
1

Hard Real-Time in a Soft World

Hans Hansson, Christer Norström and Sasikumar Punnekkat

Mälardalen Real-Time Research Centre,
Department of Computer Engineering

Mälardalen University, Västerås, Sweden
www.mrtc.mdh.se

Abstract
In cost conscious industries, such as automotive, it is imperative for designers to adhere to
policies that reduce system resources to the extent feasible, even for safety-critical sub-
systems. However, the overall reliability requirement must be both analysable and met. Faults
may be either, hardware, software or timing faults. The latter being handled by hard-real time
schedulability analysis, which is used to prove that no timing violations will occur. However,
from a reliability and cost perspective there is a trade-off between timing guarantees, the level
of hardware and software faults, and the per-unit cost. By allowing occasional deadline misses,
less costly hardware may be used, while still meeting the overall reliability requirement.
Careful analysis is however needed. The main risk/problem is that this type of reasoning is
highly dependent on assumptions concerning distributions and independence.

This paper presents a reliability analysis method that considers the effects of faults and timing
parameter distributions on schedulability analysis, and its impact on the reliability estimation
of the system. In scheduling terms, we will consider a wider set of scenarios/cases than just the
worst case considered in hard real-time schedulability analysis. The ideas have general
applicability, but the method has been developed with modelling of external interference of
automotive CAN buses in mind. We illustrate the method by showing that a CAN-bus
interconnected distributed system, subjected to external interference, may be proven to satisfy
its timing requirements with a sufficiently high probability, even in cases when the worst-case
analysis has deemed it unschedulable.

1 Introduction
The parallel evolution of fault tolerance and real-time realms of research, though have been greatly
successful independently, still fail to bring the necessary synergy between the two fields which both are
of extreme importance in the design of safety-critical systems. Their mutual dependencies and
interactions need to be analysed carefully for achieving predictable performance. In order to bridge the
gap between these two areas, several open issues need to be addressed in their totality, a typical one
being the effect of faults on schedulability analysis and its impact on the reliability estimation of the
system.

The major stumbling block in having an integrated approach is the orthogonal nature of the two factors,
viz., the stochastic nature of faults and the deterministic requirements on schedulability analysis. This
calls for development of more realistic fault models which capture the nuances of the environment, as
well as methods for easy integration of such models into the timing analysis, and finally, a unified and
`formal' approach in using these factors in obtaining refined estimates for the reliability of the system.

The main focus of the real-time research community is on hard real-time systems, i.e. in the worst case
timing behaviour. During the last decade real-time researchers have extended schedulability analysis to
a mature technique which for non-trivial systems can be used to determine whether a set of tasks
executing on a single CPU or in a distributed system will meet their deadlines or not [4][5][8][11]. The
essence of the analysis is to investigate if the deadlines are met in a worst case scenario. Whether this
worst case actually will occur during execution, or if it is likely to occur, is not normally considered (an
exception being [6]).

2

We have recently [7] developed a model for calculating worst-case latencies of messages under error
assumptions, on the Controller Area Network (CAN), which is a popular and predictable
communication network extensively used in the automotive industry and elsewhere. This analysis
might infer that a given message set is not feasible under worst case fault interferences. This result,
though correct, is of limited help to system designers except to prompt them to overdesign the system
and waste resources to tackle a situation, which might never happen during the lifetime of the system.

Reliability modelling, on the other hand involves study of fault models, characterisation of distribution
functions of faults and development of methods and tools for composing these distributions and models
in estimating an overall reliability figure for the system.

When performing schedulability analysis (or any other type of formal analysis) it is important to keep
in mind that the analysis is only valid under some specific model assumptions, typically under some
assumed ``normal condition'', e.g., no hardware failures and a ``friendly'' environment. The ``abnormal''
situations are typically catered for in the reliability analysis, where probabilities for failing hardware
and environmental interferences are combined into a system reliability measure. This separation of
deterministic (0/1) schedulability analysis and stochastic reliability analysis is a natural simplification
of the total analysis, which unfortunately may introduce quite some pessimism, by assuming that the
``abnormal'' is equivalent to failure. Especially for transient errors/failures this may not at all be the
case. Consider for instance occasional external interference on a communication link. The interference
will lead to transmission errors and subsequent retransmission of messages. The effect will be
increased message latencies that may lead to missed deadlines, especially if the interference coincides
with the worst case message transmission scenario considered when performing schedulability
analysis. In other scenarios, the interference will not increase the worst case message latency, as
illustrated Figure 1. The figure shows a system with 3 periodic messages M1, M2 and M3 with
descending priorities and with periods (equals to deadlines) of 5, 10 and 20 and worst-case
transmission times of 2, 1 and 1 respectively. Assuming an overhead, O=1 for error signalling and
recovery (but not including retransmission of the corrupted message), we have shown the effects of 3
different scenarios, corresponding to an external interference hitting the system at points in time. In the
first case the error caused by the interference results in a deadline miss for M2 and M3. In the second
case, though a re-transmission is necessitated, still the message set meets its deadlines, whereas in the
third scenario, the error has no effect at all since it falls in a period of inactivity of bus.

50 1510 20

M1 M2 M3 M1 M1 M1M2

Schedule

50 1510 20

M1 M2 M3M1 M1 M1M2
Scenario-1
Deadline
Miss

error

O

50 1510 20

M1 M2 M3 M1 M1 M1M2
Scenario-2
Schedulable

error

O M1

50 1510 20

M1 M2 M3 M1 M1 M1M2

Scenario-2
No effect

error

Figure 1: Dependency of Effects of Faults on Phasings

This simple example shows that there are situations (scenarios) when system requirements (e.g.
deadlines) are not violated by the ``abnormal''. Hence, there is a potential for obtaining a more accurate
and tight reliability analysis by considering the likelihood of the ``abnormal'' actually causing a
deadline violation, i.e., by integrating schedulability and reliability analysis.

3

Considering the cost-consciousness of industry, the pessimism in the hard real-time analysis, and the
low probability of the considered worst-case actually occurring, it is additionally tempting to reduce the
resources requires by also trading the absolute timing guarantees under fault-free conditions for
reduced reliability (given that the resulting over all reliability is acceptable).

In the method presented in this paper, we will not only considering the worst case values for
parameters, such as execution time and periods. Instead we will model their distributions. The analysis
is then performed by repeatedly analysing systems with fixed parameter values, obtained by sampling
these distributions until required confidence is reached. In doing this we must be careful in validating
that assumed independence between distributions are actually satisfied, or alternatively if distributions
are dependent, we must faithfully capture the dependencies.

The underlying argument of our work, is that for any system (even the most safety critical one) the
behaviour can only be guaranteed up to some level, after which we must resort to reliability analysis
and corresponding requirements.

The contributions of this paper are:
• A new approach towards integrating schedulability analysis and reliability models
• A unified framework for holistic analysis of systems’ timing and reliability behaviours
• A systematic procedure for obtaining more accurate reliability estimates
• An illustrative example presenting our method

The paper is organised as follows: In Section 2 we introduce our method for considering
schedulability in reliability analysis. Section 3 presents our case-study, a distributed automotive control
system. Finally, in Section 4 we conclude and outline future directions.

2 The Method
The method we propose assumes an existing task model M with a set of parameters. As an illustration,
consider the basic rate-monotonic model introduced by Liu and Layland [12]. The parameters of this
model are the periods (T) and execution time requirements (C) of the tasks.

We will partition the set of parameters into two disjoint subsets: the set of deterministic parameters
PD(M) and the set of stochastic parameters PS(M). Deterministic parameters have fixed values, whereas
stochastic parameters have an associated distribution over a specific value domain. Returning to the
rate-monotonic example, we can imagine a system for which the task periods are deterministic and the
execution times stochastic. We could for instance have a rectangular distribution over the interval
[Cmax/2,Cmax], where Cmax is the worst-case execution time used in the original analysis. A concrete
example with three tasks is illustrated in.

Original RM model
Task name T C R

A 5 2 2
B 10 3 5
C 15 4 18*

Extended model with stochastic C
Task name T C R

A 5 [1,2] [1,2]
B 10 [1.5,3] [2.5,5]
C 15 [2,4] [4.5,18*]

Figure 2: Simple example, showing a RM task set (left) and the corresponding set with stochastic
execution time parameter C (right).

We have used exact analysis to calculate the response times R for the task sets in Figure 2. The result,
shown in Figure 2, indicate that tasks A and B will always meet their deadlines, whereas task C will
miss its deadline (indicated by *) in the worst case considered in the original analysis. (Note that the
calculated R-value in case of exceeded deadline is only a lower bound, since the used formula does not
correctly capture the case when R exceeds T.) In the stochastic case (to the right in Figure 2), we have
calculated ranges of possible R values by simply performed calculations with the extreme parameter
values (max and min for all involved parameters, respectively). We can see that task C will sometimes
complete within its deadline, sometimes not. The question is now: How often will C miss its deadline?

4

A naïve approach to answering this question could be to investigate all possible parameter value
combinations. If we assume a scheduling granule of 0.1 time units, then it follows that the number of
possible combinations of stochastic parameter values are 10*15*20=3000 (since the number of
distinguishable execution time intervals for the tasks are 10, 15 and 20, respectively). We could then
perform schedulability analysis for all these cases to calculate the fraction of parameter combinations
for which C misses its deadline.

This is however not correct. To understand why we need to take a closer look at the schedulability
analysis equation (from [4]):

∑
∈ 











+=

)(ihpj
j

j

i
ii C

T

R
CR

In calculating the response time of a task one or more invocations of each higher priority task will
interfere (the exact number is given by the ceiling expression in the above formula). In cases with more
than one invocation it would be incorrect to use the same execution time value (Ci in the formula) for
all invocations, unless our interpretation is that the selected value is an upper bound of the actual
execution times. If they, on the other hand, are distributions over actual execution times (which is our
intention), then we are only considering a subset of all possible combinations. We could get around this
problem by selecting a new value for each invocation. This will increase the number of cases to
investigate to 106*153*201=33 750 000 000 combinations (since we terminate the analysis when the
deadline is exceeded it is sufficient to consider invocations up to TC). This result is however only valid
for a specific TC, since even if all deadlines are shown to be met in the TC, later deadlines may be
violated. As an illustration consider the following example: Assume that the two tasks X and Y have
parameters TX=3, TY=4, CX=[1,2], and CY=2. If CX is equal to 1 in the first invocation, and thereafter 2,
we get the schedule in Figure 3 during the first 9 time units:

X Y Y X X Y X X Y

0 84 63

Figure 3: Schedule indicating that Task Y is meets its deadline at time 4, but misses it at time 8.

Hence, Y will miss its deadline at time 8 (with one time unit left to execute), even though analysis from
time 0 showed that it is schedulable. We conclude that this type of schedulability analysis with non
worst-case execution times only tells us whether the current invocation is schedulable, not anything
conclusive about subsequent invocations.

To get around this problem we propose a simulation based approach, rather than using schedulability
analysis equations. The idea is to perform extensive simulations of the behaviour. Given strictly
periodic tasks, and an initial worst case phasing, it is sufficient to simulate the system during a period
equal to the least common multiple (LCM) of the task periods, with independent sampling of
successive invocations of the same task. This will as explained above give a state space of
33.750.000.000 combinations for the task set in Figure 2. It should also be noted that this would only
give the probability of a missed deadline in an arbitrary LCM. We can from this probability p calculate
the probability of no missed deadlines during a mission time of length Z by the

formula: ()LCM

Z

p−− 11 . This will give a very small probability, unless a very small Z and small p.

It should be obvious from the above that we cannot perform complete analysis in more complex cases
(more than 33 G combinations to investigate is already too much!). To handle larger state spaces we
suggest a partial analysis method based on sampling, i.e. only a subset of the combinations are
investigated. This will of course give a result that will be close to the actual probability only with some
specific confidence less than 1. For instance, in our simple example with 33.75 G combinations, taking
60.000 samples will with 95% confidence give a probability of no missed deadlines in an LCM in the
range [0.9999405,0.9999760].

Our experiments also show that for mission times in the order of hours and LCMs in the order of 100
milliseconds (typical values for many applications), the probability of a single missed deadline during a

mission becomes rather high (due to the ()LCM

Z

p−− 11 formula). For the case-study in Section 3,

5

which we prove e to be unschedulable with traditional schedulability analysis, we obtain from
simulation a probability of 0.02 for at least a single deadline failure in an LCM. If the mission time is
8h (typical value for a vehicle) and the LCM is 120ms (as in our case-study) we get a probability of

() 102.011 12.0
28800

≈−− for at least a single deadline failure during a mission. It is however well known

(see e.g. [1]) that a control system that will fail due to a single deadline miss is not robust enough to be
of much practical use. Rather the system should tolerate single deadline misses, or even multiple
deadline misses or more complex requirements on the acceptable pattern of deadline misses. These
requirements should of course be derived from the requirements on stability in the control of the
external process. By defining a system failure as more than 2 consecutive deadline misses or more than
3 missed deadlines in 15 consecutive periods, we obtain a failure probability in the order of 0.9999 for
our case-study in Section 3.

Dependency Issues
In the modelling, the stochastic variables should be very carefully selected to avoid dependencies.
There may be several sources of dependencies, including
§ apparent dependencies, which are explicitly dependent variables (e.g., those expressed by the

schedulability equations), such as
§ response times being dependent on execution times and frequencies of higher priority tasks,

and
§ jitter being dependent on response times of preceding tasks in a transaction, and

§ subtle dependencies, such as
§ couplings between execution times of tasks due to functional dependencies (this includes

dependencies between successive invocations of the same task), and
§ indirect dependencies via the controlled process.

Clearly, all apparent dependencies should be avoided if the dependency cannot be accurately captured.
In the case of subtle dependencies, we do not a priori know if the variables are dependent or not. If
independence is assumed, we recommend monitoring of the variables to validate that they are
sufficiently independent, alternatively if independence cannot be concluded, to collect information for
a characterisation of the dependencies.

In our case study we will use stochastic variables representing task execution times, and phasings of
external interference. All these variables can be considered to be subtle, and we will assume that they
are independent. This is however not at all obvious in all cases:
• The execution time of a task can be considered a function of its initial state and input data. In many

cases (but not all), the initial state of an invocation is dependent on the task history (i.e. previous
invocations and input). Hence, there is probably a dependency between the execution time of
successive invocations. There may also be dependencies between execution times of different
tasks, e.g. if they share input data or state. Consequently, assuming independence between
execution times is rather optimistic.

§ The phasings of external interferences relative task executions is clearly independent
from other variables, unless the controlled process itself causes the interference, which is
very unlikely.

3 The case-study
Our case-study is a simplified automotive control system consisting of two nodes interconnected by a
Controller Area Network (CAN) bus (see Figure 4). Two control loops are executing in the system.
The first is implemented by a transaction consisting of a sensing task at node A, a message transfer
from node A to node B, and a calculating and actuating task at node B, and the second loop is being
implemented by a similar transaction in the opposite direction. Furthermore, we will assume
background traffic on the bus, which is transmitted at lower priority than the messages of our
transactions. There are additionally a single source of external interference, which occasionally induce
errors on the bus, leading to retransmissions of corrupted messages. The parameters of our system are
summarised in Figure 5 (the details are explained later).

6

A B
send1rec2 send2rec1

A-B

B-A

BGA BGB

BGCAN

Figure 4: The structure of our simple case-study.

Tasks at node 1
Name T C Prio
BGA 2000 [50,300] H

SEND1 8000 [500,2000] M
REC2 (10000) [1000,2000] L
Messages sent on the bus
Name T C Prio
BGCAN 15000 540 L

B-A (10000) 540 M
A-B (8000) 540 H

Tasks at node 2
Name T C Prio
BGB 2000 [50,200] H

SEND2 10000 [1000,2000] M
REC1 (8000) [1000,2000] L
Transactions
Name From Dest via Deadline
ATOB SEND1 REC1 A-B 6000
BTOA SEND2 REC2 B-A 7000
External interference

tfl Il nl Tfl

4000 500 4 30 000 000

Figure 5: Summary of parameters for the system in Figure 4.

3.1 The CAN bus
The Controller Area Network (CAN) is a broadcast bus designed to operate at speeds of up to 1 Mbps.
Data is transmitted in messages containing between 0 and 8 bytes of data. An 11-bit identifier is
associated with each message. The identifier serves two purposes: (1) assigning a priority to the
message, and (2) enabling receivers to filter messages.

CAN is a collision-detect broadcast bus, which uses deterministic collision resolution to control access
to the bus. During arbitration, competing stations are simultaneously putting their identifiers, one bit at
the time, on the bus. By monitoring the resulting bus value, a station detects if there is a competing
higher priority message and stops transmission if this is the case. Because identifiers are unique within
the system, a station transmitting the last bit of the identifier without detecting a higher priority
message must be transmitting the highest priority queued message, and hence can start transmitting the
body of the message.

3.2 Schedulability Analysis
Tindell et al. [9] [10]have developed schedulability analysis for the CAN bus, which we have extended
with a more general fault model [7]. Tindell et al. [2] have also developed holistic analysis which can
be used to solve the type of mutually dependent equations which arise in systems with transactions in
multiple directions, as in our case.

We will now summarise the relevant theory and present the schedulability analysis for our case-study.
It should be noted that this analysis considers the worst-case combination of system parameters, and if
it deem the system schedulable, then all deadlines will always be met (given of course that the
underlying model assumptions concerning perfect hardware etc. are not violated).

7

CAN-bus analysis
Tindell et al. [9] [10] present analysis to calculate the worst-case latencies of CAN messages. This
analysis is based on the standard fixed priority response time analysis for CPU scheduling [7].

Calculating the response times requires a bounded worst case queuing pattern of messages. The
standard way of expressing this is to assume a set of traffic streams, each generating messages with a
fixed priority. The worst case behaviour of each stream is to periodically queue messages. In analogue
with CPU scheduling, we obtain a model with a set S of streams (corresponding to CPU tasks). Each
s∈S is a triple <PS , TS, CS>, where PS is the priority (defined by the message identifier), TS is the
period, and CS the worst case transmission time of messages sent on stream s. The worst-case latency
Ri of a CAN message sent on stream Si is defined by

iiii CqJR ++=

where Ci is the transmission time of message mi, Ji is the queuing jitter of message mi, i.e., the
maximum variation in queuing time relative Ti, inherited from the sender task which queues mi, and q i

represents the effective queuing time, given by:

∑
∈

++










 ++
+=

)(

)(
ihpj

iij

j

bitji
ii CqEC

T

Jq
Bq

τ

where the term Bi is the worst-case blocking time of messages sent on Si, hp(i) is the set of streams
with priority higher than Si, τbit (the bit-time) caters for the difference in arbitration start times at the
different nodes due to propagation delays and protocol tolerances, and E(q i+Ci) is an error term
denoting the time required for error signalling and recovery. The reason for the blocking factor is that
transmissions are non-preemptive, i.e., after a bus arbitration has started the message with highest
priority among competing messages will be transmitted, even if a message with higher priority is
queued before the transmission is completed.

Our previous generalisation
In [7] we present a generalisation of the relatively simplistic error model by Tindell and Burns [9].
Our error model specifically considers multiple sources of errors and the signalling pattern of
individual sources, consisting of of shorter or longer bursts, during which no signalling will be possible
on the bus.

In this paper we will use a slightly simplified version of the error model introduced in [7], with k
sources of interference (with each source l contributing an error term Ei

l(t)); each source l interferes by
inducing an undefined bus value during a characteristic time period Il, and patterns of interferences for
each source l can independently be specified as a sequence of bursts with period T f

l, where each group
consists of n l interferences of length Il and with period t f

l.

Figure 6 illustrates the interference pattern from a single source with n l=3.

0 l
fT2 l

fT3l
fT

Il l
ft l

ft20

Figure 6: Interference pattern from a single source

We can now define Ei(t) for the case of k sources of interference:

Ei(t) = Ei1(t)| Ei2(t)| … | Eik(t)

8

where

Eil(t)= Bul(t)*(Oi+max(0,Il-τbit))

where the number of interferences until t, Bu l(t), is given by


























+












=

l
f

l
fll

f

l

t

Tt
nn

T

t
tBu

mod
,min*)(

Some explanations:

§ max(0,Il-τbit)) defines the length of Il exceeding τbit

§












fT

t is the number of full bursts until t.

§











l
f

l
f

t

Tt mod is the number of tf
l periods that fit in the last (not completed) burst period in t.

We assume that the overheads Oi are given by:

Oi=31*τbit + k
iihpk
C

∪∈)(
max

where 31*τbit is the time required for error signalling in CAN and the max-term denotes the
worst-case retransmission time.

Holistic analysis
In analysing our entire distributed system we will use the holistic schedulability analysis developed by
Tindell and Clark [2]. The basic idea of this analysis is to solve a set of mutually dependent equations –
one for each resource. The equations are, due to transactions spanning several resources, coupled via
inheritance of jitter.

We start by presenting the schedulability analysis for the CPUs. We will here assume a very simple
model with jitter, but without blocking or deadlines exceeding periods. This gives us the following
equation for the response time of a task i:

∑
∈ 










 +
+=

+=

)(ihpj
j

j

ji
ii

iii

C
T

Jw
Cw

wJR

To see how the equations are coupled we show the equations for the ATOB transaction:

9

∑

∑

∑

∈

∈

∈











 +
+=

−=

+=

++










 ++
+=

−=
++=











 +
+=

=

+=

)(

)(

)(

1

11

1

111

1

1

11

1

111

340

)(540

500

0

ihpj
j

j

jrec
recrec

ATOBrec

recrecrec

ihpj
ATOBATOBj

j

bitjATOB

ATOB

sendATOB

ATOBATOBATOBATOB

ihpj
j

j

jsend

sendsend

send

sendsendsend

C
T

Jw
Cw

RJ

wJR

CqEC
T

Jq
q

RJ

CqJR

C
T

Jw
Cw

J

wJR

τ

Analysis Results
Using the schedulability analysis tool FPSCalc [3] and the parameters in Figure 5, we have performed
schedulability analysis of our case-study. The results are reported in Figure 7. We note that both
transactions ATOB and BTOA miss their deadlines, since all response times are larger than the
corresponding deadlines, 6000 and 7000, respectively.

Schedulability analysis, assuming WCET with no error source interferring
Name R
ATOB 8280
BTOA 8920
Schedulability analysis, assuming WCET with one error source interferring.
Name R
ATOB 9440
BTOA 10080

Figure 7: Schedulability analysis results

3.3 Simulation
To derive reliability estimates we will perform simulations of the system behaviour. In this simulation,
we will assume:

1. Worst-case phasings of message and task queuings at time 0 in the LCM (actually this could be at
any time, so why not choose 0). This introduces some pessimism, since the worst case might not
occur in every LCM.

2. Random phasings of interference. This can be expressed as an offset from the beginning of the
LCM to when the first interference hits. For each source that hits the LCM, such an offset should
be “sampled”.

3. Sampling of execution times each time a task is released. The execution time is assumed to have a
rectangular distribution ranging from best case to worst case.

4. Perfectly synchronised clocks.

The simulator uses a separate ready queue for each node and a single shared ready queue for the CAN-
bus. Each message or task can be in one of the three states: waiting, ready, or executing. The nodes are
pre-emptively scheduled, while in a fault free CAN-bus message transmissions are non-preemptive.
However, in case of errors, a message can be interrupted and has then to be re-queued. In this case-

10

study we will measure the number of missed deadlines for each transaction for the following different
cases:

• Exhaustive simulation assuming WCET with and without error source interference.
• Sampling of execution time (C) with and without error source interference.
• Relaxed failure semantics with and without error source interference, i.e., defining a failure as

either 2 or more consecutive deadline misses or more than 3 faults per 15 consecutive transactions.

3.3.1 Simulation Results
In this example we show how to go from a non-schedulable system to a system with a rather high
reliability by sampling execution times and relaxing the failure semantics.The simulation shows that
assuming maximum execution time when performing schedulability analysis is very pessimistic. If we
look at transaction ATOB we increase the number of transaction fulfilling their deadlines from 60% to
98% by sampling of the execution times. Further, if the failure semantics is relaxed, we achieve an
even higher reliability. As mentioned earlier, a system that fails when missing one deadline is not
robust.

Exhaustive simulation assuming WCET with no error source interferring
Name BCRESP1 WCRESP2 #trans3 #MisD SatD4

ATOB 5340 7540 15 6 0,6
BTOA 5240 7540 12 3 0,75
Exhaustive simulation assuming WCET with one error source interferring.
Name BCRESP WCRESP #trans #MisD SatD
ATOB 5340 8700 268620 181395 0,59691
BTOA 5240 8900 269706 90306 0,74915

Sampling of C with no error source interference.
Name BCRESP WCRESP #trans #MisD SatD
ATOB 2250 7014 15000 299 0,980067
BTOA 2738 7150 12000 2 0,999833
Sampling of C with error source interference.
Name BCRESP WCRESP #trans #MisD SatD
ATOB 2250 7194 15000 310 0,979333
BTOA 2738 7150 12000 2 0,999833

Relaxing the failure semantics to define a failure as either 2 or more consecutive deadline misses or
more than 3 faults per 15 consecutive transactions, we get the following figures:

Sampling of C with no error source interference.
Name BCRESP WCRESP #trans #MisD NoFail
ATOB 2250 7194 15000 3 0,999867
BTOA 2738 7150 12000 0 1
Sampling of C with error source interference.
Name BCRESP WCRESP #trans #MisD NoFail
ATOB 2250 7194 15000 2 0,999800
BTOA 2738 7150 12000 0 1

To get our final reliability estimate we additionally have to consider the interarrival time of successive
inference bursts. This is given by the Tf

l period. Within each such period there will be n l bursts with

1 Best case response time monitored.
2 Worst case response time monitored.
3 The total number of executions of a transaction.
4 Number of fulfilled deadlines.

11

period t f
l, during these periods only transmissions will be subjected to interference. Hence, the

reliability is defined by the following formula:

ceinterferenrenceno_interfe *
*

*
*

NoFail
T

nt
NoFail

T

ntT
l
f

l
l
f

l
f

l
l
f

l
f +

−

which in our case gives an over all reliability estimate of 0.999867.

Note that, if we hypothetically would have had a schedulable interference-free system, we get
0.999999893, corresponding to a failure probability of 10-7.

3.3.2 Confidence
The confidence calculation is based on the central limit theorem [13], which gives us the possibility to
calculate the average of n random variables. When n becomes large, the distribution tends to the
standard normal. In our case we have one random variable for each sample. By taking enough samples
we can use the theorem and calculate a confidence interval.

Assuming a confidence of 95% and 1000 samples we get an average of 0,9793333 and a confidence
interval of [0,9771856, 0,981481] for the case: “Sampling of WCET with error source interference”.

4 Discussions/ Conclusions
We have presented a reliability analysis method, which combines reliability and schedulability
analysis. The key components of this method are the introduction of distributions of timing parameters
and simulation to obtain reliability estimates. In applying this method to a simple case-study we have
shown that a system which was deemed unschedulable by traditional analysis can be proven to meet its
timing requirements with a relatively high probability.

We have presented early and preliminary results from an ongoing effort aiming at providing designers
with well founded arguments for making reasonable choices in the trade-off between cost, real-time
guarantee, and reliability.

5 References
[1] Törngren M. Fundamentals of Implementing Real-Time Control Applications in Distributed Computer

Systems, Real-Time Systems, 14, 219-250 (1998), Kluwer Academic Publisher.

[2] Tindell K., J. Clark, Holistic Schedulability Analysis for Distributed Hard Real-time Systems. Technical
Report YCS197, Real-Time Systems Research Group, Univ. of York, 1993.

[3] FpsCalc. Available at http://www.docs.uu.se/~ebbe/realtime/marble_sorter/remote.html

[4] N. C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Applying New Scheduling Theory
to Static Priority Pre-emptive Scheduling. Software Engineering Journal, 8(5):284{292, September 1993.

[5] A. Burns. Preemptive Priority Based Scheduling: An Appropriate Engineering Approach. Technical Report
YCS 214, University ofYork, 1993.

[6] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. Probabilistic scheduling guarantees for fault-tolerant
real-time systems. Proceedings of DCCS-7,IFIP International Working Conference onDependable Computing
for Critical Applications, California, January 1999.

[7] S. Punnekkat, H. Hansson, and C. Norstr. om. Response Time Analysis under Errors for CAN. Proceedings of
IEEE Real-Time Technology and Applications Symposium(RTAS), page To appear, June 2000.

[8] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Transactions on Computers, 39(9):1175-1185, September 1990.

[9] K. W. Tindell and A. Burns. Guaranteed message latencies for distributed safety-critical hard real-time
control networks. Technical Report YCS229, Dept. of Computer Science, University ofYork, June 1994.

[10] K. W. Tindell, A. Burns and A. J. Wellings . Calculating Controller Area Network (CAN) message response
times , Control Engineering Practice 3(8):1163-1169, 1995.

[11] J. Xu and D. L. Parnas. Priority scheduling versus pre-run-time scheduling. Real-Time Systems Journal,
18(1), January 2000.

[12] C. L. Liu and J. W. Layland , Scheduling Algorithms for Multiprogramming in aard Real-Time Environment,
JACM 20(1):46-61, 1973.

[13] P. Newbold, Statistics for Business and Economics. Prentice-Hall International , 1988.

