
 
1

Reusability – A key factor in Product-line Development 
Sara Dersten 

School of Innovation, Design and Engineering  

Mälardalen University 

P.O Box 883, SE-721 23 Västerås, Sweden 

 E-mail: sara.dersten@mdh.se  

 

Abstract: 

The Product-line approach has been shown to be a beneficial process for software development. It offers 
great paybacks on investment, in reduced time-to-market, development costs and maintenance costs. Here, 
the utilization and development of reusable components are key factors. To overcome reuse-related 
problems, component frameworks can be included in the product-line.  

In this report the product-line is further discussed. Then the industrial component model, Koala, developed 
for the product-line approach, is presented. The report starts with an overview of component based 
software development and the software lifecycle. 

 

1 Introduction 

Product-line development usually leads to easier complexity management, increased product 
quality and reduced time-to-market. The commonalities between products in a product family 
are shared in common software. This software platform can be reused in several product releases 
and variants. 

The key factor is the utilization and development of reusable components. In the ideal system 
development independent components would be applied into the system. But in the reality 
dependencies are created between components and between components and their frameworks. 
This affects the reusability of a component negatively.  

The contribution of this report is to broader the knowledge of component based software 
development and its exploitation in product-line development. The goal is to increase the 
understanding of the problems related to software reuse. This will aid in future development of 
component techniques and frameworks. 

The rest of this report will be organized as follows. Section 2 gives a brief overview of some 
existing software lifecycle models used in software development. Section 3 describes component 
based development in context of the Waterfall model. In Section4 production-line development, 
the benefits and requirements are explained. In Section 5 the Koala component model is 
presented. 

 

2 Software Development 

Typical phases of generic a software product lifecycle model [1] are Requirements analysis & 
System specification, System & Software design, Implementation & Unit testing, Integration& 
System verification and validation, Operation support & Maintenance and Disposal. A software 
product lifecycle model explains the different tasks during development and maintenance of the 
product. 

There are several types of software product lifecycle models available. Some of them start at the 
beginning of the lifecycle and the follow a sequential order through all phases. Typical for these 
kinds of software lifecycle models is that each phase must be completed before the next phase 



 
2

can be entered. Examples of these type of models are the Waterfall model and the V model [1, 
2]. The disadvantage of this Sequential model is that it requires that product requirement are 
identified very early in the process which are very hard to change later in the product lifecycle. 

Evolutionary development [1] does not suffer from the above mentioned problems. In this model 
each phase is repeated several times. This increases the knowledge of the system and needed 
requirements and reduces problems to occur late in the system development. There are also 
Iterative models [1, 2] based on the sequential model but where each phase can be reentered if 
needed. Like the evolutionary model, this model increases system knowledge and refines 
requirements but the repetitive phases makes it hard for the project manager the calculated 
needed time for the product development. A combination of the sequential model and the 
iterative model is the Incremental model [1]. It starts by develop only a part of the system in a 
sequential order. Then another part is developed and so on until the whole system is delivered. 
In this way it is easier to adapt the parts to new or refined system requirements. Another 
approach is the Prototyping Model [1]. First a small prototype of the system is developed. After 
requirements refinement and fault detection more functionality is added to the system. The 
Unified Process, UP, [1] is both an iterative and incremental process. The process is divided in 
four phases where the system is described in a formal way, architecture defined, the system 
constructed and delivered.  

 

3 Component Based Development 

In component based development software systems are built from existing components. This 
means that components can be reused and shared between product releases and product variants. 
The advantages are reductions of time-to-market, development cost and maintenance costs [3, 
4]. Since a reused component is already used and tested in different contexts, there might also be 
a possibility that the component is more reliable than a new developed component. The 
components used in component based development can be developed in-house, bought from an 
external subsystem developer or even off-the-shelf components, COTS.  

The same a lifecycle models as in normal non component based development might be applied 
in component based development. The development can be divided into two different processes, 
the system development and component development. But these processes will not be totally 
separated. Both processes will be engaged in component verification and component 
requirements generation.  

To exemplify the component based development process the Waterfall model is used [1].In 
system development, the Requirement Analysis & System specification phase will include 
finding and check the availability of existing component. The outcome from this phase, the 
system requirements, will depend on this availability. The system requirements will not only 
serve as input for next phase in system development but also as input for the component 
development Requirement Analysis & System specification phase, where components have to be 
planned. The component planning needs some extra efforts since the components have to be 
reusable in many contexts. 

In the Analysis & Design phase, a system analysis is performed and a conceptual design created, 
from which components can be identified and specified. For component development, the lack 
of a system design, forces the component designer to make assumptions about the unknown 
system. He also chooses what component model to use and needed technology. This phase also 
requires extra efforts due to requirement of reusable components. The components have to be 
adaptable but still perform their functionality in an efficient way. 

In system development, the Implementation phase includes component selection, integration of 
component, verification of components and assemblies and adaption of components. In 
component selection it is important to consider required properties.  



 
3

When the system developers are integrating the components into their system in the Integration 
phase many errors are revealed. These kinds of errors are often related to problems with extra 
functional properties. For the component developer this phase might not even exist but he will 
still have to think about component integration in all phases.  

In the Test phase, the system developers test the component at component level, assembly level, 
subsystem level and at system level. For the component developer this phase required a very 
careful testing of the component since he still does not know anything about the future use of the 
component. 

In both system development and component development the system or component is packaged 
in the Release phase. The component package also includes property specification, test 
documentation and other documentation. 

The Maintenance phase might be complicated for both system developers and component 
developers. There might be responsibility issues if the system failure or an error is discovered in 
a component. It root cause can be hard to investigate since errors can propagate through the 
system from one component to another. 

 

4 Product-line Development 

The idea with product-lines is the reusing of the same system basis in several members in the 
same product family. In this way, one can concentrate on each product member specific 
properties instead of inventing the same things over and over again.  

To be able to continue discuss product-line development we have to define what a product-line 
is. We start by defining a product family as a set of products with many commonalities and few 

differences [1]. One example of a product family is construction equipment. Both an articulated 
hauler and a wheel loader need power management and communication between electronic 
control units. But they differ a lot in core functionality. The wheel loader needs to have 
complicated control for lifting its arms when the articulated hauler might have advanced 
suspension systems. A software product-line can be defined as a top-down, planned, proactive 

approach to achieve reuse of software within a family of products [1]. Others define a software 
product-line as a set of software-intensive systems sharing a common, managed set of features 

that satisfy the specific need of a particular market segment or mission and that are developed 

from a common set of core assets in a prescribed way [3] . 

The product-line approach seems to pay back its investments. Several companies report 
successfully introductions. One examples is the Telecom company Nokia that after introducing a 
product-line approach produces 25-30 different phone models a year [3]. But to achieve a 
beneficial introduction there are large investments. 

Bosch [5] presents a case study made in 1997 on two companies that introduced a product-line 
approach three years earlier. He identified several issues and problems related to the 
introduction. The use of product-line architecture required increased knowledge by the 
engineers. Another problem was conflicting quality requirements of components in different 
context which reduced reusability and complicated evolutions. There were also difficulties to 
develop components for use in different products. Also, it was hard to get support from the 
management since the investment of product-line architecture would delay time-to-market. A 
problem that caused hesitation amongst managers was that effort estimation on reuse is hard and 
therefore variation requirements must be collected before the introducing of the product-line 
architecture. It was also hard to know which products to conclude in the product-line and how to 
organize the development department. Bosch [5] also mentions the problem with the lack of tool 
support. This problem may not exist today since there are a lot of tools on the market nowadays.  

After the introduction of the product-line the organization can lay back and enjoy the situation. 
The reason why product-lines are so beneficial are not only due to re-use of software code[3]. 



 
4

Product-line approaches saves time during requirement phase since almost all requirements can 
be reused between products and releases. Also many architectural problems are already solved 
and the systems architects can concentrate on core functionality. This pattern follows the product 
life cycle phases through implementation, test, verification and maintenance. Other aspects such 
as project planning might also be easier when less functionality have to be developed in each 
project. Organizational and people issues are also important actors in successful development of 
a product-line [6]. 

One important factor for a successful utilization of a product-line approach is variability 
management [1].The products in the product family ultimately share a basic platform. This 
platform may include infrastructural solutions, such as communication and memory handling, 
common in the whole family. Therefore the system architects can concentrate more on finding 
variability points. This will make the development of new products easier but it also requires 
more effort on finding the requirements for future development. The product-line development 
also requires more activities in domain engineering, and commonality management [7]. 

 

Component based product-line development 

The utilization and development of reusable components is one of the key factors in product-line 
development. Ommering [1] means that there are two important factors for how reusable a 
component or a data element is. The first factor is variability, how much a component can be 
changed during utilization. Methods of achieving new variants of a component are 
parameterization and inheritance. There are also possibilities to implement whole plug-in 
component. Some components cannot even be modified at all. 

The other important factor is the independency of a complement. If a component is dependent of 
another component, for example by inheritance, a dependency is created for a specific class 
library. This can reduce the ability to reuse the component without implementing the whole 
library.  

An object oriented (OO) framework consist of a number of class libraries. These classes are used 
for deriving new classes by heritance when developing applications. This makes the new classes 
or components dependent on the used framework. Another problem is the fragile base class 
problem which means that modifications in a base class causes problems in a derived class.  

This avoid in component frameworks by pre-specified interfaces between the components and 
the framework. Unfortunately, also these components will be dependent on the chosen 
component framework. Since the framework is an application in itself the components can 
seldom be applied by themselves without the whole framework. 

Further, Ommering suggests a solution where frameworks are be used as components. But this 
will require that several different frameworks can be combined together. 

 

5 The Koala Component Model 

In 1996 started the development of the Koala component model at Philips, a Dutch consumer 
electronics company. The developers wanted a technique where components could be placed 
into the embedded software in the company products. It was also required that the model fitted 
in systems with resource constraints and could be described in explicit product architecture. 

The Koala developers wanted easily reusable components. A component should therefore not be 
forced to have information about its environment. It was also a necessary that it was easy to 
connect a component to other components in different ways. Another requirement was the 
possibility to use parameterization to assign a component a specific purpose.  



 
5

Today the Koala component model separates component development from configuration 
development. By using ADL, architectural description language, an explicit description of the 
architecture can be developed for easier managing of diversity and complexity.  

 

Components and Interface definitions  

A Koala component can exist of a single component or be a compound by several sub 
components. In the model there are two types of interfaces. A required interface is the type of 
interface that the component need or require. The other type of interface is the provided 

interface. This interface is the type that the component provides. All communication between 
components takes place through required interfaces. An interface may be optional. If a required 
interface is optional it means that the interface does not have to be connected to another 
component. If the optional interface is a provided interface the component has to implement an 
inform function for informing connected components if the optional interface is implemented or 
not [8]. The parameterization is also handled through interfaces. 

Typically a provided interface from one component is connected to a required interface on 
another component. But there is of course also a possibility to connect a provided interface of a 
subcomponent to the interface of its compound component or a required interface of a 
compound component to one of its subcomponents.  

A wider provide interface can be connected to a narrower require interface. This feature can be 
utilized for sub-typing. A component that require less but provides more than another 
component can replace that component. In this way the new component can provide more 
specialized functionality than its precursor. In the Koala model this feature is used for backwards 
compatibility [1]. 

 

Connectors 

There are two types of connectors in the Koala component model. The normal connector is 
implemented as glue code. In this way there is a possibility to connect even mismatching 
interfaces. A kind of glue code is the switch. Switches can be used for binding functions with 
condition expressions [8]. If there is a need for another type of connector there is a possibility to 
create a special-purpose component.  

The product developers want to bind components late in the development but not at runtime due 
to resource constraints. To still avoid binding too early in the process, symbolic names are given 
for functions that components refer to. Further, all components and interactions are described in 
an architecture descriptions language and then the symbolic names are mapped to physical 
names at compile time. In this way the physical mapping can be decided at product time. 

 

Other Koala features 

All components have to implement an initialization interface. This interface must be called 
before any other interface can be accessed. Most components need functionality from other 
components during initialization. Therefore there are a number of legal outcalls during the 
initialization. 

One of Koalas goals is reusable components that not require knowledge of its environment. 
Another goal is techniques for handle a resource constrained system. To achieve these goals 
pumps were invented. Pumps are messages queues with a logical thread. These pumps are 
controlled by pump engines which connects them to a physical thread. In this way 
multithreading can be used efficiently without components having knowledge about the system 
around them. 

 



 
6

Product-line development with Koala 

The architecture is arranged in a three layer structure. The lowest layer is the computing 

platform layer that abstracts the executing hardware to upper layers. The second layer is the 

A/V/data platform layer. The principle of this layer is to abstract other hardware to the upper 
layer. This is audio, video and other data processing hardware. The most upper layer is an 
application and service layer. Components can use components from the same layer or a lower 
situated layer. Each layer has nine subsystems. These subsystems handle the activities in specific 
sub-domains. Each subsystem includes different types of components. Some compounds 
components cover a whole sub-domain for a specific type of products [1] when basic 
components only covers some parts of the sub-domain. 

All components are saved in a repository. A set of components and interface definitions are 
published as packages. Each package contains one functionality and is managed by one 
responsible team. Other developers at Philip can access these packages on the company intranet. 
When a needed component is not found in the repository a new component can be developed 
from a basic component.  

On system level a Configuration Management, CM, system is used only for maintaining 
software assets and branches during error corrections and all diversity in product families is 
handled by Koala. Instead each package has its own CM system where the responsible team can 
manage updates and keep the history of all components. 

 

6 Summary 

The product-line approach is a successful way of lowering software development costs and time-
to-market. The key factor is the utilization and development of reusable components. In the ideal 
system development independent components would be applied into the system. But in the 
reality dependencies are created between components and between components and their 
frameworks. This affects the reusability of a component negatively. A solution is to exploit 
frameworks as components. If we can create frameworks that can work together with other 
compatible frameworks there would be a possibility for subsystem suppliers to use their own 
framework. A future solution might be to use generic frameworks that new more specialized 
frameworks could derive from. Such a derived framework could implement specialized 
functionality for a specific domain. Hence, in future we need emphasize on development of 
compatible frameworks, almost like a framework for framework. 

 

7 References 

[1] Crnkovic, I. and M. Larsson, Building Reliable Component-Based Software Systems. 
2002, Norwood, MA, USA: Artech House. 

[2] Crnkovic, I., M. Chaudron, and S. Larsson, Component-Based Development Process and 
Component Lifecycle, in Proceedings of the International Conference on Software 
Engineering Advances. 2006, IEEE Computer Society. 

[3] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, Second Edition. 
2003: {Addison-Wesley Professional}. 

[4] Mohagheghi, P. and R. Conradi, An empirical investigation of software reuse benefits in a 
large telecom product. ACM Trans. Softw. Eng. Methodol., 2008. 17(3): p. 1-31. 

[5] Bosch, J., Product-line architectures in industry: a case study, in Proceedings of the 21st 
international conference on Software engineering. 1999, ACM: Los Angeles, California, 
United States. 



 
7

[6] Bass, L., et al., Product Line Practice Workshop Report, in Technical Report CMU/SEI-
97-TR-003. 1997, Software Engineering Institute  

[7] Ahmed, F. and L.F. Capretz, The software product line architecture: An empirical 
investigation of key process activities. Inf. Softw. Technol., 2008. 50(11): p. 1098-1113. 

[8] van Ommering, R., et al., The Koala component model for consumer electronics software. 
Computer, 2000. 33(3): p. 78-85. 

 


