

Abstract—This paper proposes a new approach to discover
knowledge about key features together with their degrees of
importance in the context of case-based reasoning. A
hierarchical memetic algorithm is designed for this purpose to
search for the best feature subsets and similarity models at the
same time. The objective of the memetic search is to optimize
the possibility distributions derived for individual cases in the
case library under a leave-one-out procedure. The information
about the importance of selected features is revealed from the
magnitudes of parameters of the learned similarity model. The
effectiveness of the proposed approach has been shown by
evaluation results on the benchmark data sets from the UCI
repository and in comparisons with other machine learning
techniques.

I. INTRODUCTION

Feature selection is attaining increasing importance in
many research areas such as system modelling, pattern
classification, and machine learning [1-3]. Progress in data
storage and database technologies has led to the availability
of huge data sets with large numbers of variables/features in
countless practical situations. However, not all presented
features need to be taken into account in the modelling
procedure. Some features may be irrelevant, redundant, or
contaminated by heavy noise. Feature selection aims to
identify a subset of key attributes from an initial set of
candidates by exploiting the information in the given data
set. It leads to improved performance of learning, lower
input dimensionality, reduced computational cost, as well as
better understanding of the systems in consideration.

Existing approaches to feature selection can be divided
into two categories, called filter and wrapper respectively.
Filter approaches [4-5] try to assess feature goodness as an
intrinsic property independent of the modelling algorithm.
Usually they attempt to detect possible dependency between
a pair of variables based on the given data. But individual
features are evaluated in isolation of each other without
considering the influence of others. In contrast, wrapper
approaches [6-8] use a modelling algorithm to evaluate
feature subsets in terms of the modelling accuracy. Hence
they may yield less prediction error than filtering
approaches. The weakness of the wrapper approach is that,
since a group of features is assessed as a whole, we can’t
distinguish different levels of importance among the features
that are selected.

Indeed knowledge about feature importance plays a
crucial role in building similarity models for case-based

Authors are with the School of Innovation, Design, and Engineering,
Mälardalen University, Västerås, SE-72123 Sweden (phone: +46-21-
151716; fax: +46-21-103110; e-mail: ning.xiong@mdh.se,
peter.funk@mdh.se).

reasoning (CBR) [9]. As noted in [10], a competent
similarity model should function as a knowledge container
by encoding domain knowledge. So far the mainstream of
the works involving similarity models has been focused on
feature weighting [11-12]. The method is to assign a
numerical weight to every case feature in accordance with its
importance, and thereby different features will have different
influences (with different weights) in similarity matching
between cases. Many interesting approaches have been
developed to adjust parameters of similarity models
automatically, including incremental learning [13-14],
probability-based estimation [15-16], adaptation in terms of
case-ranking [17-18], utility approximation [19], as well as
accuracy optimization [20-21]. However, none of the
aforementioned methods includes feature selection in
similarity modelling, which makes it hard ´for CBR systems
to tackle large databases with many irrelevant and noisy
data.

In this paper we propose a new approach to discovering
the knowledge about key features together with their degrees
of importance in the context of case-based reasoning. A
hierarchical memetic algorithm is designed for this purpose
to search for the best feature subsets and similarity models at
the same time. The objective of the memetic search is to
optimize the possibility distributions derived for individual
cases in the case library under a leave-one-out procedure.
The information about importance of selected features is
revealed from the magnitude of parameters of the learned
similarity model. The proposed method is superior to the
filter approach by considering the combined effects of
features in assessing feature significance. Moreover, our new
approach is also computationally more efficient than the
wrapper approach in that it does not require the procedure of
similarity modelling to evaluate a candidate subset of
features.

The paper is organized as follows. Section II gives a
general perspective of CBR. In section III we introduce the
structure of the similarity model addressed in this paper.
Then, in section IV, a memetic algorithm approach is
discussed for selecting features and optimizing similarity
models simultaneously within a CBR framework. The
evaluation results are presented in section V, and finally
concluding remarks are given in section VI.

II. CASE-BASED REASONING: A GENERAL
PARADIGM

Case-Based Reasoning (CBR) attempts to solve new
problems via analogy with previously solved ones. The
underlying tenet is that similar problems have similar
solutions. Based on this principle, the case-based approach

Combined Feature Selection and Similarity Modelling in Case-Based
Reasoning Using Hierarchical Memetic Algorithm

Ning Xiong, Peter Funk

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 1537

exploits information of previous similar cases in solving a
new problem. A general CBR paradigm addressed in this
paper is shown in Fig. 1. It starts with similarity matching
between a query problem and known cases in the case
library. A properly defined similarity function has to be
employed at this stage. As the evaluated similarity values
reflect the utility or appropriateness of solutions of the
known cases, they offer important information to be utilized
in the next step of decision fusion to figure out the final
solution for the problem in query.

Case
Library

Similarity
Assessment

?

Decision
Fusion

Similarity
degrees

SolutionCase Matching Query

Fig. 1. An overview of case-based reasoning

In decision fusion, we are concerned with possibilities of

candidate solutions for a query problem given the cases in
the case library. We follow the inference rule that “The more
similar the two cases are, the greater possibility there is that
their solutions are similar” [22]. Further, solutions of cases
are represented by discrete and mutually exclusive labels in
the context of this paper. We define the degree of possibility
contributed by a single case Ci (from the case library) by

⎩
⎨
⎧

≠
=

=
bCLabelif
bCLabelifCQSim

bP
i

ii
i)(0

)(),(
)((1)

where b represents a candidate label, and Sim(Q, Ci) denotes
the degree of similarity between query problem Q and case
Ci. It bears mentioning that the possibility in (1) indeed
represents a degree of confirmation, which is supported by
the observation that case Ci has a label identical to b. More
specifically, we will have Pi(b)=0 if Ci has a label different
from b, whereas it merely means that no support information
for label b is derived from case Ci rather than the
impossibility of b as the solution to query Q.
 Next we consider the overall possibility distribution in
light of the whole case library. For calculating the overall
possibility Poss(b) for label b, we only need to focus on a
subset of cases which have that label. This is owing to the
fact that all other cases in the case library contribute no
information for the possibility of label b, as indicated in Eq.
(1). In principle, Poss(b) should be established as a
disjunctive combination of the possibility estimates derived
from the individual cases belonging to this case subset. In
fuzzy set theory, the disjunctive combination can be done by
using the t-conorms. In view of this, the overall possibility

distribution Poss(b) is formulated with a general logical
operator (t-conorm) as follows:

)()(bPbPoss iSi b∈
⊕= (2)

where { }bCLabelS ib ==)(i denotes the set of indices of
the cases having label b.

Note that a t-conorm is a mapping [] []1,01,0: 2
a⊕

which is commutative, associative, monotone increasing
with both arguments, as well as satisfies the boundary
conditions: xx =⊕ 0 and 11 =⊕x . In this paper, we
employ the operator: yxyxyx ⋅−+=⊕),(as the
implementation of the t-conorm in deriving the possibility
distribution for candidate labels. Other common forms of t-
conorms include the max-operator and bounded summation

[]yxyx +=⊕ ,1min),(.

 Finally we select the label *b that has the largest
possibility value from the total possibility distribution as the
estimated label for query Q, i.e.,

[])(maxarg* bPossb
b∀

= (3)

It is clear from equations (1) to (3) that similarity degrees

play a central role in possibility assessment and thereby exert
crucial influence on the final outcomes. Creating competent
similarity assessment involves both feature selection and
construction of similarity models based on relevant features.
Later in this paper we will discuss how feature selection and
similarity modelling can be conducted simultaneously via
hierarchical memetic algorithms.

III. THE STRUCTURE OF SIMILARITY MODELS
This section introduces the structure of similarity models

that are employed in this paper for similarity modelling and
identifying feature importance. The point of departure is the
assumption that the similarity of a known case with respect
to a new problem is dependent upon the difference between
the problem and the case’s condition part, both described
with relevant features. The less distinction between both, the
more similarity is to be expected. This motivates us to
consider differences in values on relevant features when
addressing similarity assessment.
 We suppose that n relevant features have been identified
for the underlying domain. A case Ci in the case base is
indexed by an (n+1) tuple: ()iiniii sxxxC ,,,, 21 L= where

inii xxx ,,, 21 L denote the feature values in this case and si
is the corresponding label for the case. Similarly we use an
n-tuple ()nyyy ,,, 21 L to represent a query problem Q with
yj referring to the value of the jth feature in the problem
description. All feature values in both the library cases and
the query problem are normalized for further analysis.
 The task now is to compare the condition part of case Ci
and the query problem Q to obtain a similarity assessment.

1538

The key role herein is taken by the difference of values
ijjij xyd −= in single features in the sense that every

difference as such contributes more or less to a degradation
of the similarity. In the following, we start with local
matching functions taking (relevant) feature differences as
arguments, and then we present a method that combines
local matching values into a global similarity degree.

A. Compatibility Measure on Single Features
At the first step we perform matching on single features to

see how the values in the condition part of the case are
compatible with their counterparts in the query problem. The
degree of compatibility is assessed by a compatibility
measure mij for each feature. Intuitively the value of mij
depends on the feature difference dij: it has its maximum
value of unity with identical feature values. It is otherwise
reduced by a magnitude approximately proportional to the
feature difference. This leads to modelling of the
compatibility measure mij by a triangular function as:

(]
()

()⎪
⎩

⎪
⎨

⎧

∈−
−∉

−∈+
=

jijjij

jjij

jijjjij

ijij

wdifwd
wwdif

wdifwwd
dm

,0,1
,,0
0,,)(

)(
 (4)

where wj is the function parameter that must be specified
appropriately in advance.

mij

-1.0 1.0 0 dij
Fig. 2a. The compatibility measure with its parameter set to unity

mij

dij -1.0 1.0 0 -wj wj

Fig. 2b. The compatibility measure with its parameter less than unity

mij

dij -1.0 1.0 0 -wj wj

Fig. 2c. The compatibility measure with its parameter greater than unity

It is worth noting that the parameter wj in equation (4)
reflects the information about the importance of the
associated feature. This is illustrated in Figs. 2a, 2b, and 2c
respectively, where a variation of compatibility measures is
created by three distinct parameter values. Fig. 2a shows a
compatibility measure characterized by wj =1, which means
that the value of compatibility becomes zero only when the
largest feature difference occurs. Reducing the value for wj
to less than unity, we arrive at the matching function in Fig.
2b which can be considered as related to some more critical
feature. The function in that figure decreases more quickly
with feature differences and thus reaches a zero degree
earlier than the function in Fig. 2a. In contrast, a situation
with a relatively weak feature can be modelled by setting the
parameter greater than unity as shown in Fig. 2c. The
function drawn there appears less sensitive to the feature
difference and remains non-zero even when the largest
difference is encountered.

B. Global Similarity in View of Multi-Criteria Satisfaction
 After performing feature matching on every relevant
feature between case Ci and query problem Q, we get a
collection of compatibility values (mi1, mi2, …, min). One can
consider that the need of compatibility in a relevant feature
is one criterion to be satisfied for the case to be similar with
the query problem. In particular, the value mij can be seen as
a degree of satisfaction of the criterion Gj:

 The jth feature in the case is compatible with the jth

feature in the query problem

The next step is to aggregate the satisfaction degrees for
those criteria in single features to yield an overall similarity
assessment.
 Since the similarity between a case and the query problem
is contingent upon the compatibility in each of the relevant
features, satisfying all the criteria Gj (j=1…n) is required for
the case to be evaluated as similar. This leads to expressing
the global similarity criterion as equivalent to a logical
statement as follows:

Sim(Q, Ci) = G1 and G2 and G3 and … and Gn (5)

The t-norm in fuzzy set theory can be applied here to
implement the logical and connections between the
individual criteria. In this paper we use the MIN operator as
a concrete form for the t-norm, thus we obtain the similarity
assessment as an overall satisfaction of the criteria by

[])(min),(
1 ijij

n

ji dmCQSim
=

= (6)

Finally we would like to add that, although the similarity

of a case demands its compatibility on all relevant features
with the query problem, the semantics of compatibility
varies from feature to feature as indicated by the parameter
wj in (4). Different features are allowed to impose different
influences on the assessed similarity because the

1539

compatibility measures utilized in (6) are subject to variable
semantic meanings.

IV. SIMILARITY LEARNING VIA HIERARCHICAL
MEMETIC ALGORITHM

Here we mean by similarity learning a process consisting
of two tasks. The first task is selection of a group of relevant
features out of candidates, while the second task is creation
of a concrete similarity model (identifying parameters of the
compatibility functions) using the selected features as
inputs. Owing to the inherent interplay between the above
two tasks, it is not desired to perform them sequentially.
Instead we develop a hierarchical memetic algorithm to
enable the conduction of these two tasks simultaneously.
The objective of the memetic algorithm is to optimize the
combined effect of selected features and parameters of the
compatibility functions from a global perspective.

Memetic algorithms (MAs) [23] are population-based
metaheuristic search methods inspired by the principle of
natural evolution and Dawkin’s notion of memes capable of
local adaptation. MAs work very similarly as GAs [24] but
embed local search to allow for self-refinements of
individuals. According to the idea of Lamarckian learning
[25], local search can be done on all or part of the
population to reach a local optimum or improve the current
solution. Next we discuss the issues of coding scheme,
fitness evaluation, local search mechanism, as well as
genetic operators (crossover and mutation), which present
key components for our memetic-based similarity learning.

Coding Scheme. We need to define a chromosome to
encode individual solutions including both selected features
and parameters of compatibility functions on features. Since
the information about feature subset and the parameters of
compatibility functions are on different levels, we suggest a
hierarchical formulation of chromosomes for the MA. A
chromosome as such consists of two different kinds of
genes: control genes and parametric genes. A control gene at
the higher level takes a binary bit and corresponds to a
feature candidate, with bit “1” signifying that the
corresponding feature is relevant and selected whereas bit
“0” meaning that the feature is irrelevant and discarded. On
the other hand, parametric genes at the lower level are
actually real-valued numbers which represent the parameters
of the local compatibility functions.

 Fig. 3. Hierarchical chromosome representation

Important is to note that the parametric genes are

controlled by the corresponding control genes. When a
control gene is assigned with bit “1”, the feature is selected
and thus the associated parametric gene at the lower level is

activated. Otherwise, if the control gene has bit “0”, the
related parametric gene is deactivated and becomes useless
as the corresponding feature is not adopted in similarity
modelling. As illustration, an example of hierarchical
chromosomes is shown in Fig. 3, where the first and fourth
parametric genes are deactivated by their control genes,
hence only three parameter values for the compatibility
functions are derived from this chromosome.

Fitness Evaluation. The ‘‘leave-one-out’’ procedure is
used here to evaluate the selected features and the associated
similarity model. Every case from the case base is treated as
a query and its possibility distribution is derived based on
the rest cases in the case library. By i

HCPoss we denote the
possibility distribution derived for case Ci based on the other
cases and using the selected features and similarity model
encoded by hierarchical chromosome HC. An ideal and
perfect possibility distribution should yield the highest
possibility value (unity) on the true label, si, of the case
while zero degrees on all other labels. With thoughts as this,
we define the accuracy of the possibility distribution i

HCPoss
as follows

() ⎟
⎠
⎞⎜

⎝
⎛ −+=

≠
)(max15.0)(5.0 sPosssPossPossAcc i

HCssi
i
HC

i
HC

i

 (7)

 Further, the fitness of chromosome HC is assessed as the
mean accuracy of the possibility distributions of all cases in
the case library. Thus, we get the fitness function as written
as

()∑
=

=
Ki

i
HCPossAcc

K
HCFit

L1

1)((8)

where K is the number of cases in the case library.
Here the number of selected features is not taken into

account in the fitness function. Since different importance of
selected features will be reflected from identified similarity
parameters, it is not necessary to enforce reducing input
dimension during a search process. We leave this task later
for users to decide suitable trade-offs between accuracy and
complexity based upon the ranking of selected features.

Local Search. We perform local search to a part of
chromosomes in the population. Each individual
chromosome has a probability for undergoing this. When
search is applied to an individual, exploration is made
randomly in its neighbouring area to find better or local
optimal solutions. So far we have implemented local
refinements on control genes. The search begins with
randomly picking a control gene (binary bit) to reverse. If
the original gene is “1”, it is changed to “0” meaning that the
corresponding feature is no longer selected. Otherwise an
original gene “0” will be flipped to “1” signifying that an
additional feature has been included. Once a control gene is
changed, we get a new chromosome which is subsequently
evaluated by the fitness function in (8). If the new
chromosome is assessed to be better, it replaces the original
one, otherwise the old solution remains unchanged. Next we
randomly pick a second control gene for trial, and this
procedure is repeated for a fixed number of times to

0 1 1 0 1 0.6 0.2 0.9 0.7 1.5

Control genes Parametric genes

W=(0.2, 0.9, 1.5)

1540

complete the local search for an individual chromosome in
the population.

Crossover. For every pair of hierarchical chromosomes to
be combined, randomly choose gene positions. Each gene
position is chosen with the probability of 0.5. Interchange
the gene values at the chosen positions between the two
parent chromosomes to generate child chromosomes.

Mutation. Because of the distinct nature of control and
parametric genes, different mutation schemes are needed.
Since the parametric genes are actually real-numbers, a small
mutation with high probability is more meaningful.
Therefore it is so designed that each parametric gene
undergoes a perturbation. The magnitude of this perturbation
is determined by a Gaussian density function. For the binary
control genes, mutation is simply to inverse a gene,
replacing ‘1’ with ‘0’ and vice versa. Every control gene
undergoes a mutation with a quite low probability.

Finally the memetic algorithm designed for combined
feature selection and similarity modelling is summarized as
follows:
Step 0 (Initialisation): Randomly generate an initial
population containing Npop hierarchical chromosomes each
of which consists of both control and parametric genes.
Step 1 (Fitness evaluation): Decode each hierarchical
chromosome in the population into the associated similarity
model. Use that similarity model to estimate the possibility
distribution of every case in the case base in a ‘‘leave-one-
out’’ procedure. The mean accuracy of the possibility
distributions of all cases, as defined in (8), is regarded as the
fitness score for the chromosome under evaluation.
Step 2 (Local search): Apply the local search mechanism to
a part of the population. Every individual in the population
has a probability to be selected for self-improvement via
local search.
Step 2 (Termination test): If the stop-condition is not
satisfied, then go to Step 4, else terminate the search
procedure and return the best individual in the population.
Step 4 (Offspring generation): Apply the genetic operators
to generate NPOP offspring to form the new generation, based
on selection, crossover, and mutation. Go to step 1.

V. EXPERIMENTAL EVALUATIONS
The proposed MA based approach is well applicable to

learning similarity for a CBR system based on the case
library. In order to evaluate the effectiveness of this
approach, we show here the experiments results on two
benchmark data sets: wine data and sonar data, downloaded
from the UCI Machine Learning Repository [26]. The wine
and sonar data sets have 13 and 60 features respectively,
both of them consist of cases categorized into discrete
classes or labels. The experiments were made on both data
sets to find out relevant features as system inputs and to
identify optimal parameters in the similarity model
concurrently. The magnitudes of the identified parameters in
the similarity model also reflect the importance of the
selected features.

We did 10-fold cross-validation in examining the
capability of the proposed approach on both of the data sets.
A given data set was divided into 10 parts of equal size. In
each of the 10 trials, nine parts were used as the case base
while the rest part was used as the test set comprising query
problems. The search with MA was conducted on the case
bases to find the best combination of feature subset and
similarity model by maximizing the fitness function defined
in (8). The learned similarity model was then utilized by the
CBR system to classify the problems in the test set. The
results of the cross-validations on the two data sets are
illustrated in Table I, where the accuracy on test data and the
numbers of selected features are presented.
TABLE I: RESULTS OF 10-FOLD CROSS-VALIDATIONS

Data sets Accuracy on test data Selected features
Wine 0.955 9.8
Sonar 0.851 31.9

Next we compare our results with those of some other

machine learning techniques on the same data sets. Such
comparisons are demonstrated in Tables II and III, for Wine
and Sonar data respectively. The classification accuracy of
the other works was also obtained in a 10-fold cross-
validation procedure but using all the presented features as
inputs.
TABLE II: COMPARISON ON WINE DATA

Methods Accuracy on test data Input number
This paper 0.955 9.8
Ref. [27] 0.901 13
Ref. [28] 0.937 13
Ref. [29] 0.916 13
Ref. [30] 0.938 13
Ref. [31] 0.944 13

SOP-3 [32] 0.935 13
MOP-3 [32] 0.970 13

TABLE III: COMPARISON ON SONAR DATA
Methods Accuracy on test data Input number

This paper 0.851 31.9
Ref. [27] 0.746 60
Ref. [28] 0.715 60
Ref. [29] 0.841 60
Ref. [30] 0.822 60
Ref. [31] 0.754 60

SOP-3 [32] 0.757 60
MOP-3 [32] 0.825 60

It can be seen from the tables that, on the Wine data, we

obtained a reduction of input dimension with 25% in
comparison to using all presented features as inputs as done
by the other works. On the Sonar data, the input reduction
was even more dramatic with almost 50%, which implies a
considerably large decrease of the complexity of the system.
Regarding accuracy, our method achieved the best result on
the Sonar data among all the works though roughly half of
the features were discarded therein. On the Wine data, the
accuracy from this paper ranks the second best among all the

1541

methods and appears very close to the best result from
MOP-3 [32]. All these give clear evidence of the capability
of our proposed method for dimension reduction and
performance improvement, in particular when the number of
features in the original data sets is very large.

VI. CONCLUSION
This paper proposes a novel approach based on a

Hierarchical Memetic Algorithm (HMA) for combined
feature selection and similarity modelling in a case-based
reasoning context. The key of the designed HMA lies in the
hierarchical formulation of chromosome that consists of
control genes and parametric genes. The control genes
correspond to a hypothesis for whether a given feature is
relevant or not, while the parametric genes are associated
with real-valued parameters in the similarity model. Further,
a control gene at the higher level overrides the
corresponding parametric gene at the lower level. The
benefit of this hierarchical structure is that it enables
selection of relevant features and searching for similarity
parameters by the memetic algorithm in a concurrent
manner. The objective of the memetic algorithm is to
optimize the possibility distributions estimated for cases in
the case library under a leave-one-out procedure.

The benefits of this proposed approach are two-fold. First,
it introduces a new aspect of feature selection for similarity
learning, which is a topic under-researched in CBR research.
To our knowledge, this paper presents a first attempt to
integrate feature selection and similarity modelling for a
CBR system. Secondly, it contributes a new and effective
approach for feature selection based on a case-based
paradigm. The merit of our approach is that it improves the
complexity of wrapper by not requiring repeated modelling
given a feature subset. On the other hand, it also reveals the
importance of selected features by the identified parameter
values, such that feature ranking would be possible with our
approach.

REFERENCES
[1] A. Jain and D. Zongker, “Feature selection: Evaluation, application, and
small sample performance,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 19, no. 2, pp. 153-158, 1997.
[2] M. Dash and H. Liu, “Feature selection for classification,” International
Journal of Intelligent Data Analysis, vol. 1, no. 3, pp. 131-156, 1997.
[3] M. Dash and H. Liu, “Consistency-based search in feature selection,”
Artificial Intelligence, vol. 151, no 1/2, 155-176, 2003.
[4] K. Praczyk, H. Kiendl, and T. Slawinski, “Finding relevant process
characteristics with a method for data-based complexity reduction,” in
Lecture Notes in Computer Science 1625, Springer Verlag, 1999, pp. 548-
555.
[5] M. R. Emami and I. B. Türksen, “Development of a systematic
methodology of fuzzy logic modelling,” IEEE Trans. Fuzzy Systems, vol. 6,
pp. 346-361, 1998.
[6] R. Kohavi and G. H. John, “Wrapper for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1/2, pp. 273-324, 1997.
[7] K. Z. Mao, “Feature subset selection for support vector machines
through discriminative function pruning analysis,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 34, no. 1, pp. 60-67, 2004.
[8] C. N. Hsu, H. Huang, and S. Dietrich, “The ANNIGMA-wrapper
approach to fast feature selection for neural nets,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 32, no. 2, pp. 207-212, 2004.

[9] A. Aamodt, and E. Plaza, “Case-based reasoning: foundational issues,
methodological variations, and system approaches,” Artificial Intelligence
Com., vol. 7, pp. 39-59, 1994.
[10] M. M. Richter, “The knowledge contained in similarity measures,”
invited talk at the International Conference on Case-Based Reasoning,
1995.
[11] R. Kohavi, P. Langley, and Y. Yun, “The utility of feature weighting in
nearest neighbor algorithms,” in Proc. European Conference on Machine
Learning (ECML-97), 1997.
[12] D. Wettschereck, and D. Aha, “Weighting features,” in Proc. 1st
International Conference on Case-based Reasoning, 1995, pp. 347-358.
[13] A. Bonzano, P. Cunningham, and B. Smith, “Using introspective
learning to improve retrieval in CBR: A case study in air traffic control,” in
Proc. 2nd International Conference on Case-based Reasoning, Providence
RI, USA, 1997, pp. 291-302.
[14] F. Ricci, and P. Avesani, “Learning a local similarity metric for case-
based reasoning,” in Proc. International Conference on Case-Based
Reasoning (ICCBR-95), Sesimbra, Portugal, 1995.
[15] N. Cercone, A. An, and C. Chan, “Rule-induction and case-based
reasoning: Hybrid architectures appear advantageous,” IEEE Trans.
Knowledge and Data Engineering, vol. 11, pp. 166-174, 1999.
[16] R. H. Creecy, B. M. Masand, S. J. Smith, and D. J. Waltz, “Trading
MIPS and memory for knowledge engineering,” Communications of the
ACM, vol. 35, pp. 48-64, 1992.
[17] K. Branting, “Acquiring customer preferences from return-set
selections,” in Proc. 4th International Conference on Case-Based
Reasoning, 2001, pp. 59-73.
[18] L. Coyle, and P. Cunningham, “Improving recommendation ranking by
learning personal feature weights,” in Proc. 7th European Conference on
Case-Based Reasoning, 2004, pp. 560-572.
[19] N. Xiong, and P. Funk, “Building similarity metrics reflecting utility in
case-based reasoning,” Journal of Intelligent and Fuzzy Systems, vol. 17,
pp. 407-416, 2006.
[20] J. Jarmulak, S. Craw, and R. Rowe, “Genetic algorithms to optimize
CBR retrieval,” in Proc. European Workshop on Case-Based Reasoning
(EWCBR 2000), 2000, pp. 136-147.
[21] H. Ahn, K. Kim, and I. Han, “Global optimization of feature weights
and the number of neighbors that combine in a case-based reasoning
system,” Expert Systems, vol. 23, pp. 290-301, 2006.
[22] D. Dubois and H. Prade, “Fuzzy set modelling in case-based
reasoning,” International Journal of Intelligent Systems, vol. 13, pp. 345-
373, 1998.
[23] N. Krasnogor and J. Smith, “A tutorial for competent memetic
algorithms: model, taxonomy, and design issues,” IEEE Trans. Evolutionary
Computation, vol. 9, no. 5, pp. 474-488, 2005.
[24] D. E. Goldberg, “Genetic algorithms in search, optimization and
machine learning,” New York: Addison-Wesley, 1989.
[25] Y. S. Ong and A. J. Keane, “Meta-Lamarckian in memetic algorithm,”
IEEE Trans. Evolutionary Computation, vol. 8, no. 2, pp. 99-110, 2004.
[26] D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI repository of
machine learning databases”, URL:<http://www.ics.uci.edu/~mlearn/
ML.Repository.html>.
[27] J. R. Quinlan, “C4.5: Programs for Machine Learning,” Morgan
Kauffman, San Mateo, CA, 1993.
[28] S. Y. Ho, H. M. Chen, and S. J. Ho, “Design of accurate classifiers
with a compact fuzzy rule base using an evolutionary scatter partition of
feature space,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 2,
pp. 1031-1043, 2004.
[29] Y. C. Hu, “Finding useful fuzzy concepts for pattern classification
using genetic algorithm,” Information Sciences, vol. 175, no. 1, pp. 1-19,
2005.
[30] Z. Lei and R-H. Li, “Designing of classifiers based on immune
principles and fuzzy rules,” Information Sciences, vol. 178, pp. 1836-1847,
2008.
[31] T. Elomaa and J. Rousu, ”General and efficient multisplitting of
numerical attributes,” Machine Learning, vol. 36, no. 3, pp. 201-244, 1999.
[32] H. Ishibuchi and Y. Nojima, “Analysis of interpretability-accuracy
tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine
learning,” International Journal of Approximate Reasoning, vol. 44, pp. 4-
31, 2007.

1542

