
Verifying Temporal Constraints on Data in Multi-Rate Transactions
using Timed Automata

Anders Wall, Kristian Sandström, Jukka Mäki-Turja, Christer Norström, and Wang Yi1

Mälardalen University
Mälardalen Real-Time research Centre (MRTC)

P.O Box 883, S-721 23 Västerås, Sweden
{awl,ksm,jma,cen}@mdh.se, yi@docs.uu.se

1 Also at the Department of Computer Systems, Uppsala University, Sweden

Abstract
Transactions involving multiple tasks, possibly with

different period times, are common constructs used in the
design of real-time systems. Data flowing through a
transaction is usually subject to temporal constraints,
such as maximum time from input to output or a
maximum time difference between inputs. Such
constraints are of great importance to guarantee the
correct functioning of the designed system. But normally
they cannot be checked using the traditional approach to
schedulability analysis. In this paper we describe how to
use timed automata and reachability analysis to verify
such temporal constraints on data in transactions. By
making a timed automaton model of the data
dependencies in a transaction, we enable automatic
verification of timing constraints such as end-to-end
latency. The model can handle different computational
models and any non-preemptive execution order of the
tasks in the transaction. Our experiences from industrial
case studies indicate that in a substantial number of
applications, the transactions are of sizes that can be
handled using this approach.

1. Introduction

Designing safety-critical real-time systems involves
assessment of functionality, temporal requirements and
dependability. The temporal requirements on such
systems may come in many forms, examples are end-to-
end deadlines, jitter constraints, and latency constraints.
Such constraints can for example be found in multi-rate
control systems, where sampling, control, and actuation
may execute with different frequency. In such a system
there are requirements on the delay from sampling to
actuation in the feedback loop. More precisely, for a

particular actuation one wants to know which sample the
calculation is based on. The feedback loop delay is then
defined as the time difference between actuation and
sampling. To be able to fulfill such constraints, the
designer has to have some means to express and
preferably also verify them. However, computational
models like fixed priority scheduling [1,2], and pre-run-
time scheduling [3], used in the industry, cannot directly
express such constraints. For instance, jitter constraints
are handled by manual transformations into release times
and deadlines of individual tasks. Translating these
constraints to the attributes of the computational model is
non-trivial and the schedulability analysis does not verify
that the translation itself is correct.

In this paper, we will show how to verify that this
mapping is correct. We do this by presenting an algorithm
that transforms the data flow and available timing
information of an application, or part of an application,
into timed automata. In addition, we construct an
automaton modeling the execution strategy that defines
the execution orders of the involved tasks. By composing
these two automatons and by using model checking, we
can verify timing constraints such as latency. The benefit
of this is two folded. First, the result from the scheduler
can be checked, and second the high-level requirements
from the specification can be verified. We also believe
that this is the starting point for integrating real-time
scheduling and timed automata to enable efficient design
and verification techniques of both time-triggered and
event-triggered systems in one framework.

Several researchers including Mok, Gerber, and Kim
have provided specific computational models that directly
allow specification of latency constraints [4, 5, 6]. Our
approach makes few assumptions about the computational
model, and can therefore be applied to different

computational models. Furthermore, it also gives the
possibility to model the functional behavior of tasks and
to efficiently integrate handling of event-triggered tasks
by defining an environment model, as reported in [7].
The paper is structured as follows: In section 2 we define
transactions, data dependency, and execution strategies.
Section 3 describes the construction of a timed automaton
that models data dependencies and how to verify temporal
constraints on data. Finally, in Section 4 we present our
conclusions.

2. Transactions, Data Dependency Model and
Execution strategies

A transaction is a set of tasks, collaborating in order to
provide some desired function. For instance, consider a
control transaction consisting of three tasks, sample,
control, and actuate. The task sample reads an input value
from the process, performs some filtering, and thereafter
sends the value to the control task. The control task
consumes the sample value, reads a reference value, and
calculates a new control signal. Finally, the actuator task
consumes the new control signal and imposes it on the
controlled process. In our model, each task in a
transaction has an input – calculate – output behavior.
That is, when the task starts its execution it first consumes
all its input data, performs the computations, and before
completion, it outputs the results.

The execution of tasks is considered to be non-
preemptive. Apart from being non-preemptive, tasks may
execute according to any strategy, e.g., time driven or
event driven. Furthermore, transactions can be of multi-
rate nature, i.e., tasks in the transaction may execute with
different rates. In Figure 1, a transaction consisting of four
tasks is displayed, where 1, 2, and 3 are input to the
transaction and the arrows describe the data flow through
the transaction.

τ A

1

3

2

τ C τ D

τ B

Figure 1. An example transaction.
We will represent a transaction as a data dependency
graph. A data dependency graph is a set of nodes,
n0,…,np, that represents the inputs and the tasks in the
transaction, and a set of edges that represents the data
flow in the transaction. The initial nodes of the
dependency graph model the inputs to a transaction. If a
task τq consumes several different data from task τp, only

one edge between those nodes is needed. Moreover, if a
task reads several inputs, there is need for only one initial
node representing those inputs. This is not a restriction but
a consequence of the input – calculate – output behavior
of tasks, in which a task reads all its inputs at the
beginning of its execution.
Figure 2 illustrates the data dependency graph of the
transaction in Figure 1, where task τC depends on data
produced by both τA and τB. Moreover, τD depends on τC.
Note that τA consumes data from input 1 and 2, which is
represented in the dependency graph as a single initial
node n0.

n B

n An 0

n 1

n C n D

Figure 2. The data dependency graph for the
example transaction.

Definition 1. A data dependency graph for a transaction
is a Directed Acyclic Graph (DAG) defined by a tuple 〈N,
E, N0, nend〉 , where
• N is a finite set of nodes representing tasks in the

transaction.
• E⊆ N×N denotes the edges between nodes.
• N0⊆ N is a finite set of initial nodes denoting the

inputs.
• nend∈ N represents the last task in the transaction.

 □
Note, that for each initial node n0 ∈ N0 there exist only a
single edge e0 to another node. If several tasks in a
transaction read the same input, two or more initial nodes
in the data dependency graph can be used to model that
input. Each node np∈ N has an execution time specified as
an interval C(np)=[bcet, wcet], where bcet is the best-case
execution time and wcet is the worst-case execution time
for task τp.

Furthermore, as tasks in the transaction may execute in
any arbitrary order, the dependencies do not imply a
precedence relation between tasks. The execution order
depends upon the execution strategy, e.g., event triggered
tasks with fixed priorities or time triggered pre-run-time
scheduled tasks. Formally, an execution order is defined
as follows:

Definition 2. An execution order σ is a sequence of pairs
〈t, s〉 where t∈ Ν denotes the start time and s∈ N+ is a
sequence of one or more tasks, thus σ ∈ (Ν × N+)*.

 □

The start time for the first task in the sequence s is equal
to t, whereas the remaining tasks in s start as soon as the
preceding tasks complete. Thus, the start time of a task,
that is not the first task in s, is determined by the start time
of the preceding task τp and the execution time interval
ranging from bcet to wcet. An example of an execution
order involving four tasks is {〈0, τA⋅ τB ⋅τC〉 , 〈12, τA⋅τD 〉}.

From the data dependency graph the dependencies for
each task in the transaction can be derived. The data
dependencies for task τp are represented as the set L(np) of
independent paths from the set of initial nodes to node np.
Formally a data dependency is defined as follows:

Definition 3. A data dependency relation is
• =)(0nL ∅ where n0∈ N0

• { }!
Eqp

pq nLpnL
∈

∈⋅=
),(

)()(µµ

 □
Note that µ denotes a path from n0∈ N0 to node np. For
instance, the dependency set L(nC) for node nC in the data
dependency graph depicted in Figure 2 is given as
L(nC)={n0⋅nA, n1⋅nB}.

We will denote the set of all the data dependencies for
the tasks in a transaction as L, which is a union of all data
dependency sets.

3. Verifying temporal constraints using timed
automaton

Timed automata has been recognized as a basic
semantic model for specifying and verifying timing
constraints for real-time systems. Here we give a brief
introduction to the model of timed automata. For details,
we refer to [9].

A timed automaton is a standard finite-state automaton
extended with a finite set of real-valued clocks. On each
transition there are constraints (guards) on clocks,
synchronization action, and clocks to be reset. Whenever
the guard is satisfied of the current values of the clocks,
the transition can be taken, i.e., the synchronization action
is performed and the clocks to be reset are set to 0. A
state of a timed automaton can be considered as a tuple
containing the current node of the finite automaton, and
the current values of the clocks. Informally, the semantics
of a timed automaton is given by two transition rules. First
of all, it can stay in the current node letting time pass
(delay), i.e. the clocks are updated and the current node
remains unchanged. Secondly, it can take the transition
instantaneous resulting in a state with a new node. In
recent years, there have been a number of software tools
developed e.g. KRONOS and UPPAAL [8,10] for automated
analysis of logical properties of timed automata.

In this paper, we are aiming at using the existing tools
to verify timing constraints on transactions by
transforming the data dependency model to timed
automata. We will refer to a timed automaton that
describes data dependencies as a data dependency
automaton. The temporal constraints that can be verified
using the approach proposed in this paper are:
• End-to-End timing constraint, i.e., minimum and

maximum time from readings of inputs until the end
of the transaction.

• Variation in End-to-End timing, i.e. output jitter.
• Input synchronization, i.e., minimum and maximum

time difference between input readings used by the
transaction in order to produce a result.

3.1. From Data Dependency Graphs to Timed
Automata: an Example

In this subsection, we use an example to show the main
idea and intuition of the translation algorithm. The
transaction for the example, illustrated in Figure 3,
consists of the input k and the three tasks τA, τB, and τC.
The task executes according to a non-preemptive time-
triggered strategy. We want to verify that the data that τC
uses to produce the result for the transaction does not
origin from an input reading that is older than 10 time
units.

τ A

k

τ B τ C

Figure 3. The example transaction with its three
tasks.

The data dependency graph representing the
transaction in Figure 3 will consist of four nodes and is
displayed in Figure 4. The node nend represents the last
task τC.

n A n k n B n end

Figure 4. The data dependency graph.

According to definition 3, all tasks in the transaction
depend on input data k. The data dependency relation sets
for the nodes are L(nk) = { }, L(nA) = {nk}, L(nB) =
{nk⋅nA}, L(nend) = {nk⋅nA⋅nB}.

In the data dependency automaton we measure the age
of data when an input data instance has been processed by
the last task in the transaction (τend). Therefore we use
time stamps to measure the time elapsed since a particular
data entered the transaction. We denote a time stamp for

inputs represented by the initial node nk in the dependency
graph as Xk. As the transaction might be of a multi-rate
nature, more than one instance of an input could exist
simultaneously in the transaction, all with different age.
Consequently, for all initial nodes in the dependency
graph, there must be one or more associated time stamp
instances. The actual number of time stamp instances for
an initial node is correlated to the number of paths from
that initial node to all other reachable nodes in the
dependency graph, excluding nend. For instance, the
number of time stamp instances needed for Xk in this
example is two, since there is one path from nk to nA and
one additional path from nk to nB (see L(nA) and L(nB)).

We use clocks, which can only be reset, to implement
time stamp instances in timed automata. Therefore, when
a task that reads an input executes, the corresponding time
stamp instance is reset. When consumers of data produced
by that task execute, the time stamp instance is
distributed. Since several time stamp instances may be
needed for an input, nodes in the data dependency graph
may use any of these instances. To ensure that the time
stamps are consistent, a state in the data dependency
automaton is used to keep track of the time stamp
instances currently used by each node, i.e., one state in the
data dependency automaton models the assignments of
time stamp instances for all nodes. This gives for all nodes
the age of all data that the tasks, represented by the nodes,
have read at this point. Table 1 presents the assignment of
time stamp instances for state S0 to S3 in the data
dependency automaton displayed in Figure 5.

node nA nB
S0 kX1

kX1

S1 kX 2
kX1

S2 kX 2
kX 2

S3 kX1
kX 2

Table 1. Time stamp instance assignments for
state S0 to S3 in the dependency automaton.

Since several nodes simultaneously can use the same time
stamp instance, a time stamp instance cannot be reset
without considering possible multiple uses. Assume that a
task τp executes, and as a consequence a time stamp for an
input should be reset. If the time stamp instance used by
node np is used by at least one other node, then node np
will have to use a time stamp instance that is not assigned
to any node. Consequently, a transition has to be made to
a state in which node np is assigned the new time stamp
instance. As an example of such an instance replacement
consider the transition from S0 to S1 in Figure 5 where the
time stamp instance for node nA changes from kX1 to kX2 .
If, on the other hand, no other node in the data

dependency graph uses k
iX , it can be reused. The

transition S1 to S1 in Figure 5 is an example of reusing a
time stamp instance. In this case kX2 is reused in order to
reflect the most recent reading of input k.

In addition to the states that are needed to represent the
use of time stamp instances, there must exist states that
represent that the transaction is completed, i.e.,
corresponding to the last task, τend. We will refer to such a
state as an end-state. Upon a transition from a state S to an
end state a time stamp is reset, thereby making it possible
to verify the end-to-end age constraint on the data. Note
that this transition does not affect the assignment of time
stamp instances, thus there is always a transition back to
state S in the automaton.

S0

S1S3

S2

S4

S6

S5S7

0:?, 2 =kXa

0:?, =endXend

?b

0:?, 1 =kXa 0:?, 2 =kXa

0:?, 1 =kXa

0:?, =endXend0:?, =endXend

0:?, =endXend

?b

?b

?b

Figure 5. The data dependency automaton for
the example.

In order to verify temporal constraints for a transaction,
an automaton describing the execution strategy is needed.
The execution strategy of tasks can be time triggered or
event triggered. For time triggered systems the translation
of the execution order to a timed automaton is
straightforward. If the system is event triggered, the
system environment that generates the events must be
modeled as well [7]. For the purpose of illustration, a
simple execution scenario for the tasks in the example
transaction is depicted in Figure 6. All tasks have a bcet
equal to 1 time unit and a wcet equal to 2 time units. The
start time for the two instances of τA and the second
instance of τB is fixed, whereas the start times for the rest
of the task instances are relative to the preceding task. The
complete execution sequence is repeated as soon as the
second instance of τC has completed.

 τA

�����������
�����������τB τA τC

����������
����������τB τC

0 2 4 6 8 10 12 14

Figure 6. A possible execution scenario in the
three-task transaction.

The execution scenario depicted in Figure 6 results in
the automaton illustrated in Figure 7.

E0 E1 E2

E3E5 E4

clk:=0
a!

clk<=2
clk>=1

b!

clk=6
a!

clk<=10
clk>=9
end!

clk=11
b!

clk<=15
clk>=14

end!

Figure 7. The execution order automaton.
The execution order automaton in Figure 7 give rise to

the following state transitions in the data dependency
automaton in Figure 5:

04

037

3210

0:?,

?0:?,

0:2?,?0:2?,

SS

SSS

SSSS

cXend

bcXend

XabXa

→ →

→→ →

 →→ →

=

=

==

The transaction is completed when the data
dependency automaton reaches the end-states S7 and S4.
Consequently, the age constraint is satisfied if, when in
those states, a related reading of input k occurred no
longer than ten time units earlier. By related reading we
mean a reading of data that has propagated through the
entire transaction. Thus, in order to verify the age
constraint the following invariant must hold.

∀ □

)))10(7())10(6(

))10(5())10(4((

22

11

−≥→∧−≥→

∧−≥→∧−≥→
k

end
k

end

k
end

k
end

XXSXXS

XXSXXS

That is, in all possible execution scenario, restricted by
the execution automaton, the time difference between an
instance of the time stamp corresponding to the reading of
input k (kX1 or kX2), and the time stamp corresponding to
the completion of τC, is never greater than 10 time units.

1.2. From Data Dependency Graphs to Timed
Automata: the Translation Algorithm

In this section we present how to construct a
timedautomaton that represents the data dependencies for
a given transaction. The translation considers the data
dependencies in the transaction, represented by the L set.
Transactions are assumed to have a N-to-1 topology. That
is, there can be multiple tasks that may read inputs, but
only one task that produces outputs. A transaction with
multiple tasks producing outputs can be represented as
several different transactions, each with a single output-
task. Furthermore, the execution of tasks is considered to
be non-preemptive.

As discussed in Section 3.1, several instances of a time
stamp may be needed in order to keep track of the age of
data flowing through a multi-rate transaction. We denote a

particular instance i of time stamp kX as k
iX . The number

of time stamp instances numk needed to measure the age
of input data represented by an initial node nk is finite and
equal to the number of nodes depending on nk, i.e., the
size of { }Lnn kk ∈⋅⋅ σσ where nk∈ N0. As the tasks in the
transaction can execute in arbitrary order, they can in
particular execute in a manner that gives each task a
unique age of the input data it depends on. If the number
of time stamps needed for an initial node nk is numk, the
instances will be enumerated from 1 to numk.

The age of an input k, that a task depends on, is
represented as a pair consisting of the time stamp for k,
and the path from the initial node in the data dependency
graph that represents k to the node that represents the task.
This path uniquely identifies a dependency and
distinguishes different dependencies of the same data. For
each task τp in a transaction, the set A(np) contains all such
pairs for the data that τp depends on.

Definition 4. The set A(np) contains pairs 〈Xk, s〉 where Xk

is the time stamp of input, represented by the initial node
nk, and s is a path from nk to the node np, representing
task τp.

!
)(

,)(
pk nLn

k
k

p nXnA
∈⋅

⋅=
µ

µ

 □
Note that for each pair 〈Xk, s〉 in A(np), the path s is

static whereas the particular instance i of time stamp Xk

may vary between states in the data dependency
automaton. We will use A to denote the set containing the
sets A(np) for all tasks in the transaction excluding the last
task τend.

A state in the data dependency automaton represents a
unique time stamp instance assignment for the set A.
Moreover, the number of states in the data dependency
automaton is finite. Thus, the problem of verifying
temporal constraints using reachability analysis is
decidable.

Proposition 1. The number of states in the data
dependency automaton is finite and given by:

∏ ∏
∈ ∈

∗
Nn nAsX

k
p p

k

num
)(,

2 where np ≠ nend.

PROOF: Since every time stamp Xk in A(np) can be one of
numk instances, there are

∏
∈)(, p

k nAsX
knum ways of constructing A(np).

The total number of possible states for the data
dependency graph excluding nend is then given as all
possible ways of combining the time stamp instances for

all nodes. Consequently, the total number of combinations
is given by:
∏ ∏

∈ ∈Nn nAsX
k

p p
k

num
)(,

Since from every state there must be a transition to a
unique end state, the total number of states in the data
dependency automaton is ∏ ∏

∈ ∈

∗
Nn nAsX

k
p p

k

num
)(,

2

 □
We will now present the rules for constructing the time

automaton representing the data dependency graph for a
given transaction that complies with the assumptions
given earlier in this section. The automaton is constructed
starting from an initial state S and the rules G1 to G5
decides what action to take and how the states changes
when a task τp executes. Two basic rules R1 and R2
constitute the basis for G1 to G4, whereas G5 corresponds
to completion of the transaction. If node np is an
immediate successor to the initial node nk and if node np

uses the time stamp instance k
jX to represent the age of

data read by task τp, then R1 is satisfied if k
jX is not used

by any other node. Moreover, R1 is also satisfied if node
np does not depend upon an initial node. The second rule
R2 is satisfied if every immediate predecessor to node np
in the data dependency graph uses the same time stamp
instance as np itself. R2 is also satisfied if np has no
dependencies to other nodes.

R1: pqqk
k
jpk

k
j nnnAnXnAnX =∨∉⋅→∈)(,)(, µ

R2:)(,)(, qk
k
jpqk

k
j nAnXnAnnX ∈⋅→∈⋅⋅ µµ

In Figure 8, the transitions corresponding to rules G1
to G5 are displayed. For each node in the data dependency
graph, one out of four possible transitions, G1 to G4,
should be present in every state of the resulting timed
automaton. The rules G2 to G4 result in a change of the
time stamp instance assignment in the set A and therefore
a transition must be made to another state in the timed
automaton that represents the assignment of time stamp
instances. G1 on the other hand, does not change time
stamp instance assignments, and consequently, a transition
to a new state in the timed automaton is superfluous.
Finally, G5 corresponds to completion of the transaction
by reaching an end-state. The rules should be applied in
all states for all nodes in the dependency graph.

S′

S

S′′ S′′′

G1

G3

end

G5

G4 G2

Figure 8. The rules for constructing the data
dependency automaton.

The rules are described by a condition consisting of a
composition of the basic rules R1 and R2, an action
describing the transition taken in the timed automata and
which time stamp instance, if any, that should be reset.
Furthermore, the initial state S is formed as:

S = A where 1)(, =⇒∈ jnAsX p
k
j

That is, initially tasks that depend on the same input data
uses the same time stamp instance for that data.

Transition G1. The time stamp instance for the input (if
any) that the task reads is not used by any other task, and
there is no updated time stamp for the data that the task
consumes (if any). The time stamp for the input is
updated.
Condition: R1 ∧ R2
Action:

)(,
0:?,

pk
k
j

k
jXp

nAnXiffSS ∈ →
=

)(,?
pk

k
j

p nAnXiffSS ∉→

Transition G2. The time stamp instance for the input that
the task reads is used by at least one other task. If the task
consumes data from other tasks, there is no updated time
stamp, i.e., the tasks use the same time stamp. As a
consequence, the state S changes to S’.
Condition: ¬R1 ∧ R2

Action: NnnAnXwhereSS qqk
k
j

Xp k
j ∈∉⋅′ → = allfor)(,0:?, µ

Transition G3. The time stamp instance for the input (if
any) that the task reads is not used by any other task, but
there are one or more updated time stamps for the data
that the task consumes. The state S changes to S ′′ as one
or more time stamp instances has to be changed
considering the data dependency.
Condition: R1 ∧ ¬R2
Action:

)(,0:?,
pk

k
j

Xp nAnXiffSS
k
j ∈′′ → =

)(,?
pk

k
j

p nAnXiffSS ∉′′→

Transition G4. The time stamp instance for the input that
the task reads is used by at least one other task, and there
are one or more updated time stamps for the data that the
task consumes. The new state S ′′′ reflects the fact that we
need both a unique time stamp instance for the input and
that one or more time stamp instances have to be changed
considering the data dependency.
Condition: ¬R1 ∧ ¬R2

Action: NnnAnXwhereSS qqk
k
j

Xp k
j ∈∉⋅′′′ → = allfor)(,0:?, µ

Transition G5. The last task in the transaction executes
and completes. The time stamp Xend is reset on the
completion of τend.
Condition: τend completes.
Action: SendS endXend → → =0:?, where end = nend

1.3. From Data Dependency Graphs to Timed
Automata: The example revisited

As an example on how to apply the rules G1-G5 in
order to construct a data dependency automaton,
reconsider the transaction of the example in Section 3.1.
The data dependency graph for that transaction is equal to
the graph in Figure 9.

n A n k n B n en d

Figure 9. The data dependency graph.

The L sets for the nodes are L(nk) = { }, L(nA) = {nk},
L(nB) = {nk⋅nA}, L(nend) = {nk⋅nA⋅nB}. Using Definition 4
gives the A sets A(nA) = {〈Xk,nk〉} and A(nB) = {〈Xk,nk⋅nA〉}.

For the initial node S the sets A(np) is assigned time stamp
instances according to S = A where 1)(, =⇒∈ jnAsX p

k
j ,

which gives A(nA) = {〈 kX1 , nk〉} and A(nB) = {〈 kX1 ,
nk⋅nA〉}.

Now we will explore the rules for constructing a data
dependency automaton by deducing the transitions from
the initial state S.

Transition G1 (R1 ∧ R2)
Starting with node nA, rule R1 is not satisfied since 〈 kX1 ,
nk⋅nA〉∈ A(nB) and thereby no transition is taken. For node
nB, both rule R1 and R2 is satisfied and therefore the

transition SS B→ ? is taken. Since 〈 kX1 , nk〉 is not in
A(nB) no time stamp instance is reset.

Transition G2 (¬R1 ∧ R2)
For node nA, ¬R1 is satisfied as well as rule R2, and
thereby the transition SS

kXA ′ → =0:?, 2 is taken, where
〈 kX2 , nk⋅µ〉 ∉ A(nq) for all nq∈ N. For state S’ A(nA) =
{〈 kX2 , nk〉 } whereas A(nB) = {〈 kX1 , nk⋅nA〉} remains
unchanged. For node nB, ¬R1 is not satisfied and therefore
no transition is taken.

Since neither G3 (R1 ∧ ¬R2) nor G4 (¬R1 ∧ ¬R2) is
satisfied for any of the nodes, there are no transitions for
these cases.

Transition G5
Finally, according to G5, the transition

SendS endXend → → =0:?, is added to the automaton.

The part of the data dependency automaton constructed
so far is displayed in Figure 10. Repeating the procedure
above for state S’ will eventually complete the automaton,
resulting in the automaton of Figure 5.

S

S'

end

0:?, 2 =kXA

0:?, =endXend

?B
1G

2G

5G

Figure 10. The partial data dependency
automaton.

4. Conclusions

A temporal constraint can for instance be the time from
input to output or the time difference between several
inputs to a transaction. Such constraints of a transaction
are not always possible to express in the task models at
hand. Thus, the designer has to map such a constraint
manually onto the temporal attributes in the existing task
model, e.g. period times, deadlines, offsets, etc. The
schedulability analysis only verifies whether the mapped
system description can be realized or not. It does not
verify that the requirement mapping itself is correct. In
this paper we have described how to use timed automata
to verify temporal constraints on data in transactions. By
constructing a timed automaton model of the data

dependencies in a transaction, we enable verification of,
for instance, end-to-end constraints using model-checking.

As the model is general, it can handle arbitrary
computational models and execution orders of the task in
the transaction. The main contribution of the paper is the
rules for automatically generating such a model in timed
automata. Although the size of the constructed automaton
grows, in the worst case, exponentially with the number of
tasks in a transaction, we believe that the method is
suitable and applicable to real-world applications. The
method can be applied to one transaction in isolation, i.e.,
modeling and verification can be performed on one
transaction at a time. Consequently, only the transactions
of interest in the complete system have to be verified. Our
experiences from industrial case studies indicate that, in a
substantial number of applications, the majority of the
transactions are of size feasible for this method.

As future work we will extend the method to also
include preemptive execution strategies and we will
implement a tool that, from a given system description,
generates data dependency automata and timed automata
modeling the tasks’ execution. The model of the tasks’
execution will be derived from an existing scheduler, and
for model-checking we will use the existing model-
checkers, e.g. UPPAAL [10]. Furthermore, we plan to
investigate the possibility of making timed automata
models of the functional behavior of tasks at some
appropriate level of abstraction. Such models enable
verification of, not only temporal correctness, but also
functional properties such as safety and functional
correctness.

5. References

[1] Liu C. L. and Layland J. W. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. Journal
of ACM 20(1), 1973.

[2] Audsley N. C., Burns A., Davis R. I., Tindell K., and
Wellings A. J. Fixed Priority Pre-emptive Scheduling: An
Historical Perspective. Real-Time Systems 8(2-3): 173-198,
1995.

[3] Xu Jand Parnas D. L. Scheduling Processes with Release
Times, Deadlines, Precedence and Exclusion Relations. IEEE
Transaction on Software Engineering, Vol. 16 No. 3, March
1990.

[4] Mok A. K., Tsou D., and De Rooij R. C. M., The
MSP.RTL Real-Time Scheduler Synthesis Tool, In proceedings
of 17th IEEE Real-Time Systems Symposium, pp. 118-128,
1996

[5] Gerber R., Hong S., and Saksena M. Guaranteeing Real-
Time Requirements with Resourse-Based Calibration of

periodic Processes. IEEE Transactions on Software
Engineering, 21(7), 1995.

[6] Kim N. A Scheduling Technique for Real-Time Systems
with End-to-End Timing Constraints, In proceedings of RTCSA,
1996.

[7] Norström C., Wall A., and Yi W., Timed Automata as Task
Models for Event-Driven Systems, In proceeding of RTCSA,
1999.

[8] Daws C. and Yovine S., Two examples of verification of
multirate timed automata with KRONOS, In proceedings of 16th

IEEE Real-Time Systems Symposium, PP 66-77, 1995

[9] Alur R. and Dill D. A theory of timed automata,
Theoretical Computer Science vol. 126 pp. 183-235, 1994

[10] Larsen K. G., Pettersson P. and Yi W., UPPAAL in a
Nutshell, In Springer International Journal of Software Tools for
Technology Transfer 1(1+2), 1997

	Verifying Temporal Constraints on Data in Multi-Rate Transactions �using Timed Automata
	Introduction
	Transactions, Data Dependency Model and Execution strategies
	Verifying temporal constraints using timed automaton
	From Data Dependency Graphs to Timed Automata: an Example
	From Data Dependency Graphs to Timed Automata: the Translation Algorithm
	From Data Dependency Graphs to Timed Automata: The example revisited

	Conclusions
	References

