FASTCHART — A Fast Time Deterministic CPU and Hardware
Based Real-Time-Kernel

Lennart Lindh!
University of Erlangen-Niirnberg

Institute for Computer Aided Circuit Design

Prof. Miller-Glaser
Wetterkreuz 13
D-8520 Erlangen

Abstract

The designer of hard realtime systems requires deter-
ministic behaviour of the system. Today there are
problems because of the hardware and the real-time
kernel. So one gets only statistic statements regarding
timing. This article describes a new hardware siruc-
ture that is delerministic, fast and includes a real-
time kernel in hardware. Bui this structure is limited
to small real-time systems

1 Introduction

With today’s hardware it is not possible to get abso-
lute timing for a real-time system, one can get only
statistic timing. The first problem are the non deter-
ministic instruction cycles of the CPU because there
is pipeline, cache or DMA ([1]). The next problem in
calculating absolute timings are the interrupts to the
CPU and the unknown number of task switches, that
gives one statistic time delays. And the last problem
1s that the real-time operating system has different
execution times for various numbers of tasks.

Time deterministic implies that we need a constant
execution time for instructions, the real-time func-
tions and operating system. Therefore, we need a
simple system without pipeline, cache and interrupts.
But if we omit these things we get slower in overall
execution time. For that reason we implement the
Real-Time-Kernel (RTK) in hardware. Because of
that we get a second benefit, we get deterministic ex-
ecution time of real-time functions and task switch
without any CPU time delay.

2 Overview of FASTCHART

Before we give an overview over FASTCHART we have
to describe the simplifications we have made. First we
consider only small systems with less than or equal to

!Currently guest reseacher at University of Erlangen-
Niirnberg. Home address : University of Eskilstuna/Vasteras,
Institute of Data and Electronics, P.O. Box 11, 72103 Visteras,
Sweden

0-8186-2212-1/91/0000/0036$01.00 © 1991 IEEE

Frank Stanischewski
University of Erlangen-Nirnberg
Institute for Computer Science (IMMD)
Lehrstuhl fiir Rechnerstrukturen (3)
Martensstrae 3
D-8520 Erlangen

email : stani@immd3.informatik.uni-erlangen.de

64 tasks and 8 priorities. This number is a free choice
to get closer to a realistic implementation. Secondly
we have reduced the number of possible state transi-
tions for the tasks. This leads to figure 1.

From figure 1 one can infer that we have only 3 real-
time function calls for each task. These are:

e Activate Task : activates another task.

e Terminate Task : terminates itself, afterwards
it can only be activated by another task.

e Delay Task : deactivates task for a constant
time.

Now we can introduce the functions of FASTCHART.
In FASTCHART there is a small RTK implemented as
described in figure 1, which runs automatically and
concurrent to the task. Therefore we had to divide
our hardware into two parallel running parts. One is
the normal Central Processing Unit CPU, the other
is the Real-Time Unit RTU (see figure 2).

Instead of the known ways to implement real-time-
systems (e.g. [6], [7], [8]), FASTCHART contains
the whole real-time-operating-system in hardware.
That means there are no microcoded or ROM-
based operating-system-instructions like TRON ([5])
or Transputer or in [7]. Also FASTCHART is designed
for general real-time-applications instead of the sys-
tem described in [8].

The RTU contains the Task Control Blocks TCB’s,
the scheduler, the Ready Queue and the Wait- and
Terminate-Queue. It also includes the system timing.
In our CPU we have implemented a RISC-CPU-core
with a load-store-architecture and the ability to do a
task switch after the execution of every instruction.
Task switch means that the CPU can switch to an-
other task during one cycle. Therefore we need two
register-files, which are exchanged only during this
task-switch. Also the CPU has the above described
real-time function calls as instructions to synchronize
with the RTU and send parameters to the RTU.

Terminate

Figure 1: State diagram

TcB

REG 10

REG 0N

MAIN MEMORY

TASK CODE AND
TASK DATA

Figure 2: Overview over FASTCHART

3 The Central Processing Unit CPU

Our purpose in designing the central processing unit
was to obtain a CPU with a deterministic time be-
haviour. One deterministic CPU-concept we consid-
ered was the FORTH-machine that we initially con-
sidered as a basis for this architecture ([2],[3]). First
we changed the data stack to a register-file to meet
our need for a fast and easy task-switch. The sec-
ond modification is the return stack, that we located
outside the CPU in the main memory. We thereby
obtain the following programming model with a Pro-
gram Counter PC, Status Register SR and a register-
file with 8 registers, where the first register R1 has
the function of the Return Stack Pointer.

As can be seen in figure 3, the main memory space
for each task is divided into four parts. First we have
the task program code space, the memory space for
task global data, then space for as many data stacks

37

as are needed and lastly in the task memory space
the return address stack.

The instruction set of the CPU is similar to
a LOAD-STORE-architecture without indirect ad-
dressing modes. The CPU recognizes instructions
for ALU and Shifter operations, Load or Store from
or to main memory, conditional and unconditional
branches and call and return subroutines. Addition-
ally the above described function calls are in the in-
struction set. Also we have the possibility to combine
instructions as for example :

LOAD R3, (R4)+

This operation loads a data addressed by register R4
from main memory in register R3 and also increments
the value in R4. So we can obtain a high concurrency
in our CPU that accelerates execution time compared
with the lack of pipeline and cache.

MAIN MEMORY

| ~—

RETURN ADRES
[T DATA STACK(S)])
m
GLOBAL DATA N
(7]
P
TASK CODE

N\

CPU REGISTER

[FLAGS] STATUS REGISTER

1 PC] PROGRAM COUNTER

STACK POINTER FOR

= RETURN ADRES

GENERAL
PURPURSE
REGISTER

R1 - R7

Figure 3: The Programming Modell of FASTCHART

The normal instructions need only one CPU cycle.
Instructions which have an additional main memory
access need two cycles. An example of such an in-
struction is Call Subroutine:
CSR $ 1000 Call Subroutine at $1000

In the first CPU cycle the instruction is fetched and
decoded, in the second cycle the value of the Program
Counter is pushed onto the return address stack and
the Program Counter is loaded with the subroutine
address. The stack pointer is modified automatically.

Figure 4 shows the logical schematic of the CPU. The
shaded parts in this schematic are the double existing
registers which are exchanged during a task-switch.
Like every RISC there is no microcode and therefore
the instruction decoder is very simple. It controls the
program execution and data manipulation units. Also
it takes the control of the synchronization between the
CPU and RTU. It decodes the real-time functions and
delivers them to the RTU. A further function of the
decoder is set and reset of the Not-Switch-Flag. The
job of the Not-Switch-Flag is first to suppress task-
switching in the execution of two- or three-cycle in-
structions and second to avoid task-switching in crit-
ical program parts. During these program parts the
flag is set and reset from the program.

4 The Real-Time Unit RTU

In our Real-Time Unit RTU we implement a com-
plete real-time-kernel in hardware. It can manage 64
concurrent tasks independently of the CPU. Therefore
we copy our task state diagram directly in hardware.
For every state in the diagram there is a block in the
RTU. Additionally there is a Control Unit that con-
trols the overall execution of te RTU and receives the
synchronize instructions from CPU.

38

The shaded part in the RTU schematic stands for the
execution state and the task-switch part of RTU. The
register named OLD contains the task ID of the cur-
rent task. The other register NEW contains the ID of
the next task. After a task switch, when the register-
files are exchanged, the values of all registers of the
old task are written back to TCB memory in the lo-
cation given by OLD-task-ID multiplied by TCB size.
Then the contents of task register NEW are trans-
ferred to register OLD. After that a new task ID is
fetched from Ready Queue. Using this new ID the
registers are addressed from this task in TCB mem-
ory and transfered to the register-file. The values in
TCB memory contain the register RO to R7, the status
register SR, the program counter PC and the instruc-
tion latch IL for every task. As one can infer from
figure 5, the registers NEW and OLD also store the
priorities of the tasks. Therefore it is not necessary
to look in TCB memory when a task changes its state
and we need its priority in the new state.

There two ways the current (OLD) task can change its
state; first by itself, second when a higher privileged
task is in Ready Queue. In the second case the ID
from register OLD is written into the Ready Queue
before the contents of this register is overwritten with
the value of NEW. If the current task changes its state
by itself, the ID is not written into Ready Queue, but
in Wait- or Terminate-Queue.

The scheduler algorithm in the Ready Queue is a
static priority-driven algorithm and it is implemented
with 8 FIFO's, one for each priority level with depth of
8. On demand - that means after a task switch when
the contents of the NEW register are transferred to
OLD - the Ready Queue gives at this time the highest
priority ID to the NEW register. The highest priority
ID is detected by looking for the highest privileged
non empty FIFO and the first ID in that FIFO is used.

inlemal databus
Internal adressbus

Registerfile

Addressbus

‘-4**
3

Databus

SET/RESET FLAG
NOT-SWITCH FLAG

Figure 4: The CPU schematic

If a task changes to ready state, the priority of this
task is used to select the correct priority-FIFO and
the ID is put into this FIFQ. So one only needs the 1D
of a task in the Ready Queue because the priority of
that task is encoded in the number or priority of the

FIFO.

If a task terminates, its inactive status is written to
the Terminate Queue. The Terminate Queue is imple-
mented as a RAM where each ID has its own location.
Each location contains a flag INAC which indicates
whether the task is inactive or not. If a task is ter-
minated via a function call, the flag INAC is set and
a task switch is initiated. If a task activates another
inactive task, the function call needs two parameters,
the ID of the inactive task and the new priority. Then
the flag INAC for the activated task is reset and the 1D
of this task and the priority from function call is writ-
ted to Ready Queue. If the activated task is already
active, an error code is given back to CPU.

39

When the current task will delay for a number of time
ticks, the CPU gives the delay time to the RTU and
then a task switch is initiated. A down-counter in
the Wait Queue is loaded with the Delay Time. The
down-counter in the Wait Queue is selected by the ID
of the delayed task. Therefore 64 counters are needed
in the Wait Queue. The down-counters count with
the system time tick and every counter gives a signal
when it is empty. With this signal the Control Unit
is activated to transfer the task ID given by the num-
ber of the counter to the Ready Queue as described
above. After the transfer, the Control Unit gives an
acknowledge and the down-counter is set to an inac-
tive status. If at the same time more than one counter
gives a signal, the counters are served one after the
other in order of priority.

5 Conclusions
Our approach with this article is to show that a real-

READY QUEUE D

oo =

: TIME TICK WAIT L
=00 T | CONTROL .
CAERNEIRRS RN i . g DELAY TIME - 1D
' - ONIT H o
oD 0| PRIOATY I 1
k4 : N
TERMINATE)
TCB'SIZE ACTIVATE 1D . PROR
SWITCH > -
BEGISTERCOUNTER < TERMINATE 0 e 1D >
vor
ADR SWITCHFLAG s
TCcB
MEMORY .
— —P»! REGISTER
FILE 1/0
REGISTER
FILE 0/1

Figure 5: The RTU schematic

time-kernel can be implemented in hardware and also
that a time deterministic CPU can be built. Our
first model is a simulation model in a logic synthesis
language that we try to implement direct in hard-
ware. We estimate that we need 100,000 gates if
we implement 16-bit FASTCHART in one gate ar-
ray. But for our first implementation we want to use
smaller gate arrays because so we can change much
more easier parts or functions of FASTCHART. Also
we are implementing a programming environment for
FASTCHART which seems to be much simpler than
other environments.

In our simulation model the exchange of the task reg-
ister contents from register file to TCB memory and
vice versa is possible in one CPU cycle. This is very
difficult to implement we think, because one has only
two possibilities to reach this. One possibility is that
the RTU runs much more faster than the CPU, so the
data can exchange successively through a small data
path. The other possibility is to widen the data path
and use less cycles to exchange data. Both possibilites
are not optimal so one has to make compromizes.

In our future work we want to expand the real-time
functions of FASTCHART for functions like rendez-
vous. If it is possible we are looking for a cooperation
to implement FASTCHART in one chip. Also we want
to design systems with more than one CPU and with

a communication coprozessor.

References

[1] John A. Stankovic and Keirti Ramanmritham,
Hard Real-Time Systems, pages 361-370, Com-
puter Society Press of the IEEE, 1988

[2] C.H. Ting, Footsteps in an empty valley, Offete
Enterprises, 1986

[3] RTX2000, Data Sheet, Harris Corporation, 1988
[4] The Transputer Databook, INMOS, 1988

[5) Ken Sakamura (ed.), TRON Project 1989,
Springer, 1989, ISBN 0-387-70050-1

[6] Joachim Roos, The Design of a Real-Time Copro-
cessor for ADA Tasking, pages 17.0-17.12, NOR-
SILC/NORCHIP Seminar 1989, Stockholm, Swe-
den

[7] John Tinnon, Real-Time Operating System Puts
Its Execution on Silicon, pages 137-140, Electron-
ics, April 21, 1982

(8] T. Juntunen, J. Kiveld, A. Reinikka, M. Sipola,
J.-P. Soininen, K. Tiensyrja, T. Tikkanen, Real-
Time Structured Analysis in System Level Design
of Embedded ASICs, pages 449-454, Micropro-
cessing and Microprogramming (24), 1988

