
A Flexible Tool for Evaluating Scheduling, Synchronization and Partitioning
Algorithms on Multiprocessors ∗

Farhang Nemati, Thomas Nolte
Mälardalen Real-Time Research Centre, Västerås, Sweden

{farhang.nemati,thomas.nolte}@mdh.se

Abstract

Multi-core platforms seem to be the way towards in-
creasing performance of processors. Single-chip multipro-
cessors (multi-cores) are today the dominating technology
for desktop computing. As the multi-cores are becoming
the defacto processors, the need for new scheduling and re-
source sharing protocols has arisen. There are two major
types of scheduling under multiprocessor/multi-core plat-
forms. Global scheduling, under which migration of tasks
among processors is allowed, and partitioned scheduling
under which tasks are allocated onto processors and task
migration is not allowed. The partitioned scheduling pro-
tocols suffer from the problem of partitioning tasks among
processors/cores, which is a bin-packing problem. Heuris-
tic algorithms have been developed for partitioning a task
set on multiprocessor platforms. However, taking such tech-
nology to an industrial setting, it needs to be evaluated such
that appropriate scheduling, synchronization and partition-
ing algorithms are selected.

In this paper we present our work on a tool for investi-
gation and evaluation of different approaches to schedul-
ing, synchronization and partitioning on multi-core plat-
forms. Our tool allows for comparison of different ap-
proaches with respect to a number of parameters such as
number of schedulable systems and number of processors
required for scheduling. The output of the tool includes a
set of information and graphs to facilitate evaluation and
comparison of different approaches.

1 Introduction

The multiprocessor architectures are getting an increas-
ing interest as the multi-cores offer higher performance and
are becoming defacto processors in practice. This arises
the need for new methods to take advantage of the multi-

∗This work was partially supported by the Swedish Foundation for
Strategic Research (SSF) via Mälardalen Real-Time Research Centre
(MRTC) at Mälardalen University.

core platforms. A multi-core processor is a combination
of two or more independent processors (cores) on a sin-
gle chip, also called single-chip multiprocessors. The dif-
ferent cores are connected to a single shared memory via
a shared bus. The cores typically have independent L1
caches and share an on-chip L2 cache. However, previ-
ously well-known and verified scheduling and synchroniza-
tion protocols with an assumption of uniprocessors can not
work properly on multi-cores, especially with the presence
of shared resources. The industry has already begun to mi-
grate towards multi-cores, although the existing scheduling
and synchronization protocols are not yet mature enough to
take advantage of the performance offered by multi-cores.

There have been several scheduling and synchroniza-
tion protocols developed in the domain of multiprocessors.
Mainly, two approaches for scheduling real-time systems
on multiprocessors exist; global and partitioned scheduling
[2, 1, 7, 9]. Under global scheduling, e.g., Global Earli-
est Deadline First (G-EDF), tasks are scheduled by a sin-
gle scheduler and each task can be executed on any proces-
sor. A single global queue is used for storing jobs and a
job can be preempted on a processor and resumed on an-
other processor, i.e., migration of tasks among processors
is permitted. Under a partitioned scheduling, tasks are stati-
cally assigned to processors and tasks within each processor
are scheduled by a uniprocessor scheduling protocol, e.g.,
Rate Monotonic (RM) and EDF. Each processor is associ-
ated with a separate ready queue for scheduling task jobs.

Partitioned scheduling protocols have been used more
often and are supported (with fixed priority scheduling)
widely by commercial real-time operating systems [14], be-
cause of their simplicity, efficiency and predictability. Be-
sides, the well studied uniprocessor scheduling and syn-
chronization methods can be reused for multiprocessors
with less changes (or no changes). However, partition-
ing (allocating tasks to processors) is known to be a bin-
packing problem which is a NP-hard problem in the strong
sense; hence finding an optimal solution in polynomial time
is not realistic in the general case. Thus, to take advan-
tage of performance offered by multi-cores, scheduling pro-

tocols should be coordinated with appropriate partitioning
algorithms. Heuristic approaches and sufficient feasibility
tests for bin-packing algorithms have been developed to find
a near-optimal partitioning [2, 7]. However, the schedul-
ing protocols and existing partitioning algorithms for mul-
tiprocessors (multi-cores) mostly assume independent tasks
while in real applications, tasks often share resources.

We have proposed a blocking-aware partitioning algo-
rithm [17, 18]. The assumption include presence of mutu-
ally exclusive shared resources. The heuristic partitions a
system (task set) on an identical shared memory single-chip
multiprocessor (multi-core) platform. In the context of this
paper the blocking-aware algorithm refers to an algorithm
that attempts to decrease blocking overheads by assigning
tasks to appropriate processors (partitions). This conse-
quently increases the schedulability of the system and may
reduce the number of processors. In contrast, a blocking-
agnostic algorithm refers to a bin-packing algorithm that
does not consider blocking parameters and does not attempt
to decrease the blocking overhead, although blocking times
are included in the schedulability test. Our blocking-aware
algorithm identifies task constraints, e.g., dependencies be-
tween tasks, timing attributes, and resource sharing, and ex-
tends the best-fit decreasing (BFD) bin-packing algorithm
with blocking time parameters. A similar heuristic has been
proposed in [14].

As the scheduling and synchronization protocols to-
gether with partitioning algorithms are being developed, the
industry needs to evaluate the different methods to choose
appropriate methods and apply them in their applications.
This arises the need for development of tools to facilitate in-
vestigation and evaluation of different approaches and com-
pare them to each other according to different parameters.
Hence, in this paper we present a tool which we have de-
veloped for evaluation of different scheduling, synchroniza-
tion protocols coordinated with different partitioning algo-
rithms. The output of the tool includes a set of informa-
tion and graphs to facilitate evaluation and comparison of
different approaches. We have implemented our blocking-
aware partitioning algorithm together with the algorithm
proposed in [14] and added them to the tool. The tool is
modular making it possible to easily add any new schedul-
ing, synchronization and partitioning algorithm. However,
in this paper the focus of the tool has been directed to par-
titioned scheduling and synchronization approaches as well
as partitioning heuristics while extending the tool to global
scheduling methods remains as a future work.

The rest of the paper is as follows: we present the task
and platform model in Section 2. We briefly explain our par-
titioning algorithms together with the existing algorithm in
Section 3. In Section 4 we present the tool. In Section 5 we
present some examples of the outputs of the tool in which
we have compared different partitioning algorithms.

1.1 Related Work

A study of bin-packing algorithms for designing dis-
tributed real-time systems is presented in [8]. The method
partitions software into modules to be allocated on hard-
ware nodes. In their approach they use two graphs; a graph
which models software modules and a graph that repre-
sents the hardware architecture. The authors extend the bin-
packing algorithm with heuristics to minimize the number
of bins (processors) needed and the bandwidth required for
the communication between nodes. However, their parti-
tioning method assumes independent tasks.

Liu et al. [15] present a heuristic algorithm for allo-
cating tasks in multi-core-based massively parallel systems.
Their algorithm has two rounds; in the first round processes
(groups of threads - partitions in this paper) are assigned to
processing nodes, and the second round allocates tasks in a
process to the cores of a processor. However, the algorithm
does not consider synchronization between tasks.

Baruah and Fisher have presented a bin-packing parti-
tioning algorithm (first-fit decreasing (FFD) algorithm) in
[3] for a set of sporadic tasks on multiprocessors. The tasks
are indexed in non-decreasing order based on their relative
deadlines and the algorithm assigns the tasks to the proces-
sors in first-fit order. The algorithm assigns each task τi to
the first processor, Pk for which both of following condi-
tions, under the Earliest Deadline First (EDF) scheduling,
hold:

Di −
∑

τj∈Pk

DBF ∗(τj , Di) ≥ Ci

and
1−

∑

τj∈Pk

uj ≥ ui

where Ci and Di specify worst-case execution time
(WCET) and deadline of task τi respectively, ui = Ci

Ti
,

and

DBF ∗(τi, t) =
{

0 if t < Di;
Ci + ui(t−Di) otherwise.

The algorithm, however, assumes independent tasks.
In the work presented by Lakshmanan et al. in [14] they

investigate and analyze two alternatives of execution con-
trol policies (suspend-based and spin-based remote block-
ing) under multiprocessor Multiprocessor Priority Ceiling
Protocol (MPCP) [19]. They have developed a blocking-
aware task allocation algorithm (an extension to BFD) and
evaluated it under both execution control policies.

In their partitioning algorithm, the tasks that directly or
indirectly share resources are put into what they call bun-
dles (in this paper we call them macrotasks) and each bun-
dle is tried to be allocated onto a processor. The bundles
that can not fit into any existing processors are ordered by
their cost, which is the blocking overhead that they intro-
duce into the system. Then the bundle with minimum cost

is broken and the algorithm is run from the beginning. How-
ever, their algorithm does not consider blocking parameters
when it allocates the current task to a processor, but only
its size (utilization). Furthermore, no relationship (e.g., as a
cost based on blocking parameters) among individual tasks
within a bundle is considered which could help to allocate
tasks from a broken bundle to appropriate processors to de-
crease the blocking times. However, according to our ex-
perimental results performed by the our tool, their heuristic
performs slightly better than blocking-agnostic algorithm,
and our algorithm performs significantly better than both.

In the context of multiprocessor synchronization, the
first protocol was MPCP presented by Rajkumar in [19],
which extends PCP [20] to multiprocessors hence allow-
ing for synchronization of tasks sharing mutually exclu-
sive resources using partitioned fixed priority scheduling
(FPS) protocols. Our partitioning algorithm attempts to de-
crease blocking times under MPCP and consequently de-
crease worst case response times which in turn may re-
duce the number of needed processors. Gai et al. [13, 12]
present MSRP (Multiprocessor SRP), which is a P-EDF
(Partitioned EDF) based synchronization protocol for mul-
tiprocessors. The shared resources are classified as either (i)
local resources that are shared among tasks assigned to the
same processor, or (ii) global resources that are shared by
tasks assigned to different processors. In MSRP, tasks syn-
chronize local resources using SRP [1], and access to global
resources is guaranteed a bounded blocking time. Lopez et
al. [16] present an implementation of SRP under P-EDF.
Devi et al. [10] present a synchronization technique under
G-EDF. The work is restricted to synchronization of non-
nested accesses to short and simple objects, e.g., stacks,
linked lists, and queues. In addition, the main focus of the
method is on soft real-time systems.

Block et al. [4] present FMLP (Flexible Multi-
processor Locking Protocol), which is the first syn-
chronization protocol for multiprocessors that can
be applied to both partitioned and global scheduling
algorithms, i.e., P-EDF and G-EDF. An implemen-
tation of FMLP has been described in [5]. How-
ever, although in a longer version of [4] (available at
http://www.cs.unc.edu/˜anderson/papers/rtcsa07along.pdf),
the blocking times have been calculated, but to our
knowledge there is no schedulability test for FMLP.

Recently, a synchronization protocol under fixed priority
scheduling, has been proposed by Easwaran and Andersson
in [11], but they focus on a global scheduling approach.

2 Task and Platform Model

The tool is capable of performing evaluations by both
fixed priority and dynamic scheduling scheduling protocols.
The tasks can also share resources. Thus the task model
is assumed as a task set that consists of n sporadic tasks,

τi(Ti, Ci, ρi, {ci,p,q}) and τi(Ti, Ci, {ci,p,q}) for dynamic
and fixed priority scheduling protocols respectively, where
Ti is the minimum inter-arrival time between two succes-
sive jobs of task τi with worst-case execution time Ci and
ρi (in fixed priority scheduling task model) as its priority.
The tasks share a set of resources, R = {Rq} which are
protected using semaphores. The set of critical sections, in
which task τi requests resources in R is denoted by {ci,p,q},
where ci,p,q indicates the maximum execution time of the
pth critical section of task τi in which the task locks re-
source Rq ∈ R. Critical sections of tasks should be sequen-
tial or properly nested. The deadline of each job is equal to
Ti. A job of task τi, is specified by Ji. The utilization factor
of task τi is denoted by ui where ui = Ci/Ti.

The tool also assumes that the multiprocessor (multi-
core) platform is composed of identical, unit-capacity pro-
cessors (cores) with shared memory. The task set is parti-
tioned into partitions {P1, . . . , Pm}, and each partition is
allocated onto one processor (core), thus m represent the
minimum number of required processors.

3 Included Partitioning Algorithms

In this section we briefly present the partitioning algo-
rithms we have developed and added to the tool. Please
observe that the tool is flexible and any new partitioning al-
gorithm can be added to the tool easily.

We have implemented and added three partitioning algo-
rithms: (i) a blocking-aware algorithm which we proposed
in [18], (ii) a similar blocking-aware algorithm proposed
in [14] and (iii) a blocking-agnostic algorithm. We have
explained these algorithms in details in [18].

Our blocking-aware algorithm is an extension to the
BFD algorithm. In a blocking-agnostic BFD algorithm,
bins (processors) are ordered in non-increasing order of
their utilization and tasks are ordered in non-increasing or-
der of their size (utilization). The algorithm attempts to al-
locate the task from the top of the ordered task set onto the
first processor that fits it (i.e., the first processor on which
the task can be allocated while all processors are schedula-
ble), beginning from the top of the ordered processor list.
If none of the processors can fit the task, a new processor
is added to the processor list. At each step the schedulabil-
ity of all processors should be tested, because allocating a
task to a processor can increase the remote blocking time
of tasks previously allocated to other processors and may
make the other processors unschedulable. This means, it is
possible that some of the previous processors become un-
schedulable even if a task is allocated to a new processor,
which makes the algorithm fail.

Our algorithm attempts to decrease the blocking times
of tasks by partitioning a task set on processors based on
heuristics. This generally increases the schedulability of a
task set which may reduce the number of partitions (proces-

sors). The algorithm attempts to allocate the tasks that di-
rectly or indirectly share resources onto the same processor.
Tasks that directly or indirectly share resources are called
macrotasks, e.g., if tasks τi and τj share resource Rp and
tasks τj and τk share resource Rq , all three tasks belong to
the same macrotask.

The algorithm performs partitioning of a task set in two
rounds and the result will be the output of the round with
better partitioning results. Each round allocates tasks to the
processors in a different strategy. When a bin-packing algo-
rithm allocates an object (task) to a bin (processor), it usu-
ally allocates the object in a bin that fits it better, and it does
not consider the unallocated objects that will be allocated
after the current object. The rational behind the two rounds
is that the heuristic tries to consider both past and future by
looking at tasks allocated in the past and those that are not
allocated yet. In the first round the algorithm considers the
tasks that are not allocated to any processor yet; and tries
to take as many as possible of the best related tasks (based
on remote blocking parameters) with the current task. On
the other hand, in the second round it considers the already
allocated tasks and tries to allocate the current task onto the
processor that contains best related tasks to the current task.
In our tool, for more precise schedulability analysis, it al-
ways performs response time analysis [6] to check schedu-
lability test of a task set.

We have also implemented and added the partitioning al-
gorithm proposed in [14] which is similar to our blocking-
aware algorithm. Their algorithm, similarly to our algo-
rithm, attempts to group tasks in macrotasks and allocate
each macrotask on a processor. The macrotasks that can not
fit onto processors are ordered in the order of the cost of
breaking them. The cost of breaking a macrotask is defined
based on the estimated cost (blocking overhead) introduced
into the tasks by transforming a local resource into a global
resource (i.e., the tasks sharing the resource are allocated to
different processors). The macrotask with minimum break-
ing cost is picked and is broken in two pieces such that the
size of one piece is as close as the largest utilization avail-
able among processors. If the fitting is still not possible a
new processor is added and the whole algorithm is repeated
again. However, their algorithm does not consider blocking
parameters when it allocates a task from a broken macro-
task to a processor, but only its utilization, i.e. the tasks are
ordered in order of their utilization only. On the other hand,
our algorithm assigns a weight which besides the utilization
includes the blocking terms as well. Besides, in our heuris-
tic, we have defined an attraction function, which attracts
the most attracted tasks to the picked task from its broken
macrotask, and attempts to allocate them on the same pro-
cessor.

4 The Tool

In this section we present our evaluation and partitioning
tool.

4.1 The Structure

The tool has been developed in an object-oriented man-
ner and every concept has been treated as an object, e.g.,
tasks, critical sections, resources, processors, etc.

We aimed to make the tool flexible to be able to eas-
ily add any partitioning, scheduling and synchronization
(lock-based) algorithm. Thus, we have separated the de-
velopment in three major parts (packages) as shown in
Figure 1; Scheduling Analysis package, Partitioning Algo-
rithms package, and Task Generation package.

Scheduling Analysis

Partitioning Algorithms Task Generation

Figure 1. The three major packages

When a partitioning algorithm attempts to assign a task
to a processor it should test the schedulability of the all pro-
cessors, hence it uses the classes in the scheduling anal-
ysis to perform the test. As the schedulability analysis is
different depending on different scheduling or synchroniza-
tion protocols (e.g., different blocking time terms), several
classes are provided in the scheduling analysis package to
facilitate the schedulability test in an object-oriented man-
ner. This makes the package reusable and extendable as the
new scheduling and synchronization protocols are added.

4.1.1 The Scheduling Analysis package

This package contains classes associated with schedul-
ing protocols, e.g., RM, as well as synchronization pro-
tocols, e.g., MPCP. Besides classes used for schedulabil-
ity test for each scheduling protocol, the package contains
classes to facilitate calculation of blocking times of tasks to
be used in the schedulability analysis. Under a multiproces-
sor synchronization protocol, any task, τi, may face mainly
two types of blocking times; (i) the local blocking times by

interference from the lower priority tasks assigned to the
same processor as τi’s processor, (ii) the remote blocking
times introduced by the tasks (with any priority) assigned
to different processors than of τi’s processor.

To easily and in a modular manner calculate the local and
remote blocking times of each task, in this package a task
class includes a local processor class and a set of remote
processors, i.e., the local processor is the processor that the
task is assigned to and the rest of processors are contained
in the remote processors set. Under partitioned scheduling
approaches the total blocking time of a task is the summa-
tion of the local and the global blocking terms. Depending
on the used synchronization protocol, the local and remote
blocking terms of the task on each processor may be dif-
ferent, e.g., under MPCP the total blocking time (Bi) of
task τi, consists of five blocking terms, of which one is lo-
cal and four different remote blocking terms [19]. Figure 2
shows the local processor and the remote processors associ-
ated with the task class. This structure facilitates calculating
each term of the blocking time of a task from each proces-
sor, i.e., the local blocking terms introduced from the local
tasks (tasks allocated on the same processor as τi’s proces-
sor) are calculated using local processor class and the re-
mote blocking terms from remote tasks (tasks allocated on
a different processor than of τi’s processor) are calculated
by the remote processors. Each scheduling and synchro-
nization protocol uses these classes differently as they may
have different blocking time terms.Task+Bi()Local Processor+LocalBlocking() Remote Processor Set+TotalGlobalBlocking()Remote Processor+GlobalBlocking()

Figure 2. The local and remote blocking times
calculation

For more precise schedulability test in scheduling proto-
cols, in this package response times analysis is performed

by calculating the worst case response time of each task.
Thus, another output of the package is the worst case re-
sponse times of the tasks within a task set.

4.1.2 The Partitioning Algorithms package

This package is used to partition a task set to be allocated
onto a multiprocessor platform. Any partitioning algorithm
can easily be plugged into the package. The only require-
ment of the a new algorithm is that it has to have the task
set, the target scheduling and synchronization protocols as
inputs. The output of the algorithm will be a set processors
each of which contains the allocated tasks. Each allocated
task contains its calculated worst case response time.

The purpose of a partitioning may be different. The goal
can be to plug in a partitioning heuristic to reduce the re-
quired number of processors. On the other hand, the goal
of a partitioning algorithm may be to distribute the tasks
fairly onto processors to balance the utilization of proces-
sors, thus, the output of each algorithm include the utiliza-
tion of each processor as well.

We have developed a blocking-aware partitioning heuris-
tic (Section 3). We have implemented our algorithm to-
gether with a similar blocking-aware algorithm and plugged
into the partitioning algorithms package. The objective of
those algorithms is to reduce the blocking times of tasks by
co-allocating the tasks sharing the same resources as far as
possible. Furthermore, we have implemented a BFD bin-
packing algorithm (blocking-agnostic algorithm) and in-
serted this algorithm into the package.

Any partitioning algorithm needs to test schedulability
of each processor each time it allocates a task or a group of
tasks on a processor. The algorithms, within this package
use the schedulability analysis provided in the scheduling
analysis package. This separates the partitioning algorithms
from the schedulability analysis making it easy to develop
any new partitioning algorithms and scheduling protocols
independently and insert them into the tool.

4.1.3 The Task Generation package

This package is used for task set generation in two dif-
ferent ways. The tool can be used for two different pur-
poses; (i) the schedulability analysis and partitioning of a
task set defined by a user, or (ii) evaluation and comparison
of different scheduling, synchronization and partitioning al-
gorithms according to a number of randomly generated task
sets. This package provides two different ways of task set
generation. One way is to provide the user to enter the tasks,
critical sections, resources, and relationships between tasks
and resources. In this case the tool partitions the task set
using the selected partitioning algorithm and the selected
schedulability test. The second way is to generate a num-
ber of task sets according to several given parameters (Fig-
ure 3). In this case the tool uses the generated task sets to

perform evaluation and comparison of different scheduling,
synchronization and partitioning algorithms.

As shown in Figure 3, for the random task set genera-
tion two groups of parameters are provided. The first group
includes the desired number of task sets, total workload,
the number of tasks per processor and maximum execu-
tion time of each task (maximum WCET). The minimum
WCET is limited by the maximum number and length of
critical sections per each task, e.g., with maximum num-
ber of critical section set to 5 and maximum length of any
critical section set to 6 the minimum execution time of any
task will be 30. The second group of parameters for the
task sets are resource sharing parameters, i.e., the number
of resources shared among tasks of each task set, minimum
number, maximum number of critical sections per each task,
minimum length and maximum length of each critical sec-
tion. The random task generation provides the possibility
of generating task sets by combination of the parameters
which can be used to evaluate algorithms.

Figure 3. The randon task generation

The random task generation process performed by this
package is as follows.

The total workload presents the number of fully utilized
processors (e.g., Total Utilization = 300 means 3 fully uti-
lized processors). The utilization of each of the proces-
sors (utilization = 100%) is randomly divided among the
given number of tasks per processor, e.g., for 3 tasks per
processor a possible utilization assignment of the tasks of
a processor can be 25%, 45% and 30% respectively. Usu-
ally for generating task sets, utilization and periods are ran-

domly assigned to tasks and worst case execution times of
tasks are calculated based on them. However, in our random
task set generation package, the worst case execution times
(WCET) of tasks are randomly assigned and the period of
each task is calculated based on its utilization and WCET.
The reason is that we had to restrict that the WCET of a
task not to be less than the maximum length of its critical
sections restricted by the maximum number of critical sec-
tions per each tasks and the maximum length of each critical
section.

The number of critical sections for each task is randomly
chosen from the range between the defined minimum and
maximum number of critical sections. The length of each
critical section is chosen the same way. For each critical
section the accessed resource is randomly chosen from the
defined resources, e.g, given the number of resources = 2
(R1 and R2), the resource accessed by any critical section
is randomly chosen from {R1, R2}.

5 Example: An Evaluation and Comparison
of Partitioning Algorithms

In this section we present an experimental example
which we have performed by our tool. In this example
we have compared the outputs of the two blocking-aware
heuristics as well as the blocking-agnostic bin-packing al-
gorithm. To ease referring to our blocking-aware algorithm
and the similar algorithm proposed in [14] in this example
we refer them as BPA and SPA respectively. The scheduling
and synchronization protocols under which the algorithms
were evaluated were the RM and the MPCP respectively.

For a number of systems (task sets), we have compared
the performance of the algorithms in two aspects; (i) Given
a number of systems, what is the total number of systems
that each of the algorithms can schedule, (ii) what is the
processor reduction aspect of the two algorithms.

5.1 Task Set Generation

Using the random task set generation, we generated sys-
tems (task sets) for different workloads. Since we have
limited the maximum number of critical sections to 6 and
the maximum length of any critical section to 6 time units,
hence the execution time of each task should be greater than
36 time units. The maximum execution time of any task was
defined as 150 time units.

We ran the evaluation tool with respect to different con-
figurations with the input parameters as follows.

• Workload (3, 4, 6, or 8 fully utilized processors).

• The number of tasks per processor (3, 6 or 9 tasks per
processor).

• The number of resources (2, 4 or 6).

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

BPA SPA Agnostic

Cs. Len.Cs. Num.Res. Num.
Sys. Num.

(a) Workload: 3 processors, 3 tasks per processor

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

BPA SPA Agnostic

Cs. Len.Cs. Num.Res. Num.
Sys. Num.

(b) Workload: 3 processors, 6 tasks per processor

Figure 4. Output the tool for performance of the algorithms with respect to task sets each algorithm
schedules.

• The range of the number of critical sections per task (1
to 2, 3 to 4 or 5 to 6 critical sections per task).

• The range of length of critical sections (1 to 2, 3 to 4,
or 5 to 6).

For each configuration, we chose the number of systems
to be 100.000, and combining the parameters of configura-
tions (432 different configurations), the total number of sys-
tems generated for the experiment sums up to 43.200.000.

With the generated systems we were able to evaluate the
partitioning algorithms with respect to different factors, i.e.,
various workloads (number of fully utilized processors),
number of tasks per processor, number of shared resources,
number of critical sections per task, and length of critical
sections.

Figure 4 shows the examples of the output regarding the
number of schedulable systems by each algorithm, i.e., the
first aspect of comparison of the partitioning algorithms.
The vertical axis shows the total number of systems that
the algorithms could schedule successfully. The horizontal
axis shows three factors in three different lines; the bottom
line shows the number of shared resources within systems
(Res. Num.), the second line shows the number of critical
sections per task (Cs. Num.), and the top line represents the
length of critical sections within each task (Cs. Len.), e.g.,
Res. Num.=4, Cs. Num.=1-2, and Cs. Len.=1-2 represents
the systems that share 4 resources, the number of critical
sections per each task are between 1 and 2, and the length
of these critical sections are between 1 and 2 time units.

The second aspect for comparison of performance of the
algorithms is the processor reduction aspect. The exam-
ples of the output of the tool for illustrating this aspect are
shown in Figure 5. For each algorithm, the total number
of schedulable systems are ordered in order of the number
of required processors. The schedulable systems of an algo-

050000100000150000200000250000300000350000400000450000500000

3 4 5 6 7 8

BPA SPA Agnostic

Processors
Scheduled Syste
ms

(a) 6 tasks per processor

0%5%10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95%100%

3 4 5 6 7 8

BPA SPA Agnostic

Processors
Scheduled Syste
ms

(b) 9 tasks per processor (as percentage of the total scheduled systems)

Figure 5. Task sets each algorithm sched-
ules, ordered by required number of proces-
sors. Workload: 3 processors.

rithm with each number of processors can also be illustrated
as percentage of the total scheduled systems.

6 Conclusion

In this paper we have presented our work on a tool that
we have developed for evaluation of different scheduling
and synchronization protocols coordinated with different
partitioning algorithms. The output of the tool includes a
set of information and graphs to facilitate evaluation and
comparison of different approaches.

Moreover, we briefly presented our blocking-aware par-
titioning algorithm proposed in [18] together with a similar
algorithm proposed in [14]. We have implemented the two
approaches together with an usual bin-packing (blocking-
agnostic) algorithm and added all three approaches to the
tool. The tool has the possibility to evaluate and com-
pare different multiprocessor scheduling, synchronization
and partitioning algorithms. The tool has been developed
in an object-oriented manner making the tool flexible. Any
new scheduling, synchronization or partitioning algorithm
can be developed and added to the tool easily. We have
presented a few examples of the illustrated outputs of the
tool for evaluation and comparison of the partitioning algo-
rithms included in the tool.

The focus of the tool is currently multiprocessor parti-
tioned scheduling protocols and extending the tool to global
scheduling and synchronization protocols remains as a fu-
ture work. Another plan for future work is to extend the
tool to simulate the execution of a task set on a multi-core
platform and visualize the simulated timing behavior of the
task set. In the domain of multiprocessor scheduling and
synchronization we will also work on investigating global
and hierarchical scheduling protocols and appropriate syn-
chronization protocols.

References

[1] T. Baker. Stack-based scheduling of real-time processes.
Journal of Real-Time Systems, 3(1):67–99, 1991.

[2] T. Baker. A comparison of global and partitioned EDF
schedulability test for multiprocessors. Technical report,
2005.

[3] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. In proceedings of 26th
IEEE Real-Time Systems Symposium (RTSS’05), pages 321–
329, 2005.

[4] A. Block, H. Leontyev, B. Brandenburg, and J. Ander-
son. A flexible real-time locking protocol for multipro-
cessors. In proceedings of 13th IEEE Conference on Em-
bedded and Real-Time Computing Systems and Applications
(RTCSA’07), pages 47–56, 2007.

[5] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and
J. Anderson. Synchronization on multiprocessors: To block
or not to block, to suspend or spin? In proceedings of 14th
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS’08), pages 342–353, 2008.

[6] A. Burns. Preemptive priority based scheduling: An ap-
propriate engineering approach. In Principles of Real-Time
Systems, pages 225–248. Prentice Hall, 1994.

[7] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Ander-
son, and S. Baruah. A categorization of real-time multipro-
cessor scheduling problems and algorithms. In Handbook
on Scheduling Algorithms, Methods, and Models. Chapman
Hall/CRC, Boca, 2004.

[8] D. de Niz and R. Rajkumar. Partitioning bin-packing algo-
rithms for distributed real-time systems. Journal of Embed-
ded Systems, 2(3-4):196–208, 2006.

[9] U. Devi. Soft real-time scheduling on mul-
tiprocessors. In PhD thesis, available at
www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[10] U. Devi, H. Leontyev, and J. Anderson. Efficient synchro-
nization under global EDF scheduling on multiprocessors.
In proceedings of 18th IEEE Euromicro Conference on Real-
time Systems (ECRTS’06), pages 75–84, 2006.

[11] A. Easwaran and B. Andersson. Resource sharing in global
fixed-priority preemptive multiprocessor scheduling. In
proceedings of 30th IEEE Real-Time Systems Symposium
(RTSS’09), pages 377–386, 2009.

[12] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and
P. Marceca. A comparison of MPCP and MSRP when shar-
ing resources in the janus multiple processor on a chip plat-
form. In proceedings of 9th IEEE Real-Time And Embedded
Technology Application Symposium (RTAS’03), pages 189–
198, 2003.

[13] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory uti-
lization of real-time task sets in single and multi-processor
systems-on-a-chip. In proceedings of 22nd IEEE Real-Time
Systems Symposium (RTSS’01), pages 73–83, 2001.

[14] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated
task scheduling, allocation and synchronization on multipro-
cessors. In proceedings of 30th IEEE Real-Time Systems
Symposium (RTSS’09), pages 469–478, 2009.

[15] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating tasks in
multi-core processor based parallel systems. In proceedings
of Network and Parallel Computing Workshops, in conjunc-
tion with IFIP’07, pages 748–753, 2007.

[16] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds
for EDF scheduling on real-time multiprocessor systems.
Journal of Real-Time Systems, 28(1):39–68, 2004.

[17] F. Nemati, T. Nolte, and M. Behnam. Blocking-
aware partitioning for multiprocessors. Technical re-
port, Mälardalen Real-Time research Centre (MRTC),
Mälardalen University, March 2010. Available at
http://www.mrtc.mdh.se/publications/2137.pdf.

[18] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time
systems on multiprocessors with shared resources. In In sub-
mition, 2010.

[19] R. Rajkumar. Synchronization in Real-Time Systems: A Pri-
ority Inheritance Approach. Kluwer Academic Publishers,
1991.

[20] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance
protocols: An approach to real-time synchronization. Jour-
nal of IEEE Transactions on Computers, 39(9):1175–1185,
1990.

