
REMES Tool-chain
∗

A Set of Integrated Tools for Behavioral Modeling and Analysis of Embedded

Systems

Dinko Ivanov
Faculty of Mathematics and Informatics

University “St.Kliment Ohridski”
James Bourchier Blvd. 5, 1164 Sofia, Bulgaria

dinko.ivanov@gmail.com

Marin Orlić
Faculty of Electrical Engineering and Computing

University of Zagreb
Unska 3, 10000 Zagreb, Croatia

marin.orlic@fer.hr

Cristina Seceleanu
Mälardalen Real-Time Research Centre

Mälardalen University
P.O. Box 883, 721 23 Västerås, Sweden

cristina.seceleanu@mdh.se

Aneta Vulgarakis
Mälardalen Real-Time Research Centre

Mälardalen University
P.O. Box 883, 721 23 Västerås, Sweden

aneta.vulgarakis@mdh.se

ABSTRACT

In this paper, we present a tool-chain for the REMES language,

which can be used for the construction and analysis of embedded

system behavioral models. The tool-chain consists of the follow-

ing tools: (i) a REMES editor for modeling behaviors of embedded

components, (ii) a REMES simulator to test timing and resource

behavior prior to formal analysis, and (iii) an automated transfor-

mation from REMES to Priced Timed Automata, needed for formal

analysis.

Categories and Subject Descriptors

I.6.4 [Computing Methodologies]: Simulation and Modeling—

Model Validation and Analysis; D.2.2 [Software Engineering]:

Design Tool and Techniques

General Terms

Design, Performance, Verification

Keywords

behavioral modeling, component-based software engineering, em-

bedded systems, formal analysis, simulation

1. INTRODUCTION
The top challenge in embedded systems (ES) design is the con-

struction of systems with predictable behavior. In contrast to desk-

top systems, the embedded behaviors encompass not only function-

ality but also behaviors generated by constrained resources (CPU,

∗
This work was supported by SSF via the strategic research centre

Progress, the European Union under the ICT priority of the 7th Re-
search Framework Programme in the context of the Q-ImPrESS research
project, the Croatian Ministry of science, education and sports via the re-
search project Software engineering in ubiquitous computing, and the Unity
Through Knowledge Fund via the Dices project. We would also like to
thank Ivo Petkov for developing the first version of the REMES editor.

Copyright is held by the author/owner(s).
ASE’10, September 20–24, 2010, Antwerp, Belgium.
ACM 978-1-4503-0116-9/10/09.

energy, or memory), or/and timing constraints. Hence, to ensure

the ES predictable behavior, one must employ analysis techniques,

such as simulation, or/and formal analysis of the system’s model

against various requirements.

As a first step towards achieving predictable systems, we have

developed a hierarchical, timed behavioral language with graphi-

cal appeal, fit for a component-based ES design perspective. The

crux of the language (see Figure 2), called the REsource Model

for Embedded Systems (REMES) [6], is its ability to capture the

resource-constrained and timing behavior of component-based ES,

besides their functionality. REMES is inspired by CHARON [2],

and, in comparison, treats resources as first-class modeling enti-

ties of discrete (e.g., memory) or continuous (e.g., energy) nature.

REMES models can be transformed into the formal Timed Au-

tomata (TA) [3], or Priced Timed Automata (PTA) [1, 4], where

one can compute the system’s worst-case/optimal resource-usage,

as well as trade-offs between possibly conflicting resource-driven

requirements. This is carried out by model-checking the resulted

formal models with Uppaal1, or/and Uppaal Cora2 tools.

?

REMES

behavioral 

model

REMES 

editor

createsuses

System 

designer

REMES

simulator
!

M2M

M2M

UppaalLite 

model

tests behavior

verifies

behavior

Uppaal / 

Uppaal Cora 

tools

Figure 1: The REMES tool-chain workflow.

In this paper, we present a set of REMES tools that can be em-

ployed for the construction and analysis of ES behavioral models.

Figure 1 illustrates the design flow implemented in our tool-chain.

The designer uses: (i) a REMES editor (section 2) for building

complex REMES models, (ii) a REMES simulator (section 3.1)

that lets one test the timing and resource consumption of embedded

1The Uppaal tool is available at http://uppaal.com/.
2The Uppaal Cora tool is available at http://www.cs.aau.dk/
~behrmann/cora/.



Figure 2: A screenshot of the REMES editor. A composite

mode ¶ consists of several submodes (atomic modes) · con-

nected by edges and conditional connectors ¸. The modes are

entered via their init- or entry-points ¹, and exited through

their exit-points º. Each mode can have a number of associ-

ated constants, variables, and resources », displayed in sepa-

rate compartments.

components, and (iii) an automated transformation from REMES

into PTA for formal analysis (section 3.2).

Giotto [5] is a related environment for ES design, which provides

an abstract model for the implementation of embedded real-time

control systems. Although Giotto uses timing and other platform-

related model annotations, it does not consider the resource-wise

system behavior, hence CPU, memory, energy constraints are not

modeled and formally analyzed.

2. THE REMES EDITOR
The REMES editor3 is a graphical environment for behavioral

modeling embedded components, in the semantics of the REMES

modeling language. The diagram editor is based on the Graphi-

cal Modeling Framework (GMF) and the Eclipse Modeling Frame-

work (EMF).

The REMES editor allows the user to easily create REMES ar-

tifacts such as atomic and composite modes, edges or conditional

connectors. Submodes and conditional connectors can be nested

inside composite modes. The user defines the control flow by cre-

ating edges between diagram elements. The action guards of the

edges are defined by in-place editing in the diagram. Basic checks

are performed to prevent the user from creating invalid models. The

user can define typed variables, constants and resources in separate

sections within the modes. The REMES diagram editor integrates

with the Eclipse properties view, which displays and edits context

sensitive information for the currently selected diagram element.

Filters can be applied over the REMES diagram to outline a partic-

ular aspect of the REMES model – behavior, timing or resource us-

age. Figure 2 shows a screenshot of the REMES editor displaying

3The REMES tool-chain is available at http://www.fer.hr/
dices/remes-ide.

some behavioral model. The editor can be distributed separately or

integrated with an architectural modeler (e.g., Pride4).

3. SIMULATION AND FORMAL ANALYSIS

OF REMES MODELS

3.1 The REMES simulator
Simulating and testing the system behaviors as they are being de-

signed can provide valuable input to the designer. Once completed,

REMES models can be model-checked in tools like Uppaal. We use

model-to-text transformations (M2T) to transform behaviors into

source code that simulates the modeled system. The transforma-

tion is performed over intermediate models created from REMES

diagrams that retain the internal behavior structure. The user can

then run the simulator which updates mode variables and resources

in each simulation round, based on passed time. The system de-

signer can visualize the mode transitions, the clock- and variable

changes in the simulator output.

3.2 Transforming REMES into PTA
The transformation of REMES models into PTA is implemented

by the model-to-model (M2M) transformation language ATL (At-

las Transformation Language). The basic transformation rules are

as follows: (i) a REMES diagram (see Figure 2) is transformed to

a network of PTA, (ii) a composite mode ¶ is transformed to a sin-

gle PTA, (iii) submodes ·, init-, entry-, and exit points, ¹ º, are

transformed to PTA locations, (iv) edges are copied to PTA edges,

(v) conditional connectors ¸ are removed in PTA, (vi) invariants

and guards referring to resources are translated to a PTA cost vari-

able, as a weighted sum of REMES resources (declared in »), and

(vii) an additional start location is added to each PTA to allow ini-

tialization.

The transformation rules applied to REMES diagrams result in

UppaalLite models representing the same behavior. A graphical

editor for UppaalLite models is provided, as a tool to visually in-

spect transformation results. Model files for both Uppaal (TA) and

Uppaal Cora (PTA) can be exported for formal verification and

analysis.

When using the REMES tool-chain within integrated develop-

ment environments, e.g., Pride, the transformation uses component

triggering information from architectural models, to insert appro-

priate synchronization channels into the resulting PTA.

4. REFERENCES
[1] R. Alur. Optimal Paths in Weighted Timed Automata. In Proceedings of

HSCC’01: Hybrid Systems: Computation and Control, pages 49–62. Springer,

2001.

[2] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Kumar, I. Lee, P. Mishra,

G. Pappas, and O. Sokolsky. Hierarchical Modeling and Analysis of

Embedded Systems. In Proceedings of the IEEE, 8(3):231–274, 1987.

[3] R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer

Science, 126(2):183–235, 1994.

[4] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and

F. Vaandrager. Minimum-Cost Reachability for Priced Timed Automata. In

Proceedings of HSCC’01, number 2034 in LNCS, pp. 147–161.

Springer–Verlag, 2001.

[5] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A Time-Triggered

Language for Embedded Programming. In Proceedings of the IEEE, pp.

166–184. Springer-Verlag, 2000.

[6] C. Seceleanu, A. Vulgarakis, and P. Pettersson. REMES: A Resource Model

for Embedded Systems. In Proceedings of ICECCS 2009. IEEE Computer

Society, June 2009.

4The Pride toolset is available at http://www.idt.mdh.se/
pride/.


