
Trace Recording for Embedded Systems:

Lessons Learned from Five Industrial Projects

Johan Kraft1, Anders Wall2 and Holger Kienle1

1 Mälardalen University, Box 883, 72123, Väster̊as, Sweden
{johan.kraft, holger.kienle}@mdh.se,

2 ABB AB, Corporate Research, Väster̊as, Sweden
anders.wall@se.abb.com

Abstract. This paper presents experiences from five industry collabo-
ration projects performed between 2004 – 2009 where solutions for em-
bedded systems trace recording have been developed and evaluated; in
four cases for specific industrial systems and in the last case as a generic
solution for a commercial real-time operating system, in collaboration
with the RTOS company. The experiences includes technical solutions
regarding efficient instrumentation and logging, technology transfer is-
sues and evaluation results regarding CPU and RAM overhead. A brief
overview of the Tracealyzer tool is also presented, a result of the first
project (2004) which still is used by ABB Robotics and now in commer-
cialization.

Keywords: embedded-systems, scheduling, tracing, trace-recording, mon-
itoring, experiences, case-studies, overhead

1 Introduction

Trace recording, or tracing, is a commonly used technique useful in debugging
and performance analysis. Concretely, trace recording implies detection and stor-

age of relevant events during run-time, for later off-line analysis. This work tar-
gets embedded computer systems, i.e., specialized control systems used in many
industrial products, for instance cars, trains, robotics and telecom systems. Em-
bedded systems come in all sizes, from single-chip 8-bit computers with a few KB
of RAM to 32-bit computers with features and performance comparable to PCs.
Embedded systems are often real-time systems, meaning that the correctness also
depends on response time, i.e., the latency from an input to the corresponding
output. This must not exceed a specified requirement, the deadline. Embedded
systems are typically implemented on multi-tasking real-time operating systems,
where tasks (threads) share the CPU using fixed-priority scheduling [3, 5].

Trace recording for embedded systems can be performed at different abstrac-
tion levels and can be accomplished using software solutions, hardware solutions,
such as Lauterbach Trace323, or hybrid hardware/software solutions such as the

3
www.lauterbach.com

2 Johan Kraft et al.

RTBx product of Rapita Systems4. A software-based approach means to add
code instrumentation which logs the desired information in a software recorder
module. This is typically performed without changing the application code but
implies an overhead on CPU and RAM usage which for embedded systems can be
of significance. Hardware solutions however require large, expensive equipment,
mainly intended for lab use, while software solutions can remain active also in
post-release use. This can be very valuable for reproducing customer problems,
such as transient timing problems which only occur under rare circumstances.

The type of trace recording discussed in this paper is software-based trace
recording for embedded systems, focusing on scheduling events, inter-process
communication (IPC) events and relevant operating system calls. This is a higher
abstraction level compared to, e.g., the work by Thane et al. [8] on replay de-
bugging. However, our approach often gives sufficient information to pinpoint
the cause of an error. If more information is necessary, this facilitates a de-
tailed analysis using a debugger. In return, such recording is easy to integrate
in existing systems since no application code instrumentation is required and
the run-time overhead is very low, which allows for having the recording active
also post-release. Many RTOS developers, including Wind River5, ENEA6 and
Green Hills Software7, provide tracing tools for their specific platform, but they
typically never reveal any details or overhead measurements regarding their solu-
tions. The main contribution of this paper is a synthesis of our experiences from
five industry collaboration projects where trace recording solutions have been
developed, including technical solutions used as well as results from recording
overhead measurements.

2 Software Trace Recording

Software trace recorders typically operate by storing relevant events in a circular
RAM buffer, as binary data in fixed-size records. In this manner, the recorder
always holds the most recent history. In all implementations presented in this
paper, a single ring-buffer is used for storing all types of events.

It is possible to detect scheduling events on most real-time operating systems,
either by registering callbacks (hooks) on system events like task-switches, task
creation and termination, or by modifying the kernel source code. The callback
approach is possible on at least VxWorks (from Wind River) and OSE (from
ENEA). Operating systems with available kernel source code, e.g., Linux and
RTXC Quadros8, can be modified to call the trace recorder module on relevant
events. Åsberg et al. [2] has shown that for Linux (2.6 kernel), the only kernel
modification required is to remove the “const” keyword from a specific func-

4 www.rapitasystems.com
5
www.windriver.com

6
www.enea.com

7 www.ghs.com
8
www.quadros.com

Trace Recording for Embedded Systems: Lessons Learned from Five Ind... 3

tion pointer declaration. It is however possible to realize Linux trace recording
without kernel modifications, if using a custom scheduler like RESCH [1].

In our approach we abstract from the context-switch overhead posed by the
operating system and consider the task-switches as instantaneous actions. Only
a single time-stamp is stored for each task-switch event and the OS overhead
is instead accounted to the execution time of the tasks. Each task-switch event
corresponds to exactly one execution fragment, i.e., the interval of uninterrupted
execution until the next task-switch event. The rest of this section will discuss
the information necessary for task-switch recording, the “what”, “when” and
“why”. Due to space constraints, we focus of techniques for recording of task-
switch events. Recording of IPC and operating system calls are however very
similar.

2.1 Task Identity (the “What”)

Most operating systems use 32-bit IDs for tasks, even though many embedded
system only contain a handful of tasks. It is therefore often a good idea to
introduce a short task ID, STID, using only 8 bits or 16 bits in order to make
the task-switch events less memory consuming.

The STIDs needs to be allocated on task creation and quickly retrieved when
storing task-switch events. This can be implemented by storing the STIDs in a
data area associated with the task, for instance the task control block (TCB) in
VxWorks, where there are unused “spare” field. In OSE there is a “user area”
associated with each process, which can be used for this purpose.

Complex embedded systems with event-triggered behavior, such as telecom
systems, often create and terminate tasks dynamically. In that case it is im-
portant to recycle the STIDs to avoid that they run out. This means that the
termination of tasks must be registered in order to mark the particular STID as
no longer in use. An STID may however not be reused for newly created tasks
as long as there are references to a particular STID in the event ring-buffer.

2.2 Time-stamping (the “When”)

Obtaining a time-stamp is normally a trivial operation, but standard libraries
typically only allow for getting clock readings with a resolution of maximum
1 or even 10 milliseconds, depending on the tick rate of the OS. This is too
coarse-grained for embedded systems timing analysis, since many tasks, and
especially interrupt routines, have execution times measured in microseconds.
Fortunately, embedded systems usually have hardware features for getting more
accurate time-stamps, such as real-time clocks (RTC). In other cases, if the CPU
frequency is constant, it is possible to use a CPU instruction counter register.

In order to reduce the memory usage when storing the events, a good method
is to encode the time-stamps in a relative manner, i.e., to only store the time
passed since the previously stored event, i.e., the durations of the execution
fragments. If the absolute time of the last stored event is kept, it is possible to

4 Johan Kraft et al.

recreate absolute time-stamps during off-line analysis. This allows for correlating
the trace recording with other time-stamped logs created by the system.

The relative time-stamp encoding allows for using fewer bits for storing time-
stamps, typically between 8 – 16 bits per event. A problem however occurs in
cases where the duration of an execution fragment exceeds the capacity of the
time-stamp field, i.e., 255 or 65535 time units. Handling the overflow issue for
relative time-stamps introduces a tradeoff between memory usage and recorder-
induced jitter (i.e., predictability). The most reliable but least efficient solution
is to use enough bits for this purpose so that the overflow does not occur. A
more efficient solution is to reduce the number of time-stamp bits to better fit
the typical fragment duration, and instead introduce an alternative handling of
the few cases where the number of time-stamp bits are insufficient. In this case,
an extra “XTS” event (eXtended Time-Stamp) is inserted before the original
event, carrying the time-stamp using enough (32) bits. This however introduces
a control branch in the task switch probe, which might cause timing jitter in
the recorder overhead and thereby additional timing jitter in the system as a
whole, which can be bad for testability and predictability. We however believe
that this jitter is negligible compared to other sources of jitter, such as execution
time variations. The XTS approach is used in all five recorder implementations
presented in this paper. Storing time-stamps of higher resolution (e.g., nanosec-
onds instead of microseconds) results in higher RAM usage due to either a wider
time-stamp field or more frequent XTS events. However, if using a too low time-
stamp resolution (e.g., milliseconds), some execution fragments may get a zero
duration and thus becomes “invisible” in off-line visualization and analysis.

2.3 Task-switch Cause (the “Why”)

In preemptive fixed-priority scheduling [3, 5] a task-switch may occur for sev-
eral reasons: the running task might have been blocked by a locked resource, it
might have suspended itself, terminated, or a task of higher priority might have
preempted the task. This information is necessary to record in order to allow
grouping of execution fragments into task instances, also known as task jobs. A
task instance corresponds to one logical execution of the task, i.e., the processing
of one work-package. The end of an instance is referred to as the instance finish,
and corresponds to the termination of the task, i.e., exit from main function, or
for non-terminating tasks when the task has performed one iteration of the main
loop and enters a blocked or waiting state awaiting the next task activation, i.e.,
the start of the next instance.

From a trace perspective, a task instance corresponds to one or several con-
secutive execution fragments of the same task, possibly interleaved by execution
fragments of other tasks, where the last fragment is ended by the instance finish,
and where any previous fragments of the same instance is ended by preemption
or blocking. The concepts of instances and execution fragments are illustrated
by Figure 1, using an example with three tasks, where task H has the most
significant priority and task L the least significant priority. Each execution frag-
ment is labeled Ti,f , where T is the task name, i the instance number and f the

Trace Recording for Embedded Systems: Lessons Learned from Five Ind... 5

execution fragment number within the instance. The upper row indicates the
task-switch cause: preemption (P) or termination (T) (i.e., instance finish).

Time

L��� M���
L��� L���M��� M���H��������	
����� �����	
 	����� 	����� 	

Task L

Task M

Task H

Instance L�Instance M� Instance M�Instance H1

P T P P T T T

Fig. 1. Execution fragments and task instances

What counts as an instance finish for non-terminating tasks is system specific
and depends on the software architecture. For non-terminating tasks there are
two options for detecting instance finish: using the scheduling status or using
code instrumentation. If a certain scheduling status can be unambiguously as-
sociated with the inactive state of a task, a task-switch due to this scheduling
status can be regarded as the instance finish. The next execution fragment of
this task is thereby the start of the next instance. This approach is however dif-
ficult if the task may be blocked for other reasons (other semaphore or message
queues), since the scheduling status at best tells the type of resource causing
the blocking, but not the identity of the specific resource. A pragmatic solution
is to add code instrumentation in the task main loop, immediately before the
operating system call corresponding to the instance finish. A problem with code
instrumentation in the application code is that the application developer has to
be aware of the recorder solution, maintain the instrumentation points properly
and also adding such instrumentation when adding new tasks to the system.

3 The Tracealyzer Tool

The Tracealyzer is a visualization tool with analysis capabilities for various tim-
ing and resource usage properties. The first version of the Tracealyzer was devel-
oped in 2004, in the project described in Section 4.1 in collaboration with ABB
Robotics.

The main view of the tool displays a task trace using an novel visualization
technique. Other trace visualization tools, such as the Wind River WindView,
uses a trace visualization technique similar to a logic analyzer or Gantt-style
charts, where the status of every task is displayed at all times, with one row or

6 Johan Kraft et al.

Fig. 2. The Tracealyzer (version 2.0)

column per task. Such visualizations become hard to comprehend when zoom-
ing out to overview a longer scenario and the user may need to scroll in two
dimensions.

In contrast, the visualization used by the Tracealyzer focuses on the task
preemption nesting and only shows the currently active tasks, as depicted by
Figure 2. This makes the trace easier to overview, especially long and complex
scenarios with many tasks involved. The tool also provides a CPU load view
over the entire trace. The two views are synchronized; the time window display
in the main window is indicated in the CPU load overview and by clicking in
the CPU load overview the trace view displays the corresponding time window.
The tool has advanced features for searching, with several filters, and can also
generate a report with detailed timing statistics for each task. The tool also
allows for exporting timing data regarding tasks and other events to text format.
More information about the tool is available at www.percepio.se where a demo
version can be downloaded.

The Tracealyzer tool is since 2009 in commercialization by Percepio AB in
collaboration with Quadros Systems, Inc. who develops the real-time operating
system RTXC Quadros. A Quadros version will soon be marketed by Quadros
Systems, under the name RTXCview.

Trace Recording for Embedded Systems: Lessons Learned from Five Ind... 7

4 Five Industrial Trace Recorder Projects

Starting 2004, five industry collaboration projects have been performed by the
main author where trace recorders have been implemented for different existing
systems. Four of these projects have included evaluation with respect to CPU
and RAM usage. Three of the projects have lead to industrial deployment of the
results, in one case as the coming official tracing tool for a commercial real-time
operating system. The purpose of these projects have varied slightly, but all
have included trace recording and visualization using the Tracealyzer, described
in Section 3. The research motivation for these projects have been to verify the
applicability of custom (third party) trace recording on common platforms for
embedded systems. The motivation of the industrial partners where mainly to
investigate the suitability of the Tracealyzer tool, which served as a “low-hanging
fruit” for collaboration.

4.1 The RBT Project

ABB develops a control system for industrial robots, IRC 5. This is a large and
complex embedded software system, consisting of around 3 million lines code.
The operating system used is VxWorks, and the hardware platform is an Intel-
based Industry PC. At the time of the evaluation, this system used an Intel
Pentium III CPU and had 256 MB of RAM. It moreover has a flash-based hard
drive, a network connection and an onboard FTP server.

Since VxWorks has features for registering callbacks on task-switch, task
creation and task deletion, these events could be captured without kernel modi-
fications. The task-switch callback function receives pointers to the task control
blocks (TCBs) of both the previously executing task and for the task that is
about to start. The developed recorder uses 8-bit STIDs, stored in an available
“spare” field in the TCB by the task create callback routine. The task names
are stored at creation time in a list of tasks, indexed by the STID.

All types of events are stored in a single ring buffer, using a fixed event size
of 6 bytes. This required the use of bit-wise encoding in order to fit the desired
information into the 48 bits available. The two first bytes are used to store two
pieces of information in an asymmetric manner, where 2 bits are used for the
event code and 14 bits for a relative time-stamp, obtained from an instruction
counter of the Intel CPU used by this system. Since the time-stamp resolution
used in this recorder is 1 µs, this solution allows for a execution fragment duration
up to 214 µs (16.4 ms). This is typically more than enough for this system; there
are usually several task-switch events every millisecond. However, in some system
modes, such as during system startup, the task-switch rate is much lower and
the 14 bits may then be insufficient. As a precaution, an additional “XTS” event
(eXtended Time-Stamp) is stored if the relative time-stamp does not fit in 14
bits. The XTS event stores the relative time-stamp using 32 bits and overrides
the time-stamp field of the associated (following) event.

Recording inter-process communication events was considered important and
this was accomplished by adding code instrumentation in the OS isolation layer.

8 Johan Kraft et al.

Semaphore operations are however not instrumented; they are very frequent
in this system and it was feared that monitoring these would cause a major
additional recording overhead. The event rate of the ABB system when recording
task scheduling and IPC operations was found to be around 10 KHz. A ring
buffer capacity of 100 000 events (600 000 bytes) therefore gives a trace history
of around 10 seconds. The runtime of a recorder probe was found to be on
average 0.8 µs, which at the typical event-rate of 10 KHz translates into a CPU
overhead of 0.8 %.

As mentioned, ABB Robotics personnel decided after this project to integrate
the recorder in their control system IRC 5 and to keep it active by default, also
in the production version. The Tracealyzer is today used systematically at ABB
Robotics for troubleshooting and for performance measurements. The recorder
is triggered by the central error handling system, so whenever a serious problem
occur a trace file is automatically stored to the system’s hard drive. A trace file
is in this case only about 600 KB and can therefore easily be sent by e-mail for
quick analysis, e.g., if a customer experiences a problem.

4.2 The ECU project

The system in focus of this project was the software of an ECU, i.e., a computer
node in a vehicular distributed system developed by Bombardier Transporta-
tion9. Since also this system used VxWorks a similar recorder design could be
used as in the RBT project. The company developers were mainly interested
in the CPU usage per task, as well as for interrupt routines, during long-term
operation of the vehicle. The hardware platform was a Motorola10 PowerPC 603
running at 80 MHz.

In initial experiments using the Tracealyzer tool, the main problem was the
endianness; the Motorola CPU uses big endian encoding, while the Tracealyzer
expected little-endian encoding. In the first experiments in using the Tracealyzer
for this system, the solution was a recorder design where all data is stored in
little-endian format during run-time, by assigning each byte explicitly. This is far
from optimal with respect to the CPU overhead of the recording and should be
avoided. The latest version of the Tracealyzer assumes that the recorder writes
the data to a binary file in native format and therefore detects the endianness,
and converts if necessary, while reading the trace file. The endianness is detected
by using a predefined 32-bit value, where the four bytes have different values,
which is written to a predefined file location by the recorder, typically in the
very beginning. An off-line analysis tool can then find the endianness from the
order of these values.

Unlike the RBT project, this project included recording of interrupt rou-
tines. The operating system VxWorks does not have any callback functionality
or similar for interrupts, but the interrupt controller of the CPU allowed for this.

9 www.bombardier.com
10 Now Freescale

Trace Recording for Embedded Systems: Lessons Learned from Five Ind... 9

Interrupt routines could thereby be recorded as high-priority tasks, by adding
task-switch events to the main ring buffer in the same way as for normal tasks.

An interesting requirement from Bombardier was that the recorded informa-
tion should survive a sudden restart of the system and be available for post-
mortem analysis. This was accomplished by using a hardware feature of the
ECU; the event buffer was stored in Non-Volatile RAM (NVRAM). During the
startup of the system, the recorder recovers any trace data stored in the NVRAM
and writes it to a file, thereby allowing for post-mortem analysis. The ECU was
equipped with 4 MB of NVRAM which is plenty since the company only needed
a 2.5 second trace history. Since it was only desired to log task-switch events in
this project, i.e., no IPC events like in the RBT case, it was possible to reduce
the event size from six to four bytes per event.

A recorder and a company-specific analysis tool was developed in a Master’s
thesis at Bombardier[4], but the Tracealyzer was not used after the initial tests
leading to the thesis project. One of the Masters students was however employed
by the company after the thesis project.

4.3 The WLD Project

This system is also an ECU-like computer, although not in the vehicular domain
and the company is anonymous in this case. The computer system in focus is
a node in a distributed system, with the overall purpose of automated welding
for production of heavy industrial products. The computer in focus controls an
electrical motor and is connected to a set of similar computer nodes over a field
bus. The CPU used was an Infineon XC167, a 16-bit CPU running at only 20
MHz. The operating system used was RTXC Quadros.

Since the kernel source code of RTXC Quadros is available for customers, the
recorder could be integrated in a custom version of the kernel. It was however
not trivial to find the right location where to add the kernel instrumentation,
especially for the task-switch events, since parts of the context-switch handling
is written in assembly language. Time-stamps were obtained from the real-time
clock (RTC) feature of the Infineon XC167 CPU and stored in a relative manner
in the same way as in the previous cases.

There was no need for using short task IDs (STIDs) for reducing memory
usage, since RTXC Quadros already uses 8-bit task handles. However, dynamic
creation of tasks required an indirect approach, involving a lookup table, as the
task handles of the operating system are reused. The lookup table contains a
mapping between the RTXC task ID and the index of the task in an recorder-
internal list of tasks, which is included in the generated trace file. The recorder
task list contains the name and other information for up to 256 tasks. On task
creation, the list is searched in order to find a matching task, so repeated dy-
namic creations of a single task only generates a single entry. However, there was
no “garbage collection” in the recorder task list, so tasks which are no longer
in the trace history still occupy an entry. This issue is however solved in the
latest recorder implementation, described in Section 4.5. Interrupt routines were

10 Johan Kraft et al.

recorded by adding two probes in every interrupt service routine (ISR). Task-
switch events are stored in the beginning and in the end of the ISR, using the
interrupt code to look up a “faked” task entry, specified in a static table contain-
ing all interrupts. Nested interrupts are supported using a special purpose stack,
holding the identity of the preempted ISRs, as well as the currently executing
task.

The CPU overhead of the recording was measured and found higher than in
previous cases, although still acceptable. The event rate was found to be around
500 Hz, i.e., about ten times less than in the ABB system, but the slow, low-end
CPU (16-bit, 20 MHz) caused relatively high probe execution times, around 60
µs. This is 75 times longer than the probe execution times in the ABB system (0.8
µs). With a 500 Hz event rate, this translates into a CPU overhead of 3 %, which
is significant, but probably not a serious issue compared to the potential benefits
of trace recording. However, this recorder was not optimized for CPU usage; it
was rather a first prototype on this platform. Several optimizations/fixes are
possible in order to reduce the CPU usage of this recorder solution, as discussed
in Section 4.6.

In a first evaluation by developers at the company, the welding system
recorder was used together with the Tracealyzer tool in order to pinpoint the
cause of a transient error which they previously had not been able to find. By
studying a recorded trace in the Tracealyzer tool they could find that the error
was caused by a wrongly placed “interrupt disable” instruction, which allowed for
interrupts occurring during a critical section where interrupts should have been
disabled. The company did however not integrate the developed recorder solu-
tion on a permanent basis, but has used the solution later for similar purposes.
On those occasions, they have created a custom build using the instrumented
RTXC Quadros kernel. This can lead to probe effect [7] problems, i.e., that the
activation (or deactivation) of recording changes the system behavior.

4.4 The TEL Project

This project was performed together with an anonymous company in the telecom
industry, which develops products based on the operating system OSE from
ENEA. The particular system studied used a high-end PowerPC CPU, running
at 1 GHz and with 256 MB of RAM. This project had the goal of providing
means for exact CPU load measurements. Previously they had used a tool which
sampled the currently executing task at randomly selected times and in that
way got an approximate picture of the CPU usage of the various tasks. This
was however considered too inaccurate. A Master’s thesis project was initiated
in 2008 in order to develop a recorder for this system [6].

A recorder for the Tracealyzer tool was developed and evaluated using stan-
dard performance tests of the system. The recorder used the “kernel hooks”
feature of OSE, which is similar to the callback features in VxWorks, and 16-bit
STIDs for tasks (processes in OSE terminology), stored in the “user area” of
the process. The main problem was that OSE did not allow direct access to the
kernel memory, for reading the process control block. It was thereby not possible

Trace Recording for Embedded Systems: Lessons Learned from Five Ind... 11

to get the scheduling status of the tasks, which is necessary in order to identify
task instances. A workaround was implemented, the Tracealyzer was modified
for this case, so that priorities were used instead of status. This assumes that
the priorities are static since the recorder cannot read them at the task-switch
events, only at task creation. The resulting recorder was evaluated in the com-
pany lab using their normal test-cases for load testing. The CPU overhead of the
recorder was found to be 1.1 % at an event rate of 18 KHz and a CPU load of
30 %. This result has to be considered as most acceptable, especially since the
recorder was not optimized for CPU usage.

The project was successful in meeting the requirements, i.e., providing means
for exact CPU load measurement, but the Tracealyzer could not be used to its
full potential due to security restrictions in the OSE operating system, which
prevented direct access to the process control blocks. The CPU overhead of
the recorder was measured under realistic conditions and found to be relatively
low despite a high event rate. The company did however not use the resulting
recorder since it was not mature enough for industrial deployment, which requires
a very robust solution, and since there was no obvious receiver at the company
who could take over the recorder development and verification.

4.5 The RTOS Project

In 2009 the thesis author was contacted by a representative of Quadros Systems,
Inc. who expressed interest in a collaboration aiming at developing a new trace
tool for their operating system. This resulted in the development of the second
generation Tracealyzer, along with a special version for Quadros Systems named
RTXCview. This project also included the development of a whole new recorder
design, in close collaboration with the chief engineer at Quadros Systems.

This recorder has little in common with the previous four versions. A major
difference is that this recorder is designed for logging of generic operating system
services without any hard-coded information in the recorder design. The recorder
contains no assumptions on the operating system services that should be logged,
this is configured through kernel instrumentation and using a configuration file of
the Tracealyzer/RTXCview. All information needed by the off-line tool is stored
in a single block of data which is statically initialized during compile-time. This
eliminates the need for calling a recorder initialization routine at system startup,
which was necessary in the previous versions. This design reduces the startup
time of the system and makes it easy to retrieve the trace recording, e.g., if the
system has stopped on a breakpoint using a debugger. This recorder does not
use any bit-wise manipulations, which should reduce its CPU usage significantly.
To achieve this, a larger event size was necessary, using eight bytes per event
instead of four or six bytes.

In this design, there is no explicit task-list, as in other earlier recorders, but
instead there is a generic symbol table which contains the names of tasks, user
events, semaphores, and other named objects. A string added to this symbol
table returns a 16-bit reference, the byte index of the string in the symbol table.
If an identical string already exists in the symbol table, a reference to the existing

12 Johan Kraft et al.

string is returned instead of creating a new entry. This is therefore memory
efficient and solves the issue of repeatedly created dynamic tasks. The symbol
table lookup is fast since all symbol names which share a 6-bit checksum are
connected in a linked list, as depicted by Figure 3. This however requires two
extra bytes per symbol name, for storing the index of the next symbol with the
same checksum, and an array holding 64 16-bit values, the linked-list heads. If a
longer checksum (i.e., more checksum bits) is used, the look-up time is reduced,
but the amount of memory required for the array of linked-list heads doubles for
every extra checksum bit. For systems with plenty of memory, an 8-bit checksum
should however not be any problems, since it only requires 512 bytes.� �� � � � � � �� � � � � �	� 	�
� � 	� ����� ����� ���� �����

���� �� ��������� � !��� " #��$� �% ���� &'(() �����*+ ,���� ����- .!�.� $�" / � ,0�1 22� 2 3 4 5 6 7 8 9 2� 2423 2625 27�: ;<=>��; ?@AB@>=CDEF
G =HDI JBKI �L: ;E; ?@AB@>=CDHF
G =HDI JBKI MN: ;<=>��; ?@AB@>=CDEF
G =HDI JBKI ��/ O 74P
Fig. 3. The Symbol Table

On task-switch events, the 8-bit RTXC task handles are stored without both-
ering about possible later reuse of the handle, which then might change the
meaning of the currently stored handles. This is instead resolved off-line. The
names of the currently active tasks are stored in a “dynamic object” table which
is updated on task creation. When a task is terminated (“closed” in Quadros
terminology), the name from the dynamic object table is stored in the symbol
table and the resulting reference is stored, together with the RTXC task handle,
in a special “close” event, which informs the off-line analysis tool that this map-
ping was valid up until this point. The off-line analysis can then find the correct
task names of each execution fragment by reading the event trace backwards,
starting at the trace end, and for each close event update the current mapping
between RTXC task handle and name.

The described approach for handling reuse of dynamic task handles is used
for all types of dynamically created kernel objects in RTXC Quadros, i.e., tasks,
semaphores, mailboxes, alarms, etc. Time-stamps are stored in a relative manner,
using 8, 16 or 32 bits per event, depending on the number of bytes available for
each event type. Like in the other projects, XTS events are inserted when the
normal time-stamp field is insufficient. The time unit of the time-stamps does not
have to be microseconds as the time-stamp clock rate is specified in the recorder
and provided to the off-line analysis tool, which converts into microseconds. It is
thereby possible to use the hardware-provided resolution directly without run-
time conversion into microseconds. Another time-related aspect is that absolute
time-stamps are maintained also if the recording is stopped abruptly, e.g., due to

Trace Recording for Embedded Systems: Lessons Learned from Five Ind... 13

a crash or breakpoint. The absolute time of the last stored event is kept updated
in the recorder’s main data structure and is thereby available for the off-line
analysis. From this information and the relative time-stamps of the earlier events
it is possible to recreate the absolute time-stamps of all events in the trace.

A prototype of this recorder has been implemented and delivered to Quadros
Systems, who at the moment (Spring 2010) are working on integration of the
recorder in their kernel. There are no big problems to solve; it is mainly a ques-
tion of the limited development resources of Quadros Systems. No evaluation
regarding the CPU overhead of this recorder has yet been performed. Develop-
ing and verifying a trace recorder for an operating system is much harder than
for a specific embedded system, since an operating system recorder has to work
for all hardware platforms supported by the operating system.

4.6 Summary of Recording Overhead Results

This section summarizes the measured recording overhead imposed by the recorders
in the four cases where such measurements have been made, i.e., all cases except
for the RTOS case (Section 4.5). The results are presented in Table 1.

Table 1. Measured recording overheads in four industrial cases

Case OS CPU F (MHz) ES (bytes) ET (µs) ER (KHz) CPU OH (%) RAM OH (KB/s)

RBT VW P. III 533 6 0.8 10.0 0.8 60.0
ECU VW PPC 603 80 4 2.0 0.8 0.2 3.1
WLD RTXC XC167 20 4 60.0 0.5 3.0 2.0
TEL OSE PPC 750 1000 4 0.6 18.0 1.1 72.0

In Table 1 “ES” means Event Size, i.e., the number of bytes used per event.
ET means average probe execution time, ER means average event rate, in a
typical recording. CPU OH means the corresponding CPU overhead and RAM
OH means the corresponding number of (event buffer) bytes used per second.
Note the relatively long probe execution time in the WLD case: 60 µs. The next
faster ET, for ECU, was 30 times shorter even though the clock frequency was
only four times higher in this case. This is probably due to the difference in CPU
hardware architecture, the CPU in the WLD case is a 16-bit micro-controller,
while more powerful 32-bit CPUs were used in the other cases.

Note that the four evaluated recorders were for low RAM usage, on the
expense of higher CPU usage. It therefore possible to reduce the CPU overhead
significantly by instead optimizing for CPU overhad, e.g., by increasing event size
in order to avoid bit-wise encoding. Other possible optimizations are to move as
much functionality as possible off-line (e.g., time-stamp conversion) and by using
“inline” functions and macros instead of C functions. The latest recorder design,
presented in Section 4.5, includes these improvements and should thereby give
significantly lower CPU overhead, although not yet confirmed by experiments.

14 Johan Kraft et al.

5 Lessons Learned

An important consideration is choosing an appropriate level of detail for the trace
recording, e.g., should the recording include interrupt routines, or semaphore op-
erations? This is a trade-off between the value of the information, with respect
to the purpose of the recording, compared to the consequences of the associated
recording overhead, such as a reduction in system performance, or increased unit
cost if compensating the overhead with better but more expensive hardware. In-
cluding too little information may however also lead to increased costs if quality
assurance becomes harder.

A related consideration is the trade-off between CPU usage and memory us-
age implied by using more advanced storage techniques, such a bit-wise encoding
or data compression, which are more memory efficient but also more CPU de-
manding. We however believe that such techniques should generally be avoided
in order to prioritize lower CPU overhead, since there is often unused RAM avail-
able, for a larger recording buffer, and if not so, a shorter trace history might be
acceptable. A lower CPU overhead however improves system responsiveness and
also reduces the risk of probe effects. One exception could be low-end embedded
systems with very little RAM where a long trace history is very important, more
important than CPU overhead. No type of system matching this description is
however known to the authors.

Another consideration is whether the recorder should be integrated in the
system on a permanent basis, or only activated when necessary. A permanent
integration means that the CPU and memory overhead of the trace recording
becomes permanent and may therefore reduce the system performance as expe-
rienced by customers. We however recommend this approach for several reasons:
(1) the risk for probe effects is eliminated since the recording becomes an inte-
grated and tested part of the system, (2) a trace is always available for diagnostic
purposes, (3) the availability of a trace lowers the threshold for developers to be-
gin using the trace recorder, (4) the recording cost in terms of CPU and memory
usage is typically very small and therefore well motivated by the benefits. An
exception to this recommendation would be systems which are highly focused
on average-case performance and where the unit cost is a major issue, such as
low-end multimedia devices.

The authors recommend that all types of events are stored in a single ring-
buffer with fixed-size entries. This way, the chronological order of events is
maintained. More advanced solutions using multiple buffers and/or variable-
sized events may reduce memory usage, but leads to higher recorder complexity,
higher risk of errors in the recorder and higher CPU overhead.

A good strategy is to store the information in a single data structure, which is
statically allocated and initiated. This way, the recorder does not need a special
initialization routine, but is recording directly at startup. Moreover, using this
approach, the data can be easily fetched, e.g., using a debugger when stopped
on a breakpoint, without having to execute a special “save” routine. As file
format for the off-line tool, use a binary image of the run-time data structure.
Differences in endian encoding can be resolved when reading the file.

Trace Recording for Embedded Systems: Lessons Learned from Five Ind... 15

A recommendation is to design trace recorders as simple and robust as pos-
sible and instead place the “intelligence” in the off-line tool. For instance, time-
stamps should not be converted during run-time, bit-wise encoding should be
avoided and startup initialization routines should be replaced by static initializa-
tion. A simple recorder design is also important if the recorder is to be trusted
and maintained by the target system development organization. In that case,
make sure there is an explicit receiver, a developer or lower level manager, which
can take over the responsibility for the developed solution. This is believed to
be the key success factor in the projects which led to industrial use.

6 Conclusions

This paper has presented experiences from five industry collaboration projects
performed between 2004 – 2009 where solutions for embedded systems trace
recording have been developed and evaluated. Several technical solutions and
trade-off considerations have been presented and discussed. The CPU overhead
of trace recording can be expected to be below 1 % on most systems using
32-bit CPUs, although it could reach about 3.6 % in the telecom system case
if extrapolating the event rate up to 60 KHz at maximum CPU load. This is
however an extreme case with respect to event rate. Implementation of trace
recorder was possible as a third party developer on all three operating systems,
although one required a different approach due to kernel security restrictions.

References

1. Åsberg, M., Kraft, J., Nolte, T., Kato, S.: A loadable task execution recorder for
Linux. In: Proceedings of the 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (July 2010)

2. Åsberg, M., Nolte, T., Perez, C.M.O., Kato, S.: Execution Time Monitoring in
Linux. In: Proceedings of the Work-In-Progress session of 14th IEEE International
Conference on Emerging Techonologies and Factory (September 2009)

3. Audsley, N.C., Burns, A., Davis, R.I., Tindell, K.W., Wellings, A.J.: Fixed prior-
ity pre-emptive scheduling: An historical perspective. Real-Time Systems Journal
8(2/3), 173–198 (1995)

4. Johansson, M., Saegebrecht, M.: Lastmtning av CPU i realtidsoperativsystem. Mas-
ter’s thesis, Mälardalen University, Väster̊as, Sweden (2007)

5. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in hard-
real-time environment. Journal of the Association for Computing Machinery 20(1),
46–61 (1973)

6. Mughal, M.I., Javed, R.: Recording of Scheduling and Communication Events on
Telecom Systems. Master’s thesis, Mälardalen University, Väster̊as, Sweden (2008)

7. Schutz, W.: On the Testability of Distributed Real-Time Systems. In: Proceedings
of the 10th Symposium on Reliable Distributed Systems, Pisa, Italy. Institut f.
Techn. Informatik, Technical University of Vienna, A-1040, Austria (1991)

8. Thane, H., Hansson, H.: Using Deterministic Replay for Debugging of Distributed
Real-Time Systems. In: 12th Euromicro Conference on Real-Time Systems (ECRTS
’00). pp. 265–272. IEEE Computer Society (June 2000)

