
  

  

Abstract—This paper proposes a new approach to discover 
knowledge about key features together with their degrees of 
importance in the context of case-based reasoning. A 
hierarchical memetic algorithm is designed for this purpose to 
search for the best feature subsets and similarity models at the 
same time. The objective of the memetic search is to optimize 
the possibility distributions derived for individual cases in the 
case library under a leave-one-out procedure. The information 
about the importance of selected features is revealed from the 
magnitudes of parameters of the learned similarity model. The 
effectiveness of the proposed approach has been shown by 
evaluation results on the benchmark data sets from the UCI 
repository and in comparisons with other machine learning 
techniques.  

 

I. INTRODUCTION 

Feature selection is attaining increasing importance in 
many research areas such as system modelling, pattern 
classification, and machine learning [1-3]. Progress in data 
storage and database technologies has led to the availability 
of huge data sets with large numbers of variables/features in 
countless practical situations. However, not all presented 
features need to be taken into account in the modelling 
procedure. Some features may be irrelevant, redundant, or 
contaminated by heavy noise. Feature selection aims to 
identify a subset of key attributes from an initial set of 
candidates by exploiting the information in the given data 
set. It leads to improved performance of learning, lower 
input dimensionality, reduced computational cost, as well as 
better understanding of the systems in consideration.   

Existing approaches to feature selection can be divided 
into two categories, called filter and wrapper respectively. 
Filter approaches [4-5] try to assess feature goodness as an 
intrinsic property independent of the modelling algorithm. 
Usually they attempt to detect possible dependency between 
a pair of variables based on the given data. But individual 
features are evaluated in isolation of each other without 
considering the influence of others. In contrast, wrapper 
approaches [6-8] use a modelling algorithm to evaluate 
feature subsets in terms of the modelling accuracy. Hence 
they may yield less prediction error than filtering 
approaches. The weakness of the wrapper approach is that, 
since a group of features is assessed as a whole, we can’t 
distinguish different levels of importance among the features 
that are selected.   

Indeed knowledge about feature importance plays a 
crucial role in building similarity models for case-based 
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reasoning (CBR) [9]. As noted in [10], a competent 
similarity model should function as a knowledge container 
by encoding domain knowledge. So far the mainstream of 
the works involving similarity models has been focused on 
feature weighting [11-12]. The method is to assign a 
numerical weight to every case feature in accordance with its 
importance, and thereby different features will have different 
influences (with different weights) in similarity matching 
between cases. Many interesting approaches have been 
developed to adjust parameters of similarity models 
automatically, including incremental learning [13-14], 
probability-based estimation [15-16], adaptation in terms of 
case-ranking [17-18], utility approximation [19], as well as 
accuracy optimization [20-21]. However, none of the 
aforementioned methods includes feature selection in 
similarity modelling, which makes it hard ´for CBR systems 
to tackle large databases with many irrelevant and noisy 
data.   

In this paper we propose a new approach to discovering 
the knowledge about key features together with their degrees 
of importance in the context of case-based reasoning. A 
hierarchical memetic algorithm is designed for this purpose 
to search for the best feature subsets and similarity models at 
the same time. The objective of the memetic search is to 
optimize the possibility distributions derived for individual 
cases in the case library under a leave-one-out procedure. 
The information about importance of selected features is 
revealed from the magnitude of parameters of the learned 
similarity model. The proposed method is superior to the 
filter approach by considering the combined effects of 
features in assessing feature significance. Moreover, our new 
approach is also computationally more efficient than the 
wrapper approach in that it does not require the procedure of 
similarity modelling to evaluate a candidate subset of 
features. 

The paper is organized as follows. Section II gives a 
general perspective of CBR. In section III we introduce the 
structure of the similarity model addressed in this paper. 
Then, in section IV, a memetic algorithm approach is 
discussed for selecting features and optimizing similarity 
models simultaneously within a CBR framework. The 
evaluation results are presented in section V, and finally 
concluding remarks are given in section VI. 

II.  CASE-BASED REASONING: A GENERAL 
PARADIGM  

Case-Based Reasoning (CBR) attempts to solve new 
problems via analogy with previously solved ones. The 
underlying tenet is that similar problems have similar 
solutions. Based on this principle, the case-based approach 
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exploits information of previous similar cases in solving a 
new problem. A general CBR paradigm addressed in this 
paper is shown in Fig. 1. It starts with similarity matching 
between a query problem and known cases in the case 
library. A properly defined similarity function has to be 
employed at this stage. As the evaluated similarity values 
reflect the utility or appropriateness of solutions of the 
known cases, they offer important information to be utilized 
in the next step of decision fusion to figure out the final 
solution for the problem in query. 
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Fig. 1. An overview of case-based reasoning 

       
In decision fusion, we are concerned with possibilities of 

candidate solutions for a query problem given the cases in 
the case library. We follow the inference rule that “The more 
similar the two cases are, the greater possibility there is that 
their solutions are similar” [22]. Further, solutions of cases 
are represented by discrete and mutually exclusive labels in 
the context of this paper. We define the degree of possibility 
contributed by a single case Ci (from the case library) by 
                                                  

⎩
⎨
⎧

≠
=

=
bCLabelif
bCLabelifCQSim

bP
i

ii
i )(0

)(),(
)(                                (1)                                         

 
where b represents a candidate label, and Sim(Q, Ci) denotes 
the degree of similarity between query problem Q and case 
Ci. It bears mentioning that the possibility in (1) indeed 
represents a degree of confirmation, which is supported by 
the observation that case Ci has a label identical to b. More 
specifically, we will have Pi(b)=0 if Ci has a label different 
from b, whereas it merely means that no support information 
for label b is derived from case Ci rather than the 
impossibility of b as the solution to query Q.  
   Next we consider the overall possibility distribution in 
light of the whole case library. For calculating the overall 
possibility Poss(b) for label b, we only need to focus on a 
subset of cases which have that label. This is owing to the 
fact that all other cases in the case library contribute no 
information for the possibility of label b, as indicated in Eq. 
(1). In principle, Poss(b) should be established as a 
disjunctive combination of the possibility estimates derived 
from the individual cases belonging to this case subset. In 
fuzzy set theory, the disjunctive combination can be done by 
using the t-conorms. In view of this, the overall possibility 

distribution Poss(b) is formulated with a general logical 
operator (t-conorm) as follows: 
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where  { }bCLabelS ib == )(i  denotes the set of indices of 
the cases having label b.  

Note that a t-conorm is a mapping [ ] [ ]1,01,0: 2
a⊕  

which is commutative, associative, monotone increasing 
with both arguments, as well as satisfies the boundary 
conditions: xx =⊕ 0 and 11 =⊕x . In this paper, we 
employ the operator: yxyxyx ⋅−+=⊕ ),(  as the 
implementation of the t-conorm in deriving the possibility 
distribution for candidate labels. Other common forms of t-
conorms include the max-operator and bounded summation 

[ ]yxyx +=⊕ ,1min),( .  

   Finally we select the label *b  that has the largest 
possibility value from the total possibility distribution as the 
estimated label for query Q, i.e., 
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It is clear from equations (1) to (3) that similarity degrees 

play a central role in possibility assessment and thereby exert 
crucial influence on the final outcomes. Creating competent 
similarity assessment involves both feature selection and 
construction of similarity models based on relevant features. 
Later in this paper we will discuss how feature selection and 
similarity modelling can be conducted simultaneously via 
hierarchical memetic algorithms.  

III. THE  STRUCTURE  OF SIMILARITY MODELS 
This section introduces the structure of similarity models 

that are employed in this paper for similarity modelling and 
identifying feature importance. The point of departure is the 
assumption that the similarity of a known case with respect 
to a new problem is dependent upon the difference between 
the problem and the case’s condition part, both described 
with relevant features. The less distinction between both, the 
more similarity is to be expected. This motivates us to 
consider differences in values on relevant features when 
addressing similarity assessment. 
   We suppose that n relevant features have been identified 
for the underlying domain. A case Ci in the case base is 
indexed by an (n+1) tuple: ( )iiniii sxxxC ,,,, 21 L=  where 

inii xxx ,,, 21 L  denote the feature values in this case and si 
is the corresponding label for the case. Similarly we use an 
n-tuple ( )nyyy ,,, 21 L  to represent a query problem Q with 
yj referring to the value of the jth feature in the problem 
description. All feature values in both the library cases and 
the query problem are normalized for further analysis. 
   The task now is to compare the condition part of case Ci 
and the query problem Q to obtain a similarity assessment. 
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The key role herein is taken by the difference of values 
ijjij xyd −=  in single features in the sense that every 

difference as such contributes more or less to a degradation 
of the similarity. In the following, we start with local 
matching functions taking (relevant) feature differences as 
arguments, and then we present a method that combines 
local matching values into a global similarity degree. 

A. Compatibility Measure on Single Features 
At the first step we perform matching on single features to 

see how the values in the condition part of the case are 
compatible with their counterparts in the query problem. The 
degree of compatibility is assessed by a compatibility 
measure mij for each feature. Intuitively the value of mij   
depends on the feature difference dij: it has its maximum 
value of unity with identical feature values. It is otherwise 
reduced by a magnitude approximately proportional to the 
feature difference. This leads to modelling of the 
compatibility measure mij by a triangular function as: 
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where wj is the function parameter that must be specified 
appropriately in advance.  

 

mij  
 

-1.0 1.0   0 dij  
Fig. 2a. The compatibility measure with its parameter set to unity 
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Fig. 2b. The compatibility measure with its parameter less than unity 
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Fig. 2c. The compatibility measure with its parameter greater than unity 

It is worth noting that the parameter wj in equation (4) 
reflects the information about the importance of the 
associated feature. This is illustrated in Figs. 2a, 2b, and 2c 
respectively, where a variation of compatibility measures is 
created by three distinct parameter values. Fig. 2a shows a 
compatibility measure characterized by wj =1, which means 
that the value of compatibility becomes zero only when the 
largest feature difference occurs. Reducing the value for wj 
to less than unity, we arrive at the matching function in Fig. 
2b which can be considered as related to some more critical 
feature. The function in that figure decreases more quickly 
with feature differences and thus reaches a zero degree 
earlier than the function in Fig. 2a. In contrast, a situation 
with a relatively weak feature can be modelled by setting the 
parameter greater than unity as shown in Fig. 2c. The 
function drawn there appears less sensitive to the feature 
difference and remains non-zero even when the largest 
difference is encountered.                    

B. Global Similarity in View of Multi-Criteria Satisfaction  
  After performing feature matching on every relevant 
feature between case Ci and query problem Q, we get a 
collection of compatibility values (mi1, mi2, …, min). One can 
consider that the need of compatibility in a relevant feature 
is one criterion to be satisfied for the case to be similar with 
the query problem. In particular, the value mij can be seen as 
a degree of satisfaction of the criterion Gj: 
 
      The jth feature in the case is compatible with the jth 

feature in the query problem 

The next step is to aggregate the satisfaction degrees for 
those criteria in single features to yield an overall similarity 
assessment.  
   Since the similarity between a case and the query problem 
is contingent upon the compatibility in each of the relevant 
features, satisfying all the criteria Gj (j=1…n) is required for 
the case to be evaluated as similar. This leads to expressing 
the global similarity criterion as equivalent to a logical 
statement as follows: 
 
Sim(Q, Ci) = G1 and G2 and G3 and … and Gn               (5) 
 

The t-norm in fuzzy set theory can be applied here to 
implement the logical and connections between the 
individual criteria. In this paper we use the MIN operator as 
a concrete form for the t-norm, thus we obtain the similarity 
assessment as an overall satisfaction of the criteria by  

 

[ ])(min),(
1 ijij

n

ji dmCQSim
=

=                                          (6)     

    
Finally we would like to add that, although the similarity 

of a case demands its compatibility on all relevant features 
with the query problem, the semantics of compatibility 
varies from feature to feature as indicated by the parameter 
wj in (4). Different features are allowed to impose different 
influences on the assessed similarity because the 
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compatibility measures utilized in (6) are subject to variable 
semantic meanings. 

IV. SIMILARITY LEARNING VIA HIERARCHICAL 
MEMETIC ALGORITHM 

Here we mean by similarity learning a process consisting 
of two tasks. The first task is selection of a group of relevant 
features out of candidates, while the second task is creation 
of a concrete similarity model (identifying parameters of the 
compatibility functions) using the selected features as 
inputs. Owing to the inherent interplay between the above 
two tasks, it is not desired to perform them sequentially. 
Instead we develop a hierarchical memetic algorithm to 
enable the conduction of these two tasks simultaneously. 
The objective of the memetic algorithm is to optimize the 
combined effect of selected features and parameters of the 
compatibility functions from a global perspective. 

Memetic algorithms (MAs) [23] are population-based 
metaheuristic search methods inspired by the principle of 
natural evolution and Dawkin’s notion of memes capable of 
local adaptation. MAs work very similarly as GAs [24] but 
embed local search to allow for self-refinements of 
individuals. According to the idea of Lamarckian learning 
[25], local search can be done on all or part of the 
population to reach a local optimum or improve the current 
solution. Next we discuss the issues of coding scheme, 
fitness evaluation, local search mechanism, as well as 
genetic operators (crossover and mutation), which present 
key components for our memetic-based similarity learning.  

Coding Scheme. We need to define a chromosome to 
encode individual solutions including both selected features 
and parameters of compatibility functions on features. Since 
the information about feature subset and the parameters of 
compatibility functions are on different levels, we suggest a 
hierarchical formulation of chromosomes for the MA. A 
chromosome as such consists of two different kinds of 
genes: control genes and parametric genes. A control gene at 
the higher level takes a binary bit and corresponds to a 
feature candidate, with bit “1” signifying that the 
corresponding feature is relevant and selected whereas bit 
“0” meaning that the feature is irrelevant and discarded. On 
the other hand, parametric genes at the lower level are 
actually real-valued numbers which represent the parameters 
of the local compatibility functions. 

 
 
 
 
 
 
 
 
        Fig. 3. Hierarchical chromosome representation 
 
Important is to note that the parametric genes are 

controlled by the corresponding control genes. When a 
control gene is assigned with bit “1”, the feature is selected 
and thus the associated parametric gene at the lower level is 

activated. Otherwise, if the control gene has bit “0”, the 
related parametric gene is deactivated and becomes useless 
as the corresponding feature is not adopted in similarity 
modelling. As illustration, an example of hierarchical 
chromosomes is shown in Fig. 3, where the first and fourth 
parametric genes are deactivated by their control genes, 
hence only three parameter values for the compatibility 
functions are derived from this chromosome. 

Fitness Evaluation. The ‘‘leave-one-out’’ procedure is 
used here to evaluate the selected features and the associated 
similarity model. Every case from the case base is treated as 
a query and its possibility distribution is derived based on 
the rest cases in the case library. By i

HCPoss  we denote the 
possibility distribution derived for case Ci based on the other 
cases and using the selected features and similarity model 
encoded by hierarchical chromosome HC. An ideal and 
perfect possibility distribution should yield the highest 
possibility value (unity) on the true label, si, of the case 
while zero degrees on all other labels. With thoughts as this, 
we define the accuracy of the possibility distribution i

HCPoss  
as follows 
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   Further, the fitness of chromosome HC is assessed as the 
mean accuracy of the possibility distributions of all cases in 
the case library. Thus, we get the fitness function as written 
as 
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where K is the number of cases in the case library.  
Here the number of selected features is not taken into 

account in the fitness function. Since different importance of 
selected features will be reflected from identified similarity 
parameters, it is not necessary to enforce reducing input 
dimension during a search process. We leave this task later 
for users to decide suitable trade-offs between accuracy and 
complexity based upon the ranking of selected features.     

Local Search. We perform local search to a part of 
chromosomes in the population. Each individual 
chromosome has a probability for undergoing this. When 
search is applied to an individual, exploration is made 
randomly in its neighbouring area to find better or local 
optimal solutions. So far we have implemented local 
refinements on control genes. The search begins with 
randomly picking a control gene (binary bit) to reverse. If 
the original gene is “1”, it is changed to “0” meaning that the 
corresponding feature is no longer selected. Otherwise an 
original gene “0” will be flipped to “1” signifying that an 
additional feature has been included. Once a control gene is 
changed, we get a new chromosome which is subsequently 
evaluated by the fitness function in (8). If the new 
chromosome is assessed to be better, it replaces the original 
one, otherwise the old solution remains unchanged. Next we 
randomly pick a second control gene for trial, and this 
procedure is repeated for a fixed number of times to 

0 1 1 0 1 0.6 0.2 0.9 0.7 1.5

Control genes Parametric genes 

W=(0.2, 0.9, 1.5) 
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complete the local search for an individual chromosome in 
the population. 

Crossover. For every pair of hierarchical chromosomes to 
be combined, randomly choose gene positions. Each gene 
position is chosen with the probability of 0.5. Interchange 
the gene values at the chosen positions between the two 
parent chromosomes to generate child chromosomes. 

Mutation. Because of the distinct nature of control and 
parametric genes, different mutation schemes are needed. 
Since the parametric genes are actually real-numbers, a small 
mutation with high probability is more meaningful. 
Therefore it is so designed that each parametric gene 
undergoes a perturbation. The magnitude of this perturbation 
is determined by a Gaussian density function. For the binary 
control genes, mutation  is  simply  to  inverse a gene, 
replacing ‘1’ with ‘0’ and vice versa. Every control gene 
undergoes a mutation with a quite low probability. 

Finally the memetic algorithm designed for combined 
feature selection and similarity modelling is summarized as 
follows: 
Step 0 (Initialisation): Randomly generate an initial 
population containing Npop hierarchical chromosomes each 
of which consists of both control and parametric genes.  
Step 1 (Fitness evaluation): Decode each hierarchical 
chromosome in the population into the associated similarity 
model. Use that similarity model to estimate the possibility 
distribution of every case in the case base in a ‘‘leave-one-
out’’ procedure. The mean accuracy of the possibility 
distributions of all cases, as defined in (8), is regarded as the 
fitness score for the chromosome under evaluation. 
Step 2 (Local search): Apply the local search mechanism to 
a part of the population. Every individual in the population 
has a probability to be selected for self-improvement via 
local search.   
Step 2 (Termination test): If  the stop-condition is not 
satisfied, then go to Step 4, else terminate the search 
procedure and return the best individual in the population.  
Step 4 (Offspring generation): Apply the genetic operators 
to generate NPOP offspring to form the new generation, based 
on selection, crossover, and mutation. Go to step 1. 

V.  EXPERIMENTAL EVALUATIONS 
The proposed MA based approach is well applicable to 

learning similarity for a CBR system based on the case 
library. In order to evaluate the effectiveness of this 
approach, we show here the experiments results on two 
benchmark data sets: wine data and sonar data, downloaded 
from the UCI Machine Learning Repository [26]. The wine 
and sonar data sets have 13 and 60 features respectively, 
both of them consist of cases categorized into discrete 
classes or labels. The experiments were made on both data 
sets to find out relevant features as system inputs and to 
identify optimal parameters in the similarity model 
concurrently. The magnitudes of the identified parameters in 
the similarity model also reflect the importance of the 
selected features. 

We did 10-fold cross-validation in examining the 
capability of the proposed approach on both of the data sets. 
A given data set was divided into 10 parts of equal size. In 
each of the 10 trials, nine parts were used as the case base 
while the rest part was used as the test set comprising query 
problems. The search with MA was conducted on the case 
bases to find the best combination of feature subset and 
similarity model by maximizing the fitness function defined 
in (8). The learned similarity model was then utilized by the 
CBR system to classify the problems in the test set. The 
results of the cross-validations on the two data sets are 
illustrated in Table I, where the accuracy on test data and the 
numbers of selected features are presented. 
TABLE I: RESULTS OF 10-FOLD CROSS-VALIDATIONS 

Data sets Accuracy on test data Selected features 
Wine 0.955 9.8 
Sonar 0.851 31.9 

  
Next we compare our results with those of some other 

machine learning techniques on the same data sets. Such 
comparisons are demonstrated in Tables II and III, for Wine 
and Sonar data respectively. The classification accuracy of 
the other works was also obtained in a 10-fold cross-
validation procedure but using all the presented features as 
inputs. 
TABLE II: COMPARISON ON WINE DATA 

Methods Accuracy on test data Input number 
This paper 0.955 9.8 
Ref. [27] 0.901 13 
Ref. [28] 0.937 13 
Ref. [29] 0.916 13 
Ref. [30] 0.938 13 
Ref. [31] 0.944 13 

SOP-3 [32] 0.935 13 
MOP-3 [32] 0.970 13 

TABLE III: COMPARISON ON SONAR DATA 
Methods Accuracy on test data Input number 

This paper 0.851 31.9 
Ref. [27] 0.746 60 
Ref. [28] 0.715 60 
Ref. [29] 0.841 60 
Ref. [30] 0.822 60 
Ref. [31] 0.754 60 

SOP-3 [32] 0.757 60 
MOP-3 [32] 0.825 60 

 
It can be seen from the tables that, on the Wine data, we 

obtained a reduction of input dimension with 25% in 
comparison to using all presented features as inputs as done 
by the other works. On the Sonar data, the input reduction 
was even more dramatic with almost 50%, which implies a 
considerably large decrease of the complexity of the system. 
Regarding accuracy, our method achieved the best result on 
the Sonar data among all the works though roughly half of 
the features were discarded therein. On the Wine data, the 
accuracy from this paper ranks the second best among all the 
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methods and appears very close to the best result from 
MOP-3 [32]. All these give clear evidence of the capability 
of our proposed method for dimension reduction and 
performance improvement, in particular when the number of 
features in the original data sets is very large.      

VI. CONCLUSION 
This paper proposes a novel approach based on a  

Hierarchical Memetic Algorithm (HMA) for combined 
feature selection and similarity modelling in a case-based 
reasoning context. The key of the designed HMA lies in the 
hierarchical formulation of chromosome that consists of 
control genes and parametric genes. The control genes 
correspond to a hypothesis for whether a given feature is 
relevant or not, while the parametric genes are associated 
with real-valued parameters in the similarity model. Further, 
a control gene at the higher level overrides the 
corresponding parametric gene at the lower level. The 
benefit of this hierarchical structure is that it enables 
selection of relevant features and searching for similarity 
parameters by the memetic algorithm in a concurrent 
manner. The objective of the memetic algorithm is to 
optimize the possibility distributions estimated for cases in 
the case library under a leave-one-out procedure. 

The benefits of this proposed approach are two-fold. First, 
it introduces a new aspect of feature selection for similarity 
learning, which is a topic under-researched in CBR research. 
To our knowledge, this paper presents a first attempt to 
integrate feature selection and similarity modelling for a 
CBR system. Secondly, it contributes a new and effective 
approach for feature selection based on a case-based 
paradigm. The merit of our approach is that it improves the 
complexity of wrapper by not requiring repeated modelling 
given a feature subset. On the other hand, it also reveals the 
importance of selected features by the identified parameter 
values, such that feature ranking would be possible with our 
approach. 
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