions, they can be freely shared and are not indexed.

Category Variable Type Initial value
Persistent li, ri instance 〈〉

Qi instance set ∅
ti time −1

Auxiliary ai instance
Si time set ∅

Temporary t time
e, e′ instance
Q′ instance set

Fig. 4. Variables used in the detection algorithm.

In order to comply with the restriction policy, the parts of the algorithm
responsible for disjunction and conjunction have to ensure that when choosing
between two simultaneous occurrences, the choice resulting in the latest start
time is taken.

13

for i from 1 to m

if Ei ∈ P then

if there is a current instance e of Ei then ai := e

else ai := 〈〉
if Ei = Ej∨Ek then

if start(aj)≤start(ak) then ai := ak else ai := aj
Si := Sj ∪ Sk

if Ei = Ej+Ek then

if start(li)<start(aj) then li := aj
if start(ri)<start(ak) then ri := ak
if li=〈〉 ∨ ri=〈〉 ∨ (aj =〈〉 ∧ ak=〈〉) then ai := 〈〉
else if start(ak)≤start(aj) then ai := aj ⊕ ri

else ai := li ⊕ ak
Si := Sj ∪ Sk ∪ {start(li), start(ri)}\{−1}

if Ei = Ej−Ek then

if ti<start(ak) then ti := start(ak)

if ti<start(aj) then ai := aj else ai := 〈〉
Si := Sj

if Ei = Ej;Ek then

e′ := 〈〉
foreach e in Qi ∪ {li}

if end(e)<start(ak) ∧ start(e′)<start(e) then e′ := e

if e′ 6=〈〉 then ai := ak ⊕ e′ else ai := 〈〉
Q′ := ∅
foreach t in Sk

e′ := 〈〉
foreach e in Qi ∪ {li}

if end(e)<t ∧ start(e′)<start(e) then e′ := e

Q′ := Q′ ∪ {e′}
Qi := Q′

if start(li) < start(aj) then li := aj
Si := Sj ∪ {start(e) | e ∈ Qi ∪ {li}}\{−1}

if Ei = (Ej)τ then

if end(aj)−start(aj)≤τ then ai := aj else ai := 〈〉
Si := Sj

Fig. 5. The detection algorithm. For an event expression E, the content of am at the
end of each time tick form an event stream A(m) which satisfies rem([[E]],A(m)).
Initially, ti=−1, li=ri=〈〉 and Si=Qi=∅ for 1≤ i≤m.

14

Even with the restriction policy, the problem remains in the case of a sequence
Ej;Ek to know what instances of Ej that will be the best match for future
Ek instances. Since non-overlapping is required by the sequence operator, it
is not enough to store the instance of Ej with latest end time so far. In order
to achieve bounded memory, however, the number of Ej instances to store in
Qi must be bounded. Our solution to this problem is to propagate not only
full detections of Ek but also information about possible start times of future
Ek instances, i.e., the start times of partial detections. This information, rep-
resented by the Si variables, is collected from all subexpression. Fortunately,
the number of simultaneously active “possible start times” can be bounded,
which allows a bounded memory implementation of the algebra.

After executing the algorithm, the variable ai contains the detected occurrence
of Ei in the current tick, or 〈〉 if there is none. To connect this to the algorithm
semantics, we define an event stream corresponding to each ai variable.

Definition 27 For 1 ≤ i ≤ m, define

A(i) = {e | e is the value of ai at the end of some time tick ∧ e 6= 〈〉}

Thus, the output of the algorithm is the event stream A(m), and as will be
established in the next section (by Theorem 36), this event stream satisfies
rem([[E]],A(m)).

4.1 Algorithm Correctness

In order to prove that this algorithm correctly implements the algebra se-
mantics and the restriction policy, we first introduce a number of predicates
that capture different correctness properties of the algorithm. We proceed by
proving the correctness of a single operator at a single time tick, for each of
these correctness properties. The full correctness proof is organised as two
nested inductions: an inner induction over the subexpressions of E, and an
outer induction over time.

4.1.1 Correctness properties

The fact that the output of the algorithm at a single time tick is consistent with
the restriction policy, is captured by what can be thought of as a pointwise
restriction predicate, and a lemma that relates it to the ordinary restriction
policy.

15

Definition 28 For an event instance e, an event stream S and τ ∈ T , define
valid(e, S, τ) to hold if:

(
e ∈ S ∧ end(e) = τ ∧ ¬∃s(s ∈ S ∧ end(s) = τ ∧ start(e) < start(s))

)
∨

(
e = 〈〉 ∧ ¬∃s(s ∈ S ∧ end(s) = τ)

)

Lemma 29 For an event stream S and event instances e0, e1, e2, . . . such
that valid(eτ , S, τ) holds for any τ ∈ T , let S ′ = {e0, e1, e2, . . .}\{〈〉}. Then
rem(S, S ′) holds.

PROOF. By the definition of valid, it follows that S ′ ⊆ S. Next, take an arbi-
trary s ∈ S, and let τ = end(s). Since valid(eτ , S, τ), we must have eτ 6= 〈〉, and
thus eτ ∈ S ′. From the definition of valid, we know that start(s) ≤ start(eτ).
We also have end(eτ) = end(s), which means that the second requirement in
the definition of rem is satisfied. Finally, all elements in S ′ have different end
times. Together, this implies that rem(S, S ′) holds. 2

The following property represents that the detected instance of Ei is correct
with respect to the instances detected by the subexpressions.

Definition 30 Define acorr(i, τ) as follows:

• For Ei ∈ P, acorr(i, τ) holds iff valid(ai, [[E
i]], τ)

• For Ei = Ej∨Ek, acorr(i, τ) holds iff valid(ai, dis(A(j),A(k)), τ)
• For Ei = Ej+Ek, acorr(i, τ) holds iff valid(ai, con(A(j),A(k)), τ)
• For Ei = Ej−Ek, acorr(i, τ) holds iff valid(ai, neg(A(j),A(k)), τ)
• For Ei = Ej;Ek, acorr(i, τ) holds iff valid(ai, seq(A(j),A(k)), τ)
• For Ei = Ej

τ ′, acorr(i, τ) holds iff valid(ai, tim(A(j), τ ′), τ)

To achieve bounded memory, the sequence operator requires some knowledge
about what is stored in the persistent variables of its subexpressions. This
information is propagated by the Si variables, and the following predicate
indirectly defines their correctness. Informally, it states that the start time of
any detected non-instantaneous event was already propagated in the previous
tick, and that the Si variables are not updated with arbitrary values, only
with the current time.

Definition 31 Define pcorr(i, τ) to hold iff the following criteria hold:

1. ai = 〈〉 ∨ start(ai) = τ ∨ start(ai) ∈ S
2. ∀t (t ∈ Si ⇒ (t = τ ∨ t ∈ S))

where S was the content of Si at the start of the current time tick.

16

The operators that require information about what has happened in the past,
store this state information in the persistent variables ri, li, ti and Qi. The
following predicate defines what they should contain at the start of tick τ .

Definition 32 Define state(i, τ) as follows:

• For Ei ∈ P, Ei = Ej∨Ek and Ei = Ej
τ ′ state(i, τ) holds trivially.

• For Ei = Ej+Ek, state(i, τ) holds iff
◦ li is an element in {e | e ∈ A(j)∧ end(e) < τ}∪{〈〉} with maximum start

time; and
◦ ri is an element in {e | e ∈ A(k)∧end(e) < τ}∪{〈〉} with maximum start

time.
• For Ei = Ej−Ek, state(i, τ) holds iff
◦ ti is the maximum element in {start(e) | e ∈ A(k) ∧ end(e) < τ} ∪ {−1}.
• For Ei = Ej;Ek, state(i, τ) holds iff
◦ li is an element in {e | e ∈ A(j)∧ end(e) < τ}∪{〈〉} with maximum start

time; and
◦ for each t ∈ Sk such that {e | e ∈ A(j) ∧ end(e) < t} is non-empty, Qi

contains an element with maximum start time from that set.

4.1.2 Correctness results

Focusing first on the result of a single subexpression at a single time tick,
we show that each of the three correctness properties hold under some given
assumptions.

Lemma 33 Assume that state(i, τ) held at the start of the current tick and
that pcorr(n, τ) and acorr(n, τ) hold for all 1 ≤ n < i. Then state(i, τ + 1),
pcorr(i, τ) and acorr(i, τ) hold after executing the loop body once.

PROOF. The proof can be found in Appendix C. 2

The correctness lemma above is used in the inductive step of the two nested
induction proofs over the expression and over time, respectively.

Lemma 34 (Inner induction) Let τ be the current time, and assume that
for each 1 ≤ i ≤ m state(i, τ) held at the start of this tick. Then state(i, τ+1)
and acorr(i, τ) holds for each 1 ≤ i ≤ m after executing the whole detection
algorithm.

PROOF. In addition to to the assumption about state, assume that after
executing the loop body n − 1 times, pcorr(i, τ) and acorr(i, τ) hold for all

17

1 ≤ i < n. As a base case, this clearly holds for n = 1. Then state(n, τ+1),
pcorr(n, τ) and acorr(n, τ) hold after loop iteration n, according to Lemma 33.
By induction, the lemma holds. 2

Lemma 35 (Outer induction) For any i such that 1 ≤ i ≤ m, and any
τ ∈ T acorr(i, τ) holds after executing the algorithm at ticks 0 to τ .

PROOF. For the base case we see that state(i, 0) holds in an initial state
where ti = −1, li = ri = 〈〉 and Qi = ∅. For the inductive case: Assume that
for some τ ∈ T , state(i, τ) holds at the start of tick τ . Then, according to
Lemma 34, state(i, τ+1) and acorr(i, τ) holds after execution the algorithm,
and thus state(i, τ+1) holds at the start of tick τ+1. By induction over time
the lemma thus holds for any τ ∈ T . 2

So far, we have only shown that the result produced for Ei is correct with
respect to the result produced by its subexpressions. Now, we take the final
step and prove the correctness of the algorithm in the following theorem.

Theorem 36 For any i such that 1 ≤ i ≤ m, rem([[Ei]],A(i)) holds.

PROOF. Assume that for some i, rem([[En]],A(n)) holds for all 1 ≤ n < i.
For the base case, this trivially holds for i = 1. According to Lemma 35,
acorr(i, τ) holds at the end of tick τ . For Ei ∈ P , we know from the definition
of acorr that valid(ai, [[E

i]], τ) holds at the end of tick τ , and then Lemma 29
ensures rem([[Ei]],A(i)). If Ei = Ej∨Ek, the definition of acorr implies that
valid(ai, dis(A(j),A(k)), τ) holds at the end of tick τ , so by Lemma 29 we have
rem(dis(A(j),A(k)),A(i)). According to Theorem 15, this and the induction
assumption that rem([[Ej]],A(j)) and rem([[Ek]],A(k)) hold (since j < i and
k < i), implies rem(dis([[Ej]], [[Ek]]),A(i)) and thus rem([[Ei]],A(i)). The proofs
for the remaining operators are analogous. 2

4.2 Algorithm improvements

To simplify presentation and correctness analysis, the algorithm uses set vari-
ables, and a time driven execution style was assumed where the algorithm is
executed once every time instant. However, these design alternatives also have
an impact on the efficiency of the algorithm, which must be addressed and
resolved.

Considering first the issue of time triggered execution, we can see that in
time ticks where no primitive events occur, none of the persistent variables

18

are changed by the algorithm, and the ai variables all become 〈〉. In fact, this
means that A(m) remains the same if the algorithm is executed only in ticks
when at least one of the primitive events in E has occurred. Consequently,
the algorithm presented here can be used with little or no changes also in
an event driven setting where the execution of the algorithm is triggered by
primitive event occurrences rather than at each tick. If primitive events are
non-simultaneous and always trigger the algorithm in the same order as they
occur, the algorithm can be used without changes. Otherwise, some precau-
tions must be taken to ensure that occurrences are processed in the right
order.

This improvement could be taken a step further by processing only subex-
pressions that are affected by the current primitive event occurrences. The
identification of what parts of the tree to consider could either be done stat-
ically with respect to the primitive events, or dynamically based also on the
detection result of the subexpressions. The details of this optimisation remains
to be investigated, though.

Turning to the set variables, we notice that the worst part of the algorithm,
from a complexity point of view, is the nested foreach constructs in the se-
quence part. However, this source of complexity can be avoided, without com-
promising the correctness of the algorithm, if the set variables Si and Qi are
represented as ordered structures. First, note that Qi never contain fully over-
lapping instances. New values that are added to Qi always come from li, and
whenever li is updated, both the start and end time of the new instance is
greater than those of the previous instance. Thus, if Qi is ordered with respect
to end times, it will also be ordered with respect to start time.

The time complexity of the Si assignments is not affected by the ordered
representation. For the sequence part of the algorithm, this follows from the

foreach t in Sk

e′ := 〈〉
foreach e in Qi ∪ {li}

if end(e)<t ∧ start(e′)<start(e) then
e′ := e

Q′ := Q′ ∪ {e′}

Qi := Qi ∪ {li}
sp := length(Sk)
qp := length(Qi)
while sp > 0 ∧ qp > 0
t := Sk[sp]
e := Qi[qp]
if end(e) < t then
Q′ := Q′ ∪ {e}
sp := sp − 1

else qp := qp − 1

Fig. 6. Part of the original sequence operator algorithm (left), and the improved
version for the case when Qi and Sk are ordered (right).

19

fact that Qi is ordered with respect to start times. The assignment of Qi is
done by means of a temporary set variable Q′ that is populated by the best
match, from the instances currently stored in Qi and li, for each element in
Sk. In the original detection algorithm, this is performed by the two nested
foreach constructs shown in Figure 6 (left), but when Qi and Sk are ordered
it can be accomplished by a single pass over the two structures together, as
shown in Figure 6 (right). An array style notation is used for references to
individual elements of an ordered structure (e.g., Sk[1] for the first element of
Sk).

It is also worth pointing out that the presented algorithm is designed for
detection of arbitrary expressions, and thus the main loop selects dynamically
which part of the algorithm to execute for each subexpression. For systems
where the event expressions of interest are static and known at the time of
development, the main loop can be unrolled and the top-level conditionals, as
well as all indices, can be statically determined. Also, the assignments of Si
variables can be removed for all subexpressions except those occurring within
the right-hand argument of a sequence operator. A concrete example of this
is given in Figure 7.

if there is a current instance e of T then a1 := e else a1 := 〈〉
if there is a current instance e of P then a2 := e else a2 := 〈〉
if start(l3)<start(a1) then l3 := a1

if start(r3)<start(a2) then r3 := a2

if l3 =〈〉 ∨ r3 =〈〉 ∨ (a1 =〈〉 ∧ a2 =〈〉) then a3 := 〈〉
else if start(a2)≤start(a1) then a3 := a1 ⊕ r3

else a3 := l3 ⊕ a2

if there is a current instance e of B then a4 := e else a4 := 〈〉
if t5<start(a4) then t5 := start(a4)
if t5<start(a3) then a5 := a3 else a5 := 〈〉

Fig. 7. Statically simplified algorithm for detecting (T+P)−B. Initially, t5 =−1 and
l3 =r3 =〈〉.

4.3 Complexity analysis

Most parts of the algorithm are fairly straightforward to analyse with respect
to time and memory usage, but we need to establish bounds on the set variables
Si, Qi and Q′. For this, let |X| denote the maximum size of a set variable X.

Proposition 37 If Ei = Ej;Ek then |Qi| ≤ |Sk|, otherwise |Qi| = 0. We also
have |Q′| = max1≤i≤m(|Qi|).

20

PROOF. This follows straightforwardly from the assignments of Qi and Q′

in the algorithm. 2

Proposition 38 For any i such that 1 ≤ i ≤ m, we have |Si| < subexp(Ei)
where subexp(E) denotes the number of subexpressions in E.

PROOF. In the base case i = 1, we have Ei ∈ P and thus |Si| = 0 and
subexp(Ei) = 1, which clearly satisfies the claim. For the inductive case we
assume that |Sn| < subexp(En) holds for all 1 ≤ n < i. If Ei ∈ P we
can repeat the proof for the base case. If Ei = (Ej)τ , then |Si| = |Sj|, and
since j < i, the assumption implies that |Sj| < subexp(Ej). Thus, we have
|Si| < subexp(Ej) < subexp(Ei). In the remaining cases where Ei is a bi-
nary operator applied to Ej and Ek, we have j < i and k < i and thus the
assumption implies that |Sj| ≤ subexp(Ej) − 1 and |Sk| ≤ subexp(Ek) − 1.
From the assignments of Si in the algorithm, we see that |Si| ≤ |Sj|+ |Sk|+ 2
holds for all operators (for sequence, we use the fact that |Qi| ≤ |Sk|). Thus,
|Si| ≤ |Sj| + |Sk| + 2 ≤ subexp(Ej) + subexp(Ek) < subexp(Ei), which con-
cludes the proof. 2

The memory and time complexity of the algorithm also depends on the par-
ticularities of the instance framework. Hence, we introduce the parameter ω
to denote the maximum memory needed to store an instance in the current
framework. An instance of a subexpression of E is constructed from at most
dm/2e primitive instances (one from each leaf in the expression tree). Thus,
assuming that primitive instances are of bounded size, and that the size of
a⊕ b is bounded whenever the size of a and b is, the instance size is bounded.
For the time analysis, we assume that the time it takes to perform the ⊕
operation is proportional to ω, or lower. As previously, m denotes the number
of subexpressions in E.

Theorem 39 The memory complexity of the algorithm is O(m2ω).

PROOF. Since subexp(Ei) ≤ m for any 1 ≤ i ≤ m, it follows from Propo-
sitions 37 and 38 that |Q′| ≤ m and that |Si| ≤ m and |Qi| ≤ m for any
1 ≤ i ≤ m. This means that the algorithm stores at most O(m2) instances
and time values. 2

Theorem 40 The time complexity of the algorithm is O(m2ω).

PROOF. The algorithm performs m iterations of the main loop, each iter-
ation executing one of the operator specific parts of the loop body. Only the

21

code for the sequence operator contains loop structures, so for the other oper-
ators the primary source of complexity are the assignments of the set variables
Si, and they can be performed in O(|Si|ω), also when the Si variables are or-
dered. For the sequence operator we assume that the improvement shown in
Figure 6 (right) is applied, which means that the code has two loop structures,
each with a body that runs in O(ω) time. The foreach loop iterates |Qi| + 1
times, and the while loop |Qi|+ 1 + |Sk| times. Finally, the set assignment can
be performed in O(|Si|ω) time when Qi is ordered with respect to start time.
Altogether, since Propositions 37 and 38 ensures that |Qi|, |Si| and |Sk| are
less than or equal to m, the code for each operator can be executed in O(mω)
time. Thus, the time complexity of the whole algorithm is O(m2ω). 2

Example 41 In the simple framework of Example 4, ω is a constant factor,
and thus the time and memory complexity are O(m2). In the framework of
Example 5, the instance size is bounded by dm/2e, and thus the memory and
time complexity of the algorithm are O(m3).

4.4 Experiments

In addition to the complexity analysis, we have conducted some basic ex-
periments to investigate the resource requirements of the algorithm in more
detail. In particular, the complexity analysis regards the worst case expres-
sion, but most expressions have significantly lower resource demands, since
different operator combinations contribute very differently to the overall time
and memory usage.

Expressions containing m subexpressions were created randomly, with equal
probability for the five operators to occur, and for each expression, the static
bound on memory footprint and worst case execution time were derived. We
have assumed that sets are represented in a straightforward way, with the sin-
gle optimisation that the Si variables are only used in subexpressions occuring
within the right-hand argument of a sequence operator.

Each m value is represented by 10.000 random expressions, and the 95% con-
fidence intervals for the mean values are less than 2% of the y-value for all
points.

Experiment 1: For the memory analysis, we assume that the storage of a sin-
gle time value requires 1 memory unit. In the simple framework, any instance
requires 2 memory units, for start and end times. In the value framework, we
assume that primitive instances require 3 units (time, id and value), and the
size of a composite instance a ⊕ b is the summed size of a and b. Figure 8
shows the mean and maximum memory usage of the sample expressions, for
each m value.

22

The experiment shows that the detection algorithm memory usage is fairly low,
also for complex expressions. The detection of an average expression consisting
of 51 subexpressions requires less than 250 units of memory in the simple
framework and roughly the double when all primitives carry values. Over
the whole experiment, the maximum value is approximately twice as high as
the average for the simple framework, and four times as high in the value
framework. Although the actual worst case might be significantly higher than
the maximum within the samples of 10.000 expressions investigated in the
experiment, this indicates that expressions with high memory demand are
very rare.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50 55

M
em

or
y

Subexpressions

Mean

Max

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5 10 15 20 25 30 35 40 45 50 55

M
em

or
y

Subexpressions

Mean

Max

Fig. 8. Memory usage in the simple framework (left) and the value framework (right).

Experiment 2: The timing analysis is based on an abstract execution model
where we assume that comparisons, arithmetic operations and assigning a
time instant variable take 1 time unit. The time it takes to assign an instance
variable is the same as the size of that variable, and a set assignment S ′ := S
takes |S| ∗ s time units, where s is the time it takes to assign a single element
of S.

For each random expression, the worst case execution time is computed. Fig-
ure 8 shows the mean worst case execution time, as well as the maximum, for
each m value. The detection of an average expression consisting of 51 subex-
pressions takes less than 650 time units in the simple framework, and less
than 980 in the value framework. As for memory, we note that the difference
between average and maximum is relatively small. For the simple framework,
maximum is approximately three times higher than average, and in the value
framework it is four times higher.

These experiments show that, although there exist expressions that result
in fairly high resource usage, the average is significantly lower. None of the
investigated expressions have memory footprint or execution time values that
would prevent them from being used in an embedded setting. It is also worth
pointing out that the second experiment regards worst case execution time
only. The execution time of an average tick depends on the actual occurrence
frequencies of the primitive events.

23

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30 35 40 45 50 55

T
im

e

Subexpressions

Mean

Max

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35 40 45 50 55

T
im

e

Subexpressions

Mean

Max

Fig. 9. Worst case execution times in the simple framework (left) and the value
framework (right).

5 Related work

The operators of our algebra are influenced by work in the area of active
databases, such as Snoop [9], Ode [11] and SAMOS [12]. These systems have
similar event specification languages, although the underlying implementa-
tion mechanisms are based on event graphs, Petri nets and state automata,
respectively. Resource efficiency is typically not the main concern in an active
database, and the event specification languages are primarily designed to pro-
vide sufficient expressiveness, rather than to ensure bounded resources in the
general case.

Liu et al. [20] describe how composite events can be expressed as timing con-
straints in Real Time Logic, and thus handled by general timing constraint
monitoring techniques. They present a mechanism for early detection of tim-
ing constraint violation, and show that upper bounds on memory and time
can be derived. The resulting event specification language is more expressive
than ours, in that it can refer to individual instances and not just event types,
e.g., the fourth instance of A occurs before the second instance of B, but it
provides no assistance in terms of algebraic properties.

As discussed in the introduction, these and many other techniques are based
on single point semantics (sometimes called detection semantics). It has been
shown by Galton and Augusto [15] that this gives an unintended meaning
to some operator combinations. Galton and Augusto also present the core of
an alternative, interval-based, semantics of the Snoop operators to remedy
these problems. Adaikkalavan and Chakravarthy [21] extended this work into
a full interval-based version of Snoop, by formulating the operator semantics
for the different event contexts in Snoop. They do not, however, investigate
the algebraic properties of the resulting algebra. In particular, it is not clear
to what extent the desired properties identified by Galton and Augusto are
maintained when event contexts are applied.

24

The basic semantics of our operators is similar to the one proposed by Galton
and Augusto, but some details differ. For example, the Snoop negation oper-
ator takes three arguments, denoting the non-occuring event and the events
marking the start and end of the non-occurrence interval, respectively (corre-
sponding to (A;B)−D in our algebra). We also include temporal restriction
as an explicit operator.

The restriction policy that we introduce to permit the algebra to be imple-
mented with limited resources while retaining the desired algebraic properties,
is similar to the recent event context of Snoop in that from a set of possible de-
tections it considers only the most recent one. There are significant differences
though. Event contexts are applied to individual operators in an expression, in
order to provide detailed control of how that operator handles situations where
there are several ways to form an instance of the composite event. Thus, their
main purpose is increased expressiveness, although the recent context can in
fact be implemented with bounded resources. Contrasting this, the aim of our
restriction policy is to ensure bounded resource requirements while affecting
the ordinary operator semantics as little as possible. The restriction policy is
applied once to the expression as a whole, and defines what occurrences may
be ignored by the detection mechanism in order to being able to statically
bound resource usage. There is also a concrete difference in that the recent
context consider the constituent event occurrence with latest end time to be
the most recent one, and thus the one used to create a composite instance.
Our restriction policy, on the other hand, selects a constituent occurrence that
maximises the start time of the resulting composite instance.

Solicitor [22] is an interval-based event specification language similar in style
to Snoop. It is also similar to our algebra in that it targets real-time systems
in particular. The resource requirements of the Solicitor detection mechanism
are bounded in the case when a minimum interarrival time is given for each
primitive event, and all subexpressions are labelled with an explicit expiration
time. In the notation of our algebra, the expiration time property corresponds
to requiring that all operators (except temporal restriction) must be directly
enclosed by a temporal restriction (e.g., as in (A;(B+C)τ)τ ′).

Sánchez et al. have developed ECL (and the equally expressive sublanguage
PAR), a specification language for event patterns [23]. The language resem-
bles regular expressions in style, and any PAR pattern can be detected with
bounded resources. A central result is that the opposite is true as well, i.e.,
that every event pattern that can be detected with finite memory, by any
method, can be expressed in PAR [24]. A difference compared with our alge-
bra is that PAR normally only detects the first occurrence of an expression. To
allow repeated detection, the language includes a repetition operator which
restarts the detection procedure every time an occurrence is detected. The
result is different from our algebra in that it does not detect partially over-

25

lapping occurrences. E.g., the pattern A;(B;C) and the primitive occurrences
A, B, A, C, B and C result in two detections by our algebra but only one (at
the first C occurrence) with repeated detection in PAR.

The event stream algebra CESAR, with the associated event processing sys-
tem Cayuga, explicitly aims at combining simple, well-defined semantics and
efficient implementation [25,26]. Starting from a limited event algebra, oper-
ators supporting iteration, aggregation and parameterisation are added. The
result is a highly expressive algebra with reasonably simple operator seman-
tics. However, no algebraic properties are presented, and although efficient,
the implementation can not provide resource bounds.

6 Conclusions

Many event-based systems are concerned with the occurrences of certain event
patterns rather than individual event occurrences. Deciding on an appropriate
technique to specify such patterns involves finding a suitable tradeoff between
expressiveness, efficiency and simplicity of use, for the application in question.
For example, resource-constrained applications such as embedded systems typ-
ically require a low and predictable overhead in terms of time and memory.

We have presented a novel algebra for event pattern specification, that satisfies
a number of laws that intuitively ought to hold for the algebra operators. These
laws facilitate formal as well as informal reasoning about the algebra and the
behaviour of a system in which it is included, and justify the algebra semantics
by showing to what extent it complies with intuition.

The algebra is defined in two steps. The operators are given a straightforward
declarative semantics based on time intervals. To deal with resource issues, a
restriction policy is applied that defines a subset of occurrences that should
be detected. Conceptually, the restriction policy is applied once to the whole
expression, which simplifies the overall semantics, but it can also be applied to
each subexpression without affecting the overall result. This allows the formu-
lation of an efficient detection algorithm that correctly detects any expression
with bounded memory.

The focus so far has been to lay the formal foundations of an event algebra
that combines bounded resources and explicit algebraic properties. However,
many aspects of event pattern detection are yet to be addressed, including for
example operators defining periodical and aperiodic occurrences, filtering of
event occurrences based on the values they carry, managing out-of-order ar-
rivals in distributed systems, and many concerns related to the implementation
and packaging of the algebra in a form that is easily usable by applications in

26

the intended domain. Future work includes investigating to what extent these
and other aspects can be addressed in the context of our algebra without
compromising the results achieved so far.

Another line of future work is to use the algebraic laws as the basis for expres-
sion transformations, for example to improve the worst case execution time of
the detection of a given expression. There are also initial results on schedul-
ing theory for embedded real-time systems where some parts are triggered by
complex event patterns defined by this algebra [27] that we want to pursue
further.

Acknowledgements

This work was partially funded by the Swedish National Graduate School in
Computer Science (CUGS) and the Swedish Foundation for Strategic Research
via the strategic research centre Progress.

Appendix A: Proof of Theorem 15

Theorem 15 If rem(S, S ′) and rem(T, T ′) hold, than for any event stream U
and τ ∈ T the following implications hold:

• rem(dis(S ′, T ′), U) ⇒ rem(dis(S, T), U)
• rem(con(S ′, T ′), U) ⇒ rem(con(S, T), U)
• rem(neg(S ′, T ′), U) ⇒ rem(neg(S, T), U)
• rem(seq(S ′, T ′), U) ⇒ rem(seq(S, T), U)
• rem(tim(S ′, τ), U) ⇒ rem(tim(S, τ), U)

PROOF. We prove each implication in a separate case:

Disjunction case: Assume rem(dis(S ′, T ′), U). Then, for any u∈U we have
u∈dis(S ′, T ′) and thus u∈S ′∪T ′. Since S ′ ⊆ S and T ′ ⊆ T , we have u∈S∪T ,
implying u∈dis(S, T). Thus U ⊆ dis(S, T), which satisfies the first constraint
in the definition of rem.

Next, take an arbitrary u ∈ dis(S, T). Then u ∈ S∪T and according to the
definition of rem there must exist an u′∈S ′ ∪ T ′ such that start(u)≤start(u′)
and end(u′) = end(u). We have u′ ∈ dis(S ′, T ′) and thus rem(dis(S ′, T ′), U)
implies that there exists an u′′ ∈ U with start(u′)≤ start(u′′) and end(u′′) =

27

end(u′). Since this means that start(u)≤ start(u′′) and end(u′′) = end(u), the
second constraint in the definition of rem is satisfied.

Finally, rem(dis(S ′, T ′), U) ensures that all instances in U have different end
times. Together, this gives rem(dis(S, T), U).

Conjunction case: Assume rem(con(S ′, T ′), U). Then, for any u∈U we have
u ∈ con(S ′, T ′) and thus u = s ⊕ t with s ∈ S ′ and t ∈ T ′. By the subset
requirement in the definition of rem, s∈S and t∈T . So u∈con(S, T) and thus
U ⊆ con(S, T).

Next, take an arbitrary u∈con(S, T). Then u=s⊕ t with s∈S and t∈T , and
by the definition of rem there exists s′∈S ′ and t′∈T ′ with start(s)≤start(s′),
end(s′) = end(s), start(t)≤ start(t′) and end(t′) = end(t). Let u′=s′ ⊕ t′. Now
u′∈con(S ′, T ′) with start(u)≤start(u′) and end(u′)=end(u). This means that
there exists some u′′∈U with start(u)≤start(u′′) and end(u′′)=end(u), which
satisfies the second constraint in the definition of rem.

Finally, rem(con(S ′, T ′), U) ensures that all instances in U have different end
times. Together, this gives rem(con(S, T), U).

Negation case: Assume rem(neg(S ′, T ′), U). Then, for any u ∈ U we have
u ∈ neg(S ′, T ′) and thus u ∈ S ′. By the subset requirement in the definition
of rem, u ∈ S. If there exists a t ∈ T with start(u) ≤ start(t) and end(t) ≤
end(u), then there must exist some t′ ∈ T ′ such that start(t)≤ start(t′) and
end(t′) = end(t) which contradicts the fact that u∈neg(S ′, T ′). Since no such
t can exist, we have u∈neg(S, T) and thus U ⊆ neg(S, T).

Next, take an arbitrary u∈neg(S, T). Since u∈S there exists an u′∈S ′ with
start(u)≤ start(u′), end(u′) = end(u). If there exists a t∈ T ′ with start(u′)≤
start(t) and end(t)≤end(u′), then the fact that t∈T contradicts u∈neg(S, T).
Since no such t can exist, we have that u′∈neg(S ′, T ′). This means that there
exists some u′′∈U with start(u′)≤ start(u′′) and end(u′′) = end(u′), and thus
start(u)≤start(u′′) and end(u′′)=end(u), which satisfies the second constraint
in the definition of rem.

Finally, rem(neg(S ′, T ′), U) ensures that all instances in U have different end
times. Together, this gives rem(neg(S, T), U).

Sequence case: Assume rem(seq(S ′, T ′), U). Then, for any u ∈ U we have
u∈ seq(S ′, T ′) and thus u= s ⊕ t with s∈S ′, t∈T ′ and end(s)< start(t). By
the subset requirement in the definition of rem, s∈S and t∈T , so u∈seq(S, T)
and thus U ⊆ seq(S, T).

Next, take an arbitrary u∈seq(S, T). Then u=s⊕ t such that s∈S, t∈T and
end(s)< start(t). By the definition of rem there exists s′∈S ′ and t∈T ′ with

28

start(s)≤ start(s′), end(s′) = end(s), start(t)≤ start(t′) and end(t′) = end(t).
Let u′ = s′ ⊕ t′. Now, since end(s′) = end(s) < start(t) ≤ start(t′), we have
u′∈seq(S ′, T ′) and start(u)≤ start(u′) and end(u′)=end(u). This means that
there exists some u′′∈U with start(u)≤start(u′′) and end(u′′)=end(u), which
satisfies the second constraint in the definition of rem.

Finally, rem(seq(S ′, T ′), U) ensures that all instances in U have different end
times. Together, this gives rem(seq(S, T), U).

Temporal restriction case: Assume rem(tim(S ′, τ), U). For any u ∈ U we
have u∈tim(S ′, τ) and thus u∈S ′ and end(u)− start(u)≤τ . From the subset
requirement in the definition of rem, we know that u∈ S, which means that
u∈tim(S, τ) and thus U ⊆ tim(S, τ).

Next, take an arbitrary u∈ tim(S, τ). Then u∈S and there exists an u′ ∈S ′
with start(u) ≤ start(u′), end(u′) = end(u). Since end(u) − start(u) ≤ τ , we
have end(u′) − start(u′) ≤ τ and thus u′ ∈ tim(S ′, τ). According to the def
of rem, this means that there exists some u′′ ∈ U with start(u′)≤ start(u′′),
end(u′′)=end(u′). Since this means that start(u)≤start(u′′), end(u′′)=end(u)
the second constraint in the definition of rem is satisfied.

Finally, rem(tim(S ′, τ), U) ensures that all instances in U have different end
times. Together, this gives rem(tim(S, τ), U).

2

Appendix B: Proof of Theorems 21–23

To simplify the proofs for negation, we introduce the following predicate.

Definition 42 For an event stream S, and time instants τ, τ ′ ∈ T , define
empty(S, τ, τ ′) to hold if ¬∃s(s∈S ∧ τ≤start(s) ∧ end(s)≤τ ′).

Proposition 43

i. a∈ [[A−B]] ⇔ (a∈ [[A]] ∧ empty([[B]], start(a), end(a))).
ii. empty(S∪S ′, τ, τ ′) ⇔ (empty(S, τ, τ ′) ∧ empty(S ′, τ, τ ′))

iii. (τ1 ≤ τ ′1 ≤ τ ′2 ≤ τ2 ∧ empty(S, τ1, τ2)) ⇒ empty(S, τ ′1, τ
′
2)

29

PROOF. The properties follow straightforwardly from the definition and the
operator semantics. 2

In the proofs below, ≡23 denotes that the equivalence follows from law number
23, etc. Similarly, =i or ⇔ii denotes that the equivalence is based on the
corresponding property in Proposition 43, and =⊕ is based on the properties
of ⊕ from Definition 3.

Theorem 21 For event expressions A, B and C, the following laws hold:

1. A∨A ≡ A
2. A∨B ≡ B∨A
3. A+B ≡ B+A
4. A∨(B∨C) ≡ (A∨B)∨C
5. A+(B+C) ≡ (A+B)+C

6. A;(B;C) ≡ (A;B);C
7. (A∨B)+C ≡ (A+C)∨(B+C)
∗8. A+(B∨C) ≡ (A+B)∨(A+C)
9. (A∨B);C ≡ (A;C)∨(B;C)

10. A;(B∨C) ≡ (A;B)∨(A;C)

PROOF.

1. [[A∨A]] = dis([[A]], [[A]]) = [[A]] ∪ [[A]] = [[A]]
2. [[A∨B]] = dis([[A]], [[B]]) = dis([[B]], [[A]]) = [[B∨A]]
3. [[A+B]] = con([[A]], [[B]]) =⊕ con([[B]], [[A]]) = [[B+A]]
4. [[A∨(B∨C)]] = [[A]] ∪ [[B]] ∪ [[C]] = [[(A∨B)∨C]]
5. [[A+(B+C)]] = con([[A]], con([[B]], [[C]])) =
{a⊕ (b⊕ c) | a ∈ [[A]] ∧ b ∈ [[B]] ∧ c ∈ [[C]]) =⊕

{(a⊕ b)⊕ c | a ∈ [[A]] ∧ b ∈ [[B]] ∧ c ∈ [[C]]) = [[(A+B)+C]]
6. [[A;(B;C)]] = {a⊕ e | a∈ [[A]] ∧ end(a)<start(e) ∧

e∈{b⊕ c | b∈ [[B]] ∧ c∈ [[C]] ∧ end(b)<start(c)}} =
{a⊕ (b⊕ c) | a∈ [[A]] ∧ b∈ [[B]] ∧ c∈ [[C]] ∧ end(a)<start(b) ∧

end(b)<start(c)} =⊕

{(a⊕ b)⊕ c) | a∈ [[A]] ∧ b∈ [[B]] ∧ c∈ [[C]] ∧ end(a)<start(b) ∧
end(b)<start(c)} =
{e⊕ c | e∈{a⊕ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(a)<start(b)} ∧
c∈ [[C]] ∧ end(e)<start(c)} = [[(A;B);C]]

7. [[(A∨B)+C]] = con(dis([[A]], [[B]]), [[C]]) = con(([[A]] ∪ [[B]]), [[C]]) =
{e⊕ c | e∈ [[A]] ∪ [[B]] ∧ c∈ [[C]]} =
{a⊕ c | a∈ [[A]] ∧ c∈ [[C]]} ∪ {b⊕ c | b∈ [[A]] ∧ c∈ [[C]]} =
con([[A]], [[C]]) ∪ con([[B]], [[C]]) = [[(A+C)∨(B+C)]]

8. A+(B∨C) ≡3 (B∨C)+A ≡7 (B+A)∨(C+A) ≡3 (A+B)∨(A+C)
9. [[(A∨B);C]] = {e ∪ c | e∈ [[A]] ∪ [[B]] ∧ c∈ [[C]] ∧ end(e)<start(c)} =
{a ∪ c | a∈ [[A]] ∧ c∈ [[C]] ∧ end(a)<start(c)} ∪
{b ∪ c | b∈ [[B]] ∧ c∈ [[C]] ∧ end(b)<start(c)} = [[(A;C)∨(B;C)]]

10. [[A;(B∨C)]] = {a⊕ e | a∈ [[A]] ∧ e∈ [[B]] ∪ [[C]] ∧ end(a)<start(e)} =
{a⊕ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(a)<start(b)} ∪
{a⊕ c | a∈ [[A]] ∧ c∈ [[C]] ∧ end(a)<start(c)} = [[(A;B)∨(A;C)]]

30

2

Theorem 22 For event expressions A, B and C, the following laws hold:

11. (A∨B)−C ≡ (A−C)∨(B−C)
12. (A+B)−C ≡ ((A−C)+B)−C
∗13. (A+B)−C ≡ (A+(B−C))−C
14. (A−B)−C ≡ A−(B∨C)

∗15. (A−B)−B ≡ A−B
∗16. (A−B)−C ≡ (A−C)−B
17. (A;B)−C ≡ ((A−C);B)−C
18. (A;B)−C ≡ (A;(B−C))−C

PROOF.

11. [[(A∨B)−C]] =i {e | e ∈ [[A]] ∪ [[B]] ∧ empty([[C]], start(e), end(e))} =
{a | a∈ [[A]] ∧ empty([[C]], start(a), end(a))} ∪
{b | b∈ [[B]] ∧ empty([[C]], start(b), end(b))} =i

[[(A−C)]] ∪ [[(B−C)]] = [[(A−C)∨(B−C)]]
12. e∈ [[((A−C)+B)−C]]⇔i e∈ [[(A−C)+B]]∧empty([[C]], start(e), end(e))⇔

e=a⊕ b ∧ a∈ [[A−C]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e))⇔i

e=a⊕ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e)) ∧
empty([[C]], start(a), end(a))⇔iii

e=a⊕ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ empty([[C]], start(e), end(e))⇔
e∈ [[A+B]] ∧ empty([[C]], start(e), end(e))⇔i e∈ [[(A+B)−C]]

13. (A+B)−C ≡3 (B+A)−C ≡12 ((B−C)+A)−C ≡3 (A+(B−C))−C
14. a∈ [[(A−B)−C]]⇔i a∈ [[A−B]] ∧ empty([[C]], start(a), end(a))⇔i

a∈ [[A]] ∧ empty([[B]], start(a), end(a)) ∧ empty([[C]], start(a), end(a))⇔ii

a∈ [[A]] ∧ empty([[B]] ∪ [[C]], start(a), end(a))⇔i a∈ [[A−(B∨C)]]
15. (A−B)−B ≡14 A−(B∨B) ≡1 A−B
16. (A−B)−C ≡14 A−(B∨C) ≡2 A−(C∨B) ≡14 (A−C)−B
17. e∈ [[((A−C);B)−C]]⇔i e∈ [[(A−C);B]]∧ empty([[C]], start(e), end(e))⇔

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A−C]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b))⇔i

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ∧ empty([[C]], start(a), end(a))⇔iii

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b))⇔

e∈ [[A;B]] ∧ empty([[C]], start(e), end(e))⇔i e∈ [[(A;B)−C]]
18. e∈ [[(A;(B−C))−C]]⇔i e∈ [[A;(B−C)]]∧ empty([[C]], start(e), end(e))⇔

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B−C]] ∧
empty([[C]], start(a), end(b))⇔i

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b)) ∧ empty([[C]], start(b), end(b))⇔iii

e=a⊕ b ∧ end(a)<start(b) ∧ a∈ [[A]] ∧ b∈ [[B]] ∧
empty([[C]], start(a), end(b))⇔

e∈ [[A;B]] ∧ empty([[C]], start(e), end(e))⇔i e∈ [[(A;B)−C]]

31

2

Theorem 23 For event expressions A and B, and τ ∈T , the following laws
hold:

19. (A∨B)τ ≡ Aτ∨Bτ

20. (A+B)τ ≡ (Aτ+B)τ
∗21. (A+B)τ ≡ (A+Bτ)τ
22. (A−B)τ ≡ Aτ−B
23. (A−B)τ ≡ (A−Bτ)τ

24. (A;B)τ ≡ (Aτ ;B)τ
25. (A;B)τ ≡ (A;Bτ)τ
26. A ≡ Aτ if A ∈ P
27. (Aτ)τ ′ ≡ Amin(τ,τ ′)
∗28. (Aτ)τ ′ ≡ (Aτ ′)τ

PROOF.

19. [[(A∨B)τ]] = {e | e ∈ A ∪B ∧ end(e)−start(e) ≤ τ} =
{a | a ∈ A∧ end(a)−start(a) ≤ τ} ∪ {b | b ∈ B ∧ end(b)−start(b) ≤ τ} =
[[Aτ]] ∪ [[Bτ]] = [[Aτ∨Bτ]]

20. e∈ [[(Aτ+B)τ]]⇔ e∈ [[Aτ+B]] ∧ end(e)−start(e) ≤ τ ⇔
e=a⊕ b ∧ a∈ [[Aτ]] ∧ b∈ [[B]] ∧ end(e)−start(e) ≤ τ ⇔
e=a⊕ b∧ a∈ [[A]]∧ end(a)−start(a) ≤ τ ∧ b∈ [[B]]∧ end(e)−start(e) ≤ τ .
Since end(a) ≤ end(e) and start(e) ≤ start(a), we have end(a)−start(a) ≤
end(e)−start(e), so end(e)−start(e) ≤ τ ⇒ end(a)−start(a) ≤ τ . Thus,
the last formula above is equivalent to:
e=a⊕ b ∧ a∈ [[A]] ∧ b∈ [[B]] ∧ end(e)−start(e) ≤ τ ⇔
e∈ [[Aτ+B]] ∧ end(e)−start(e) ≤ τ ⇔ e∈ [[(A+B)τ]].

21. (A+B)τ ≡3 (B+A)τ ≡20 (Bτ+A)τ ≡3 (A+Bτ)τ
22. [[(A−B)τ]] = {a | a∈ [[A−B]] ∧ end(a)−start(a) ≤ τ} =
{a | a∈ [[A]] ∧ empty([[B]], start(a), end(a)) ∧ end(a)−start(a) ≤ τ} =
{a | a∈ [[Aτ]] ∧ empty([[B]], start(a), end(a))} = [[Aτ−B]]

23. [[(A−Bτ)τ]] = {a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧
¬∃b(b∈ [[Bτ]] ∧ start(a)≤start(b) ∧ end(b)≤end(a))} =
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧ ¬∃b(b∈ [[B]] ∧

start(a)≤start(b) ∧ end(b)≤end(a) ∧ end(b)−start(b) ≤ τ)}
Since end(a)−start(a) ≤ τ , start(a)≤start(b) and end(b)≤end(a) implies
end(b)−start(b) ≤ τ , that constraint can be removed without affecting
the set. Thus, the set above is equivalent to:
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧
¬∃b(b∈ [[B]] ∧ start(a)≤start(b) ∧ end(b)≤end(a))} = [[(A−B)τ]].

24. [[(A;Bτ)τ]] =
{a⊕ b | a∈ [[A]] ∧ b∈ [[Bτ]] ∧ end(a)<start(b) ∧ end(b)−start(a) ≤ τ} =
{a⊕ b | a∈ [[A]] ∧ b∈ [[B]] ∧ end(b)−start(b) ≤ τ ∧ end(a)<start(b) ∧

end(b)−start(a) ≤ τ}
Since end(a)<start(b) and end(b)−start(a) ≤ τ implies end(b)−start(b) ≤
τ , this constraint can be dropped without changing the set. Thus, the set

32

above is equivalent to {a ⊕ b | a ∈ [[A]] ∧ b ∈ [[B]] ∧ end(a) < start(b) ∧
end(b)−start(a) ≤ τ} = [[(A;B)τ]]

25. [[(Aτ ;B)τ]] =
{a⊕ b | a∈ [[Aτ]] ∧ b∈ [[B]] ∧ end(a)<start(b) ∧ end(b)−start(a) ≤ τ} =
{a ⊕ b | a ∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧ b ∈ [[B]] ∧ end(a)< start(b) ∧
end(b)−start(a) ≤ τ}
Since end(a)<start(b) and end(b)−start(a) ≤ τ implies end(a)−start(a) ≤
τ , this constraint can be dropped without changing the set. Thus, the set
above is equivalent to {a ⊕ b | a ∈ [[A]] ∧ b ∈ [[B]] ∧ end(a) < start(b) ∧
end(b)−start(a) ≤ τ} = [[(A;B)τ]]

26. A ∈ P implies that end(a)−start(a) = 0 for any a∈ [[A]], which means
that [[A]] = [[Aτ]].

27. [[(Aτ)τ ′]] = {a | a∈ [[A]] ∧ end(a)−start(a) ≤ τ ∧ end(a)−start(a) ≤ τ ′} =
{a | a∈ [[A]] ∧ end(a)−start(a) ≤ min(τ, τ ′)} = [[Amin(τ,τ ′)]]

28. (Aτ)τ ′ ≡23 Amin(τ,τ ′) ≡ Amin(τ,τ ′) ≡23 (Aτ ′)τ

2

Appendix C: Proof of Lemma 33

Lemma 33 Assume that state(i, τ) held at the start of the current tick and
that pcorr(n, τ) and acorr(n, τ) hold for all 1 ≤ n < i. Then state(i, τ + 1),
pcorr(i, τ) and acorr(i, τ) hold after executing the loop body once.

PROOF. The proof is organised in four parts. First, we consider state, then
the two criteria that are required for pcorr to hold (see Definition 31), and
finally acorr is addressed.

For state, we see that state(i, τ + 1) holds trivially if Ei is primitive, a dis-
junction or a temporal restriction (Definition 32), and thus we consider the
remaining operators:

Case Ei = Ej+Ek: In the case aj = 〈〉 the li variable remains unchanged,
which is consistent with state(i, τ+1). If aj 6= 〈〉 then end(aj) = τ according to
the assumption acorr(j, τ). Then, the first conditional in the conjunction part
ensures that li contains an instance consistent with state(i, τ+1). Similarly,
the second conditional ensures the correctness of ri.

Case Ei = Ej−Ek: The first conditional in the negation part ensures that ti
contains the value specified by state(i, τ+1).

Case Ei = Ej;Ek: The li variable is updated by the last conditional in the
sequence part, and the proof is identical to that in the conjunction case above.

33

For the second criterion in the definition of state, let t be an arbitrary element
in Sk such that {e | e ∈ A(j) ∧ end(e) < t} is non-empty. We consider two
cases: If t was in Sk at the start of the current tick, then state(i, τ) ensures
that Qi contained an element from {e | e ∈ A(j)∧ end(e) < t} with maximum
start time at the start of this tick. If t was not in Sk at the start of the current
tick, then pcorr(k, τ) implies that t = τ , and then state(i, τ) ensures that li
contained an element from {e | e ∈ A(j) ∧ end(e) < t} with maximum start
time at the start of this tick. Thus, in both cases, Qi ∪ li contained such an
element at the start of this tick. We can see that the inner foreach construct in
the sequence part assigns an element from this set to e′, and thus it is added
to Q′ and finally to Qi.

For pcorr, let S denote the content of Si at the start of the current time tick.
We focus first on the first criterion in the definition of pcorr, which requires
that we have ai = 〈〉, start(ai) = τ or start(ai) ∈ S. For Ei ∈ P , we know
that ai is a primitive event instance, and thus start(ai) = end(ai) = τ . For the
operators, we note that the first criterion of pcorr(i, τ) holds trivially when
ai = 〈〉 or start(ai) = τ , so we consider only the case when ai 6= 〈〉 and
start(ai) 6= τ .

Case Ei = Ej∨Ek: If ai = aj, we know according to pcorr(j, τ) that start(ai)
was in Sj at the start of this tick. Since Sj ⊆ Si must hold at the start of
each tick (at initialisation, and after each subsequent assignment of Si), this
implies start(ai) ∈ S. If ai = ak, the same result is implied by pcorr(k, τ) and
Sk ⊆ Si.

Case Ei = Ej+Ek: From the two assignments of ai in the conjunction part
where ai 6= 〈〉, we can see that the start time of ai must be equal to the start
time of aj, ri, li or ak. For aj and ak we can reuse the disjunction proof above.
If start(ai) = start(li), we have to consider two subcases: If li was updated
in this tick, we have li = aj and we can reuse the proof above. If li remained
unchanged, then li 6= 〈〉 ensures that the current tick is not the first, and the
assignment of Si in the previous step implies that start(li) ∈ S. The proof for
the final case start(ai) = start(ri) is analogous.

Case Ei = Ej−Ek: Analogous to the ai = aj case in the disjunction proof.

Case Ei = Ej;Ek: Since ai 6= 〈〉, we have ai = ak ⊕ e′ where start(ai) =
start(e′) and e′ was in Qi or li at the start of this tick. This implies that the
current tick is not the first, and the assignment of Si in the previous step
ensures that start(e′) ∈ S.

Case Ei = Ej
τ ′ : Analogous to the ai = aj case in the disjunction proof.

Next, we consider the second criterion in the definition of pcorr, namely that
∀t (t ∈ Si ⇒ (t = τ ∨ t ∈ S)). As previously, S denotes the content of Si at

34

the start of the current time tick. The property trivially holds for Ei ∈ P ,
since this implies S = ∅. For the operators, consider an arbitrary t ∈ Si such
that t 6= τ .

Case Ei = Ej∨Ek: Since Si = Sj ∪ Sk, we must have t ∈ Sj or t ∈ Sk. If
t ∈ Sj, then pcorr(j, τ) implies that t was in Sj at the start of this tick. Since
Sj ⊆ Si holds at the start of each tick, this implies t ∈ S. If t ∈ Sk, the same
result follows from pcorr(k, τ) and Sk ⊆ Si.

Case Ei = Ej+Ek: The assignment of Si in the conjunction part implies that
t ∈ Sj ∪ Sk ∪ {start(li), start(ri)}. If t ∈ Sj ∪ Sk, we can reuse the disjunction
proof above. If t = start(li) we consider two subcases: If li remained unchanged
in this tick, then the assignment of Si in the previous tick ensures than t ∈ S.
If li was updated, we have li = aj, and then pcorr(j, τ) ensures that t was in
Sj at the start of this tick. As shown above, this implies t ∈ S. The proof for
the final case t = start(ri) is analogous.

Case Ei = Ej−Ek: Analogous to the t ∈ Sj case in the disjunction proof.

Case Ei = Ej;Ek: The assignment of Si in the sequence part implies that
t ∈ Sj, t = start(li) or t ∈ {start(e) | e ∈ Qi}. For the two first cases we can
reuse the proof for conjunction. If t = start(e) where e ∈ Qi, then e was added
to Q′ in the nested foreach constructs, which means that e was in Qi ∪ li at
the start of this tick (so this is not the first tick). Then, the assignment of Si
in the previous tick ensures than t ∈ S.

Case Ei = Ej
τ ′ : Analogous to the t ∈ Sj case in the disjunction proof.

Finally, for acorr, we consider the following six cases:

Case Ei ∈ P : If ai = 〈〉, then there is no e ∈ [[Ei]] with end(e) = τ , and thus
valid(ai, [[E

i]], τ) holds. If ai 6= 〈〉, we have ai ∈ [[Ei]] and end(ai) = τ , and
since the elements of [[Ei]] have distinct end times according to Definition 6,
valid(ai, [[E

i]], τ) holds.

Case Ei = Ej∨Ek: The detection algorithm ensures that start(aj) ≤ start(ai)
and start(ak) ≤ start(ai). If ai = 〈〉, we have start(ai) = −1 which implies that
ak = aj = 〈〉 so there is no e ∈ dis(A(j),A(k)) with end(e) = τ . If ai 6= 〈〉, we
clearly have ai ∈ dis(A(j),A(k)) and there can be no element in this set with
end time τ and start time later than start(ai).

Case Ei = Ej+Ek: After executing the first two conditionals in the conjunc-
tion part start(aj) ≤ start(li) and start(ak) ≤ start(ri) hold. If ai = 〈〉, then
the guard of the third conditional was satisfied, and there can be no instance
in con(A(j),A(k)) with end time τ , which concludes the proof. If ai 6= 〈〉,
then the guard of the third conditional failed, and the inner conditional en-

35

sures that ai ∈ con(A(j),A(k)). For an arbitrary e ∈ con(A(j),A(k)) with
end(e) = τ , we must have e = e′⊕ak or e = aj⊕e′ where e′ ∈ A(j)∪A(k) and
end(e′) ≤ τ . However, the inner conditional ensures that start(aj) ≤ start(ai)
and start(ak) ≤ start(ai) which implies start(e) ≤ start(ai), and thus there is
no e ∈ con(A(j),A(k)) with end(e) = τ and start(ai) < start(e).

Case Ei = Ej−Ek: Reusing the proof for state above, we know that state(i, τ+
1) holds after the first conditional in the negation part. If ai = 〈〉, then the
guard of the second conditional failed, implying that either aj = 〈〉 or there
exists an e in A(k) with start(aj) ≤ start(e) and end(e) ≤ end(aj). In either
case, there is no element in neg(A(j),A(k)) with end time τ . If ai 6= 〈〉, then
ai = aj so we have ai ∈ A(j). Furthermore, the guard of the second conditional
holds and then according to state(i, τ+1) there is no e in A(k) with start(ai) ≤
start(e) and end(e) ≤ end(ai), and thus ai ∈ neg(A(j),A(k)). Since aj is the
only instance in A(j) with end time τ , we have valid(ai, neg(A(j),A(k), τ).

Case Ei = Ej;Ek: If ak = 〈〉 then e′ = 〈〉 after the first foreach construct,
and thus ai = 〈〉. It also means that there can be no e ∈ seq(A(j),A(k)) with
end(e) = τ , which concludes the proof. If ak 6= 〈〉 then pcorr(k, τ) implies that
either start(ak) = τ or start(ak) was in Sk at the start of this tick. According
to state(i, τ), this implies that (at the start of this tick) Qi ∪ {li} contained
an element in {e | e ∈ A(j) ∧ end(e) < start(ak)} with maximum start time
if that set is non-empty. We consider two subcases: If e′ = 〈〉 after the first
foreach contruct, the set was empty, meaning that there can be no element in
e ∈ seq(A(j),A(k)) with end(e) = τ . If e′ 6= 〈〉 after the first foreach contruct,
then ai = ak⊕e′ ensures that ai ∈ seq(A(j),A(k)). Furthermore, we know that
there is no e ∈ A(j) with end(e) < start(ak) and start(e′) < start(e). Thus,
there can be no e ∈ seq(A(j),A(k)) with start(ai) < start(e) and end(e) = τ .

Case Ei = Ej
τ ′ : If the conditional holds, we have aj ∈ tim(A(j), τ ′). Since aj is

the only instance in A(j) with end time τ , we have valid(aj, tim(A(j), τ ′), τ).
If the conditional fails, then there is no e in tim(A(j), τ ′) with end(e) = τ .

2

References

[1] H. Kopetz, Event-triggered versus time-triggered real-time systems, Research
Report 8/1991, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria (1991).

[2] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces
of publish/subscribe, ACM Comput. Surv. 35 (2) (2003) 114–131.

[3] P. A. Bernstein, Middleware: A model for distributed system services,
Communications of the ACM 39 (2) (1996) 86–98.

36

[4] P. R. Pietzuch, Hermes: A scalable event-based middleware, Ph.D. thesis,
University of Cambridge (February 2004).

[5] R. Gruber, B. Krishnamurthy, E. Panagos, The architecture of the READY
event notification service, in: P. Dasgupta (Ed.), Proceedings of the 19th
IEEE International Conference on Distributed Computing Systems, Middleware
Workshop, Austin, TX, USA, 1999.

[6] A. Mok, G. Liu, Efficient run-time monitoring of timing constraints, in:
Proceedings of the Third IEEE Real-Time Technology and Applications
Symposium (RTAS ’97), IEEE, Washington - Brussels - Tokyo, 1997, pp. 252–
262.

[7] C. Dousson, Alarm driven supervision for telecommunication networks: II- On-
line chronicle recognition, Annals of Telecommunications (1996) 501–508CNET,
France Telecom.

[8] C. Liebig, B. Boesling, A. Buchmann, A notification service for next-generation
it systems in air traffic control, in: GI-Workshop: Multicast-Protokolle und
Anwendungen, Braunschweig, Germany, 1999.

[9] S. Chakravarthy, D. Mishra, Snoop: An expressive event specification language
for active databases, Data Knowledge Engineering 14 (1) (1994) 1–26.

[10] S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-K. Kim, Composite events
for active databases: Semantics, contexts and detection, in: 20th International
Conference on Very Large Data Bases, Morgan Kaufmann Publishers, Santiago,
Chile, 1994, pp. 606–617.

[11] N. Gehani, H. V. Jagadish, O. Shmueli, COMPOSE: A system for composite
specification and detection, in: Advanced Database Systems, Vol. 759 of Lecture
Notes in Computer Science, Springer, 1993.

[12] S. Gatziu, K. R. Dittrich, Events in an active object-oriented database system,
in: Proc. 1st Intl. Workshop on Rules in Database Systems (RIDS), Springer-
Verlag, Edinburgh, UK, 1993.

[13] S. Gatziu, K. R. Dittrich, Detecting composite events in active database systems
using petri nets, in: Research Issues in Data Engineering (RIDE ’94), IEEE
Computer Society Press, Los Alamitos, Ca., USA, 1994, pp. 2–9.

[14] A. Hinze, A. Voisard, A parameterized algebra for event notification services, in:
Proceedings of the 9th International Symposium on Temporal Representation
and Reasoning (TIME 2002), Springer-Verlag, Manchester, UK, 2002.

[15] A. Galton, J. C. Augusto, Two approaches to event definition, in: Proc. of
Database and Expert Systems Applications 13th Int. Conference (DEXA’02),
Vol. 2453 of Lecture Notes in Computer Science, Springer-Verlag, 2002.

[16] R. A. Kowalski, M. J. Sergot, A logic-based calculus of events, New Generation
Computing 4 (1986) 67–95.

37

[17] J. F. Allen, G. Ferguson, Actions and events in interval temporal logic, Journal
of Logic and Computation 4 (5) (1994) 531–579.

[18] J. Carlson, Event pattern detection for embedded systems, Ph.D. thesis,
Mälardalen University (June 2007).

[19] J. Carlson, Event Pattern Detection for Embedded Systems — A Resource-
efficient Event Algebra, VDM Verlag, 2009.

[20] G. Liu, A. Mok, P. Konana, A unified approach for specifying timing constraints
and composite events in active real-time database systems, in: 4th IEEE Real-
Time Technology and Applications Symposium (RTAS ’98), IEEE, Washington
- Brussels - Tokyo, 1998, pp. 199–209.

[21] R. Adaikkalavan, S. Chakravarthy, SnoopIB: Interval-based event specification
and detection for active databases, Data Knowledge Engineering 59 (1) (2006)
139–165.

[22] J. Mellin, Resource-predictable and efficient monitoring of events, Ph.D. thesis,
Department of Computer Science, University of Skövde (June 2004).

[23] C. Sánchez, H. B. Sipma, M. Slanina, Z. Manna, Final semantics for Event-
Pattern Reactive Programs, in: First International Conference in Algebra and
Coalgebra in Computer Science (CALCO’05), Vol. 3629 of LNCS, Springer-
Verlag, 2005, pp. 364–378.

[24] C. Sánchez, M. Slanina, H. B. Sipma, Z. Manna, Expressive completeness of
an event-pattern reactive programming language., in: F. Wang (Ed.), FORTE,
Vol. 3731 of Lecture Notes in Computer Science, Springer, 2005, pp. 529–532.

[25] A. Demers, J. Gehrke, M. Hong, M. Riedewald, W. White, A general algebra
and implementation for monitoring event streams, Tech. Rep. TR2005-1997,
Cornell University (July 2005).

[26] A. Demers, J. Gehrke, M. Hong, M. Riedewald, W. White, Towards expressive
publish/subscribe systems, in: Advances in Database Technology - EDBT 2006,
10th International Conference on Extending Database Technology, Vol. 3896 of
Lecture Notes in Computer Science, Springer, 2006, pp. 627–644.

[27] J. Carlson, J. Mäki-Turja, M. Nolin, Event-pattern triggered real-time tasks,
in: 16th International Conference on Real-Time and Network Systems (RTNS),
2008, pp. 77–85.

38

