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Abstract

Cars, trains, trucks, telecom networks and industrial telame examples of
products relying on complex embedded software systemgsjmgron embed-
ded computers. Such systems may consist of millions of figsogram code
developed by hundreds of engineers over many years, oftadds.

Over the long life-cycle of such systems, the main part ofptfeeluct de-
velopment costs is typically not the initial developmennt, thesoftware main-
tenancei.e., improvements and corrections of defects, over tlaesyeOf the
maintenance costs, a major cost is the verification of theesyafter changes
has been applied, which often requires a huge amount ofitedtiowever, to-
day’s techniques are not sufficient, as defects often amnedfpost-release, by
the customers. This area is therefore of high relevancenthrstry.

Complex embedded systems often control machinery whergdim cru-
cial for accuracy and safety. Such systems therefore hapertamt require-
ments on timing, such as maximum response times to diffenerits. How-
ever, when maintaining complex embedded software systeisglifficult to
predict how changes may impact the system’s run-time behawid timing,
e.g., response times. Analytical and formal methods fomtipanalysis ex-
ist, but are often hard to apply in practice on complex embddyystems, for
several reasons. As a result, the industrial practice indaegthe suitability
of a proposed change, with respect to its run-time impadp ily on the
subjective judgment of experienced developers and anthitd his is a risky
and inefficient, trial-and-error approach, which may wdatge amounts of
person-hours on implementing unsuitable software degsigitts potential tim-
ing or performance problems. This can generally not be tedeat all until
late stages of testing, when the updated software systerhectasted on sys-
tem level, under realistic conditions. Even then, it is et@sgniss such prob-
lems. If products are released containing software wittntetiming errors, it
may cause huge costs, such as car recalls, or even acci@etswhen such



problems are found using testing, they necessitate designges late in the
development project, which cause delays and increase costs

This thesis presents a framework for impact analysis wigipeet to run-
time behavior such as timing and performance, targetingptexrembedded
systems. The impact analysis is performed through optigisimulation,
where the simulation models are automatically generatad the system im-
plementation. This approach allows for predicting the eguences of pro-
posed designs, for new or modified features, by prototygiegchange in the
simulation model on a high level of abstraction. This coutdtt simply in-
crease the execution time of a particular task. Therebyjitaide designs can
be identified early, before implementation, and a late rigdssare thereby
avoided, which improves development efficiency and preditity, as well as
software quality.

The contributions presented in this thesis are within faeaa related to
simulation-based analysis of complex embedded systemsinillation and
simulation optimization techniques, (2) automated modéietion of simu-
lation models from source code, (3) methods for validatibsuch simulation
models and (4) recording techniques for model extractiopaict analysis and
model validation purposes. Several tools has been dewbiyréng this work,
of which two are in commercialization in the spin-off comgdtercepio AB.

Note that the Katana approach presented in Chapter 5 iscsubjea U.S.
patent application — patent pending.



Sammanfattning

Mobiltelefoner, bilar, tdg, automationssystem och indrsttotar ar exempel
pa produkter som &r beroende av komplexa inbyggda mjukysiems, ofta
bestdende av milliontals rader programkod som utvecklateumanga ar.
Dessa mjukvarusystem har mdjliggjort helt nya funktioneen aven gjort pro-
duktutveckling mer komplex. N&r nya funktioner laggs tiirkplexa system
ar det stor risk att fel uppstéar, pa grund av svarighetenvattasicka alla kon-
sekvenser av andringarna. Trots att produktforetageretagycket tid och
pengar pa testning upptécks inte alla fel vilket orsakaraskmstnader, t.ex.
i form av aterkallade bilar. Stora summor kan sparas ocheb@tioduktk-
valitet uppnas genom nya typer av utvecklingsverktyg sottrédidentifierar
mjukvaruproblem sa tidigt som méjligt i produktutvecklspyocessen. Vissa
typer av mjukvarufel &r extra svara att hitta och aterskdf@asosm de bara
uppstar i mycket speciella situationer, som t.ex. nar dat@rocessor inte
hinner kora en viss programkod inom avsedd tid. For vanligal&orer ar sa-
dana fordrojningar vanliga, men orsakar oftast inte natjnaes problem. For
industriella mjukvarusystem, ofta tidskritiska, kan ddékdréjningar matta
i millisekunder orsaka allvarliga fel. Darfor vill man tgli i utvecklingen
av nya funktioner kunna forutse hur CPU belastning och sid@rskommer
att paverkas. Med denna analys kan produktféretag minsia lgistnader
eftersom man kan férutse och undvika problem som annarkatrkastnader,
och man forbéattrar produktens tillférlitighet genom mainskar risken att
inféra svarfunna fel. For komplexa industriella systemvieridenna analys
en analyserbar modell som beskriver hur systemets dekmogtnyttjar de-
lade resurser, som t.ex. processorn, och de méjliga konkationerna mellan
delprogrammen samt med omgivningen. En sadan modell kaamszualy-
seras i ett simulatorprogram, utvecklad i for detta syfben visar effekten av
foreslagna forandringar. Avhandlingen beskriver metamdr verktyg for att
automatiskt skapa sddana modeller, baserat pa analys @raprkod och in-



spelningar av mjukvarusystemet i drift, metoder for attlgsera de skapade
modellerna, metoder for att spela in information fran sienimgar eller fran
det skarpa mjukvarusystem under drift, samt metoder fgaatféra simuler-
ingsresultat med verkliga inspelningar fran det modetlerajukvarusystemet.
De viktigaste delarna av detta har utvarderats pa ett skaipstriellt system,
ett styrsystem for industrirobotar fran ABB; dock finns anngen integrerad
helheltsldsning som mdjliggor skarp anvandning av analyserket. Dellgs-
ningar ar dock under separat kommersialisering i forfattaféretag, Percepio
AB. Observera att I6sningen som presenteras i Kapitel 5afégtar under
patentering i USA.



Till Birgitta och Gabriel
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This work has been supported by ABB, Bombardier Transgortathe Knowl-
edge Foundation (KKS), and the Swedish Foundation for &jratResearch
(SSF), through the strategic research center PROGRESS.

This thesis concludes a long and probably quite unusuah@guwhich
started back in 2002, in my Magister thesis project togettigr Jonas Ne-
ander, at ABB Robotics. My main supervisor, Christer Ndnstr was at the
time in a position as development manager at ABB RoboticsmAnis back-
ground in academic real-time systems research he realieédneed for real-
time analysis support and initiated a quite open magisesistproject in that
direction. In that work we first investigated simulation asaans for tim-
ing analysis and proposed a simulator solution named ARTAMLinteresting
story from the magister thesis project is the reactions feaperienced devel-
opers when we showed them recordings of their system’sim@{behavior;
even highly skilled, senior developers were surprised byesdetails. After
working some time with embedded software development at ABBotics,
as a consultant, in 2004 | got the opportunity to develop a seltion for
trace recording and trace visualization. This resultechan Tracealyzer tool
and the trcrec recorder module, which quickly became amgiated part of
their control system. The Tracealyzer is still (2010) usadnfionitoring and
troubleshooting purposes at ABB Robotics and is now alsavaeercial prod-
uct of Percepio AB. The initial purpose of the Tracealyzes\wawever trace
visualization in the context of simulation-based timingbysis and it is still a
key part in the timing analysis framework presented in thésts.

In April 2003 | enrolled as a PhD student at MDH with suppootifr ABB
and ASTEC, a Vinnova competence center, initially workirgg5® at ABB
Robotics and MDH. The first years were quite straight-fonlydrdeveloped
some tools, including the first version of the RTSSim simardaand outlined
a process for (manual) simulation modeling and validatishich lead to a
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Chapter 1

Introduction

When most people hear the word “computer” they think of a PGweéler,
over 99 % of all computer processors manufactured are usemnbedded
computer systenid&27]. These are specialized computers, integrated in many
types of products, from advanced industrial products sgcteas, trains, air-
planes, telecom switches, industrial robots, factory matiion systems, medi-
cal equipment to consumer electronics such as mobile phatiredess routers,
TVs, cameras and toys. Software development s today daiméniie product
development for many companies and most new innovatioras/tace imple-
mented in software. As an example, Volvo (the truck compagstjmates that
90 % of their new innovations are in the field of electronics] 80 % thereofis
software [84]. In total, Swedish industry spends 60 bill&EK (6 billion Eu-
ros) annually on software development. In the ten largestdish companies,
software development accounts for 60 % of the research aredagenent bud-
gets. Ericsson alone spends 25 billion SEK yearly on soéwavelopment —
80 % of its research and development budget [85].

Product companies are using embedded computers in thedugiofor
several reasons. In several domains, older electromeziauilutions are be-
ing replaced with software solutions, running on small ahdap embedded
computers, in order to reduce unit cost, size, weight omalior new, ad-
vanced functionality previously not possible, such as selstability control
or advanced fuel injection with reduces fuel consumptidme#p, high perfor-
mance embedded computers have also enabled new prodwt®uysty not
possible (or very expensive) such as GPS navigation systeonsble media
players and advanced mobile phones.
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Embedded computers come in all sizes, from very small anglsi@bit
single-chip computers, with 1 kilobyte of memory, to gigehd4-bit multi-
core computers with the performance and resources of a REthEsis focuses
on complex embedded software systems, which typically nmselatively
powerful hardware. Examples of such systems are industiialt control sys-
tems, automation systems and telecommunication systeoth ystems of-
ten consist of millions of lines of source code, which haverbéeveloped and
maintained by hundreds of engineers over many years. Amystehis size
is too large and complex for any single person to understawi@tail. In this
thesis, such software systems are label@tiplex embedded systems

Embedded computer systems are typically in control of nreatyi and
thereby often safety-critical and/or business-criticgtems. They therefore
have requirements on dependability, such as safety, iéladnd availability.
Moreover, many embedded systems g&l-time systemd.e., systems with
strict requirements on timeliness; they must respond tatifpm its environ-
ment in a timely manner. For non-real-time computers sudioase PC's the
focus is on the average performance, while for real-timé&esygs another prop-
erty is much more important: a predictalblerst case response timiee., the
highest possible latency of an event, from the input sigm#éi¢ corresponding
reaction. A violation of a temporal requirement may causesées failure; it
is therefore of great importance that the worst case regptims is known for
each time-sensitive system function.

Another aspect of complex embedded systems (and of larg@asefsys-
tems in general) is their long life-cycles, many years, mfteecades [106].
Since the development of such a system represents a magstinent for a
company, often hundreds of person years, it is seldom ecimadiynfeasible
to “start over” and redesign such a system from scratch. €prently, sys-
tems of this type are maintained over many years during withiobsands of
changes are made in order to, e.g., implement new requirtsnoamrect errors,
improve performance or improve the software design.

Conceptually, the life cycle of a complex software system loa divided
into three different phases as depicted in Figure 1.1: @)etdrly phase, (2)
the evolution phase, and (3) the legacy phase. The curvessamsnceptual
illustration of the increasingly harder development; tloeizontal axis shows
the total, accumulated development effort invested in tretesn (the cost),
while the vertical axis shows the achieved system functityn@he resulting
value).

In the early phase (1), a lot of effort is required for devetemt of the
platform, which causes a relatively low productivity witkspect to customer



System Functionallity

Development Effort

Figure 1.1: System functionality as a function of total depenent effort

value. This investment however pays off in the evolutionggh@), where the
developed platform facilitates development of new featuwehich gives high
productivity. Large amount of changes are made which causeystem to
evolve from its original design and gradually become lam@yed more com-
plex. The legacy phase (3) begins when the complexity ajgprtiee practical
limit of the development tools and methods used, which caasgecrease in
productivity. Adding new features is now much harder tharsid to be.

Lehman et al. [107] recognizes the phenomenon of increasimgplexity
as the secortdaw of software evolution: “As an E-tygesystem evolves its
complexity increases unless work is done to maintain orgedtl.

The increased complexity is partially due to the increases of the sys-
tem, caused by new functionality, and partially due to the tlaat the software
architecture, and documentation, tends to degrade as ebangmade over the
years, often in a less than optimal manner due to time pressunadequate
design documentation. Another reason is that not all seéwavelopers have
backgrounds in computer science or software engineerimgndustry many
developers have their expertise in domain-specific tedyypbuch as combus-
tion engines, control theory or welding techniques. Moggpfor long-lived
systems, the requirements typically change over time ddadtors such as
legislation, standards, technology development and ctitopaitiatives, and

1The Lehman paper includes eight “laws” in total (observaticeally).
2A system solving a problem or addressing an applicationérréal world.



4 Chapter 1. Introduction

it is often hard to adapt existing architectures in a good wikiout making
large (and thereby time consuming) changes. Yet anotheg issthe person-
nel turnover over the long system life-cycle. Experiencedetbpers leave,
together with their knowledge, and newly employed inexgrered developers
have to take over.

In order to combat the increasing complexity, i.e., to edttre period of
efficient software development, developers need bettengtea finding latent
defects, for predicting the consequences of proposed elsaargl for avoiding
bad design decisions. Today, most companies that devefopleg embedded
systems rely heavily on code inspection and testing, whiemacessary but
not sufficient. Huge amounts of testing are performed on eglelase version
in order to capture as many defects as possible, but it iscstihmon that
defects are missed and instead experienced by the customers

According to a 2002 study from by the National Institute cdii®tards and
Technology at the U.S. Department of Commerce, softwareattefcost the
U.S. economy an estimated $59.5 billion annually [4]. Thelgtconcluded
that more than a third of these costs could be eliminated Ipydrred testing
infrastructure that enables earlier and more effectivetifleation and removal
of software defects, i.e., by finding an increased percenvégrrors closer to
the development stages in which they are introduced. M@over half of all
errors are not found until “downstream” in the developmentpss or during
post-sale software use.

1.1 Problem and Possible Solutions

When maintaining complex embedded systems it is importevetify that the
system still complies with its temporal requirements, itlee requirements on
worst case response time, after a change has been made isthms The
response time for a particular event is dependent on theititalees to execute
the software, which depends on the design of the softwagl.ifEherefore, if
the software is changed, e.g., simply to correct a minoragefiemight cause
the response time to exceed the specified limitdisadline

In a worst case scenario, a maintenance operation will cneseystem
to violate its temporal requirements in rare situationsyoruch errors are
easily missed during the testing of a system, but if they pafter the system
has been delivered to customers, it may result in a systdordawvith severe
consequences for the user of the system. For instance veaseftlefect could
cause an industrial robot to fail and thereby halt a car petidn line for hours,
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causing a large monetary loss.

Developers of complex embedded systems today rely on sylstehtest-
ing in order to detect timing errors, but this is inefficiesitice the search space
is so large and since such errors depend on program exedimies, which
typically vary from time to time. It is well known that timingrrors are often
hard to detect and to reproduce using testing [89, 105], xistieg methods
for timing analysis are often hard to apply on complex emleeldsystems for
a number of reasons, as discussed in the following sections.

The risk of introducing timing errors when changing a syst&m be sig-
nificantly reduced if the impact of the change can be prediatan early stage
of development. The ability to perforimpact analysi©f proposed changes
(e.g., new features) with respect to important run-timepprties could allow
developers to produce software of higher quality, in lasgtind more reliably.

To manually analyze the timing impact of a change is diffisuite the de-
tails and dependencies of a software system’s temporavimetis not visible
in the source code. Studying recordings of the system car) bt this view of
the run-time system is however difficult to extrapolate wéhpect to proposed
changes, due to the system complexity.

Industrial use of timing impact analysis requires tools amatiels which
give analyzability with respect to relevant system prapsrtsuch as response
times. Introducing such analysis support for existingeyst can be achieved
in two ways, either intrusively or non-intrusively. In artrinsive approach, the
system is changed in order to be more predictable and aréyZBhis could
for instance mean to change from an event-triggered to atiipgered soft-
ware architecture. The major problem with an intrusive apph is the large
effort and risks involved in a major redesign. This would leeywcostly, will
most likely introduce new defects in the system, and woutdbpbly be hard to
motivate economically. Moreover, the current softwarédnaecture has proba-
bly been selected for a good reason, so changing it for ingetewalyzability
might mean other drawbacks, such as lower performance oceedlexibility.

The work in this thesis follows a non-intrusive approachgewehthe focus
is to find or develop means for analysis which can be appligti¢cexisting
system, without changirighe implementation.

3Even though introduction of a software-based trace recdafe Chapter 7) is technically
intrusive, this is a negligible change compared to a majatasign of the system.
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1.1.1 RTA - Response Time Analysis

Several analytical methods have been proposedeponse-time analysif
real-time systems [98, 99, 101, 37, 112, 113, 114, 115]. imttresis, such
methods are commonly labeled RTA. Such methods howevesalburather
simplistic system model and have several assumptions whaites them in-
applicable or highly pessimistic for embedded softwardesys which have
not been designed with such analysis in mind. For instaheegtare industrial
systems which violate the assumptions of RTA by containgsgs which

« trigger other tasks in complex, often undocumented chafitask acti-
vations depending on input,

* share data with other tasks, e.g., through global varsadmenter-process
communication (IPC),

* have radically different behavior and execution time defieg on shared
data and input,

» change priorities dynamically, e.g., as a solution to fmesly identified
timing problems,

* have timing requirements expressed in functional bemaather than
explicit task deadline, such as availability of data in inpuffers at task
activation.

In general, RTA methods are overly pessimistic for complmbedded
systems since they do not take behavioral dependencieebettasks into
account, for instance the above listed types. Analyzingplemembedded
systems requires a more detailed system model which inglgdevant behav-
ior as well as resource usage of tasks. Two approaches aenped in the
following sections where detailed behavior models are usastlel checking
and discrete event simulation.

1.1.2 Model Checking

There are several formal analysis tools which can be use@rify\different
properties of models throughodel checkingsuch as UppAal [129], KRONOS
[131] and ComFoRT [130]. Model checking implies an exhawessiearch of
the state-space of the analyzed model and can therefownesdtioidentification
of worst-case behaviors, e.g., for response times. Howmael checking is
not widely used in industry, apart from domains with extretiependability
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requirements, such as aerospace systems, military systemsclear power
plants, where the software systems where the consequeheefaiture are
catastrophic. Such systems are typically quite small ard-anely modified
after deployment.

Model checking is however difficult to apply on large indisdtsoftware
systems for a number of reasons. One problem is the size anglexity of
these systems which implies an astronomic amount of pessdgnarios. This
makes exhaustive analysis techniques, like model chepkitigemely resource
demanding. In many cases, the analysis will not terminatéh@model state-
space is too large to search in realistic time.

Another issue is that formal analysis tools requires anyaadlle model in a
formal notation, such as timed automata [82]. The formahm&$ community
tends to assume a model-driven development approach, weengodel to an-
alyze is the system specification and is used to automatigaiierate (synthe-
size) the run-time system. However, with few exceptiondusirial software
systems are still developed in a traditional code-oriemeadner; there are no
analyzable models available. These would therefore habe wreated based
on the implementation in a major modeling project. Morepgeen if an initial
modeling effort could be managed, e.g., by hiring a team pé&ets in formal
modeling, the developers would still need to keep the mogedbedate with
the system source code as it evolves. This is likely to beautgdl, e.g., due
to focus on short term development goals, which would inkz# the analysis
model. If updating the model requires too much effort, coshard, it is likely
that the developers would stop maintaining and using thi/sisanodel.

1.1.3 Discrete Event Simulation

Discrete event simulation (hereafter just “simulatiors)ain approach to tim-
ing analysis which avoids the state-space explosion pnoblesacrificing the
guaranteed safety of the result. In a simulation, the stzees of the model
is sampled, typically in a random manner, rather than searelxhaustively.
The random sampling (simulation) is repeated for a certamtibn (e.g., over
night), or until a problem is found. This means that it is nesgible to identify
worst-case situations using simulation, since not all ipdgges are necessar-
ily explored. Note that the worst-case might have occumetisimulation, but
the simulation result does not tell if this is the case.

A general problem when using simulation is to determine thrukation
budget, i.e., how many simulations to run and the length eirtdividual sim-
ulations, and the resulting confidence in the simulationltss



8 Chapter 1. Introduction

Simulation can however be used for predicting typical penfance (or re-
sponsiveness) and for findirggtreme cases.e., situations far from the typi-
cal, but not necessarily the worst case. This can be enouglainy cases. If
the extreme case is a requirement violation, e.g., an ercegeadline, a real
problem has been found (assuming a correct simulation hadeth other-
wise could have been missed during system testing. A negeadsult from a
simulation-based analysis, i.e., that no problem is foumtipwever no guar-
antee of correctness. The simulation approach is closestmg than formal
analysis, since it can only show the presence of errorsheatabsence.

Simulation is however a much more efficient method for findiimging
problems than system-level testing, the dominating methaadustry today.
Moreover, simulation is applicable for any system, alsacfimplex industrial
systems where model checking or RTA falls short. Furtheeyloy using sim-
ulation it is possible to eliminate the modeling problemsimsulation models
are typically expressed in normal programming languages d, and can be
automatically generated (extracted) from the originalrsewode, as demon-
strated in this thesis. Note that simulation is a very gdriecdnique, which
can be used for predicting any measurable run-time propestyust response-
time. Examples of other properties of interest are occaeeari certain error
conditions, such as buffer under-run, and the utilizatibdymamically allo-
cated resources.

Monte Carlo simulation (random sampling) is best suitedolenformance
analysis, i.e., average-case behavior. Analysis of exdreaitue properties can
however be made efficiently usigjmulation Optimizationan iterative pro-
cess where repeated simulations of a model are guided usimgstic opti-
mization techniques in order to maximize a specified prgpsuch as highest
response times of specific tasks.



1.2 Vision 9

1.2 Vision

A framework for simulation-based analysis is envisionddsirated by Fig-
ure 1.2, which to a large extend has been implemented inhtbsss work. The
framework is integrated in the system development proaegssehighly auto-
mated. An updated simulation model is always availableygian automatic
model extraction tool which is either executed on demandiond every sys-
tem build. In the latter case, the simulation model is a dguelent artifact that
is available as naturally as the compiled executable files.

System testing, field maintenance

Source code [—>} Runtime —>{ Trace Recordings

System
Simulation Model
Extractor

Proposed Simulation
Changes Model

Instrumentation

Timing Model
Extractor

Timing Model
Database

Optimizing
Simulator

Uses Identified timing

. - requirements -
Timing Impact Explorative Regression

Analysis Analysis Analysis

Figure 1.2: The envisioned analysis framework

The simulation model is a filtered version of the original epdontain-
ing only the statements of importance for timing and usagepefific re-
sources. In order to reduce the size of the simulation moatltaereby the
simulation runtime, modeling abstractions may be providezhually, e.g.,
as code annotations which becomes an integrated part ofyftens source
code. Timing-accurate simulation is achieved using tindata from a soft-
waretrace recordey permanently integrated and always active in the modeled
system. The model extraction tool instruments the sourde wgth calls to the
recorder, in order to record three kinds of quantitativetiore information: (1)
task-switches, i.e., the task scheduling trace, (2) exatuf instrumentation
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points, for execution time profiling, and (3) relevant systeput events, such
as commands/requests.

The run-time information is systematically collected dgrin-house sys-
tem testing and possibly also during field maintenance, ietgoubleshooting
a system in customer operation, labeled with the systemoresnd config-
uration, and stored in a central database of the developongahization, the
timing model database. When performing simulation, thibiase is used
by the simulator to get the quantitative information neebgdhe simulation
model. This framework for simulation-based analysis afidor at least three
kinds of analysis:

» Impact analysis i.e., “what-if” analysis on specific proposed changes.
This is used on demand, before implementing large changeb, &s
adding new tasks or changing a task’s priority.

» Explorative analysis in which a large amount of simulations are per-
formed, with random changes in the quantitative infornmrafexecution
times, inputs), in order to find the limits where errors starmbccur, i.e.,
the timing requirements. The analysis would generate artelescrib-
ing what parts of the system that are most timing sensitiee, Wwhere
timing error might occur today or might occur after a smalaepe of
the system. This analysis would be performed in the veriiogthase,
as soon as a new version is available for system-level tgstin

» Regression analysisin which differences and trends are identified be-
tween different versions of the same system. In this arglifse timing
requirements identified during the explorative timing sl is used as
reference for comparison; the analysis gives a warning &atution
time is getting close to violating such a timing requireméritis analy-
sis is a part of long term quality assurance.

The properties in focus can be related to either typicakane-case behav-
ior or extreme-case behavior, where the latter is accommgdisising simulation
optimization, e.g., as presented in Chapter 4.

Model validation is integrated in this framework, but is hewer not in-
cluded in the illustration. The automated approach to med#hction does
not eliminate the model validity issue, it just moves thebpem to ensuring
the correctness of the model extraction tool and its cordigum. After ma-
jor changes of the system, such as major architectural @sognew hard-
ware, model validation is performed througgnsitivity analysiswhere differ-
ent types of changes are tested in order to verify that thiysiadramework
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can accurately predict their impact. This is an impact asialwith respect to
dummy changes where the prediction is compared againstcthalampact,
measured on the real system after the dummy change has belemiented.
Most components of the envisioned framework have been imgt¢ed and
separately evaluated in this thesis work, partly on indaistases. A case study
using the complete framework on real industrial cases nesrfar future work.

1.3 Research Questions

The research questions of this thesis are related to thibiiggsand practical
applicability of the above vision with respect to complexibmtdded systems.
Concretely, three research questions are stated:

* Q1: Can simulation models be extracted automatically from Q®u
code, with sufficient efficiency and accuracy for scalingamplex em-
bedded systems?

» Q2: Is simulation optimization an efficient approach for préidig ex-
treme cases in the temporal behavior of complex embeddadnsys
compared to existing methods for timing analysis?

* Q3: Is software trace recording generally applicable on comouwn-
mercial operating systems for embedded systems with reapenple-
mentation feasibility and run-time overhead?

Given that a solution for automated model extraction can éeldped,
the important questions are the scalability of the modelagexibn solution,
i.e., how the runtime of the tool relates to the amount of cimdanalyze, as
well as the size of the extracted simulation models in retato the original
program. The model size is important for the simulation dpaed thereby
model coverage of simulation optimization methods.

Simulation optimization is a promising method which maywaiifor more
efficient prediction of extreme-case behavior comparegstesn-level testing
and Monte Carlo simulation, intended for systems whereydioal or formal
methods are difficult to apply. This is a “best effort” apprbabut if suffi-
ciently efficient this can extend the applicability of siratibn to also include
efficient search for extreme-case timing behaviors.

Trace recording is a key component in this analysis framkWwot requires
permanentintegration of a software recorder, unless destihvardware is used
for this purpose. If adding a trace recorder to the systemeomechd only, e.g.,



12

Chapter 1. Introduction

during testing, there is a risk pfobe effect§89], i.e., that the system behavior
changes as a result of the added recording overhead. Thérelbyodeled, an-
alyzed system is not identical to the release version, ugedistomers, which
threatens the validity of the analysis. An easy answer gtablem is to keep
the trace recorder in the system, always active, and tigpétas an integrated
part of the system. This also has the advantage of improviedgdgng sup-
port, since traces are always available, but has a cost fiothreof a CPU and
RAM overhead. The size of the recorder overhead is of grgaditance to the
applicability of this approach, since product companidsiradly wants to get
as much product performance as possible while keeping aaedeosts down.

1.4

Scientific Contributions

The contributions of this thesis are addressing the reBeprestions presented
in Section 1.3 and are necessary components in realizinggshmn presented
Section 1.2. The contributions are:

C1: An algorithm for automatic extraction of simulation modé&ism
source codeKatang which is based on a new approach to program slic-
ing. This method was developed to ans\r.

C2: A prototype implementation of Katana, MXTC, and an evalrati
of MXTC on industrial code, which indicates that is indeed an answer
to Q1, i.e., that the Katana approach is sufficiently efficient acalable
for complex embedded systems.

C3: An efficient simulation framework for analysis of embeddgd-s
tems, RTSSim, which is a key component in answey2y

C4: Two methods for simulation optimization, HCRR and MABERA,
with performance evaluations. Together w3, this answer§?2.

C5: Experiences regarding trace recorder implementatiorifdigsand
typical run-time overheads, from five industry collabasatprojects where
trace recorders were implemented. This ansv@3s

The experiences of trace recorder implementations on akeiretustrial
systems should be of general interest for the embedded caityndowever,
the results are not related to the scientific body-of-knogée since monitoring
is a vast research area but, at the same time, not the redeanch
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The issue of model validity is discussed in Chapter 8, whlsh presents
ideas on trace comparison methods for general use in theiengd analysis
framework. This is however not counted as a formal scientdiatribution due
to the lack of evaluation but should rather be consideredak-m-progress.

All other contributions in this thesis are innovations oé tauthor alone,
except for the HCRR algorithm i@5. The author however initiated the collab-
orative project which resulted in the HCRR algorithm and/ptha significant
role in the discussions leading to HCRR as well as in the HCRfRuation.

Chapter 4 is based on two publications, the first publicateABERA
[15] and HCRR [14]. Chapter 1, Chapter 2 and Chapter 8 aradt@as¢he au-
thor’s licentiate thesis [95]. The remaining chapters,(Be4, 6, 7 and 9) have
been written specifically for this thesis and present preslipnot published
results.

1.5 Research Method

This thesis presents engineering research performedlabootion with ABB
and Bombardier. In this type of research, technical sahstiare created or
identified in response to industrial problems. The solgiare evaluated in
order to determine their suitability and find possibilitfes further improve-
ment. The academic body-of-knowledge is used and exteredghout the
process, through publications and conference presensatithe research fol-
lows an iterative model where the problem definition and tiatudesign are
refined through prototype development, evaluation andstréu feedback, as
illustrated by Figure 1.3. Note that the edges leading “backs”, e.g., from
internal evaluation to problem definition, correspondsdaedback from de-
velopment and evaluation phases, when the proposed soha®mbeen found
suboptimal. This ranges from minor adjustments of the psedasolution de-
sign, to reformulating the overall research focus.

The problem described in the introduction was initiallyridléed by ABB
Robotics, a manufacturer of industrial robots and robotrobsystems. An
on-site study was conducted on the subject in the form of atdffaghesis
[94]. Between September 2002 and December 2004, the thdkisravorked
in embedded software development at ABB Robotics, whichltesin a good
understanding of the challenges of developing and mainicomplex em-
bedded software systems. In April 2003, the author enr@kdn industrial
PhD student, working 50 % at ABB and on 50 % continuing theaedeini-
tiated in the Master’s thesis project [92, 93, 91, 90]. Thitial work outlined
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Figure 1.3: The research method

the overall approach, which resulted in a licentiate thesishe subject [95].
With that, the core problems had been identified (see Sett®nand in the
following years several solutions where developed, whiehpaesented in this
thesis.

In order to get feedback on the problem formulation and thpr@ach pro-
posed in this thesis, seminars have been arranged on arbgsla, with sys-
tem experts from ABB Corporate Research, ABB Robotics anchirdier
Transportation, as well as researchers from other untiessi Further, sev-
eral publications on this subject have been presented emaiional scientific
conferences in mainly two areas: Software Engineering]88, 58] and Real-
Time Systems [15, 14, 92, 93, 91, 64].

The methods and tools developed in this work have been dealaa real
cases provided by the industrial partners. The thesis ati&® visited both
ABB Robotics and Bombardier Transportation for shorteustdal stays dur-
ing which parts of these evaluations have been performeelalithor has also
been given access to proprietary source code and equipfieaevaluations
of trace recording techniques, presented in Chapter 7, pegfermed on cases
from four systems from four different companies: ABB RobstiBombardier
Transportation, a major telecom company and a developertofeated weld-
ing equipment. In a fifth project a trace recorder was dewetldp close col-
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laboration with Quadros Systems, Inc. [137], a U.S. compaaweloping a
real-time operating system.

The strong industrial connection enables the research tiodesed on
problems relevant for industry. In order to verify the sti#énrelevance and
uniqueness, the literature in several related researds dras been studied:
real-time systems, simulation, model validation, modelaiting, reverse engi-
neering and program slicing.

The work presented in this thesis is primarily influenced by analysis
challenges of ABB’s control system for industrial robotat there is nothing
“robot-specific” in the proposed approach; it is general ead conceptually
be applied on any software system, although the need isegtea complex
embedded systems, with highly dynamic run-time behavior.

1.6 Thesis Outline

This thesis is organized in nine chapters. Chapter 2 presesiiate-of-the-art
report on related research areas. Then follows five contoibichapters, fo-
cusing on different aspects of the envisioned analysisdramnk. Chapter 3
presents the use of simulation for timing analysis and dioes the RTSSim
simulation framework. Chapter 4 presents two techniquesifoulation opti-
mization, MABERA and HCRR, together with an evaluation andhparison
with other methods for timing analysis. Chapter 5 presemtsaia, a method
for automated extraction of simulation models from sourade; through a
novel approach to program slicing. An evaluation of Katanairedustrial
source code is presented in Chapter 6. Chapter 7 presehtsidaes for
trace recording, experiences from five industrial tracemer implementa-
tion projects, as well as ideas for how to obtain and modelkition timing
models using trace recording. Chapter 8 discusses thddtagainst model va-
lidity and presents a process for comparison of trace ddteh/can be used in
model validation and impact analysis. Finally, Chapter 8atades the thesis
and outlines future work.






Chapter 2

Timing Analysis, Modeling
and Model Validation

This chapter gives a background regarding related workxragtas of aca-
demic research, where some are alternative methods fdasipuirposes. The
overall purposes of the described works fall into three necategories: timing
analysis, modeling and model validation. The structurehaf thapter is as
follows:

» Real-Time Systems and Timing Analysis
» Timing Analysis using Model Checking
 Timing Analysis using Simulation

» Modeling using Source Code Analysis

* Modeling using Dynamic Analysis

» Model Validation

The first three sections (Section 2.1 — Section 2.3) descdlfierent meth-
ods for timing analysis proposed in academia, includingpoase-time and
execution-time analysis. Since it is believed that dediaih@dels are necessary
in order to allow sufficiently accurate timing analysis ofquex embedded
software systems, and since such systems are too large farah@odeling,

17
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a central problem is to find methods for automated generaticuch mod-

els from existing implementations. The next two sectionsc({f®n 2.4 and

Section 2.5) therefore describe works of relevance forrmated modeling of

existing implementations, using source code analysis andime measure-
ments, respectively. The last section, Section 2.6, is tlhow to ensure the
validity of the system model that is used for the analysisdess results re-
lated to model validation, both subjective methods and pugtibased on statis-
tics. The chapter is concluded by Section 2.7, which dishossthe approach
proposed in this thesis relates to the works (and reseasdsppresented in
this chapter.

2.1 Real-Time Systems and Timing Analysis

This section describes the area of real-time systems afedatit types of tim-
ing analysis, i.e., methods of direct relevance for the aVezsearch goal.

A real-time systenis a system where correct behavior is not only depen-
dent on what results that are delivered, but also when treeylalivered, i.e.,

a computer system with requirements on timeliness. Read-8ystems are
often connected to machinery, i.e., sensors and actuammgolling a physi-
cal process. The demands on the timeliness, the temporstraaris, on such
systems are defined by the process that is controlled. The prablem in
real-time system’s research is how to verify that a systerateis temporal
constraints.

Real-time systems are often composedasks which are threads or pro-
cesses implementing a particular system function, whipfcally execute pe-
riodically. An activity is often broken down into severasks and tasks there-
fore often communicate, e.g., in order to forward their hssas input to other
tasks, or in order to send commands/request to other tasks.

Obviously, periodic tasks are tasks which are activated periodically, i.e.,
with a constantnter-arrival time. Many systems however also contain tasks
which are recurring but not strictly periodic, which areitgily labeledspo-
radic or aperiodictasks. The difference between these is that sporadic tasks
have a minimum inter-arrival time, aperiodic tasks does r&ich may cor-
respond to interrupt service routines, triggered by hardveggnals from an
external system, e.g., a network.

Theresponse timef a task in a real-time system is the latency from stimuli
(input) to reaction (output). A task’s response time is @td by both the
execution timeof the task, i.e., the CPU time required to process the code of
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the task, as well as interference from other tasks in theesystith higher
priorities and blocking semaphores. If a task is allowedxecete without
disturbances, the response time of the task will be equéd Execution time.

A transactionis a chain of related tasks wifirecedence constrainighich
dictate their execution order. This is often realized usifigets which changes
the phasing of the task periods. A deadline over a chain afedlevents, like
a transaction, is known as and-to-endesponse time.

The temporal constraints of a real-time system is usuaflyessed adead-
lines which specify the highest response time allowed. If a tisad system
is unable to finish a task before its deadline, it idemdline violation Such
are often the result of amverload situationi.e., that the currently active tasks
in the system together require more CPU time than availabbeder to finish
before their corresponding deadlines. However, a deadioiation may also
occur in other situations, e.g., due to a deadlock causidegfimnite blocking
even though the CPU may be idle.

Real-time systems are often divided into two categoriesdbas the sever-
ity of the consequences of a deadline violatioard andsoftreal-time systems.
A soft real-time system allows some occasional deadlinktians. An exam-
ple is a telecom system. The system’s temporal requirendlemst need to be
guaranteed at all times — it is not a disaster if a phone calissonnected in
rare circumstances, as long as it does not happen frequantiyher example
of a soft real-time system is DVD player software on a PC, Wwinitist decom-
press a certain number of frames every second. The tempeopatements are
in this case more focused on quality of service rather thah%Qeliability.
A software DVD-player can tolerate small transient delayshie video pro-
cessing; this does not result in a failure, only a minor disnce in a reduced
quality of the result, which the user (viewer) might not evetice.

Note that “real-time” does not have to mean “fast”, even titomany real-
time systems run at high speeds. The critical concern isnipeiitance of the
timing constraints and the consequences if they would bated.

In a hard real-time systera single missed deadline is considered a fail-
ure. If the system isafety-criticalit might result in injuries or catastrophic
damage. An example is modern “fly-by-wire” airplanes, suslthee Swedish
fighter-jet JAS 39 “Gripen” or the Boeing 777, where thereagphysical con-
nection (e.g., hydraulics) between the pilot's controld #re rudders, etc., but
only electronic signaling. Another example in a differentwhin is a railway
signaling system. For such safety-critical real-time sy, there is a need to
guarantee that the system will never violate its tempo@lirements.
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Most real-time systems aneulti-taskingsystems where the CPUs shared
by several tasks. This is achieved by using a multi-taskiperating system
where aschedulerdecides which task that should execute at any particular
moment.

A large area within real-time researchssheduling theoryi.e., methods
for setting task scheduling attributes, such as prioritiesorder to fulfill a
(multi-tasking) system’s timing requirements. The schiadwalgorithms can
be divided into off-line and on-line scheduling. When usorgline schedul-
ing, the scheduling decisions are taken during run-timeofitine scheduled
system makes no decisions regarding the execution ordéedbsks during
run-time, instead a pre-calculated schedule is used. Henvievsuch systems
it is not possible to create new tasks during run-time simiciray of new tasks
to the system requires reconstructing the schedule. A mexiblé scheduling
policy is on-line scheduling. In this case, no scheduletextsut the operating
system makes all the scheduling decisions during run-tirhere are however
operating systems where both types of scheduling can beugadallel, such
as Rubus from Articus Systems [120].

A very common algorithm for on-line scheduling is Fixed PitypSchedul-
ing (FPS). Each task has a priority, which is used by the djperaystem to
select the next task to execute if there is more than one éagk/r Most com-
mercial real-time operating systems yseemptivdixed priority scheduling,
meaning that the executing task can be preempted by higloeitptasks at
any time.

The other major paradigm in on-line scheduling is Earliesadline First
(EDF), an approach which is less common in commercial opeyalystems
but often assumed in academic research. An EDF schedulayslselect the
task with least time left until its deadline. EDF guaranttes all deadlines
are met if the CPU utilization (U) is less than 100 %. In an &t situation
(U > 100 %) it is not possible to finish all tasks before their cepanding
deadlines. EDF is not a good algorithm in overload-situeti&ince it does not
do anything to lower the CPU utilization, i.e., reject tagk$ends to let every
task miss its deadline. EDF can however be combined withr aitieeduling
algorithms, such as overload handling or aperiodic serggrighms such as
Total Bandwidth Server [104] or Constant Bandwidth Ser%@j.[ Such server
algorithms allocate a certain percentage of the CPU tingesehver bandwidth,
to aperiodic or sporadic tasks, if such are pending.

1For multi-core CPUs, each CPU core is shared by several.tasks
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2.1.1 Schedulability- and Response-Time Analysis

A variety of analytical methods exists for schedulabilibaysis, i.e., methods
which determine if a real-time system is schedulable wigipeet to the system
deadlines. This section presents the major results witthinduling theory and
the analytical response-time analysis methods.

The most well known result in the real-time community is tme dy Liu
and Layland from 1973 [99], in which they introduced fixecbpity scheduling
which is widely used today in many real-time operating systeThey showed
that a system with strictly periodic and independent taB&sis scheduled us-
ing fixed priority scheduling is alwayschedulablei.e., will meet its deadlines,
if the total CPU utilization (U) is below a certain value, thea-Layland bound
and the tasks have been assigned priorities according tatdhemonotonigol-
icy. Rate monotonic is a policy for assigning priorities e tasks based on
their rate, i.e., period time, where the task with the highete (shortest period)
receives the highest priority. The value of the Liu-Laylémdind is dependent
on the number of tasks in the system, but as the number of itastease, this
bound approachda 2, approximately 69.3 %. For systems containing only
tasks with harmonic periods, the bound is 100 %. Harmoniodsrmeans
that all task periods are multiples of the shortest taskogleri

The Exact Analysisvas presented by Joseph and Pandya [101] in 1986. It
is a method for calculating the worst case response-timpsriddic indepen-
dent tasks with deadlines less or equal to the periods, stdedsing fixed
priority scheduling. It is a fix-point method that from a sétasks calculates
the worst case response time for each task, i.e., the respioms of the tasks
in the critical instant where all tasks are ready to execute at the same time,
with their individual worst-case execution time. The meths later been
extended to handle, e.g., semaphores [37], deadlinesrdinge the periods
[112], variations (jitter) in the task periodicity [113, 4fland distributed sys-
tems [115]. This family of analytical methods for responiseet analysis is
commonly known as RTA.

2.1.2 Execution Time Analysis

When modeling a real-time system for analysis of timingtezlgroperties, the
model needs to contain execution time information, i.ew hwuch CPU time
needed by each task individually, if executing undistur®edommon method
in industry is to obtain timing information by performing amirements of the
real system as it is executed under realistic conditionse lajor problem
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with this approach is the coverage; it is very hard to selest ¢ases which
generate high execution times and it is not possible to kridiaei worst case
execution time (WCET) has been observed. Some companigsmates this
to some extent through a “brute force” approach, where tlgstematically
collect statistics from deployed systems, over long periotdreal operation.
This is however very dependent on how the system has beeraused still
an “optimistic” approach, as the real WCET might be highantkhe highest
value observed.

Measuring is however not the only way to find execution tinferimation.
Execution time analysis a well studied area in the intersection of program
analysis and real-time systems research, where the foenairdy onWCET
analysis Static WCET analysis tools such as AIT [139], Bound-T [14&{l
the (local) SWEET tool [140] strive to compute a safe, bulitigipper bound
for the execution time of a program, given a specific hardw&e complex
hardware architectures, with cache memory, pipelinesydirgrediction ta-
bles and out-of-order execution, estimating a tight bue¢ $8CET is however
difficult. Complex embedded systems however often useivelatpowerful
and complex CPUs, such as Intel Pentium IlI, Pentium M or RB@er50 (cf.
Chapter 7).

Since static WCET analysis depends on a model of the hardwdnieh
however cannot predict every detail and therefore reqaimeservative, worst
case assumptions in order to report a safe WCET estimate.t®ihese as-
sumptions the estimated WCET becomes pessimistic. Howinege are sev-
eral groups doing WCET research and during the last years then open
exchange format for such tools, ALF [3], which is now beingpigtd by aca-
demic research groups and WCET tool vendors.

The WCET approach by Bernat et al. [39, 40] is however quitemint.
Their solution, probabilistic WCET (or pWCET), combine®gram analysis
with execution-time measurements on basic-bfoEke execution time data
is used to construct a probabilistic WCET for each basic lhlae., an ex-
ecution time with a specified probability of not being excedd The block
pPWCETs are combined using the static analysis in order tdyme a total
pWCET for the specified code. This is today a commercial WCE arofil-
ing tool, RapiTime, from Rapita Systems, Ltd. [136].

The pWCET approach is not dependent on a model of the hardesie
the case with static WCET analysis, but instead relies onwgian time mea-
surements. The dependence on a hardware timing model isca ongjcism

2A basic -block is a sequence of unconditional instructidsmes, without jumps.
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against the static approach, as it is an abstraction of dieheedware behav-
ior and might not describe all effects of the real hardware ti@ other hand,
this is a probabilistic approach based on measurements apdharefore be
optimistic in some cases, meaning that the WCET estimatétrhig) too low.
Bernat et al. [39] however argue that static WCET analysigdal complex
software, executing on complex hardware, is “extremelfiaift to perform
and results in unacceptable levels of pessimism”. StatiEWa@&nalysis tools
are today limited to fairly simple CPUs, while the pWCET agpgeh is appli-
cable on any CPU.

The pWCET approach is today implemented in the RapiTime yorbdf
Rapita Systems, Ltd. [136]. This solution can be combinati wihardware
monitoring tool, the RTBx data logger. The RapiTime sourodecanalysis
adds source-code instrumentation points (IPoints), whviéte an identifier to
a generic I/O port of the CPU, to which the RTBx is connectedcdkding to
Rapita Systems, an IPoint only require two CPU instructiorise RTBx is a
separate computer, equipped with a large hard drive andaaadguisition card
which samples the I/O port at a very high frequency. Thistsmuhowever
requires the existence of a generic I/O port, and the RTBxgsite large and
expensive device mainly intended for lab use.

2.2 Timing Analysis using Model Checking

Model checking is a method for verifying that a model (of ategs meets
formally specified requirements and has been proposed ashed®r soft-
ware verification, including verification of timeliness pexties for real-time
systems. The method is commonly used to verify hardwargdssind com-
munication protocols. In recent years model checkers ffiwsoe have been
developed and proposed as method for software verificatlamy case studies
have been performed where defects have been identifiedstirexsoftware by
using model checking. This section will describe the basitcepts of model
checking and temporal logics, a widely used model checkiog ds well as
two model checkers especially targeting real-time systems

2.2.1 Basic Concepts

By describing the behavior of a system in a model where alktants have
formally defined semantics, it is possible to automaticedlyify properties of
the modeled system by using a model checking tool. The med#scribed



24 Chapter 2. Timing Analysis, Modeling and Model Validation

in a modeling language, the input language of the tool, aiteariant of finite-
state automata. A system is often modeled using a netwonktofreata, where
the automata are connected by synchronization channelssnWie model
checking tool is to analyze the model, it performpaallel compositionre-
sulting in a single, much larger automaton describing thepglete system.

The properties that are to be checked are usually specifiademporal
logic, such as CTL [71] or LTL [72]. Temporal logics allow sjifécation of
safety properties, i.e., "something (bad) will never hagpand liveness prop-
erties, i.e., "something (good) must eventually happeni ekample of a CTL
safety property is:

AG not (A and B)

which states that A and B may never be true at the same timmay tis¢ tem-
poral operator AG (“always”). Imagine that the logical posgiionsA and B
describe valves in a chemical production plant, the prdjposis true if the
valve is open, false if closed. This formula then states tifxgy may not be
open at the same time (since that would cause, e.g., a darggspdl). CTL
contains several temporal operators, apart from AG, anckisgmted further in
Section 2.2.3.

Model checking is a general approach, as it can be appliedhymlomains
such as hardware verification, software engineering, conication protocols
and embedded systems. Model checking has been shown tolile usiaadus-
trial settings for finding subtle errors that are hard to fisthg other methods
and according to Katoen [74], case studies have shown thatsé of model
checking does not delay the design process more than usmgagion and
testing. Also, model checking is based on a sound matheah&ticndation,
including e.g., semantics, concurrency theory, logic artdmata theory.

There are also problems associated with model checking.oOtie most
well-known problems is commonly known as thiate-space explosiqirob-
lem, meaning that the number of possible states in the systeity becomes
very large as it grows exponentially with the number of patglrocesses. This
is a serious problem, as model checking tools often needsawls the state
space exhaustively in order to verify or falsify the proged check. If the
state space becomes too large, it is not possible to perfumse¢arch due to
memory or run time constraints.

Another problem is the need for a detailed analysis modefanraal nota-
tion, which typically is specific for each tool. Model chewegihas great poten-
tial in model-driven development, where the verified moded ispecification
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for automatic code generation tools. However, for complebedded sys-
tems developed in a traditional code-oriented manner, atyaable models
are available and model checking therefore typicatquires a major mod-
eling effort, which is very time consuming and may introdéceors in the
model.

2.2.2 The model checker SPIN

SPIN [75] is a well established tool for model checking amdwgation of soft-
ware. SPIN supports simulation (random, guided and inteegcand model
checking of formulas in the temporal logic LTL [72]. Accondjto the SPIN
website [117], SPIN is designed to scale well and can perfodnaustive ver-
ification of very large state-space models. The modelinguage of SPIN is
called Promela, “PROcess MEta Language”. Promela is a tgpthcommand
language” with a syntax similar to the programming languag8PIN is open-
source and available for most platforms, including Linuwin@#éws and Mac.
For further information about SPIN, there is a book by HolamE/ 6] contain-
ing tutorials on using SPIN and Promela, as well as refereraterial.

Promela

A Promela model roughly consists of a set of sequential mse® local and
global variables and communication channels. Each prasessequence of
statements, where each statement may be enabled or disAltlsdbled state-
ment blocks the execution of the process until the statelmegzdmes enabled.

Promela support non-deterministic selection. The ifestagnt allows sev-
eral alternative behaviors to be specified. Each behavigr Imaassociated
with a guard, a condition, in the same way as in common programming lan-
guages, but if several behaviors are enabled, i.e., have goaditions which
are true, one is selected in a non-deterministic way. As amgle, consider
the following:

if ;2 (a > 10) -> smtA;
o (true) -> smitB;
o (true) -> smtC;
fi;

3Unless an automatic model extraction tool can be used, suidoalex (cf. Section 2.4.3)
which generates models for the model checker SPIN (cf. @e@i2.2). SPIN is however not
suitable for timing analysis of real-time systems, sincdoés not have a notion of quantitative
time.



26 Chapter 2. Timing Analysis, Modeling and Model Validation

The two last statements are always enabled (true) and magfohe be
executed, but the first has a guard allowing execution onlgn¥a” is larger
than 10. Promela also supports loops, using the do-stateitmensyntax is
similar to if.

i = 1;

do :: i <= 10 -> looping;
i > 10 -> break;

od;

Promela processes may communicate using communicatiomelsa A
channel is a fixed-size FIFO buffer. The size of the buffer fpa; in such a
case it is a synchronization operation, which blocks uh#l$end and receive
operations can occur simultaneously. If the buffer size @ fnore, the com-
munication becomes asynchronous, as a send operation mayaven though
the receiver is not ready to receive. To declare and use elffsistvery straight-
forward. A send-operation is expressed using a “I" togethiér the channel
name and data. A receive-operation is similar, using “?’e Tdgilowing exam-
ple demonstrates how to declare a channel and use it for coimation.

chan chn = [4] of byte; / * four slots */
chn ! 42 | % send data “42” to chn */

chn ? foo / * receive from chn * [

A process may be instantiated and invoked dynamically aodgases may
be executed in parallel. For instance, consider the foligueixample, a simple
but complete Promela model:

proctype prc(byte ident)
{

printf("%d\n" ident);

}
init{
atomic{
run prec(l);
run prc(2);
}
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The init-section specifies the entry point, i.e., like theain{ function in
common programming languages. The atomic-statemenesraatritical sec-
tion, which ensures that the contained statements exesatgentially, with-
out preemptions. The two “run” commands creates two newgs®es, which
are released at the same time, when leaving the atomic sectio

LTL

One way to specify the properties for SPIN to verify is linear temgildogic
(LTL), which is classic propositional logic extended witgmiporal operators.
Using LTL for program verification was first proposed by PmiiéR]. The
LTL operators supported by SPIN are:

[ always &&  logical and
<> eventually |l logical or

! logical negation ->  implication

U strong until <-> equivalence

As an example, the following LTL formula specifies that thgit@l proposition
L should remain true unti& becomes true:

(L U E)

The logical propositiond and E could be electrical signals, e.g., in a washing
machine, wherd. is true if the door is locked, anfl is true if the machine
is empty of water, and thereby safe to open. The LTL formulthamabove
example then means “the door must never open while therl iwater in the
machine”.

2.2.3 Model Checking for Real-Time Systems

Model checkers such as SPIN do not have a notion of quawméttithe and
can therefore not analyze requirements on timeliness,“d.%, then Y must
occur within 10 ms”. There are however tools for model cheglaf real-time
systems. The most well-known are UppAal [129] and KRONOSL]1Both
described later in this section. These tools analyze mabissribed irtimed
automatausing variants of the temporal logic CTL.

4Another method is to insert “assert” commands in the Pronmedelel.
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Timed Automata

The concept of timed automata was first proposed by Alur atid&2], who
extended regular finite automata with real-valued clockginfed automaton
may contain an arbitrary number of clocks, which run at threesaate. There
are extensions of timed automata where clocks can haveetfitfeates [81].
The clocks may be reset to zero, independently of each ctimer,used in
conditions on state transitions and state invariants. Apkinyet illustrative
example is presented in Figure 2.1, from the UppAal tool.

Figure 2.1: A small example of (UppAal) timed automata

The modeled system in Figure 2.1 changes state #fdmB if eventa oc-
curs twice within 2 time units. There is a cloekwhich is reset after an initial
occurrence of event. If the clock reaches 2 time units before any additional
eventa arrives, the invariant on the middle state forces a statesitian back
to the initial stateA.

CTL

Both the UppAal and KRONOS model checkers use variants Ctatipn Tree
Logic [71], or CTL, which is a branching-time temporal logi@his means
that in each moment there may be several possible futuresnitmast to LTL.
Therefore, CTL allows for expressing possibility propestisuch asifi the
future, X may be trug which is not possible in LTL. On the other hand, CTL
cannot express fairness properties, such as “if A is scleedwal run, it will
eventually run”. Neither of these logics fully includes thiher, but there are
extensions of CTL, such as CTL* [87], which subsume both Lid £TL. A
CTL formula consists of a state formula and a path formula Sthte formulae
describe properties of individual states, whereas patmditae quantify over
paths, i.e., potential executions of the model.
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Apart from ordinary propositional logic, CTL contains folemporal opera-
tors:

EX for some time next A for all paths
E for some path U until

Based on the four temporal operators and the propositiogad,lit is possible
to derive an additional five useful temporal operators:

EF possible AG always
AF inevitable AX next
EG potentially always

UppAal

The tool UppAal [77, 78, 79] is based on Timed Automata and lessuof
CTL. UppAal is an integrated tool environment for the modglisimulation
and verification of real-time systems. This tool has beerelb@ed jointly by
Basic Research in Computer Science at Aalborg Universipridark, and the
Department of Computer Systems at Uppsala University indgwe

UppAal is described as “appropriate for systems that can bdeted as
a collection of non-deterministic processes with finite tcoinstructure and
real-valued clocks, communicating through channels oresheariables.” In
practice, typical application areas include real-timetoaters and communi-
cation protocols where timing aspects are critical. Théwes first proposed
in the mid 90's and has now (2010) reached version 4.0. ThHed@vailable
for many platforms including Windows and Linux, and can bevdimaded
without charge from the UppAal website [129].

UppAal extends Timed Automata with support for, e.g., awdtom tem-
plates, bounded integer variables, arrays, and differariants of restricted
synchronization channels and locations. The query larnguagd is a simpli-
fied version of CTL, which allows for reachability propegjesafety properties
and liveness properties. Timeliness properties are egpdess conditions on
clocks and state in the state formula part of the CTL formulae

TIMES

Times [122] is a tool set for modeling, simulation, schediliyy analysis and
synthesis (code generation) of systems that can be dedatha set of peri-
odic or event-triggered tasks. The Times tool was first psepgdoy Amnell
et al. [13] and allows for specifying both the triggering manisms of tasks
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and the internal behavior of tasks using timed automata mapebeended with
data variables and the notion of tasks [57]. The verificagiarts of Times is
based on UppAal, developed by the same group. The Times anasynthe-
size source code from the developed models, but currentyfonthe LegoOS
operating system. This tool can be regarded as a specianefsUppAal for

real-time systems analysis.

KRONOS

Another model checker for real-time system is Kronos [8] v@tich has been
developed at Verimag in France. Like UppAal it is based onédrAutomata
but uses a more powerful query language, Timed Computatieadogic [83],

or TCTL, an extension of CTL to include quantitative time fbe purpose of
specifying timeliness properties, i.e., liveness prdpemvith a deadline. Kro-
nos also allows for checking safety properties and can dsolkcmodels and
properties expressed in other, less common formalisms.tddies available
for several platforms, including Windows and Linux, and tendownloaded
without charge at the Kronos website [131].

2.3 Timing Analysis using Simulation

Another method for analysis of response times of softwastesys, and for
analysis of other properties, is the use of discrete evemtlation, or simu-
lation for short. Using simulation, rich modeling languagean be used to
construct very realistic models. Often ordinary programgrianguages, such
as C, are used in combination with a special simulationtiprghis is the case
for both the DRTSS [103], ARTISST [88] and VirtualTime [13§mulation
frameworks, outlined below. The rich modeling languagé&ssamodeling of
the semantic dependencies between tasks in the systeptarmgnunication,
synchronization and shared state variables. Simulatiodefsamay contain
non-deterministic or probabilistic selections. By usimghmbilistic selections,
task execution times can be modeled with high realism, asatnitity distribu-
tions.

A problem with simulation is the lower confidence in the résolcom-
parison to formal or analytical methods. A simulator exesithe model and
randomly explore the possible execution scenarios. Evaungthiit is possible
to perform a large amount of simulations in short time, thebhar of possible
execution scenarios, i.e., the state space, is often tge far an exhaustive
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analysis. On the other hand, simulation allows for an atglgsen though not
exhaustive, in situations where other analysis methods fai

2.3.1 STRESS

The STRESS environment [102] is a collection of tools forlgsia and sim-

ulation of hard real-time applications, based on a spquigbose modeling
language, essentially a procedural programming languagdiich the behav-
ior of the modeled system is described. It is focused on tasksintended as
a tool for testing various scheduling and resource manageabgorithms. It

can also be used to study the general behavior of application

2.3.2 DRTSS

The DRTSS simulation framework [103] allows for easy camdipon of dis-
crete event simulators describing complex distributetHigee systems. Com-
pared to STRESS, DRTSS is a more generic tool, not only fagusn hard
real-time. Unlike STRESS, DRTSS does not define an own muogleElnguage
for behavior, but instead models the task behaviors usiegudable code ex-
pressed in C, C++ or any other language which can be linked @st+. The
framework consists of three major components: a searchiadtan which se-
lects parameters for each individual simulation run, arceiien engine and
SETI, “the System for Extraction of Timing Information”, va analyzes the
simulation output. The DRTSS framework is a member of the PERmily
of timing-oriented prototyping and verification tools, whialso contain tools
for analytical schedulability analysis.

2.3.3 ARTISST

The ARTISST simulation framework [88] targets performaergaluation of
“complex dynamic real-time systems made of tasks perfograibitrary com-
putations and exhibiting a complex and realistic pattemtteir arrival law,
synchronization relations, and execution time.”, whiclessentially also the
focus of all other known simulation frameworks. Like STRES$I® AR-
TISST solution was initially intended for evaluation of féifent scheduling
algorithms. The specific solution is very similar to Virtlimhe and RTSSim
(cf. Chapter 3). ARTISST is task-centric and allows for sfy&eg behavior
of tasks in C or C++. Time is advanced in an explicit mannengisin API
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function called “hold_cpu”, which has direct corresponckeim both Virtu-
alTime and RTSSim. The authors behind ARTISST emphasizeadtsular,
object-oriented design; it is not dedicated to a particafzerating system but
fully customizable allowing for simulation of systems usidifferent operat-
ing system APIs. The name ARTISST is a recursive acronymTISST is a
Real-Time System Simulation Tool".

2.3.4 VirtualTime

An example of a commercial simulation framework is Virtuat€ [136]. It
is suitable for analysis of the temporal behavior of comggtems, typi-
cally soft real-time systems. The simulation framework\al detailed models
including process interactions, scheduling, messageémpsgueue behavior
and dynamic priority changes. According to the companynmRirtualTime,
Rapita Systems, Ltd. [136], there are few limitations tortiealels that can be
produced using VirtualTime. VirtualTime is specificallydating the OSE op-
erating system from ENEA [134], mainly used in the telecormdm. Rapita
Systems, Ltd. is a spin-off company from the Real-Time Syst®Research
Group at the University of York, UK.

2.4 Modeling using Source-code Analysis

This section describe works related to automated analysisftware systems.
For large industrial systems, it is not realistic to conctrdietailed analysis
models by hand; the models must be generated using autcamatigsis tools.
There are two primary information sources when analyzingtieg systems:
the source code itself and measurements of the run-timeraysihis sec-
tion presents related works in source code analysis, wieibti@ 2.5 presents
related works irdynamic analysisi.e., analysis of information recorded dur-
ing run-time. Some solutions uses both static and dynarfocritation. This
section presents results from three fields of research:rranoglicing, reverse
engineering and formal verification of source code.

2.4.1 Program Slicing

Program slicing, first proposed by Weiser [20], is a type aigpam analysis
which identifies the statements of a program of relevanca faarticular slic-
ing criterion, typically the value of a certain variable aparticular point in
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the program. This analysis is highly relevant for automaedaction of sim-
ulation models from source code and is used for this purposieei approach
presented in Chapter 5.

The most common type of program slicingoiackward slicingthe process
of identifying all statements which might affect a parteubariable, typically
at a particular pointin the program. A less common analgd@ward slicing
which identifies the statements which might be affected bgréiqular variable.
Unless otherwise stated, the tepnogram slicinghereafter refers to backwards
slicing.

An example of program slicing is given in Figure 2.2. The epéntode is
a C function which counts the number of characters and Ineedts in a string.
The code in the left part is the original program, while tightiside code is the
backwards slice with respect to the varialihes used in the lagprintf call (in
blue text). In the slice illustration, red statements amséhof direct relevance
for the slicing criterion, i.e., modifications tihes while the remaining code
corresponds to indirectly relevant statements.

void count(char* text) void count(char* text)
{ {
inti=0; inti=0;
int lines = 1; int lines = 1;
int chars = 0;
while (text[i]) while (text[i])
if (text[i] == "\n’) if (text[i] == "\n")
lines = lines + 1; lines = lines + 1;
else
chars = chars + 1;
i=i+1; i=i+1;
} }

printf("chars: %d\n", chars);
printf("lines: %d\n", lines);

} }

Figure 2.2: An example of program slicing

The approach to program slicing proposed by Weiser [20,2&hiiterative
process operating on tleentrol-flow graplof the program and produced back-
wards slices of the program. A control-flow graph (or CFG) iisaresentation
of a program as a directed graph, where the vertices regestfenprogram’s
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statements and the edges represent possible control flos.fifidt approach
to program slicing was however restricted to slicing withisingle subroutine
(i.e., intraprocedural slicing), and did not address issueh as data structures
or pointers. During the 1980°s there were however many tefllowing up
Weiser’s first approach. Weiser later proposed an exteigijro his original
approach, which allowed fanterproceduralprogram slicing, i.e., slicing of
more realistic programs divided up in several subroutifi@sctions). Leung
and Reghbati later proposed a set of corrections of Weisgtended approach
[24].

In 1988, Horwitz, Reps and Binkley proposed tBgstem Dependence
Graph, SDG, as a base for program slicing [23]. The SDG is an extensi
of the Program Dependence Grapfirst proposed by Ottenstein and Otten-
stein [35, 36]. The main difference is that the SDG allowedrépresenting
call dependencies between functions, while the PDG reptedesach func-
tion/procedure separately and thereby only allowed foaprbcedural slicing.
Both the PDG and SDG represent a program as a directed griéphjestices
corresponding to statements and edges representing tflatvand data-flow
dependencies. In the SDG there are also special verticesdyes represent-
ing the data flow between function call arguments and theesponding for-
mal parameters of the callee, and similar for data flow thhdugction return
values. On this representation, program slicing is redlireough a reacha-
bility search starting from the specified program point, iSDG vertex. An
illustration of a SDG is given in Figure 2.3. The correspamysource code is:

void main()

{
int sum = 0;
int i = 1;
while (i<11)
{

sum = add(sum,i);

i = add(i, 1);
}
printf("sum=%d\n", sum);
printf("i=%d\n", i);

}
int add(int a, int b)
{
return (a+b);
}

In Figure 2.3, the blue arcs represent control dependendigle the green arcs
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represent data dependencies. The dotted green arcs mgrésgorocedural
dataflow dependencies, through function parameters andhreglues.
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Figure 2.3: An example of a System Dependence Graph (SDG)
(Published with permission from GrammaTech, Inc. [123])

The SDG representation was patented in 1992 [22]. The phtemver
only concerns the construction of the SDG, not the actuzhgjialgorithm. An
improved version on the SDG slicing method [21] was usedércttmmercial
tool CodeSurfer, developed by GrammaTech, Inc. [123]. Adicg to the
research group website of Horwitz and Reps [121], the CodeSwol scales
to maximum 200 000 lines of code.

In conditional program slicing30], additional input is provided in the
form of known facts about variable values, which results imaber slices.
This can be regarded as something between traditionat sating and dy-
namic program slicing methods, which uses recorded exatiiistory (cf.
Section 2.5).An implementation of a conditioned prograices] ConSIT, has
been presented by Danicic et al. [31]. ConSIT uses traditistatic slicing
together with symbolic execution and theorem proving.

Amorphous program slicinggas proposed by Harman et al. [32]. An amor-
phous slice of a program only preserves the semantics, @sytitax. The idea
is to produce a simplified subprogram, which is semantiddiytical to the
original program with respect to a set of selected variabfesorphous pro-
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gram slicing is more like program transformation than triadil static slicing.

By relaxing the requirement on preserved syntax, smalleeskan be ob-
tained. This is not suitable when the correlation with tHgioal code is impor-
tant, like in debugging, but can be an efficient techniquepfmposes such as
program comprehension and reengineering. A method for jgimoors slicing
was later proposed by Harman et al. [29]. The method is imegglural, un-
like earlier proposed methods for amorphous slicing, aretates directly on
the abstract syntax tree (AST) representation of the pmgihe amorphous
slicer is part of an analysis framework called GUSTT.

Sandberg et al. [27] presents an alternative method forraroglicing.
The overall purpose of this work is to speed up WCET analysisugh pro-
gram slicing, by removing statements which cannot affeetgtogram flow.
The paper introduces an alternative method for prograringlimamed Sim-
pleSlice. Starting from a set of variables, a fix-point itema is performed
over the assignments in the code, where all statementshposéiecting the
variable are added to the output set. SimpleSlice requiéspait lists of all
assignments and all variables in the code. SimpleSlice laambinters in
the same way as most other slicing methods; it is assumedthaints-to
analysishas been performed and produceubints-to sefor each pointer and
program point. The points-to set for a specific pointer cimstall variables
possibly pointed to by the pointer. A common method for poiat analysis
is the method proposed by Steensgard [73], which is integuhoral and fast;
it has almost linear time complexity with respect to the pewog size. It does
however not take control-flow into account. A more accurat¢hod is the one
proposed by Andersen [86], which however is consideralolyst.

The SDG-based slicing methods are typicalytrol flow-sensitivewhich
means that they can exclude irrelevant assignments ofamteariables. The
SimpleSlice approach is howevilow-insensitive which means that it does
not analyze the control flow in order to exclude irrelevasigement, but in-
stead includes all assignments of relevant variables. iSHess accurate, but
much faster and gives a less complex implementation. Sitipketreats data
structures and arrays as single variables, for which ailjastents are treated
equally, independent of referenced field or index. The Sé8lite approach is
only presented for intraprocedural slicing.

Another approach to program slicing is the work presentedbmt et
al. [69, 70, 68], implemented in a prototype tool cal®drite It has been
developed with scalability as a primary concern. It repnesthe control-flow
of each function in an intraprocedural manner and uses aaepeall-graph
for representing interprocedural control flow. The datavfemalysis is per-
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formed using the control-flow graph (CFG) representatiaike ISimpleSlice,
the Sprite tool uses the Steensgard algorithm [73] for poiabalysis. An in-
teresting aspect of this tool is that it computes all prograpresentations on
demand to the extent this is possible. The CFGs and the pwiritdorma-
tion are calculated on the first slice computation, whiletcalrdependencies
and data-flow information is calculated on demand duringstiéing. Sprite
is part of a larger package called ICARIA, which is a C spedifatance of a
generic program analysis system called PONDER. In [69,¢bmpared with
CodeSurfer [123] with respect to slice size and runtime.

Espresso [65] is described aslaer generatowhich, given a program to
analyze outputs a multi-threaded Java program which pestatic slices for
the program at hand. Due to the multi-threaded approacltsailiéion benefits
from multi-core CPUs, which allows for parallel processiggch Java thread
correspond to a node in the CFG of the program to analyze, amineini-
cates with other threads according to the edges of the CF&mHssages sent
between the CFG nodes (Java threads) contains variablesreamdenode IDs.
Espresso assumes that all expressions are free from $etesefind that there
are no unstructured control-flow due to goto statements.

Jackson and Rollins [67] proposed the concepEbbppingas a general-
ization of program slicing, where the slicing (or choppilg}erion contains
two sets,sinks(uses) andources(definitions). Chopping a program means
to identify all statements involved in dependencies fromrses to sinks. A
backwards slice corresponds to a “chop” of the program wtrersink corre-
sponds to the traditional slicing criteria (a variable ateaain program point)
and where the source set contains all statements of thegmogkn interpro-
cedural method for chopping was later proposed [66].

For further reading, a good start is the survey on prograsimgltechniques
by Tip [18] and the more recent slicing overview by Xu et a. [8

2.4.2 Reverse Engineering

The process of extracting information from an implementais commonly
referred to aseverse engineeringA related term igeengineeringwhich ac-
cording to the “horseshoe model of reengineering” [42] ésglocess of reverse
engineering an implementation into a higher level of alositva, restructuring
the result of the reverse engineering, and finfdiyvard engineeringn order
to implement the new requirements and/or new architecmesxtensive an-
notated bibliography is presented by van den Brand [43]rit@ag around 100
works in the area of Reengineering and Reverse Engineering.
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There are several tools and results focusing on reverseesmgng for im-
proved comprehension of software. Bellay and Gall [44] enésd a compar-
ison of four reverse engineering tooRefine/CImagix 4D, Rigi and Sniff+.
The comparison was made by applying each of the tools to a evoiahem-
bedded system implemented in C. They compared 45 propeftibsse tools
in the four categoriesanalysis representationediting/browsingandgeneral
capabilities Examples of properties in the analysis-category are stggo
source languages and the fault-tolerance of the parsehelnepresentation-
category, properties such as support for filtering and graupf information
can be found. The editing/browsing category contains médfon about how
the tool displays the program text, e.g., syntax highliggptisearch support
and hypertext capabilities. Finally, in general capab#itve find information
about, e.g., supported platforms, multiuser support atehsibility.

The Bellay and Gall paper [44] references a tool called R&Tiff&n exten-
sible, interactive workbench” for reverse engineering @r@grams. However,
no further information about Refine/C could be found, aparfreferences in
rather old research papers. Refine/C is a product of the cayriRaasoning
Systems, Inc., which no longer supports this tool.

The second tool presented in the Bellay and Gall paper [4dh&gix 4D
(cf. Chapter 6). This is a tool for analysis of C and C++ progsaand is a
commercial product from Imagix Corp. [135]. This tool camang other
things, perform control flow analysis and program slicinge(tCalculation
Tree” feature). It can identify unused variables, presegtrits of the individ-
ual routines in the code, such as line count, McCabe comntpldan in, etc.
The Imagix tool also allows for using 3D visualizations, ain many cases
can produce a more compact view, for, e.g., function calplysa

The third tool studied by Bellay and Gall [44] is Rigi, a pubdiomain tool
developed over the last decade by the Rigi Research Prajdwt &niversity
of Victoria, Canada. The Rigi tool can present the depenidsietween func-
tions, variables and datatypes and has a lot of featuredtésirig and grouping
of functions into subsystems. Rigi is also highly custorbiealn order to use
Rigi, the code that is to be analyzed first has to be parseaigtaph. This is
done using a separate program.

The last tool presented in this study is Sniff+, a commemtéalelopment
environment from Wind River [132], supporting reverse eegiring activities.
Sniff+ targets embedded solutions but is no longer maietaby Wind River.

A study by Kollmann et al. [45], compares four tools for UMLdeal static
reverse engineeringiogether Rational Rose, Fujabandldea The first two
are commercial products and the latter ones are researtdtypes. The tools



2.4 Modeling using Source-code Analysis 39

are compared by using them for analyzing a Java implementatinsisting of
about 450 classes. Nine properties of the generated infamare compared,
such as the number of classes reported.

Reverse engineering tools of a more lightweight natureRaecalel{47]
andSemantic Gref48]. Revealer is a tool for architectural recovery based on
syntactical analysis. It allows searching for complexgaits in source code,
corresponding to “hotspots” of a specific architecturalwi€or instance, the
tool can be instructed to extract the hotspots, i.e., thevagit program state-
ments, of socket communication. Revealer does not parssotlree code in
the traditional sense, e.g., by building a parse tree, adsiteperforms a high-
level scan for syntactic patterns. It is therefore very etoterant, allowing
analysis of code containing errors or references to middagy This error tol-
erance is very useful for, e.g., a researcher analyzing taopar commercial
system off site, when the full source code is not available.

Semantic Grep [48] allows queries on the source code, ftarice ‘show
all functions in parser.tor “show all function calls from parser.c to scan-
ner.c’ The tool is based on the established tools grok and grepanstorms
its queries into commands for these tools. This tool is h@wvew academic
prototype and does not seem to be available for downloadipgehase.

Understand, from Scientific Toolworks, Inc. [138], is a nseengineer-
ing tool available for a large set of programming languagesuding C and
C++. This tool allows for studying control-flow, inside anetttveen functions.
The tool can also present header-file relationships, whemiahles are defined
and used and many other similar tasks. The tool is focusedsistag main-
tenance of large software systems and provides open, welidented APIs
in Perl and C, which enable implementation of custom analysimderstand
does however not provide support for program slicing or ofbems of data-
flow analysis, like CodeSurfer or Imagix 4D does. The strerajtthis tool
is its performance on parsing large amounts of code, togetttle flexibility
and extension possibilities through the open APIs. A penforce evaluation
of Understand is presented in Chapter 6.

2.4.3 Formal Verification Tools using Source Code Analysis

There are many works related to reverse engineering in geecfrformal ver-

ification of programs. There are model checkers for softwareh can ana-
lyze implementations in general purpose languages sucload&va. Some of
these tools translate the program into a modeling languags as Promela,
and perform abstractions by removing details irrelevanttie properties that
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are to be analyzed. This is the approach of the tools SLAM, BLAST [52],
FeaVer/Modex [55] and Bandera [53].

SLAM is a toolkit developed at Microsoft Research for checksafety
properties of system software. A case study has been pessigit] where the
SLAM toolkit has been used to verify Windows NT device drsseBLAM con-
tains three tools. First, the toGRBPis used to generate an abstraction of the C
program, called doolean programSuch programs are basically C programs,
but contain only Boolean variables and may also containaaterministic se-
lections. The abstraction is made with respect to the ptigsenf interest for
analysis, specified as state machines in the specificatmyuégeSLIC. The
Boolean program is analyzed using BEBOPmodel checker in order to find
a path through the program that violates the specified spfeperties. If such
a path is found, the todIEWTONis used to verify that the path is possible in
the real program.

BLAST, the Berkeley Lazy Abstraction Software verificatibool [52], is
another solution for checking safety properties of C progral he safety prop-
erty to check is specified by adding a speeiabr locationto the program. If
the code corresponding to the error location is executedpitesents a viola-
tion of the property. The tool transforms a C program into lasti@ct model,
based on the property to check. The model of the programeasnrally repre-
sented usingontrol flow automataCFA. Model checking is then used in order
to search all possible locations of the model to determitiegferror location
is reachable or not. If the error location is not reachabbaémodel, BLAST
reports that the program is safe and also provides a prodfif tf there is
a path to the error location in the model, it is verified tha gath is possible
in the real program by using symbolic execution. If the patpassible, it is
reported to the user; otherwise the model is refined by cingrtge abstraction
process.

According to Henzinger et al. [52], BLAST has been used irecstsid-
ies to verify safety properties of, e.g., Windows and Linevide drivers. In
some cases, defects have been found and in other cases Blr&&dphat the
drivers correctly implemented a specification.

An interesting result is the tool Modex [55, 59], a model agtor for the
SPIN model checker described in Section 2.2.2. There is &mamfusion re-
garding this model extraction tool. Modex is an acronym ofddloExtractor,

a tool for extracting verification models from ANSI C. Modeasvpreviously
known as AX (Automata Extractor). FeaVer is the user intefaf Modex.
The output format of Modex is Promela, the input languagehef foftware
model checker SPIN. Modex first parses the C code and gerepatese tree.
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Thereafter it processes all basic actions and conditiorteefprogram with

respect to a set of rules, resulting in a Promela model. Tihyscach effec-

tively moves the effort from manual modeling to defining thblé of rules,

which specify patterns for what statements that shoulddaded in the model
(Promela allows for including C statements) and what toigndhere are stan-
dard rules that can be used, but the user may add their owsitouil@prove the

quality of the resulting model.

Bandera [53] is an integrated collection of program analgsid transfor-
mation tools for automatic extraction of finite-state madigbm Java code.
The models can be used for verifying correctness propeus@sy existing
model checking tools. No model checker is included; instdaddera is de-
signed to interoperate with existing, widely used modetk&kes such as SPIN
[117] and SMV [133]. The authors argue that the single mopbirtant method
for extracting analyzable models of software is abstractidheir goal is to
provide automated support for the abstractions used byriexped model de-
signers. Bandera uses program slicing and abstract ietatjgm in order to
eliminate irrelevant program components and to suppoataastraction. They
argue that specialized models should be used for checkimgjfgpproperties
rather than developing a general model describing manycaspéa program.
That way, the model can be optimized for analysis of thatlsipgoperty and
thereby smaller and less complex. This is important sinceapmproblem
with model checking techniques is the state space explgsmlem. Devel-
oping property specific models is rarely done when modelystesns by hand,
due to the effort required, but if models are automaticatiyperated, this is
feasible.

A different approach to model checking is the one used inS&ti[54]. It
is not a traditional model checking tool, in the sense thagxmlicit model is
required. VeriSoft instead uses the source code itselfetiodel” to check.
Verifying the behavior of a concurrent system using Veri$osimilar to tra-
ditional testing, the difference is that it executes unflerdontrol of VeriSoft,
which systematically explores the behaviors of the syst€his requires that
the system that is to be verified can be compiled and executedptatform
supported by VeriSoft, which today are limited to SunOS aimtuk. Even
though Linux is growing as platform for embedded systenis gblution is not
possible to apply on closed platforms, such as VxWorks [DBZ)SE [134].
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2.5 Modeling using Dynamic Analysis

The use of dynamic analysis techniques for the modeling ofidex embed-
ded systems is interesting as the approach allows for dagtrealistic timing
information. This kind of information is generally not pdse to obtain using
static analysis, at least not for more advanced hardwatéopies. As dis-
cussed in Section 2.1.2, static WCET analysis is restrittiehther simple,
low performance CPUs. Moreover, research in this area &scas providing
safe upper bounds for tlveorst caseexecution time, but alstypical execution
times are of relevance for performance analysis.

One interesting study is the one presented by Marburger asstf#¢htel
[28]. They report on a set of reverse engineering tools, ldpeel in coop-
eration with Ericsson Eurolab Deutschland, which includppert for both
structural analysis and behavioral analysis. The behalv@ralysis includes
state machine extraction from PLEX source code (a propyietsynchronous
real-time language). Traces recorded from a system emmudatobe used to
animate the state machines in order to illustrate the sybtmavior. This is
basically low-speed simulation, using pre-recorded dastilulate the model.
The extraction of state machines from source code is higiéyed to construc-
tion of models for impact analysis, unfortunately this stémcuses on telecom
system and the Ericsson-specific PLEX language.

Related to the Marburger and Westfechtel work is that of &gt Koskimies
[34] where state diagrams are synthesized from traces. duree code of the
system in focus is instrumented in order to generate a trelsieh is fed into
the SCED tool which in turn generates a minimal state diagramespond-
ing to the observed behavior. The work does however not addeal-time
systems, as no timing information is recorded.

A system called DiscoTech was presented by Yan et al. [46wbased
on run-time observations generates an architectural vietveosystem. If the
general design pattern used in the system is known, mappagde made
that transforms low level system events into high level gecltural operations.
With this information an architectural description of thestem can be con-
structed. The system presented is designed for Java bastedhsy The types
of operations monitored are typically object creation, moetinvocation and
instance variable assignments. Note that the resultingeimbekcribes only
the architectural structure of the system and does notdechny behavioral
descriptions.

Jensen [49, 116] proposed a solution for automatic gemerafibehavioral
models from recordings of a real-time systems behaviarmedel synthesis
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from traces. The resulting model is expressed as timed aittofar the Up-
pAal model checking tool [77, 78, 79]. The aim of the tool isifieation of
properties such as response time of an implemented syst@msagnplemen-
tation requirements, using model checking. For the vetificat is assumed
that the requirements are available in the form of timed mata which are
then parallel composed with the synthesized model by theAdpol to allow
model checking. Jensen’s thesis includes a schedulatgbty which instead
of WCET uses a measure called Reliable Worst Case execittienar RWC,
a statistical measure introduced in the thesis. As a proabatept, Jensen
includes a one shot experiment of the model synthesis. ThiebyaJensen as-
sumes that the system conforms to a generic architectumlawa$: a system
has a set of abstratsksthat each are implemented as a sequenceibfasks
distributed over several servers (CPUs). The allocaticubfasks to servers is
derived from requirements such as periodicity and deadlihes, eactjob of
atask is a sequence of interactions betwadsjobson several servers. Jensen
imposes restrictions on how selections are used in the medel selections
are allowed within the subtasks, they can only occur at the ef the job or
after a message from another subtask has been receivechekmestriction is
an assumption of normal distributed subtask executiondirAecording to the
author’s own experiences of trace recording and executi@measurement
on real industrial systems (cf. Chapter 7), task-level aten times often fol-
low complex multi-modal distributions, with several “pedkcorresponding to
different control-flow branches. The distributions arelanormal distributed.

Another type of dynamic program analysis is dynamic progsdiging,
proposed by Korel and Laski [33]. In contrast to programirsticbased on
source code analysis, dynamic program slicing is perforasing a trace de-
scribing a specific execution of the program. Since the tieguklice only
takes a specific execution into account, the slices aredilpismaller. This
approach is mainly intended for facilitating debugging. étgntial problem
with this approach is that the recorded execution histdrg {tace) often be-
comes very large, since many details must be recorded.
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2.6 Model Validation

When constructing a model of the behavior of a software systeodel val-
idation is necessary in order to assure that the model aetydescribes the
system at an appropriate level of abstraction. By validgtiite model, the an-
alyst and system experts gain enough confidence in the modedér to trust
its predictions.

The validity of models have been studied in the simulatiomewinity.
Law and McComas [60] define model validation &ls€’ process of determin-
ing whether a simulation model is an accurate representatibthe system,
for the particular objectives of the stulyThey address validation of simula-
tion models in general, e.g., of models describing a phypicacess. A book
by Law [63], on simulation studies, includes one chapter adehvalidation
which presents two statistical methods for comparing a haike the corre-
sponding real system:

* Inspection approach: to compute one or more statistias fitee real
world observation and the corresponding statistics freemtlodel output
data, and then compare the two sets of statistics withoutisieeof a
formal statistical procedure.

» Confidence-interval approach: a more reliable but alscerdemanding
method. Several independent observations are made ofah®ystem as
well as of the corresponding model. From each observatieavtierage
value is calculated for the property that is to be compardds fiesults in
two sets of average values where each value represents arvatisn,
one set of values from the model and one set of values fromeale r
system. These two sets of average values are compared anfideoce
interval can be constructed using statistical methodss thifidence
interval reveals if the difference is statistically sigo#nt, and also gives
an indication of how close the model is to the system, in thidipular
aspect.

Balci [61] presented guidelines for simulation studiesluding a simu-
lation study life cycle with 10 phases: problem formulationvestigation of
solution techniques, system investigation, model fortmta model represen-
tation, programming, design of experiments, experiménmatedefinition, and
finally, presentation of simulation results. Associatethwiese processes are
13 credibility assessment stages, including model vatidat According to
Balci [61] there are basically two main techniques for modsgidation: sub-
jective validation techniquesnd statistical validation techniquesThe paper



2.6 Model Validation 45

presents a summary of common subjective validation tectesigpf which the
most interesting are:

 Face Validation: This is a useful preliminary approachst8gn experts
are allowed to study the model and subjectively compare thaetwith
their knowledge of the system.

Graphical Comparison: A subjective, but, according tocBf#1] and
the author's own experiences, also a practical method &dlyegseful
as a preliminary approach. By presenting data based on tldelraad
data from the real system, graphically, patterns can ehsilgentified
and compared.

Predictive Validation: The model is driven with past (demlstem input
data and its predictions are compared with the correspgnudist system
output data. Obviously, this requires that there are measants made
of the real systems input and corresponding output, whiclvisalways

possible or practical.

 Sensitivity Analysis: This implies to systematically &pghanges to
the model or model input variables and observing the effacinodel
behavior. The idea is that unexpected effects may reveasflavthe
model. This analysis is further discussed in Chapter 8.

 Turing tests: System experts are shown two anonymous tsjtpoe
from the model and one from the real system, generated fremtichl
inputs. The experts are asked to identify which is whichhéftsucceed,
they are asked how they did it and their feedback is used toawnethe
model.

Balci [61] also lists 22 statistical techniques which haeeproposed for
use in model validation, but the techniques are not deatfin¢her. Model va-
lidity from a general simulation point of view is also dissad by Sargent [62].
Different processes for validation of models are descriipetthe paper; one
process isndependent Verification and Validatipfv&V. It states that a third
party reviewer should be used to increase the confidence imtdel. A scor-
ing model is also described, where various aspects are teeigind a total
score can be calculated as a measure of validity for the motleis is, as
pointed out in the paper, dangerous since it appears moeetolg than it re-
ally is and may result in over-confidence in the model validid simplified
version of Balci's modeling process is proposed, congjstirtheProblem En-
tity (the system), &onceptual Mode{the understanding of the system), and
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a Computerized Modgfthe implementation of the Conceptual Model). Fur-
thermore, Conceptual Model validity is defined as the refethip between the
Problem Entity and the Conceptual Model, i.e., if the persomstructing the
model had a correct understanding of the system. Operat@fidity is the
relationship between the Computerized Model and the Prolstity, i.e., if
the Computerized model was correctly implemented.

Law and McComas [60] discuss many aspects of the validity adefs in
general and describe a seven-step approach for conducsingrassful simu-
lation studies. This approach is specified on a high levebsfraction and can
be applied on any domain. The steps are: problem formulatmtecting data
and construction of the conceptual model, validation ofdtieceptual model,
programming the model, validation of programmed model,eexpents and
analysis, and presentation of results. The paper emplsasigémportance of
a definite problem formulation, comparisons between theahadd the sys-
tem, and the use of sensitivity analysis.
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2.7 Conclusions

Many analytical methods for response-time analysis (RBAgbeen proposed
in research literature. However, the system models useddly methods are
not expressive enough in order to capture the behavior géland complex
systems. They do not consider the behavior of the tasks,tbalyindividual
worst-case execution time, which can make it very pessitrfist large indus-
trial systems as their software architectures often wothe assumptions of
analytical methods regarding independence between t&Si&s.analyzes the
“critical instant”, i.e., the worst case scenario when afiks attempts to exe-
cute at the same time, and with their individually highest@iion times. If
this situation can be managed, the system is truly safe. kemen complex
embedded systems, this scenario might not be possible, extsemely im-
probable that it will not occur in practice. For instances thdividual worst
case execution times of different tasks may be mutuallywesiet if they de-
pend on different states of the same shared state variabiesyBtems which
violate the RTA assumptions, only a positive RTA result isfuk(i.e., that re-
sponse times are below deadline requirements), while gimegeasult does not
say much, since it is not known if the analyzed worst caseasteis feasible.

Moreover, RTA targets timeliness properties only, i.e.etier or not any
deadlines are violated. In many real systems the tempogalinements are
not specified in terms of deadlines, but may be specified agiants on the
functional behavior. In some situations it may be possiblédrive task dead-
lines from such requirements, but this is often difficult. ypital example is
a FIFO data buffer shared between two tasks, one “consumerbae “pro-
ducer”. The invariant is that the buffer must never be emgtgmthe consumer
attempts to read. This requirementis formulated in ternte®functional be-
havior but highly dependent on the temporal behavior ofwetasks involved.
Such requirements cannot easily be verified by using theiegimethods for
response-time analysis. Even though fixed priority schiadus a common
scheduling algorithm in complex embedded systems, RTA neaprbblem-
atic to apply since many systems are not designed to alloWzatzlity. They
might contain aperiodic tasks scheduled with a fixed pripait tasks that alter
their priority due to some application specific condition.

Compared to the simplistic system models used in RTA, moketking
allows for using detailed system models expressed in rictialirog languages
such as Promela[117, 76] or timed automata [82, 79], wharetional behav-
ior and task dependencies can be specified. Timed automatwen allows
for the modeling of real-time systems, where a notion of gtetive time is
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important. However, model-checking does not scale prgpetharger systems
due to the state-space explosion problem.

Another problem with model checking is the need for a dedafiralysis
model, which describes the relevant aspects of the systarfoirmal notation,
which typically is specific for each tool. The exception ie timodel checker
SPIN [117, 76], which has support for Promela model extoectiom C code
(the Modex tool), but SPIN does not support timing analy$iseal-time sys-
tems, since it has no concept of quantitative time, onlytiredavent order.

Unless an automatic model extraction tool is availableygisiodel check-
ing on large, existing systems implies a major, error-prandeling effort, and
in the end, the state-space explosion problem might makesthdting model
useless if it cannot be analyzed with realistic memory andime constraints.
Model checking is today mainly used for small systems wittnesre require-
ments on dependability, where the consequences of a faitereatastrophic.
One can argue that model checking will be possible on moreraord complex
systems as computers are getting faster and faster, and oteiking tools
better and better. That is true, but the systems out in inglatgo benefit from
the trend of ever faster CPUs as a result grow larger andrlarge

The custom modeling required makes formal methods quiteresipe to
use and it might not give the best return on investment in sepfimsoftware
quality. Even though timing analysis is important for mammynpanies, most
of their quality problems are likely due to “ordinary” (futi@nal) errors. For
such companies, the value of timing analysis is proportitmthe number of
system failures it prevents. Investments in increasedvsoé quality through
timing analysis must be economically motivated comparedti@r software
quality investments, like refactoring, improved test feamorks or extended
code reviews.

Discrete event simulation is another approach which likeleh@hecking
also allows for using detailed models of the system. Sinardadoes not suf-
fer from the state-space explosion problem, at least ndtdrsame way, since
no exhaustive search is performed. The state-space isthst@domly sam-
pled. A disadvantage of the simulation approach is the la@eafidence in the
result. No guarantees can be given regarding the propafidse analyzed
models since the whole state-space is typically not exglohe fact, the size
of the state-space or the number of explored states areatiypivot known
since they are not represented explicitly. The confidersigeiss obviously a
larger problem for models with very large state-space amdbeaseen as the
state-space explosion problem applied to the simulatipnagzh.

Simulation is more like testing in the sense that it can shmvpresence
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of (timing) errors, but not guarantee their absence. Howexeen though a
simulation is not an exhaustive analysis and thus might thissvorst case
situation, it may still point out potential problems andisisthe developers in
making the right decisions.

Based on this analysis, the author decided to focus on thslplitges of
using simulation-based analysis, an area that has recktittedattention. In
the general case simulation suffers from the same modetiggm as model
checking and has confidence problems instead of scalapitiglems. Possi-
ble solutions have however been identified and are addrésstwe research
questions of this thesis.

Research questio@1 address the modeling issue, concretely the possi-
bility of automated model extraction. Chapter 5 proposesethod for au-
tomated model extraction, Katana, using a new approachagrgm slicing.
In response to research questi@f two methods fosimulation optimization
which improves accuracy and confidence, are presented ipt&hé

With these contributions, simulation models can be autaraly gener-
ated from an existing system and analyzed in an efficient eraimnorder to
quickly assess the typical performance or to identify ergescenarios which
may constitute timing errors. This approach is thereforigeqcheap to use
in terms of man hours required for training and applicatespecially com-
pared to formal analysis methods. Imagine that timing sroomstitute 5 %
of all errors for a system, and 80 % of these are found usingnalation-
based approach, compared to 100 % when using formal metholdsis model
checking. This means that the advantage of using model oigecimpared to
simulation would be only a 1 % increase in the ratio of deteteors, while
the cost to achieve this would be large evendorall projects, several hun-
dred hours, and extremely high for larger projects. Thiswated approach
to simulation-based timing analysis should be realistideploy in industrial
settings and could in that case improve software qualityraddce costs.

Program slicing is a highly interesting techniques for astion of sim-
ulation models from the source code of existing systems. désired sim-
ulation model can be regarded as an executable slice, wsthect to a spe-
cific slicing criterion. However, the existing tools for gnam slicing, such as
CodeSurfer [123] and Imagix 4D [135], do not scale suffidierAs presented
in Section 5.5, the scalability of such tools are limitedystems with at most
200000 lines of code (as stated by the research group bdtendddeSurfer
tool [121]). According to experiments presented in Chaftehe practical ap-
plicability is however even more restricted, and indussistems often con-
sists of many hundred thousands of lines of code, or everonsl[106].
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There are however reverse engineering tools which scald meiter, but
which offers less functionality. For instance, Understf2B] scales to sev-
eral millions of lines of code (as presented in Chapter &)hbks no support for
program slicing. Many reverse engineering tools have hewarIs, which al-
lows for implementation of custom algorithms. For instartbe API of Under-
stand has been used to implement the MXTC prototype presen@hapter 6.

Timing-accurate simulation also requires quantitativad@m the system,
e.g., executiontimes. Profiling of embedded systems is hemeefairly mature
area, and apart from software solutions (e.g., those destin Chapter 7)
there are also hardware solutions which allows for days ek&ef continuous
execution time recording, such as the RTBx data logger frampit Systems,
Ltd. [136]. Such a solution could be used for populating datian models
with execution time data.

The advantage of software recorders is the possibility ofopming exe-
cution time recording at all times, also post-release,esimz extra hardware
is required. This imposes an overhead, i.e., additional @RtURAM usage,
and amount of RAM available limits the amount of data which ba stored.
Research questid@3 was therefore formulated to verify the practical applica-
bility of this approach on common operating systems in thbeatded systems
domain and to investigating the overhead of trace recordmgeal systems.
The results are presented in Chapter 7, based on experfeoicefive industry
collaboration project where trace recorders have beeram® and evaluated.

Model validationis the process of assuring that a model correctly describes
the intended system. Techniques for model validation apwitant also when
using automated model extraction, as the model validatisn eerifies the
model extraction and simulation tools and their configoratiMoreover, the
coverage of the execution time measurements is anothelityahreat which
needs to be investigated as a part of the model validatiocegso If manual
abstractions are allowed, e.g., through code annotatiopndgl validation is
critical in order to ensure the validity of the abstractionade. Works exist
regarding validation of models in the general simulatiomomunity, while the
model checking community seems to take model validity fanged. In many
cases, model checkers are used to verify a specification yétars that has
not yet been implemented. In such a case, this assumptioht inégvalid;
the question is in that case if the implementation conformthé specifica-
tions. However, if the model describes an existing systethisuthe result of
a reverse-engineering activity (automated or manual)rthdel validity can-
not be assumed. The results found in the simulation commimitude two
main classes of model validation techniques, subjectigbrtigues (i.e., in-
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spection) and those based on statistics. Both can be usedidate models
in this approach. Chapter 8 presents a five-step processddelnalidation
which should be suitable for this approach.






Chapter 3

Timing Analysis using
Discrete Event Simulation

This chapter presents discrete event simulation as a métndanming- and
performance analysis of complex embedded systems andlirtes the sim-
ulation frameworkRTSSindeveloped for this purpose. This type of analysis
can be used for predicting any run-time property where th&lmvolved is
implemented in software and available as source code. Rwnjroperties
strongly dependant on the hardware architecture, e.ghedait ratio, are not
supported or targeted by this work.

Simulation is a broad term which easily can be misunderstexaeh in the
context of analysis of embedded systems. Simulation is thegss of imitat-
ing key characteristics of a system or process, and typigalplemented as
computer programs. One type of simulation is used duringgdes physi-
cal structures, e.qg., for predicting wind forces for a beid&§uch a simulation
model consist of mathematical equations. However, in timéend of this work,
the termsimulationimpliesdiscrete event simulatiomnless otherwise stated.

Law and Kelton [63] defines discrete event simulatiorfrasdeling of a
system as it evolves over time by a representation in whiglstdte variables
change instantaneously at separate points in tim&his naturally includes
simulation of computer-based systems.

Simulation can be performed on different levels of abstoactin one end
of the scale, simulators such as Virtutech Simics [124] atmé, which sim-
ulates software and hardware of a computer system in d&adh simulators
are used for low-level debugging, where a very detailed \ifemecessary, or

53
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for hardware/software co-design, i.e., when developiritysoe for new hard-
ware that is not yet physically available, but can be mode#dg a simulator.
This type of simulation is considerably slower than nornxalaation, typically
maghnitudes slower, but gives an exact analysis which takery eletail of the
behavior and timing into account.

In the other end of the scale we find scheduling simulatorg) alstract
from the actual behavior of the system and only analyzesahediling of the
system’s tasks, specified by scheduling attributes anduiéixedimes. One ex-
ample in this category is the approach by Samii et al. [12¢hSimulators are
applicable for strictly periodic real-time systems. Howgwomplex embed-
ded systems often contain aperiodic tasks, triggered bysages from other
tasks or interrupts. Moreover, tasks may have differenabiens, and thereby
execution times, depending on message content. A simutatist therefore
take relevant aspects of the task behavior into accountdardp accurately
simulate a complex embedded system.

In the simulation approach presented in this chapter, RiS®ie source
code of the analyzed system is used as a base for constriactimgulation
model, expressed in the same programming language as tlirabisystem.
In the domain of embedded systems this typically impliest3/GRTSSim has
therefore been developed in C, which allows for both C and @wetlels.

Even though the implementation details of RTSSim may betefést for
some people, RTSSim is not proposed as a novel contributitself, at least
not conceptually. Similar approaches are “Virtual Timedrh Rapita Systems,
Ltd. [136] and the ARTISST simulator [88]. Additional worls the area
can be found in Section 2.3. The purpose of this chapter islgn& give
the reader an understanding of the type of simulation indamnd thereby to
set the context for the following chapters which presentltesn simulation
optimization, simulation model extraction and model vatidn.

3.1 Motivations for Simulation

Compared to other methods for timing analysis, simulatias the advantage
of not posing restrictions (by making assumptions) regaydhe design of
the software system. Simulation allows for analysis of amasurable run-
time property, in contrast to the analytical methods fopoase time analysis
[45, 47, 46] which have many assumptions and are specidliweal specific
property, task response times.

Simulation does not have the state-space explosion proioléhe same
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way as model checking tools, like UPPAAL [48] or KRONOS [48Juich tools
attempt to search the model state-space exhaustivelyhdritarge industrial
systems will require more time and memory than realistcallailable. In
contrast, simulation is a best-effort analysis which rantjoexplore the pos-
sible behaviors of the model for as long time as allowed. Ausation-based
analysis can therefore not identify worst-case scenasiosg only a random
subset of the state-space is explored. Note that the wasst-scenario might
have been encountered during a simulation, but the siroulatisult does not
tell if this is the case.

The state-space explosion problem exists in the contexinailation as
well, but due to the best-effort approach instead manifadtaver state-space
coverage and thereby simulation results of lower confidembés is however
better than no results at all.

Simulation using randomized input, i.®pnte Carlo simulationwill mainly
explore the typical behaviors, while rare, extreme scesaaie less likely to
be found. The efficiency of using simulation for finding extiebehaviors can
however be significantly increased througjmulation optimizationwhich is
presented in Chapter 4.

In the perspective of analyzing an existing software systeimulation
does not require formal modeling, like most model checkiogl does (at
least those targeting real-time systems), since a siroulatiodel can be au-
tomatically extracted from the system implementation,, @iging the method
presented in Chapter 5.

Simulation-based analysis should be regarded as a forneofajzed test-
ing, in this case focusing on timing and resource usage, aad as a com-
plement to traditional testing. Since a simulation moddy areed to include
the code of relevance for the properties in focus, and sine€ &s typically
much faster than embedded hardware, simulations can berped in much
less time than required to run the corresponding test caséseaeal system,
which means that more scenarios can be explored in the same If using
a PC with a multi-core CPU, multiple simulations can be exedin parallel.
Moreover, a simulation can explore scenarios which are taggnerate on a
real system, can be extensively monitored without causingeeffect prob-
lems (discussed by Schutz [89]), and a simulation is completetgmninistic
and reproducible, as explained in Section 3.2.6. In coptfasmulti-tasking
systems, system-level testing is not always determingstitrepeatable since
execution times and input timing varies between test runs.

1A probe effect is an accidental change in system behaviotaakered execution times when
activating or deactivating the recording.
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3.2 The RTSSim Simulation Framework

RTSSim was developed for the purpose of simulation-basatysis of run-
time properties related to timing, performance and resmusage, targeting
complex embedded systems where such properties are oglecnasid to pre-
dict. RTSSim has been designed to provide a generic siroalativironment
which provides functionality similar to most real-time opgng systems.

The RTSSim simulation framework allows for simulating anbesded
software system on a standard PC, many times faster thanahexacution
on the embedded hardware (i.e., testing), with approxipnatrect timing
and with complete control and reproducibility.

Simulation Model (C code)

Tasks | | Mailboxes | | Semaphores
RTSSim API
g Trace
Scheduler | RTSSim S
Timing Compile and link
Data \ Simulati
. imulation

/ Simulator.exe 21 7 Trace

Inputs

PC Operating System

PC Hardware

Figure 3.1: The RTSSim framework

As depicted by Figure 3.1, a simulation is performed by ekaguhe sim-
ulation model in the RTSSim environment, which emulatesétiene operat-
ing system on a PC and works as a “sandbox” with respect tagimihe real
timing of the simulator executable, which naturally is aféel by the host PC,
does not impact the simulated timing (i.e., the simulat&suit) since CPU us-
age is modeled explicitly. All time-triggered events in RS are controlled
by a simulation clock, which is incremented by expligkecutestatements in
the simulation model (cf. Section 3.2.3), using timing datorded from mon-
itoring of the modeled system. The timing of the modeledesysis thereby
preserved in the simulation, or at least a good approximafitis is however
not guaranteed to be 100 % identical to the real timing, Wwlen executing
the code on the intended hardware. This is the case sincanthaton model
is probabilistic with respect to execution times; it abstsdrom details in the
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hardware platform and instead describe the execution tieteden relevant
points in the source code in a probabilistic manner. An aagindor execution
time profiling and modeling, for this purpose, is presentefection 7.5.

The simulation input decides the simulation length and titeame of any
stochastic selections in the model, e.g., execution-tiar@tions (cf. Sec-
tion 3.2.6). The input which decides stochastic selectimna seed value, used
to initialize a pseudo-random number generator (cf. Se@i@.7, or a data set
specifying the outcome of each stochastic selection iddaly.

The tasks of an RTSSim simulation model are scheduled usgepptive
fixed-priority scheduling, as described in Section 3.2r] are assumed to
share a single CPU core.

A simulation model can theoretically contain the full saicode of the an-
alyzed software system, but the intension of the RTSSim dxaonk is to use
it together with amodel extractiortool, which produces a simulation model
only containing the source code of relevance for the pragrem focus, to-
gether with addedExecutestatements. The execution time of the excluded
code is still taken into account by the simulation model sitite execution
time measurements are performed on the original system. thaddor sim-
ulation model extraction is presented in Chapter 5 and atuatian of this
approach on industrial code is presented in Chapter 6.

RTSSim can produce two kinds of output, a detailed simuttiace and a
text file containing selected statistics on task timing hsas highest response
time observed for the selected task. The simulation trapeaduced using a
trace recorderi.e., an event logger, very similar to the one describeckitiSn
7.4.5, which outputs a simulation trace for the Tracealyael, presented in
Section 7.3, including task scheduling, task communicadiod synchroniza-
tion events. The trace recorder in RTSSim also supports ‘egents”, i.e.,
user-specific events and data, logged through explice talhe trace recorder
from the simulation model.

An RTSSim simulation is performed by compiling and linkifgetsimu-
lation model, which is expressed in C code, together withRR8Sim library
and running the resulting executable, as depicted by FigureThe RTSSim
framework is implemented in C using the Win32 library of Wings XP, and
has only been tested in this environment. Porting to otheraifmg systems is
possible, but requires that the current use of Win32 fibdrsSgction 3.2.4) is
replaced with a more portable solution, e.g., by using th8X@hread library.
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3.2.1 The Simulation Model

An RTSSim simulation model is focused on tasks, which in Ccdbs be-

havior of relevance for timing, i.e., timing, schedulingnemunication, syn-
chronization and relevant state changes. The current RT 8&plementation
allows for using tasks, mailboxes and semaphores, but offemating system
features can quite easily be added since the core fundtipigin place. The
RTSSim APl is presented in detail by Appendix B.

Tasks

RTSSim stores each task in a listtagk control blocksor TCBs which include
the following attributes:

« Name: an identification string used for logging purposes.

¢ Status: READY, BLOCKED, WAITING or DORMANT.

* Priority: an unsigned 8-bit integer, where 0 is the highgsarity and 255 the
lowest priority.

 Period: the (minimum) inter-arrival time of the task.

» Offset: the activation time of the first instance.

« Jitter: allows for adding a stochastic inter-arrival tifiter.

 Entry function: the main function of the task.

The task scheduling of RTSSim is described in greater dep8elation 3.2.4.

Mailboxes and Semaphores

A mailboxis used for asynchronous message passing between tasksrand c
tains a fixed-size FIFO buffer where the messages are stéretessage is a
32-bit integer value, typically a message code or a poioterdata-structure.

A semaphorés a basic binary semaphore for mutual exclusion, whicleithyt

is unlocked. No resource management protocol has beenrimepled for pre-
venting priority inversion.

Mailboxes and semaphores may block the execution of tasksatiempt
to send a message to a full mailbox, or to receive a messagedmempty
mailbox, or an attempt to lock an already locked semapholieblack the
executing task until the operation is successfully congalet, optionally, until
a specified timeout expires. If the timeout is set to zero ), timeout will
occur immediately, without blocking, if the operation cahoomplete directly.
The timeout option is disabled by using -1 as timeout dumatibe task may
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in such cases be blocked indefinitely, i.e., until simulatiermination, if the

resource does not become available. As can be expectedrégftimem one task
are waiting to acquire a specific resource (e.g., putting ssage in a mailbox,
or locking a semaphore), the task with highest priority it the resource
when it becomes available.

Time and Scheduling

In RTSSim simulation models, time is discrete and is repriegkby an integer
simulation clock, a global variable namelit. All time-triggered events in an
RTSSim simulation depend ark, which in turn depends oBxecute which
models the consumption of CPU time by incrementiiigas described in Sec-
tion 3.2.3. Theclk variable may be used in order to read the current time, and
it is also used by the RTSSim trace recorder for time-stagpfrevents.

As mentioned, tasks are scheduled using preemptive fixeditgischedul-
ing, as described in Section 3.2.4, and are assumed to shiangl@ CPU core.
Task-switches can however only occur inside RTSSim APItions which in-
vokes the scheduler, such Bgecute Other model code always execute in an
atomic manner, i.e., without preemptions, since the sdeedsionly invoked
by explicit RTSSim API calls. In order to allow for preempi®between two
“normal” code statements, it is necessary to insefErecutestatement in be-
tween.

Unlike VirtualTime [136], RTSSim does not yet support siatidn of mul-
tiple CPU cores in parallel, i.e., parallel/multi-core qmners or distributed
systems. RTSSim however allows for simulating individu&cores of a
parallel (or distributed) system in isolation, by modelingut from other CPU
cores as “system environment”, as described in Sectiob.3.2.

3.2.2 A Small Example Model

Next follows an example of a simple RTSSim model containinginteracting
tasks:SenderandReceiver TheSendetask begins by callin§xecuten order
to consume between 130 — 150 units of CPU time. A messagerissthd to
Receiver using the mailboXMBox The Executecorresponds to real system
calculations found irrelevant for the model and therefangy ancluded with
respect to execution time.

As specified itmodel_init the Sendettask is activated periodically (every
2000 time units) and thereby uses 7 % of the CPU time sincetaaklinstance
in average consumes 140 time units. Rexeivetask executes less frequently
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(every 5000 time units) and reads all messages stored indiibor (note the
secondRecvMessagén the “while” loop). Each message is associated to a
processing time of 500 time units Receiverbut the number of messages in
the mailbox wherReceiveistarts will vary due to inharmonic task periods.

void Sender(TCB * task)

Execute(130 + getRandomValue(20));
SendMessage(MBox, m++, FOREVER);
}

void Receiver(TCB * task)
{

int msg = 0;

msg = RecvMessage(MBox, 0);
Execute(10);

if (msg < 0)

{

UserEvent(ue_no_msg);
else
while (msg >= 0)

Execute(500);
msg = RecvMessage(M, 0);
}

}
Execute(10);

void model_init()

MBox = CreateMailbox("M", 10);
CreateTask("Sender", 1, 2000, 500, O, Sender);
CreateTask("Receiver”, 2, 5000, 0, O, Receiver);
ue_no_msg = CreateUEChannel("No msg");

}

Since theSendettask produces a message every 2000 time units, and since all
messages produced are at some point process&etbgiver using 500 time
units each, the average CPU loadRéceivershould be just over 25 %. Note
thatSenderhas an offset of 500 time units, which causes the first instafic
Receiveto find an empty mailbox, which fires the user event “No msgimet

10.

Figure 3.2 shows a TracealyZefiew over the first 12 000 time units of an
RTSSim simulation of the above example model. The sendidgeceiving of
messages is shown as system events, and at time 10, the eisemegyistered by
Receiverto indicate that mailbo¥Boxwas empty, is shown in yellow. The

2The tool used in the figure, RTXCview, is a commercial versibthe Tracealyzer.
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CPU load view shows that the CPU usage is around 33 % in tdtathizh
Receiveruses about 7 % anflender26 %, which matches the expectations.
The Tracealyzer tool is presented further in Section 7.3.

A larger example of an RTSSim simulation model is found in Aipgix C.
This simulation model was used in the evaluation of simatatptimization
methods, as presented in Chapter 4.

3.2.3 Execute

The Executefunction is used to model the consumption of CPU time by in-
crementing the simulation clocklk. The amount of CPU time to consume,
i.e., to add tcclk, is given as a parametein(cr in the below code). Th&xe-
cutefunction is also responsible for the processing of timgeteired simulation
events, such as activation of time-triggered tasks, tirtg@md terminating the
simulation. Such events are created by different mechamiisiRTSSim, e.g.,
by the scheduler. The event list, where such events aralskeeps the events
sorted by their scheduled time of activation. The core fionetlity of Execute

is presented in C code below:

void Execute(TCB * tcb, int incr)
while(incr > 0)

event = getNextEvent(clk + incr);
if (event == NULL)

clk = clk + incr;
incr = 0;
}
else
{
do{
incr = incr - (event->time - clk);
clk = event->time;
processEvent(event->action);
event = getNextEvent(clk);
Jwhile(event '= NULL);
schedule(tcb);
}
}
}

The getNextEvenfunction gives the earliest simulation event scheduled
to occur at latest on the specified time. If no event are sdeddiw occur
within the time-window{clk, clk + incr], the current timeelk jumps directly
to clk + incr, and theExecuteis finished. If there is at least one event in
the specific time-window (e.g., an activation of a time-geged taskylk is
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advanced to the time of the first event. The remaining amolu@fPdJ time to

consumeincr, is decreased accordingly. The event is thereafter exeécute

the inner loop makes sure that all events scheduled at the Sama instant
(e.g., task activations) are processed before the schadulalled. When the
amount of CPU time remaining to consumaecf) reaches zero, thExecute
function is completed and returns.

RTSSim contains a pre-defined idle task at lowest priorisbj2 This task
is always ready to execute if no other task is, since it costaisingléexecute
statement placed in an infinite loop. The idle-task is imatrsince it prevents
that RTSSim goes into a deadlock state if no tasks are reagkettute at some
point in the simulation.

3.2.4 Task and Scheduling Implementation

In RTSSim, each simulation model task is mapped fiber, a concept in Mi-
crosoft’s Win32 API which implies a lightweight thread whithe application
is responsible for scheduling, i.e., within a single threHis fits the RTSSim
framework perfectly, since a separate, explicit schedsldesired. A context-
switch between fibers is achieved by letting the currenthnimg fiber call the
Win32 API functionSwitchToFiber with the handle of the new fiber as pa-
rameter. This is faster than normal context-switching, between threads, as
fibers have less state information than threads or processes

The scheduling in the RTSSim framework is explicit, in thasethat the
tasks calls the scheduler, although not directly but thindgecuteand most
other RTSSim API functions also call the scheduler. The éametionality of
Schedulés presented below in C code:

void Schedule(void)

TCB: NewTask = SelectTask();
if(NewTask != RunningTask)
{
RunningTask = NewTask;
SwitchToFiber(NewTask->fiberHandle);
}
}

The scheduler begins by looking up the currently ready tdskighest
priority in the TCB list (usingSelectTask If the selected task is not identical
to the currently executing tasR@nningTask the scheduler performs a task-
switch by updating th&unningTaslpointer and then calling the Win32 API
function SwitchToFiber which blocks the caller task (fiber) and activates the



64 Chapter 3. Timing Analysis using Discrete Event Simulatin

new. In this manner, only one task (fiber) executes at anynginee, while all
others fibers are blocked by tissvitchToFibercall in Schedule

The scheduling attributes are stored in the TCB of each tadktzereby
possible to read and modify from the task code, in order tdeémgnt cus-
tom scheduling algorithms on top of the normal schedulere $theduling
attributes of tasks in an RTSSim model are:

* priority,

* period (minimum),
* offset, and

* jitter (maximum).

The highest priority in RTSSim is 0 and the lowest priorit2B5. In the
current implementation, tasks are expected to have unigostgs. If two
tasks have identical priorities and are ready at the same, tiheir order in
the TCB list will decide. This depends on the order of creatiod is not by
design, but more of a side-effect of the implementation. Apps better so-
lution would be to perform round-robin scheduling for taskth the identical
priorities, since this allows for fair scheduling of tasksqual importance.

The second attribute, period, specifies the periodicityasks and if they
should be recurring (periodic/sporadic) or one-shot tadkss also involves
the jitter attribute. If the jitter attribute is zero, thestdt is a periodic task,
which is activated (becomes ready to execute) eweryod time units. If a
non-zero maximum jitter is specified, a random value in theged0, jitter)
is added to the inter-arrival time of each task instancegthecreating a ran-
dom but bounded inter-arrival time variation. The periodstispecifies the
minimum inter-arrival time. Periodic and sporadic tasksstrterminate after
each instance, i.e., return from their entry-functiongeithe activation event
of the next instance is not created until the previous irstdras finished. Non-
terminating tasks are common in many industrial systemsh $asks contain
“infinite” main-loops where a loop iteration correspondsatdask instance.
Such tasks are realized in RTSSim using one-shot taskshvighibe result if
specifying a period of -1 (or any other negative value).

The offset sets the activation time of the first task instaaice thereby
shifts the activation time of the later instances with tirabant. Note that the
activation time is the time when the task becomes ready tougenot the time
when it actually starts to execute, and is therefore pradietfor time-triggered
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tasks. The activation time is calculated using the follgpiormula:

AT — AT;_1 + period + rand(jitter) if (i > 0)
") offset + rand(jitter) if (i =0)

where AT; refers to the activation time of instan¢eand rand provides a
“stochastic” jitter selection (as described in Section®.2

3.2.5 Environment Modeling

RTSSim allows for modeling external systems, e.g., othaneated computer
systems (or CPU cores), sensors, operator controls, efieig environment
tasks These are RTSSim tasks that do not consume CPU time anddtesre
only impact the simulation by the input events they genemtg, IPC mes-
sages sent to other tasks or modified global variables.

Environment tasks are “invisible” during the simulationtire sense that
they does not affect the scheduling or show up in the simaratiace output.
Environment tasks may use all RTSSim API functions excepEfecute The
set of environment tasks used in a simulation can be regasiagenvironment
mode| a necessary subset of a complete simulation model. As an@g&athe
larger RTSSim model presented in Appendix C includes thregr@ment
tasks, those with the suffix “ENVTASK”.

3.2.6 Stochastic Selections

An RTSSim simulation model may contain “stochastic” se@ett, which are
not decided by the simulation model but by inputs to the satioih, either di-
rectly or through the pseudo-random number generator. Tdet wvisible type
of stochastic selection is the random variations in taskas# time specified
by the jitter attribute. Other types of stochastic selettiare execution time
variations (stochastic increment of the simulation clcahdl stochastic behav-
ior selections (typically in environment tasks). RTSSintetdimines stochastic
selections using either pseudo-random numbers, resittidgnte Carlo sim-
ulation, or by using explicit selection values, specifiedrgmit. In the latter
mode, RTSSim is completely deterministic and can be cdettdly an external
tool for simulation optimization purposes, as describe@livapter 4. In order
to realize Monte Carlo simulation, RTSSim obtains a “seadlg from a high
resolution timer which used to initiate the pseudo-randamiper generator.
The seed value is reported in the output which makes it plesgitreplicate
previous simulations. This is discussed in greater dep8eition 3.2.7.
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3.2.7 Pseudo-Random Number Generation

A pseudo-random number generator is an algorithm whichrgéegnumbers
that are seemingly random, typically according a uniforwbability distribu-
tion. However, a produced sequence of pseudo-random nsnaot truly
random (hence “pseudo”) since the sequence is completidyrdimed by the
seed value used to initialize the pseudo-random numbergtemeThus, given
a specific seed, a specific sequence of seemingly randonmsvialpeoduced.
A good approximation of truly random values can be produgealing a seed
value from a high resolution hardware clock.

However, the standard library function for generating jpetandom num-
bers in the Win32 APlrand, only produces 15-bit values, i.e., in the range
[0,32767]. This is a problem since a simulation model may pseudo-nando
number larger than 32767, e.g., as execution time or imt@rahtime jitter.
One solution is to compensate this by merging two 15-bitesinto a 30-bit
value, but this requires calling thrand twice for each 30-bit random number.
This was used in an earlier version of RTSSim, but was lajg@aoced with a
faster solution, a custom random number generator basdweokS 183 algo-
rithm [10] which produces 32-bit values.

In a benchmark test, the AS 183 solution required 56 secamgsdducing
2 billion (2 * 10°) 32-bit random numbers. The earlier approach, i.e., when
combining the results of two calls of the standard libranydiionrand into a
30-bit random number, required 88 seconds for the same anoduandom
numbers, i.e., 57 % longer time.

A more recently proposed algorithm for generating pseuwaom num-
bers is the Mersenne Twister [19]. Itis claimed to be fastgankrate pseudo-
random numbers of very high quality. An interesting diretof future work
could be to compare the performance of RTSSim using diffgreeudo-random
number generators, AS 183, Mersenne Twister, and otheticoduavailable
(many exists).
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3.3 Conclusions

This chapter has presented simulation as method for tinmiatyais of complex
embedded systems, including motivations and limitati@ngtie approach. It
has moreover presented a technical solution for this pe;ptbe simulation
framework RTSSim, how it works and roughly how it is used. RESSIm
APl is presented in detail by Appendix B and a larger exampbndRTSSim
model is presented in Appendix C. Ideas on recording andrgéae oftim-
ing profilescontaining timing data for RTSSim models are presented o3 Se
tion 7.5.

In a thesis perspective, this chapter is not to be considereel research
contribution on its own; at least four similar solutions described in Section
2.3. The RTSSim simulation framework is however the tedirptatform of
this research and a conceptual understanding of RTSSirarsftre important
for a good understanding of the following chapters, whictifferent ways all
relate to the simulation-based timing analysis.

The next chapter describes novel results in simulatiomapétion, a method
in which RTSSim (or a similar simulator) is controlled by gotimization al-
gorithm in order to provoke as extreme behaviors as possiliie respect to
a specific property of the simulation model. Chapter 5 dbsera novel ap-
proach to automated extraction of simulation models thinostgtic analysis
and Chapter 7 presents techniques for monitoring (tracedewy) of embed-
ded systems, which has been used in RTSSim, and a methodrferagiag
timing profiles for RTSSim models, using trace recordingafiier 8 discuss
validity and validation of simulation models, and presemethods for com-
paring traces from recorded during simulation or real syst®ecution.






Chapter 4

Simulation Optimization

Simulation is a promising approach to timing analysis of pter embedded
systems. As presented in Chapter 3, simulation-based sisa$yapplicable
to software systems of any design and scales to large, carap&ems. The
downside of simulation is the confidence in the predicti@artsaditional Monte

Carlo simulation corresponds to a random search and is itabsufor worst-

case timing analysis, since only a random subset of the llessienarios are
explored. Unlike formal analysis methods, results fromwation-based tim-
ing analysis cannot be used to guarantee that a system iset@tsimg require-

ment. This is similar to the problems of general softwarérigsthe method
can only be used to show the presence of errors, not to preveltbence of
errors. Nonetheless, a simulation-based analysis catifiglertreme scenar-
ios, e.g., very high response-times which may violate tiséesy requirements,
even though worst case scenarios are not identified.

This chapter presents two alternative methodssfoulation optimization
which allows for efficient identification of extreme scermearivith respect to a
specified measurable run-time property of the system,relgted to timing or
resource usage, using a combination of discrete eventaiion) as described
by Chapter 3, and heuristic search methods. The two appesddABERA
andHCRR both use a simulator (RTSSim) as a deterministic functibictv
given a set of parameters defining the scenarios to explere;ns the most
extreme value observed for the run-time property in focasthe implemen-
tations and evaluations presented in this chapter, theeprym focus is the
highest response time observed for a specific task.

Both approaches use the simulation results in an iteratiedyais where

69
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the simulation parameters are gradually refined in orderduegke as extreme
results as possible. Like traditional Monte Carlo simwalatithis is still a best-
effort approach, but significantly more efficient.

An evaluation is presented where the two approaches to ationlopti-
mization are compared to Monte Carlo simulation, with respeanalysis time
and the discovered response times. The results indicatddtia MABERA
and HCRR are significantly more efficient in finding extremspense times
for a particular task than Monte Carlo simulation, but alsat HCRR, which
uses a variant of the hill climbing approach [111], is vastigre efficient than
MABERA, which uses a genetic algorithm [7].

The use of search algorithms for different types of test gaseration has
also been studied for quite some time. Alander et al. [5] upatktic algo-
rithms to generate test cases for a software relay systetriupewer girds, in
order to provoke high response times of the software, eredata simulation
environment. Nossal et al. [6] describe various extensadribe traditional
genetic algorithm to better suit the type of problems in #s-time domain.
Samii et al. [12] present a work where they attempt to findesrtr response
times for distributed systems by optimizing a set of simalaparameters for
models containing temporal attributes and communicafitiey use a genetic
algorithm to explore combinations of task execution tinmesrder to maximize
end-to-end response time. Task behavior is however notidenesl. Their
results depend on the method developed by Racu and Ernsiojlitlentify-
ing situations where decreased execution times can leadtteased response
times.

4.1 MABERA

MABERA is an abbreviation of “Metaheuristic Approach for&&ffort Resp-
onse-time Analysis”. Metaheuristics are generic soluti@thods for iterative
approximation of search/optimization problems. MABERAigenetic algo-
rithm[7], which is the most well-known type of metaheuristicseMABERA
algorithm is designed to use an RTSSim executable (i.esithelator frame-
work and the simulation model) as a black-box function, Whiiven a set
of simulation parameters (cf. Section 4.2) outputs the dsfjlnesponse-time
found during the specified simulation. The objective of thABERA algo-
rithm is to find the set of parameters which gives the highesponse time for
the task in focus. This is performed by iteratively creatimgl evaluating a set
of independent candidatesganerationwhere each candidate is a simulation.
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The specification of a simulation, i.e., the set of paransdteRTSSim, is here
named gparameter setformally defined in Definition 3. The evaluation of
a parameter set corresponds to running an RTSSim simulatioich gives a
simulation resulas defined by Definition 4.

The MABERA algorithm uses an indirect representation ofdingulations
to perform, usingseed schedulesA seed schedule specifies the seed values
to use for generation of pseudo-random numbers and thelebgutcomes of
all non-deterministic selections during the simulatiomus, the combination
of a seed schedule and time instant corresponds to an exaificgtion of a
simulation state. Given a seed schedule and a simulatigtiean RTSSim
simulation is thereby a deterministic function. The conadeed schedule is
defined by Definition 2.

Definition 1. A seed change event is a pair, s), wheret and s are integer
values. The value specifies the simulation time instant when the seagval
s should be applied. A seed value of 0 specifies that a randa@tdgted seed
should be used.

Definition 2. A seed schedule is a list of seed change events, sorted incasce
ing order with respect to the attribute the included seed change events, in
ascending order. The first seed change event of a seed sehsdalivays at
time 0.

Definition 3. A parameter set is the specification of a simulation, reprees
as atuple(T, 1, S), whereT is the task in focud, the simulation length and
the seed schedule to use.

Definition 4. A simulation resultis atuplért, et, pe, tye, tet, tpe, S), Wherert,

et andpc is the highest observed response time, execution time aednution
count, respectively, during the simulation specified bystherl schedul§. The
properties,, te; andt, are the start times of the task instances corresponding
tort, et andpc, respectively.

The first generation of simulations are (random) Monte Csirlaulations.
From each generation, a set of promising simulations aextes agarent
simulationsand used to create the next generation, where each simulatio
created by mutation of a (single) parent. The algorithmaites in this manner
until a termination condition is reached.
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Formally, MABERA can be described as a (non-determinigtingtion
r = MABERA(s,p,l,tt,T)

where s specifies the population size (the number of simulationsgeeer-

ation), p the number of parent to select per generatiothe length of each
individual simulation,tt the “termination threshold”, and where the result
is the highest response time found for the specified #askThis may vary

between analyzes (with identical parameters) due to théorarsimulations
involved.

Thetermination thresholgharameterit, decides how many “unsuccessful”
generations that are allowed before termination, i.e.egions that failed to
discover a response-time higher than the highest respons®t the previous
generations. Since the population size is constant for gaokeration, each
parent simulation should result #p child simulations. The MABERA algo-
rithm is presented in detail in Section 4.1.3.

The child simulations will explore a subset of the model&stspace, the
offspring state-spaceavhich is reachable from the state corresponding to a spe-
cific time instant during the parent simulation: testart time Together with
the seed schedule of the parent simulation, the restarsji@eifies the starting
state of the child simulation. The restart time is randorelgsted in a specific
time interval of the parent simulation, as described in iBact.1.2. A child
simulation reaches the specified starting state by usingaime seed schedule
as the parent simulation up until the restart time, whereeats a randomly
selected seed is applied in order to explore other partseobffspring state-
space. This is likely to contain a response timefonigher than the highest
response time fof" of the parent simulation, unless the worst-case response
time of T' has already been found.

To explain the concept of offspring state-space, think efdtate-space of a
Monte Carlo simulation model as a tree, where each nodesponals to a state
in the model where a non-deterministic selection is madg, selecting an
execution time for afExecutestatement. An individual simulation is a specific
path through the tree, which ends at a state decided by thdation length.
The offspring state-space, which the child simulationd@egwhen applying
the random seed, is the sub-tree rooted in the state conésppto the restart
time of the parent simulation.

The state-space exploration of MABERA is illustrated byufeg4.1, sim-
plified to a 2-dimensional state-space. In practice, theestpace will have
a large number of dimensions (equal to the number of indegr@ndriables)
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Figure 4.1: MABERA - conceptual

and more than two iterations are typically made. In this g¥arthe population
size () is 20 and the number of selected parep)sg 2.

The selection of parents to produce the next generatiorides in Sec-
tion 4.1.1, is very important for the efficiency of MABERA. &fe is always a
risk of not finding the global maximum, i.e., the worst casgpmnse time, as
the algorithm might “get stuck” at a local maximum, where hdd:simulation
can be found that is more extreme than the parent (althougtehresponse
times are possible in other scenarios). To reduce this i’k MABERA al-
gorithm is designed to select several parents from eachrggomw, at least two
are recommended. Thereby, if one parent “gets stuck” ata lmaximum,
there is still a chance that the other parents find bettettsesu

MABERA uses no recombination/crossover operation, whitiewise is
common in genetic algorithms, since the meaning of the saseld during a
simulation depends on the simulation state when the valusdd. They can
therefore not be used as independent chromosomes, whidreaaecombined
with preserved semantics.

Note that the connection between a parameter set and th&asionuesult
is unknown in this approach since the simulator is consitiarblack-box. It
is thereby not possible to optimize the result by, in some, a@lgcting “good”
seeds for the initial generation; there is no way of assgdsia potential of a
seed schedule without running a simulation.
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MABERA was never intended as an optimal solution. It is theuteof a
first investigation for assessing the potential of simolatptimization meth-
ods in the context of best-effort response-time analydie MIABERA results
were however quite interesting and motivated a continukedtefhich resulted
in the HCRR approach presented in Section 4.4.

4.1.1 Selection Heuristics

The SEL function, presented in Section 4.1.3, implemergh#uristic selec-
tion of parents simulations from a set of simulation reswifisich are used to
produce the next generation of parameter sets. The seleetiks all simula-
tion results in the current generation with respect to thedlpropertiest, et
andpc, i.e., the highest response time, execution time and préempount,
respectively, of the task in focus. The ranking assigns sanhlation result a
positive, non-zero integer value, which tells how many dation results that
have higher values, for the specific property. Simulatioith wqual values
receive the same rank, with respect to the specific property.

The three rank values of each simulation result are mutbin order to
obtain a total fithess score for the simulation result. Th&t Baess score is
1, which corresponds to a simulation result that holds tieencfor all three
properties. The returned set of simulation results coataiapecified number
of simulation results with best (lowest) fithess scores.

The execution time and preemption count properties areidiec in the
selection heuristics due to their potential for impactiegponse time, e.g., a
task instance with very high execution time but relatively Iresponse-time
is also interesting since a different preemption pattery neault in a higher
response time.

The method of combining the three rank values into a totat$ignscore is
not claimed to be optimal. It gives equal importance to thedhindicators,
response time, execution time and preemption count. Marede ranking
hides the absolute differences in property values betwardidates with ad-
jacentranking. Investigation of other selection hewstsis part of future work.

4.1.2 Mutation

The GEN function, presented in Section 4.1.3, is respoadi creating a
new generation of parameter sets through mutation of tleetesl parent sim-
ulations. Each parameter set is created through mutatidheo$eed sched-
ule of a specific parent simulation result by adding an adidéi seed change
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eventin the end of the seed schedule, with a zero as seed gggcifies that a
randomly selected seed should be applied, i.e., used totigize the pseudo-
random number generator. This makes the simulation leav@dth of the
parent simulation and instead explore the path associaitkdthe new, ran-
domly selected seed for the remaining part of the simulatibhe mutation
algorithm is described in Algorithm 2 in Section 4.1.3.

Seed s, RST;  seed Sy tet

Parent simulation (2" gen)
SS: (0, sg), (RSTy, sy)

N
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&

<

Seed s, Seed s,
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Simulation time
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Figure 4.2: Seed schedule mutation in MABERA

The time of the new seed change event, i.e., the restart imandomly
selected in a time interval where the lower bound is the resitae of the
parent and the upper bound is the paresiisrt time of the earliest Extreme
Task Instancéor SETI), whereextremerefers to the task instances that have
the highest value of at least one of the following propertiesponse time,
execution time and preemption count. The seed scheduleiontancluding
selection of restart time, is illustrated by Figure 4.2. histillustration, the
bold labels (RST and Seed-§ corresponds to the mutation.

As specified by Algorithm 2 in Section 4.1.3, there is a sgexaae if the
parent’s SETI is found to be earlier than its restart timdsTidicates that the
mutation performed to produce the parent simulation reglitt a less extreme
scenario than observed in the parent’s parent, since tatnioes before the
restart time now are more extreme than those after. In tisis, ¢he restart time
of the parentis reused with a new randomly selected seedér tw that restart

time a second chance.
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4.1.3 The MABERA Algorithm

This section presents the MABERA algorithm and the remgjrdafinitions
on which it relies. Note that the concepts of seed change eseed schedule,
parameter set and simulation result are defined by DefinititmDefinition 4
in Section 4.1.

Definition 5. R = SIM(P) represents a simulation according to the param-
eter setP, where the outpuR is a simulation result. A seed value of zero (0)
in the seed schedule of the parameter set is an instructiappdy a randomly
selected seed value, which also replaces the zero seed &ntinéation result
seed schedule.

Definition 6. RT(R) gives the rt property of a simulation resug, i.e., the
highest response time found for the task in focus in the Bpstnulation.

Definition 7. ET(R) gives the et property of a simulation resiiit i.e., the
highest execution response time found for the task in facthsei specific sim-
ulation.

Definition 8. PC(R) gives the pc property of a simulation result R, i.e., the
highest preemption count found for the task in focus in tleeigie simulation.

Definition 9. TRT(R) gives the.,.; property of a simulation resulg, i.e., the
start time of the task instance corresponding tothproperty ofR

Definition 10. TET(R) gives thet.; property of a simulation resulR, i.e.,
the start time of the task instance corresponding toethgroperty ofR

Definition 11. TPC(R) gives thet,. property of a simulation resulR, i.e.,
the start time of the task instance corresponding tophproperty ofR

Definition 12. SS(R) gives the seed schedule used in the simulation which
produced the simulation resuRl.

Definition 13. RST(R) gives the restart time used in the simulation which
produced the simulation resuR, i.e., the time of the last seed change eventin
SS(R).

Definition 14. RAND(a,b) gives an integer value, such thata < x < b,
randomly selected according to a uniform probability distition.

Definition 15. APPEND(A, E) gives a seed schedule which is the result from
appending the seed change eveénb the end of the seed schedule
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Algorithm 1: The parent selection procedure of MABERA
SELR,p)
foreachres € R
er—| {g € R|ET(q) > ET(res)} |
m | {g € R|RT(q) > RT(res)} |
pr—|{g € R|Pc(q) > PC(res)} |
rank, «— er s rr % pr
OrderR asr1, 72, ... according taank,, .
return {ry,r2,...,rp}

Algorithm 2: The mutation procedure of MABERA
MUTATE(p,!, T)
SETl— MIN(TET(p), TRT(p), TPC(p))
if SETI< RST(p)
M — (0, RST(p))
else
M «— (0, RAND(RST(p), SET))
return (T,|, APPEND(SSp), M))

Algorithm 3: The procedure for populating a new generation in MABERA
GEN(P,s,1,T)
G—0
foreachp € P
for i =1to |s/|P|]
G — G U{MUTATE(p,1,T)}
return G

Algorithm 4: The overall MABERA algorithm
MABERA(s, p, I, tt, T)
G0
tc—0
best«— 0
fori=1tos
G — GU(T,1,(0,0))
while te < tt
found— 0
foreachsi e G
sr «— SIM(si)
if RT(sr) > best
best— RT(sr)
found— 1
R— RU{sr}
if found=0
tc—tc+1
else
tc—0
P — SEL(R, p)
G — GEN(P, 5,1, T)
return best
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4.2 The MABERA Parameters

The MABERA algorithm has four parameters which impact therdlughness
and runtime of the analysis. These parameters are:

« [: Thelength of each individual simulation.

» p: The number of selectghrents from each generation.
* tt: Theterminationthreshold.

» s: The populatiorsize.

To maximize the efficiency of MABERA it is important to selegiod val-
ues for these four parameters. This section discuss howatteegelated and
how they impact the performance of MABERA. Note that the MABEpa-
rameters should not be confused with the parameter set askdihe an indi-
vidual (RTSSim) simulation within MABERA.

Parameter | The simulation lengthi, is the value of the simulation clock
when the simulation should terminate. Thparameter naturally impacts the
runtime of a simulation and should therefore not be longanthecessary,
which depends on the scenario under analysis, e.g., a pgafem test case.
Even though longer simulations may find higher responsestim&they might
contain multiple instances of the relevant scenario, tiseltieg increase in
runtime can instead be used to increase the populationssipe the termina-
tion threshold¢t, which also impacts the runtime.

Parameter p Thep parameter is the number of simulations from each gen-
eration to select as parents for the next generation (atéategh mutation of
single parents). This decides how much to trust the seletiguristics. If the
heuristics could be trusted to always point out the truly teomising” sim-
ulation result, i.e., that is closest to the true worst casmario, the analysis
could rely on a single parent. However, since the selecteuriktics is not a
perfect oracle, several parents should be selected in twdeduce the risk of
bad heuristic decisions.

However, the important property is not the absolute numbpagents, but
rather the relative amount of parents in relation to the petmn size, i.e.,
thep/s quota. For instance, in Figure 4.1, two simulation resukésszlected
(» = 2) from each generation of 2@ = 20), which gives a/s quota of 0.1
and 10 child simulations per selected parent.
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A smallerp/s quota implies more simulations based on each selected par-
ent, i.e., a more thorough analysis of the selected casés|dmmeans that
fewer simulation results are selected to become parentiséarext generation,
i.e., a higher trust in the selection heuristics and an esxd risk of getting
stuck in local maxima. A larges/s quota implies a wider search, which may
converge slower, but with less risk of getting stuck in logexima. Since a
balanceg/s quota is important, the parameter selection process indset3
is therefore focused on the relative number of paremts)( not the absolute
value ().

Parameter tt Thett parameter, i.e., the termination threshold, impacts the
number of generations analyzed and thereby the runtimeecditialysis. The
tt parameter decides the number of “unsuccessful” genesa{MABERA it-
erations) allowed before MABERA should terminate. An “uosessful” gen-
eration is a generation which did not contain any simulatidgtth higher re-
sponse time result than the highest result found so fardvipus generations.
The MABERA algorithm includes a termination counter (thei@bletc in the
MABERA pseudo code presented in Section 4.1.3) which ihjtia 0. Un-
successful generations will increment the terminationnteuby 1, while a
successful generation resets the counter to 0. When thénttion counter
reaches the termination threshold,the MABERA algorithm terminates and
reports the highest observed response time in any generatio

Thus, with a highett value, the risk that a good parent is rejected due
to “bad luck” is reduced, but the runtime is increased by tkteagiterations.
A highertt value may compensate the negative effects of a lgwerquota
by allowing for additional iterations, at least to some extelt is however
important to find a balanced value fer, as the extra runtime required for
largertt values can instead be used to increase the population size.

Parameter s The population sizes, is the number of simulations to perform
in each iteration. The larger population size, the moredhgh analysis. Thus,
s should preferably be as large as possible, but since it itagghe runtime of
the analysis, which in practice is limited, it is necessarfjrid an upper bound
for s that gives a runtime below (but close to) the desired runtiriéhen
starting a large, over-night analysis, one would like tokrioat the analysis is
finished by the morning, but preferably not much earlier iewito best utilize
the available analysis time.
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4.3 Selecting Parameters for MABERA

A three-step process is proposed for finding good paramedérss for a spe-
cific simulation model. The process contains a set of expammpresented
together with examples performed on Model 1 (cf. Sectionl4,%ne of the
simulation models used in the evaluation, in Section 4.8eNuat the second
major step of this process is divided into four parts, asqres] below.

Since the parameter selection process requires sevesttimsuming ex-
periments it should only be performed initially, when a siation model has
first been constructed, or after major architectural chatmgée modeled sys-
tem which impacts the model. One should note that the pammalues pre-
sented in this section are not necessarily optimal for asheulation models.
Good parameter values are believed to be dependent on thectdréstics of
the model under analysis, specifically, the amount and tymtochastic se-
lections in the model. Good values for the four parametefd ABERA are
selected using the following process:

1. Select simulation length.
2. Seleck/s quota andt value. This is divided into four parts:

(a) Specify candidate values.

(b) Determine sufficient replication count.

(c) Determine comparable parameter combinations.
(d) Compare comparable parameter combinations.

3. Select population size.

4.3.1 Step 1: Selecting Simulation Length

The value for the parameter is decided first since it does not depend on the
other parameters but is needed in the other steps of thegxoEkd parameter

is determined through a manual analysis of the model, efihestudying the
model code or by studying traces from test simulations ofrttoelel. The
challenge is to find the minimum simulation length which urd#s the scenario

of interest. For Model 1, a suitablevalue was found to be 650 ms. This
length included the system’s processing of the eventsaatdor the scenario
under analysis, as well as a safety margin if the scenargiteraries between
simulations.
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4.3.2 Step 2: Selecting/s quota and ¢t value

There is a dependency between the quota and thet value, as a higheit
value may compensate, to some extent, for the negativet effachigherp/s
guota, i.e., the decreased number of child simulationsdbasecach parent.
Suitable values for these parameters can therefore notdaxgtes individually
but need to be evaluated together, in combination. Thidmsedescribes a
four-step method for finding a good combinationgfs quota andit value
experimentally.

Step 2.A: Specify candidates

The first step is to specify a set of candidate valuespfor andtt. Each
combination of these parameter values will be compared énldkt step of
this method. A straight-forward approach is to perform acdetxperimental
MABERA runs on the simulation model at hand and observe waage of
values that seem to give good result. For Model 1 ttheandidates were lim-
ited to 2, 3 and 4. A value of 1 implies no tolerance, and vahlesve 4 do
not seem to improve the performance of MABERA. The best tesutre ob-
served withp/s quotas belov®.05, i.e., at least 20 child simulation per parent,
so the values of 0.005, 0.01, 0.02 and 0.04 were selectechd&letes for the
p/s quota.

Step 2.B: Determine replication count

The second step is to decide the number of data points (atiplits) necessary
per MABERA configuration in order to ensure the reliabilifytbe parameter
comparisons in later steps of this process. This is impbitaarder to avoid
that the selection of good parameter values is obscurediaipra variations.

Table 4.1: Test of MABERA reliability

p/s=0.01| p/s=0.04
Comparison 1| 7886 7932
Comparison 2| 7889 7940
Comparison 3| 7901 7956

An experiment is proposed using a two-column table, ilatstl by Ta-
ble 4.1, where the columns correspond to different MABERAap@eter com-
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binations. Each cell contains a statistical meastMeang., calculated over
r independent runs of MABERA, whereis the candidate number of replica-
tions, using the parameter combination specified by thenaolirheM ean g4
measure implies the mean value of the 25 % highest resuéts the fourth
quartile. This is selected since a typical use of the MABERWAIgsis would
imply several replications and a focus on the highest réeultd. The lower
results can safely be ignored in this comparison, since dneynore likely to
contain random “noise” caused by unsuccessful MABERA runs.

In this table, each row represent an independent comparisased on in-
dependent data sets, each containimiata points. If the differences between
columns of the same row are significantly larger than theetbffices between
rows of the same column, this indicates that this numbermfaations gives
sufficient reliability. The population size can be quite @ speed up this
experiment and thé& value is not that important in this case, as it should not
impact the reliability significantly. The important paratexhere is the number
of replications. It should however be constant for all cofism

This is however not a sufficient measure of reliability; ihescessary to ver-
ify that the differences indicated by eanga correspond to statistically signif-
icant differences between the underlying data sets. Ifitloediata sets of a row
are not significantly different, the replication count shithe increased in order
to avoid inconclusive results later in the parameter siglegrocess. An appro-
priate statistical test for this purpose is the two-sampéntdgorov-Smirnov
test [63], hereafter the KS test. This test is non-paramatid distribution-
free, i.e., it makes no assumptions on the underlying digtion of the data,
which is necessary in this case as the response-time daté rormally dis-
tributed. The KS test should be applied on the fourth quectithe MABERA
results, in line with the motivation behind tidé eangs measure.

For Model 1, 200 replications was found to give reliable hessior a com-
parison of thep/s quotas of 0.01 and 0.04, as presented in Table 4.1. The
differences between the two columns/§ quotas) are about 3 times larger
than the differences between the rows, which indicate afiignt difference.
The data sets of each row were compared using the KS test andiftar-
ences between the cells of each row was found to be staliigtignificant at
a confidence level of 99.9 %.

Step 2.C: Comparable parameters

The third step of this method is to calculate tt@st indexfor each combi-
nation of candidate values fa1/s andtt, which is a relative measure of the
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average runtime (i.e., cost) of a MABERA configuration. Thegwse of this
cost index is to allow for a fair comparison of different paeter combina-
tions, which may have considerable differences in theiraye runtime. Even
if using the same population size, simulation length anahirestion threshold,
thep/s quota impacts the speed of the convergence. If two pararoeteli-

nations produces similar results, but one is considerasief, it is possible to
increase the population size for the faster one and therefayrobetter results.

The first activity in this step is to run MABERA analysis of égzarameter
combination, replicated the number of times decided in 2iegnd collect the
average iteration count for each of the parameter combingti This can be
used as a measure of the runtime, since these are directiypnicmal due
to the constant population size. The population size shbalthe same in
all cases and should be a multiple of the number of parenti@gchpy the
candidatep/s quotas.

When this experiment was performed on Model 1, the diffeedéncaver-
age iteration count was significant. As presented in Taliethe most time-
consuming combination gf/s andtt (p/s = 0.04,tt = 4) required 88 % more
iterations (CPU time) than the least time-consuming comuiim (p/s = 0.005,
tt = 2).

Table 4.2: Average iteration count of MABERA in differentrdigurations
tt=2 | tt=3 | tt=4
p/s=0.005| 6.30| 8.40| 9.89
p/s=0.010{ 6.64| 9.16| 10.18
p/s=0.020| 7.41| 9.43| 10.83
p/s=0.040| 7.27 | 10.06| 11.87

The cost index of each candidate parameter combinatiorigsilated by
dividing the average iteration count of the specific cash thi¢ highest average
iteration count of all cases, in this case 11.87. From theindies it is possi-
ble to calculate a comparable population sizefor each candidate parameter
combination. The comparable population size is calcultdedach candidate
parameter combination in order to give equal runtimes of NE&R&\, which
allows for a fair comparison of the candidate parameter éoation. This
is essentially a normalization with respect to runtime. Theparable pop-
ulation size of a parameter combination is calculated biditig areference
population sizevith the cost index of the parameter combination. To maintai
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the relative number of parents it is necessary to calculatergarable number
of parentsp., by multiplying s. with the desireg/s quota. Since,. ands.
should be integers and thus needs to be roundeds the quota will not be
identical to the desired/s quota. However, by selecting the reference popula-
tion size carefully, it is possible to reduce these errarsghis case, a reference
population size of 1000 was found to give quite small errbedow 5 %. For
other, smaller, reference population sizes, errors up t&clwere observed
compared to the desired s quota.

When applying this process to the runtime data of Table £2,4dn Model 1,
the following cost index results were obtained for the cdaté combinations
of ¢t¢ andp/s quota.

Table 4.3: Comparable MABERA parameters

tt | p/s Costindex| s. Pe | Pe/Se

2 | 0.005| 0.531 1883| 9 | 0.00478
2| 0.01 | 0.560 1787 | 18 | 0.0101
2| 0.02 | 0.624 1602 | 32 | 0.0199
21 0.04 | 0.613 1632 | 65 | 0.0398
3 | 0.005| 0.708 1413| 7 | 0.00495
31001 |0.772 1295| 13 | 0.0100
310.02 | 0.794 1259 | 25 | 0.0199
3| 0.04 | 0.847 1180 | 47 | 0.0398
4 | 0.005| 0.834 1200| 6 | 0.005

4| 0.01 |0.858 1166 | 12 | 0.0103
4 | 0.02 | 0.912 1096 | 22 | 0.0201
41004 |1 1000| 40 | 0.04

Step 2.D: Comparison

The part of step 2 is to execute MABERA for each candidaterpatar com-
bination, using the comparable population sizg énd the comparable num-
ber of parentsy.) and the number of replications decided in step 2.B, in this
case 200. The simulation length €hould be decided according to step 1,
described in Section 4.3.1. The best parameter combinatidacided with
respecttdl/eanqa, i.€., the mean value of the fourth quartile. If the diffezen
between the top candidates is small in comparison to thamvegiindicated by
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the earlier reliability test, the KS test should be used tifyéhe statistical sig-
nificance of the difference. If no significant differenceasifid, one can either
reduce the confidence level of the KS test or perform a focasatparison of
the top candidates using a higher number of replications.

Results from this experiment is presented in Table 4.4, vimdicates that
the best parameters for Model 1jgs = 0.01 and¢t = 3. The difference
between this parameter combination and second pést«0.005 andt = 2)
was statistically significant according to the KS test, abafidence level of
75 %.

Table 4.4: MABERA results using comparable parameters
tt=2 | tt=3 | tt=4
p/s =0.005| 8194 | 8155 8105
p/s=0.01 | 8184 | 8231 | 8179
p/s=0.02 | 8156 | 8172 | 8192
p/s=0.04 | 8193 | 8162 | 8101

4.3.3 Step 3: Selecting Population Size

Once suitable values for the other parameters have bedbligiséal, the last
parametes ultimately decides the runtime of MABERA. The larger popida
size, the more thorough analysis. Thusshould preferably be as large as
possible but since it impacts the runtime of the analysisckvin practice is
limited, it is necessary to find suitable population sizeaskHimits the runtime
to the runtime allowed. For instance, if starting an ovehnianalysis, it is
important that the analysis is finished by the morning, batenably not much
earlier in order to best utilize the available analysis time

If a runtime of several hours is desired, finding a suitablpytation size
by using a trial-and-error would be quite time consuming. eitér way of
determining an appropriatevalue that corresponds to a desired (quite long)
runtime is through extrapolation of a reference case witelatiwely small
population size. This reference case should use the pagesrietind suitable
in previous steps of this process.

In order to find a suitable population size for the refererases start with
a very small population size, e.g., 100, and measure themantf very short,
increase the population size, measure, and repeat untilititene is signif-
icant but manageable, e.g., a few minutes. The desired aopulsizes is
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approximated using a linear extrapolation:
s=(t/t,) * s,

wheret is the a runtime desired,. the population size of the reference case,
andt, the measured runtime of the reference case.

As mentioned, the reference case should have thguota it and! values
identified in previous steps. Thes quota is especially important to maintain.
If changings without adjusting, the changed/ s quota will cause the selected
parents to be more or less extensively analyzed, which édylito impact the
number of iterations before termination and thereby caummdinear runtime
increase. This is supported by Table 4.2, where the averaggion count has
a positive correlation with thg/s quota.

4.4 Hill Climbing with Random Restarts

This approach, abbreviated HCRR, was developed to addreggsmings of
the MABERA approach and is the result of a collaborative grbjwith re-
searchers at SIGSspecialized in optimization methods. The goal of HCRR
is the same as for MABERA, to find as high response time as lples&ir a
specific task by optimizing the simulator input. The HCRR Inegk uses hill-
climbing [111], which has the advantage of being one of thepist meta-
heuristics available. It is based on the idea of starting raindlom point and
then repeatedly taking small steps pointing “upwards”., ite nearby input
combinations giving higher response times. If no nearbyitrgombination
gives an improved result, a local maximum have been reagiws$ibly the
global maxima. Random restarts are used to avoid gettirg stdocal max-
ima. HCRR operates on a more detailed and system-depereterit Smu-
lation parameters compared to MABERA. As demonstrated byetlaluation
presented in Section 4.6, this method typically yields srigally better re-
sults than both Monte Carlo simulation and the MABERA apploa

4.4.1 Simulator Input Representation

A major difference between MABERA and HCRR is the differezpresenta-
tions used for simulator input. Instead of the indirect aggh of MABERA,

1The Swedish Institute of Computer Science, www.sics.se.
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where the simulator input is used to initialize a pseudadcan number gener-

ator, the HCRR approach uses an explicit representatiomendech stochas-
tic selection during the simulation is directly decided byegparate parameter
value. Thus, in the HCRR approach each simulation may reduindreds, or

thousands of inputs. Model 1, used in the evaluation seatémjuires over 600

inputs per 650 ms simulation.

The simulator is assumed to contain three types of stocreedctions: ex-
ecution time variations, arrival-time jitter (e.g., cadd®y external interrupts)
and environmental input stimulus (e.g., for determining-g@terministic se-
lections of task behaviors or inputs in the simulation mndel

A simulation instances represented as a set of sequences of integers, where
each sequence is associated with either an arrival jittarspiecific task, a spe-
cific execution time, or a specific environmental input stimsu Each value of
one of these sequences decides a specific stochasticae)ecy., the release
jitter of a specific task instance, or a specific selectionxeication time. The
advantage of this approach is that the direct relationsbipvéen representa-
tion and model properties makes it possible to locally resipecific aspects of
a given simulation instance.

Let J; be a sequence of actual jitter valygs experienced by instaneeof
ataskT;, wherey; , are integer values in the interv@l ub(.J;)], whereub(.J;)
is an upper bound on jitter for tagkin units of the smallest measurable time
interval (clock ticks) for the target system. Furthermdee, X be a sequence
of values for a certain environmental input stimulus or exen time in the
simulated program, and’* be the;j*" value in X*. It is assumed that all
stimulus and execution time)éj’.C are of integer type and have uppeb) and
lower boundsp), so thatib(X") < X < ub(X"*) forall k, j. A simulation
instanceS, defining a fully deterministic simulation of the model, ietefore
a set

Jl) JQ; (X3 J7L7X1)X2) '--;X'rn

wheren is the number of tasks which have non-zero jitter and m is tira-n
ber of environmental stimulus aritkecutestatements. Denote by, and M,

the number of values that are used to represent jitter sequemnd input se-
quenceXy. N; andM; can be determined empirically by tracing how many
values the simulator uses for each value. In thedfyand M; can be un-
bounded, and for long simulations, the valuesfgrand M, needed may grow
to unacceptable levels. If there are not enough input vatugee sequence, the
simulator should report a warning and reuse values, e.gtanting over from
the beginning of the sequence. For the evaluated modelsiohhpter)V; and
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M, were long enough to represent all values used.

4.4.2 The HCRR Algorithm

HCRR uses a combination of a local improvement algorithmiciwviguickly
convergesto high response times, and two diversificatiarhar@sms allowing
the search to escape from local maxima, either by jumping teaan earlier
explored candidate or by making a full random restart. THGRR works
on a single solution candidate. In contrast, MABERA used pupetion of
candidates evaluated in parallel, to reduce the risk ofrgegtuck in local
maximas.

Algorithm 5: Hill Climbing with Random Restarts (HCRR)
HCRR(ofsimsm, [, k, nB, nR)
hrt — 0
while m > 0
curr < rnd_inst()
SIM(curr, 1)
nofsims— nofsims— 1,m«~ m—1
if RT (curr) > hrt
best— curr, hrt — RT(curr)
E «— {best
nonimp«— 0
while nofsims> 0
if nonimp> nR
curr < rnd_inst(), E < {curr}, nonimp« 0
else if(nonimp+ 1) mod nB=0
curr < random element i
next<— NBH(curr, |k - len(curr)])
SIM(next ()
nofsims— nofsims— 1
if RT (next) > hrt
hrt — RT'(next), best— next
if RT'(nexy > RT'(curr)
curr < next E — {next, nonimp— 0
else
nonimp« nonimp+ 1
if RT'(next) = RT (curr) then E — E U {nexf
return best

The HCRR algorithm is given in Algorithm 5. The simulationdget,
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i.e., the allowed number of simulations, is denotedsims andRT(q) is the
highest response time for the task in focus of analysisopexd usingSIM,
with respect to the simulation instangeL ike in the MABERA algorithm SIM
refers to running an RTSSim simulation, although the iategfis different.

The simulation time instant when a simulation inpXif is consumed is
expressed a§M? andq[X?] is the value ofX? in the simulation instance.

A random simulation instance is generated using the funetid_inst/().

The HCRR algorithm begins by choosing as starting point st bimu-
lation instance fromn randomly selected candidates, which are evaluated by
performing simulations usin8IM. Then, in each iteratiork:len(curr) random
values of the current simulation instano@r consumed beforBT(curr), are
selected and modified using the neighborhood procedsre Nhown in Fig-
ure 4.3.

In this description,ET'(curr) denotes the end time of the task instance
which produced the highest response time for the task irsforcthe simulation
instancecurr, andlen(curr) denotes the total number of input values in the
simulation instanceurr.

NBH(inst n)
fork=1ton
X7 = random element iinst, TM? < ET(inst)
V = {Ib(X;)...ub(X;)} \ {insX7]}
insf X7] « random value ir’

Figure 4.3: Neighborhood procedure of HCRR

The response time for the task under analysis is measurednnng a
simulation using thesSIM(nexy call on a neighbonext The modifications
suggested by BH are accepted only if they increase the response time. Mod-
ifications that have equal response time are rejected batiday future refer-
ence, as described below.

A pure hill-climbing procedure is susceptible to gettingcstin local max-
ima, and can therefore exhibit less than satisfactory perdoce on many
problems. In order to improve the probability of finding agrglobal maxi-
mum, two different diversification mechanisms are usedstif all, the algo-
rithm jumps back to a previously encountered, randomlycsetesimulation
instance with an equal response time to the current instafiteea number of
non-improving simulations, denoted. This distributes focus over a number
of equal instances, which can help in avoiding small locatima. The second
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mechanism performs a full restart of HCRR from a random pafiter a num-
ber of non-improving simulations, denoted bR We callnB the jump-back
thresholdandnRtherandom-restart threshold

4.5 Evaluations of MABERA and HCRR

This section present evaluations of MABERA and HCRR and apayison
between these two methods, traditional Monte Carlo sirariand an analyt-
ical method for response-time analysis, RTA [101]. Thisasi@ using three
simulation models: two representing industrial cases aedsimplified valida-
tion case, which unlike the other two models can be analyzedylRTA. The
models have similar architecture and analysis probleme@sndustrial real-
time applications in use at ABB [118] and Arcticus SystenZ0J1 Although
the simulation models contain relatively few tasks, at Mdsttheir behavioral
complexity is significant due to, e.g., shared variablesragic events and dy-
namic priority changes.

Model 1 is representing a control system for industrial tslateveloped by
ABB Robotics, a complex embedded system which violates sisaraptions
of analytical response time analysis methods through aktygres of intricate
task dependencies.

Model 2 is constructed from a test application used by AustiBystems [120],
which develops the Rubus RTOS used in many vehicular systems

A less complex version of Model 1, labeled MV, is used for dation
purposes. Unlike the other models, MV is possible to analgneg RTA [101].
The purpose of this model is to investigate how close thearsptimes found
by MABERA and HCRR are to the true worst-case response tinesyed
using RTA.

The scheduling policy is preemptive priority-based schiaeddor all mod-
els. Model 2 and the validation model uses strictly fixed fities, while
Model 1 contains one task that alters between two priorigledepending
on the system state.

451 Modell

This model is inspired by the IRC 5 control system for indiastrobotics,
developed by ABB [118], and is described in detail by Appe&rli The ABB
Robotics system is quite large, containing around 3 millinas of code and
is not analyzable using traditional analytical methodshsas RTA. Model 1 is
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of much smaller scale but is designed to include behavioeshanisms from
the ABB system which RTA cannot take into account:

« tasks with intricate dependencies in temporal behavier tduPC and
shared state variables;

« the use of buffered message queues for IPC, where triggar@ssages
may be delayed;

» tasks that change scheduling priority or periods dynalyiéa response
to system events.

The modeled system controls a set of (fictive) electric nolb@sed on pe-
riodic sensor readings and aperiodic events. The calonktiecessary for a
real control system are, however, not included in the mathel;model only
describes behavior with a significant impact on the tempoeahvior of the
system, such as resource usage (e.g., CPU time), taskdmb@sand impor-
tant state changes.

452 Model2

This model is based on a test application from Arcticus Systedevelopers
of the Rubus RTOS [120] which is used in heavy vehicles. Thislehuses
a pipe-and-filter architecture, where tasks trigger othekg through trigger
ports, forming transactions. The model contains threeogéritransactions
and one interrupt-driven task, in total 11 tasks. The injgrhas a small jitter,
while the other transactions are strictly periodic.

This model is less complex than Model 1 in the sense that st no
shared variables or IPC via message passing which can infyggetsks’ timing
and functional behavior. Instead, the tasks have largatianis in execution
times, which makes the state space of this model very largethis model,
the evaluation focuses on the end-to-end response time trfthsaction which
contains the tasks with the lowest priority. More detaildhef model can be
found in [16].

45.3 The Validation Model

Simulation-based methods for response-time analysisihasmmon that the
result is not guaranteed to be a safe upper bound on the =spiome. We
therefore constructed a validation model, analyzableguBifA, with the pur-
pose to investigate how close the response times given byRH&R to the
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worst-case response times derived using RTA. Hence, RT&iges an up-
per bound on the worst-case response time that the simmibatieed results
should approach but not exceed. The validation model ischaseModel 1,
but simplified in that 1) shared state variables have beewnved) 2) priority
and period is strictly static for all tasks, and 3) staticddmunds have been
added manually.

As a consequence, the validation model has considerabgrloamplexity,
and exhibits quite different timing properties when congobto Model 1. For
instance, the worst-case response time of the CTRL taskd#hkein focus in
Model 1 and MV) is in MV only 52 % of the highest response timesrfd for
this task in Model 1. Note that this response time is knowretthie true worst
case for MV, since it could be verified using RTA.

Direct application of RTA yielded a worst-case responseetioh 5982.
However, after reviewing the results of running HCRR on theded, it was
realized that a refinement was possible in order to reducpabgimism of the
RTA. The DRIVE task was modeled as two separate tasks, whmesent two
different WCETSs of the DRIVE task. The higher WCET may onlgocif a
rare sporadic event has just occurred, where the minimusn-artival time is
known and much larger than the period of the CTRL task and RB/BE task.
Therefore, only one such case may occur during a single CaBi ihstance,
while, in contrast, several normal DRIVE task instancess (iwith the lower
WCET) may preempt a CTRL task instance. This refinement oiibdel
had a major impact with respect to RTA, yielding a worst-c&sponse time
of 4432 (refined model) instead of 5982 (without refinemeHgwever, it is
important to realize that such model refinements are hargptyan practice,
for real industrial systems, as the temporal behavior ofi systems are rarely
documented in detail.

Note that MV is a separate case with quite different behaalnot com-
parable with Model 1. The RTA results from MV are only inteddses a ref-
erence for MABERA and HCRR on the same model, i.e., MV, they reot
applicable to Model 1 (e.g., as approximations).

4.6 Experimental Evaluation

This section presents an evaluation of accuracy, conveegamd scaling prop-
erties of HCRR, MABERA and Monte Carlo simulation using iteticsix dif-
ferent versions of the three models described in Section 4.5

The goal of the analysis is to find extreme response times &peaific
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task in the model. The results are obtained from running 20@xes of each
algorithm and test case, each sample being allowed to ruAd8itnulations,
except for in the case shown in Figure 4.4. The simulatiorgbtidvas con-
sidered reasonable due to the convergence of HCRR on thereadistic and
complex model, Model 1. The experiments were performed oorapater
equipped with a Intel Core 2 Duo CPU at 2.33 GHz, with 2 GB of RAM

The MABERA parameters used for the evaluation was a popuaize
of 1250 andl12 parents in each generation, which reflects jlie quota of
0.01 found suitable in earlier experiments on Model 1. Ineottd ensure that
MABERA used exactly 10 000 simulations in total, to be conajée with the
HCRR results, the original termination threshold was cleahdnstead of using
a termination threshold, the termination occurs when thikition budget of
10,000 individual simulations has been used up. The padpulatze of 1 250
was selected since it allows for 8 generations, which is Weeege number of
generations per MABERA run in the initial MABERA evaluatifib].

Regarding the parameters of HCRR, the jump-back thresinddshould
be relatively small to spread the search over the set of egualidate solutions
found so far. However, the random restart threshalg) 6hould be larger in
order not to erase any progress made so far, but small enougice restart
from a local maximum as soon as possible. The frack@f input values
changed in each iteration should provide a good balancegeetywower (larger
fractions) and low dimensionality (smaller fractions).

To decide the HCRR parameteks,nB andnR, three experiments were
performed using Model 1 where one parameter at a time wasndieted, as
described below. For each evaluated parameter combireticeasure of con-
vergence rate was calculate&d, which is the mean value over 20 sample runs,
on the highest response time found aftesimulations. Formally the conver-
gence measure is defined as:

o T X R

(20-5)
wheres is the number of simulations aréf denotes the response time found
afterj simulations in sample run The simulation budget used in these exper-
iments was 500 fonB andk and 3 000 fonR The parameters giving quickest
convergencerB = 2, nR= 300, andk = 0.02) were then used for all experi-
ments. The results of the experiments are shown in Table 4.5.

To show the effects of scaling on the three algorithms, moneptex mod-
els are created by instantiating several independentricataof Model 1, as
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Table 4.5: Parameter selection for HCRR
nB=nR=oco k=0.02,nR=00 k=0.02,nB=2

k C nB C nR C

0.01 7796.76 100 7931.37 1000 8308.11
0.02 8010.90 50 7902.86 300 8312.05
0.03 7988.83 20 7939.70 100 8304.17

0.04 7976.14 10 7972.72 50 8254.26
0.05 796180 7 7992.25

0.07 794469 5 7944.27
0.10 776159 4 8001.89
0.15 764562 3 7919.24
0.20 7604.48 2 8024.98

0.30 748333 1 7944.27

“subsystems”, where each subsystem is a complete modeseasiued in Sec-
tion 4.5. The only dependency between the subsystems ighigyashare the
same CPU and therefore will interfere with respect to timifilge subsystems
are however time-separated by relative offsets of 20 00@ timits in order

to even out the CPU usage, and have reassigned priorities BIRSSim as-
sumes unique task priorities. All execution times (inputs Executecalls)
were scaled to avoid overload. Scaling factors used wérd /1.5,1/1.8 and
1/2.2 for 1,2, 3 and4 subsystems, respectively. The scale factors were found
experimentally, with the criteria to give an interestingmplex task-level be-
havior while avoiding overload and task input starvation.

4.6.1 Results

The response time results from Monte Carlo simulation (MCABERA (MAB)
and HCRR were obtained in the following manner, using a sithuh budget
of 10 000 individual simulations unless otherwise stated.

MC:  The traditional Monte Carlo approach, giving the highessponse
time found during a specific number of simulations.

MAB: The MABERA algorithm presented in Section 4, using a plagion
size () of 1250 and 12 parents per generatipn= 12), which gives
ap/s quota of 0.0096.

HCRR: The HCRR algorithm presented in Section 4.4.2, usiagupeters
nB = 2, nR= 300, andk = 0.02.
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Figure 4.4: Final RT distributions and convergence for Mdde

Figure 4.4 shows the results obtained for Model 1 from Sactié.1. The
top of the figure contains the response time distributionthefthree algo-
rithms, where the results for MABERA and MC are taken from dhigjinal
evaluation of MABERA [15], produced using 200 sample rurplications),
which in total required 16 280 000 individual simulations.

For HCRR, only 100 sample runs were used, using 10 000 inavisim-
ulations each. This gives a total of 1 000 000 simulationss Was considered
sufficient, since all 100 runs of HCRR found the highest knoggponse time,
8474, forthe CTRL task of Model 1. None of the MABERA or MC rdosnd
this response time. The bottom of Figure 4.4 shows conversgnean RT and
95 % confidence intervals) for the three algorithms, using Eplications of
each algorithm, each using 10 000 simulations.

The highest response time found by MABERA was 8 349, and thlisev
was only found one single time in 200 runs, using in total 16@&0 simula-
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tions. However, a value of 8324 was found in 47 % of the case€. axlly
produced two results are over 8 000, while the rest followsearsngly gaus-
sian distribution with a median around 7 800. The highest Mier, 8 390, is
however higher than the MABERA results. Note that this isndwnly once
in over 16 million simulations, with a total run time of 24 hrsu With a sig-
nificantly smaller (more typical?) simulation budget, MCuwa most likely
not have found any of the outliers, only results below 8 00GijeMMABERA
would most likely have found the 8 324 case even if using fedications (e.g.
three or four, instead of 200), since it was found in almo$8b%d the runs.

HCRR is however far superior to MABERA and MC, using only abou
6 % of the number of simulations used by the other methodsryEN€RR
run found the highest response time, 8474, using only 10 @@Qlations
which means that HCRR was 1628 times faster than MABERA is thise,
since only a single HCRR replication is necessary in ordénth8 474 while
MABERA requires 200 replications in order to find its highessult, 8 349.
The runtime per sample run was 7 minutes in the earlier MABERAlua-
tion [15], where each MABERA sample used on average 81 40Qlations.
This translates to 5 ms per individual simulation, inclugithe optimization
algorithm code. Since the length of the simulated scenagi® 6560 ms, this
means that the simulation speed was 123 times faster thhexeeution in
this case. For the cases where 10000 simulations was useeeation,
both MABERA and HCRR required less than 3 minutes per run.

Figure 4.5 shows the obtained results for Model 2 (Sectié3. In this
model, the tasks have large variations in execution timéschwmakes the
state space very large. We can see that HCRR yields a regqrihamately
5 % higher than what is obtained from the two other methodteréstingly,
it looks like HCRR was still slowly progressing towards highlesponse times
at 10000 simulations, while both MABERA and MC seems to haeserged
quite early to a much lower result. MABERA seems to give lovgsults than
MC in average but finds a higher maximum value. For Model 2alglbrithms
finished in less than one minute per sample.

In Figure 4.6, we can see the results for the validation m¢@d&) de-
scribed in Section 4.5.3, again using the standard parasndteaddition, we
show the RTA results. Here, HCRR could find a response timel824n every
sample run, which was also confirmed by RTA to be the worst-casponse
time. The difference between MABERA and MC appears to beecgritall in
this case, but MABERA found the worst case in a few cases,eAMiC did
not.
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Figure 4.5: Final RT distributions and convergence for M&le

Figure 4.7 shows how the different methods scale to largsetesys, by il-
lustrating the convergence for Model 1 when increasing tbeehsize to 2,
3 and 4 subsystems (model instances). As expected, sinctatieespace in-
creases with number of subsystems, all three algorithmseecga slower when
system size is increased. HCRR is consistently the beske WHABERA and
MC give quite similar values, although MABERA gives slightiigher aver-
age results than MC in all cases, and significantly highettfermiddle case,
with three subsystems. As the number of subsystems in¢rireesdifference
in performance between the methods decrease, although HE&tRiced on
average 4.7 to 11 % higher results than both MC and MABERA.4sub-
systems, none of the methods appear to have converged. Eqwleving the
10000 simulations, HCRR progressed more quickly to highsponse times
than both MC and MABERA. Table 4.6 presents the run times (inutes)
for a single run of the algorithms on the three models (M1-®ite4), which
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Figure 4.6: Final RT distributions and convergence for thiidation model

shows the impact of increasing model complexity on run ticaeised by longer
run times of the individual simulations.

Note that the same parameters for MABERA and HCRR were used fo
all models, although these parameters were selected veifieceto Model 1.
Their suitability for the other models are not known. If thesbparameters
were re-evaluated for each model, better results might beea achieved.

The average end results are summarized in Table 4.7. Thedasnn
also shows the average number of simulations needed for HGR&ach the
end result of the second best method (usually MABERA), ole@iin 10 000
simulations. Overall, HCRR reached the second-best ré8utb 112 times
faster than the second-best method did. For all modelktHICRR less than
800 simulations to reach the results of the other methodghadorresponds
to less than 1.5 minutes of computation time on the PC usegkjoeriments.
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Table 4.6: Run times of Monte Carlo, MABERA and HCRR (minjites
MC MABERA HCRR

M1-2 4 7 5
M1-3 5 10 6
M1-4 8 16 10

Table 4.7: Average end result of Monte Carlo, MABERA and HCRR
MC MABERA HCRR Passe3™ best

M1-1 7682 8065 8474 224
M1-2 9693 9750 10844 238
M1-3 13555 13789 14672 521
M1-4 15235 15298 16013 764
M2 6031 6002 6299 634
MV 4286 4288 4432 89

4.6.2 Average Convergence

To measure average convergence more exactly, we use ttieardifference in
average response-time results over thedasinulations. We say that a method
has for practical purposes converged (on average) when

1— E(k_d)

") ¢
where}_z(k) is the average response-time result at simulatior a set of sam-
ples. Using this definition, convergence will never be dietgébefore at least
simulations has been performed. In order to measure coeneedor the eval-
uation presented in this papdrpbviously needs to be less than the number of
simulations (10 000) performed in each sample. We therafsea = 1000
for the convergence comparison. For the tolerance parametehose a value
of ¢ = 0.001. In other words, if the average progress in 1000 simulatisns
lower than0.1 %, we declare that the method has converged on average. It
should be pointed out that different parameters will gigically different re-
sults on convergence. Detecting true true convergencedwequlire that = 0
andd is infinite (or in practice, at least very large).

Table 4.8 summarizes the convergence results obtainedthétiparam-
eters above, for Model 1 with 1 — 4 subsystems (M1-1 to M1-4pd®1 2
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Table 4.8: Convergence of Monte Carlo, MABERA and HCRR
mMC MABERA HCRR
k E(k) k E(k) k E(k)
M1-1 7632 7670 7356 8062 4090 8466
M1-2 4806 9660 6518 9728 7093 10830
M1-3 3527 13502 7801 13773 5568 14578
M1-4 3410 15175 5104 15271 6948 15881
M2 3656 5997 3552 5991 9556 6295
MV - - - — 1661 4432

(M2), and the validation model (MV). In general, we can sed HCRR con-
verged to significantly higher response times than MABERA BIC. For the
validation model, the only method to converge within 10 ObGusations was
HCRR. Overall, the results are mostly consistent with wiaatlze seen in Fig-
ure 4.4 to Figure 4.6, but also classified the slow progressi@@RR on M2
in Figure 4.5 as convergence. Running the algorithm longrddveither yield
slightly higher results or confirm convergence.

For M1-4, convergence of HCRR is also detected in iteratiod&®Hafter a
slow progress between simulation 6 000 and 8 000, but as weemain Fig-
ure 4.7, more average progress is made after simulation.83#@pling more
than 100 runs for M1-4 would most likely even out the sloperagimulation
6 000. In any case, HCRR has clearly not converged after 18dd@ations,
and running the algorithm longer would likely yield evenlingg results.

4.7 Conclusions

The results presented in this chapter indicate that simonlaptimization algo-
rithms such as MABERA and (especially) HCRR has the potetttiprovide
engineers with accurate extreme value predictions reggndin-time prop-
erties of embedded systems, such as task response timedpalsomplex
systems not conforming to classical real-time analysis etwduch as RTA.
Note however that the simulation-based approach impliesadffort analysis,
which only provides a lower bound for the worst-case respdainse, i.e., the
highest response time found. This is not necessarily thestwase response
time. In the evaluation performed, six different simulatimodels were used,
developed to represent analysis challenges of real indlstal-time systems.
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The results indicate that MABERA is significantly more effict than Monte
Carlo simulation, but HCRR was found to be 4 — 11 % more aceufsn
MABERA and between 13 to 112 times quicker in reaching the resailt.
An analysis of convergence indicates that for two casesfaikpeven higher
response times could be achieved by allowing HCRR more sitionis.

Both HCRR and MABERA require parameters, which impact tipeir-
formance. Finding suitable parameter values for MABERA uste) time-
consuming, since the MABERA parameters are not indeperadehtherefore
has to be evaluated in combination. Suitable parametersl@RR can be
found much faster since each parameter can be optimizegéndently.

MABERA seems to be more dependent on good parameters thaiRHCR
while MABERA performed quite well on Model 1 (for which the r@aneters
had been optimized) it was only marginally better than MdD&lo simula-
tion on the other models. This might be due to larger stateesfra some
cases, but MABERA is only marginally better than Monte Caleo for the
MV model, which is less complex than Model 1. It is likely MAB& would
have performed better on MV (and the other models) if thepatars would
have been tuned. The possible parameter sensitivity isiausedrawback
of MABERA and speaks for HCRR. It would be interesting to r&pthe
MABERA and HCRR runs with parameters optimized for each rhoblet
this is quite time-consuming work and it is quite clear th&RR is superior
compared to MABERA and Monte Carlo simulation.

Future work includes evaluating HCRR (or an improved me}floodmod-
els extracted from real industrial systems, using the mexkeaction approach
presented in the coming two chapters. The models used favilaation in
this chapter is very small compared to such systems, whidkemthe effi-
ciency of the model extraction very important, i.e., thesand complexity of
the resulting models. Even though HCRR seems to be veryesgffidt will not
perform as well on models which are several magnitudesiarge

If HCRR would turn out to have insufficient scalability witbgpect to large
industrial systems, improvements are however possibleRRI@erforms a
quite simple type of optimization, without any knowledgéeloé dependencies
in the simulation model. This has shown to work well, but copbssibly be
made “smarter” by logging additional information duringtbimulations, re-
garding the context in which each input value is used. Thernebvould be
possible to put more focus on optimizing the input valueswigh likelihood
of being relevant, such as inputs used by the task in focgs @ decide ex-
ecution time variations) or by other relevant tasks whickepnpt, block or
communicate with the task in focus.
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Chapter 5

A Method for Automated
Model Extraction

Patent Pending

This chapter presents a method for automated extractiamafation mod-
els from complex embedded software systems implementedTm€method
is intended to be realized as a software which as input tddeesytstem source
code and execution-time measurements, and which outpuiisradi, more ab-
stract version, an RTSSim simulation model as describedhap@r 3.

Measured
execution-time data
Remove Insert execution- Model code I

irrelevant code time information ()

Figure 5.1: Overview — simulation model extraction

Source code

(.c)

The model extraction process contains two steps, as #liiestrby Fig-
ure 5.1, where the first step identifies the source code ofaete for the
simulation model, while the second step allows for timingtaate simula-
tion using target system execution-time measurements. tiibsis focuses on
the first step, the source code “filtering”, which serves thuce the size of the
simulation model.

103
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Note that the first step can theoretically be omitted, bygitie full source
code as simulation model (extended with timing informatidrnere are how-
ever several good reasons for reducing the amount of model co

 Faster simulations and smaller model state-space, alfpivetter accu-
racy and confidence when using methods like MABERA or HCRRE; pr
sented in Chapter 4.

» Probably fewer uses of library functions (i.e., withoutisze code), which
might need to be manually replicated in the simulator fraoréw

» Fewer instrumentation points necessary for executio®-theasurements.
 Better system understanding, at least if the reductioizmis large.

The second step enables timing-accurate simulation thrautpmatic in-
sertion ofexecutestatements, i.e., calls to an RTSSim function which advance
the simulation clock, according to execution-time infotioa from measure-
ments. The measurements are performed between instrumargaints, in-
serted in the original code at locations derived during Step

The process of removing irrelevant code is commonly knowpragram
slicing, a concept first proposed by Weiser [26] which implies an ysisl
which given a program andsdicing criterionidentifies the program statements
of relevance. The most common type of program slicing, backes slicing,
identifies all statements which may impact the value of ai@aer symbol
(e.g., a variable) at a particular point in the program wheedymbol is used.
The area of program slicing is further described in Sectidnl12

The existing methods and tools for program slicing are havewot scal-
able enough (cf. Section 6.4) for analysis of large indaksdftware systems,
which may consists of millions of lines of code. Moreovengram slicing for
model extraction requires a different type of slicing aiéie A new method for
program slicing naméd<atanahas therefore been developed.

Katana identifies all statements of a program that impaetsxicution of a
set of functions, thenodel focus functionsvhich constitute the slicing criteria
and are provided as input. They are the functions which tyrémpact the
run-time properties in focus. They typically correspondferating system
services. In the context of this thesis, the model focustfans should include
all functions which impact the task scheduling, e.g., fior causing task
triggering, blocking or priority changes.

1Katana is named from the very sharp Japanese sword (anptecoft efficient slicer).
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Note that this approach assumes that all relevant souraeisavailable.
In cases where “black-box” components are used, like an Sfabase, they
might also perform actions of relevance to the model, egawsing tasks
or locking a semaphore. In order to model black-box comptmehere are
approaches to modeling based on dynamic analysis tectmigege based on
run-time monitoring, such as the works by Huselius et al] §gfl Jensen [49,
116]. Such methods could be used as a complement to modateatr from
source code. This is however not further explored in thisithe

The Katana algorithm has been implemented in a prototypenamed
MXTC, an abbreviation oM odel eXtractionTool for C. MXTC is presented
in Chapter 6 together with an evaluation of MXTC on industizde.

This chapter is organized as follows: Section 5.1 preséet&atana algo-
rithm in an informal manner using examples and illustragi@nd with focused
subsections highlighting different aspects of the sotuti®ection 5.2 discusses
the efficiency of the proposed solution, with respect toirmatand memory
usage. Section 5.3 gives a formal definition of the core pdrtise Katana al-
gorithm, and Section 5.4 presents the lower layer functigressumed by the
formal definition. Section 5.5 relates the Katana approaéxisting academic
and commercial solutions for program slicing. Finally, &t 5.7 concludes
this chapter with a discussion on current limitations artdrieiwork.

5.1 The Katana Approach to Program Slicing

The dominating approach to program slicing since the midk39 theSystem
Dependence GrapH23], or SDG which describe the dependencies between
a program’s statements and symbols. A SDG vertex repreaesitgement,
e.g., a condition, assignment or function call, while an S&ige corresponds
to a dependency in control-flow or data-flow. The SDG apprcauth other
types of program slicing are presented in Section 2.4.1heér8DG approach,
program slicing is performed by traversing the system ddeece graph in a
reachability search, starting from the nodes matchingltbieg condition. To
allow analysis of programs containing pointers, a sepédpatiats-to” analysis
is also required before the program slicing, where all @ymare analyzed in
order to find all possible variables they may refer to at eafbrence of the
pointer. The construction of the SDG and the points-to aislynplies a very
detailed analysis of the entire program, which for largegpams can take very
long time and requires vast amounts of memory, as presemtgeldtion 5.5.
Katana does not use the SDG approach, but instead Bgnlaol Database
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as program model, as depicted by Figure 5.2 and Figure 5.4 symbol
database can be regarded as an index over the source codarabd con-
structed using a lexical scan, possibly after applying pmmeessor. Since no
advanced models of the code are constructed, like CFGs arASes, this is
a very fast analysis, which is done in a matter of minutesfalssystems with
millions of lines of C code, as demonstrated by the evalnatsults presented

in Chapter 6.
”Katana”
Model Fi B
I::miti:r(\::s algorithm model.c
(MXTC tool)

T

Symbol Database API

Symbol DB

Scanner

Figure 5.2: The context of the Katana algorithm

The symbol database contains three types of entagsibols references
andlexemes A symbolcorresponds to a variable, function or user-defined
datatype. Théexemesepresent the analyzed source code in a tokenized man-
ner according to the syntax of the programming languagehigidase C. A
lexeme contains the corresponding source code text, totdihne and column
number) and references to the previous and following lexehexemes are
classified in types, such as keywords, operators, deligiigentifiers and lit-
erals. Areferencds an entry which connects a symbol with the code locations
(lexemes) where rge symbol is used. Reference have typisaimg the con-
text in which the symbol is used, e.g, if the symbol is assignsed or called.

The different types of entries are connected by bidireetidinks, which
connects symbols with references and references with legeithe structure
(or metamodel) of the symbol database assumed by Katanasemed in
Figure 5.3. Note that the presented attributes is not a catefikt, but only
examples.



5.1 The Katana Approach to Program Slicing

107

Next, Previous

Symbol Reference Lexeme
Name Type Text
Symboltype File Type
Datatype Line
ID Column

Figure 5.3: The structure of the symbol database represmmta

As depicted by the UML class diagram in Figure 5.3, each symiay
have multiple references, but a reference always has gxa@uwtl symbol and
one lexeme. Note that a lexeme may have multiple refereficbey are of
different types and to the same symbol. An example is thevatlg case:

foo = bar++;

In the above example, the lexerber and the corresponding symbialr
will be connected by two references, one “use” (in assigrireearce) and one
“modify” reference. An example of a symbol database stmgdgigiven in Fig-
ure 5.4. The structure of the symbol database is inspiretidylatabase API
of the commercial reverse-engineering tool “UnderstamdCfe+” [138]. This
API was used as base for the Katana prototype implementatienMXTC
tool presented in Chapter 6.

The symbol database makes it easy to look up a specific symbdirsd
all locations (as lexemes) where the symbol is used in aqedati way, e.g.,
assigned. Each location (statement) can then be analyzbe texeme level in
order to identify other symbols of relevance, on which th& iymbol depends.
These new symbols are thereafter analyzed recursivelg.chmtinues until all
relevant symbols have been analyzed. This approach has siamiarities
with the original Weiser approach [26], which however usecdtgy different
program model, control-flow graphs, and handles pointedsfanction calls
quite differently.

The target of the Katana method, in the context of model etitm, is to
find all statements which impact the execution of the modeli$ofunctions
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Symbols References Lexemes

Parameter p Declare, f2.c, line 43

Use, fl.c, line 20 —— N

Function func it ot | pl )l

Define, f2.c, line 43 |———
Function add —(_I—/

return | add | (| pl ,| 1| )| ;|

Parameter a

Call, f2.c, line 45
Variable ret Define, f1.c, line 18
Parameter b Declare, f1.c, line 18

Use, fl.c, line 19

Declare, fl.c, line 17 int\i\add | (l int | al ’| int | bl )l
Set, fl.c, line 19 — {
Use, fl.c, line 20 —\m ret || ;

retHal +

Declare, fl.c, line 18 —’—ret’ﬁﬁir(ei/l,f
Use, fl.c, line 19 ———1‘,’/

Figure 5.4: An example of a symbol database

—7 /]

(i.e., the slicing criteria). The output should containstitements which di-
rectly or indirectly decide when the control flow reaches aleidocus func-
tion, and all statements which directly or indirectly impte arguments used
in calls of model focus functions.

The termmodel statemenis used to specify the statements found to be
relevant, i.e., that should be included in the output. Cetaty, a model state-
ment is represented using the first lexeme of the statememen\& conditional
statement (i.e., a loop or selection) is recognized as a hstaeement, this
does not include the enclosed statements within the asesdiock(s), but
only the condition, block delimiters and relevant keywords

A model symbols a symbol in the symbol database, of types variable,
parameter or function, which is found in at least one modgestent. A more
precise definition is given below.

A model functions a function containing at least one model statement. For-
mally, model functions are however represented as moddbsigof function
type. This since a function name may refer to different thidgpending on
the context, the function definition, the function addresghe function return
value. Katana treats function return values as a two-ssgrasent, where the
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function symbol is a temporary variable between the retieression and
the use of the return value in the calling function.

There are two types of model functiorgipbally model-relevan(GMR)
functions andocally model-relevan{LMR) functions. A GMR function is a
function containing side-effects of relevance for the mode

» model focus functions (specified as input),
« functions containing assignments of global variable nhegmbols, or
« functions calling other GMR functions.

Thus, all calls to GMR functions are relevant for the modeheTother
type of model functions is locally model-relevant (LMR) fition. For LMR
functions, only calls found in model statements are relevafor instance,
consider that the variabfeo is known to be relevant and the following model
statement is found:

foo = bar(i);

The assignment depends on the return valueaof) . If the formal param-
eter ofbar() is found relevant for the return value, only the argumentef t
specific call is analyzed. Other calls (and argumentd)as{) are ignored
in this case, but will naturally be included if found modelavant for other
reasons.

Given the above introductions, a model statement is defiseahy state-
ment matching at least one of the following rules:

* Rule A: Calls of model focus functions.

» Rule B: Calls of globally model-relevant (GMR) functions.

* Rule C: Assignments of model symbols (direct or by refeegnc
» Rule D: Conditions guarding the execution of model stateifss.
* Rule E: Return statements in any model function.

* Rule F: Break or continue statements where the closestpsnlzing
loop is a model statement.

* Rule G: Statements obtaining or forwarding pointers to eiegmbol(s).

* Rule H: Declarations of model symbols or model symbol gqtas.
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The above definition of model statements depend on the cobatepnodel
symbol. Asymbolis in this context a parameter, variable, constant or foncti
return value, of any datatype (including pointers/arrays)model symbois
defined as a symbol matching any of the following rules:

* Rule I: Symbols used in a condition of a conditional modatesnent.
* Rule J: Symbols used in assignments or initiations of megeibols.

* Rule K: Symbols used in a function call argument where threespond-
ing formal parameter is a model symbol.

* Rule L: Symbols used in return statements of functions wheturn
values are used in at least one model statement.

* Rule M: Pointers to a model symbol S and used in a dereferazssign-
ment of S, or in data-flow leading to such a dereference assghof
S.

Note that the above list is not an algorithm description rather a specifi-
cation of the statements and symbols that Katana shouldifigen

5.1.1 An Overview of the Katana Algorithm

The purpose of this section is to provide a conceptual utatedgg of the
algorithm, a foundation for the later descriptions of indisal algorithm as-
pects. Note that a detailed description of the Katana dlyaoris provided in
Section 5.6.

The first step in Katana model extraction is to identify allcaf model
focus functions (MFFs). The MFF calls constitute the inhisat of model
statements and the functions in which these calls occur lateally model-
relevant (GMR) model functions. Since all callers of GMR dtians also are
GMR functions, all functions and function calls in the indomcall-graph of
the model focus functions are included in the model. Theralbjunction call
paths leading to a model focus function have been captured.

The next step is to identify the variables and statementstwtecides
when the control-flow reaches a model focus function and witlat argu-
ments. This is achieved using two types of program slicialgeledSliceand
SmtSlicg(Statement Slice), which are recursively dependent astiited by
Figure 5.5.

Slicetakes a symbol as input and returns all statements which mpaat
the symbol (typically a variable) at any poinEmtSliceakes a statement as
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Every argument symbol
of MFF calls

Every MFF

Symbols in conditional
call statement

model statements

=0 G

Symbols defining Model statements Model statements
the symbol (data-flow) (control-flow)

Figure 5.5: A high-level view of the Katana algorithm

input and returns all statements which may impact if and vtherstatement is
executed. The analysis can start in either one, dependitigeorontext.Slice
is the starting point when analyzing the symbols used inragnis of MFF
calls, whileSmtSlicas applied to the MFF call statements.

Given a symbolSliceanalyzes all symbol references of relevant types in
order to find statements where the symbol value is updatsty(ed or mod-
ified), or where pointers to the symbol are created. For edehtified state-
ment, the symbols involved are analyzed recursively. Ifsywmbol provided
to Sliceis a formal parameter, the relevant function calls are ifiedtand the
corresponding call arguments are analyzed recursively.

For each statement found relevadmtSlicedentifies all enclosing control-
flow statements (if, for, while, switch, etc.), which als@ anodel statements.
Their conditions are analyzed in order to identify symbelbich become
model symbols. Each such symbol is analyzed recursivehgiice

In order to avoid analyzing the same statement or symbolipheiltimes,
the analyzed symbols are stored in a suitable data struetye a hash table,
which is checked before starting each Slice operation. iflantical analysis
of the symbol has already been performed, the Slice operst@borted.

5.1.2 Katana on Example Code

A small example is used to illustrate the Katana algorithrodel statements
and model symbols. The example program contains only twotioms,main()
andcontrolTemp() , which implements a very simple temperature supervi-
sion system. The program also uses some library routinegifwh the source
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code is not available. In this case, they are safely ignofidee handling of
library functions is presented in Section 5.1.8

: double controlTemp(double maxTemp)

double currentTemp = readTemp();
if (currentTemp > maxTemp)

CcoNooaRrwNR
—~

{
alarm();
}
return currentTemp;
}

10:
11: void main()
12: {
13: double mTemp = 80;
14: double currTemp = 0;
15: while(1 == 1) /I forever
16: {
17: currTemp = controlTemp(mTemp);
18: displayTemp(currTemp);
19: delay (500);
20: }
21: }

In the above example, the functialarm()  is a model focus function. By
applying the earlier definitions of model symbol and modaieshent together
with the informal algorithm description presented in theyious section, the
following model statements are found:

1. Line 6: Due to Rule A, the call of the model focus functadarm() is a model
statement. TherebycontrolTemp() is a globally model-relevant (GMR)
function, since it calls a model focus function.

2. Line 8: The return statement is a model statement acaptdiRule E.

3. Line 17: SinceontrolTemp()  is a GMR function, this call is a model state-
ment according to Rule B, amdain() is thereby a GMR function.

4. Line 15: The while-loop is a model statement since the lergoses the previ-
ously found model statement at line 17.

5. Line 4: The if-statement is relevant according to Rule iB¢es it encloses the
previously found model statement at line 6.

6. Line 4: When analyzing the if-statement conditionfrentTemp andmaxTemp
are found and thereby become model symbols due to Rule G.
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7. Line 3: When searching for assignments of the new modebsisrfrom the
condition at line 4, this assignment ofirrentTemp is found which thereby
becomes a model statement according to Rule C.

8. Line 3: When analyzing the source of the assignment, thetiftnreadTemp()
is found and therefore a model symbol according to Rule JciSgaly, this
symbol is a locally model-relevant (LMR) function.

9. Line 17: The model symbohaxTemp found at line 4, is found to be a formal
parameter otontrolTemp() . In the call at line 17, the corresponding argu-
ment expression is therefore relevant. This is found toaiomhTemp which
thereby becomes a model symbol due to Rule K.

10. Line 13: When analyzing the new model symibmlemp the assignment at line
13 is found to be a model statement due to Rule C.

Note that theeadTemp() function found at line 3 is a library function
for which no source code is available, and since no argunseugéd, no fur-
ther dataflow analysis is performed in that case. Functigearaed to be li-
brary functions (i.e., if they have declarations but no d&éfin), must have
corresponding implementations in the targeted simulagméwork.

In this example, almost all statements are found to be retemad thereby
included in the output. This does however not reflect thecgigberformance
of the model extraction on real programs, of non-triviagsiin the experiments
on industrial code, presented in Chapter 6, the output sibetiwveen 3 — 59 %
of the input program size.

5.1.3 Producing the Simulation Model

The recursive search of the symbol database identify maalkelirments, which
are represented by a reference to their first lexeme. In ¢odmoduce a com-
pilable simulation model, the model statements (i.e., éixemnes representing
them) are sorted based on their source file, line and colummbeu For each
source file where model statements have been found, its rstadements are
written, lexeme by lexeme, to an output (simulation model)rse file. Since
also declarations of relevant variables, functions, atatgpes are model state-
ments, the issue of declaring the model symbols (in the ogikr) is solved
automatically. The file structure for the resulting simidatmodel source code
thus reflect the file structure of original source code.

A last analysis step is however necessary before outputtiedexemes
of the model statements. Model statements may includesiraet symbols,
which does not impact the behavior of the model but which nzayse compile
errors if not handled correctly. For instance, in the prasisection presenting
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the Katana example, the varialerrTemp , declared at line 14, is not rele-
vant for the model, since its value is never used in any mdd&sent, but it
is assigned in the model statement at line 17. In order toym@dompilable
simulation models, there cannot be references to variatibésh are not in-
cluded in the model, since they would not be declared. Thegeéach lexeme
of identifier type in every model statement needs to be chibitkeferencing
an irrelevant symbol, i.e., a symbol which is not a model sginfihere are
two alternative solutions for handling irrelevant symbeflerences: (1) trans-
form the statement in order to remove any references ofeiraglt symbols
or (2) include irrelevant symbols as “dummy” symbols whiatkhrations are
model statements. Note that this issue has not yet beenssadran the MXTC
tool (cf. Chapter 6). This is one of the main remaining isduefere working
simulation models can be produced by the MXTC tool.

5.1.4 Control Flow Sensitivity

Katana is not fully control-flow sensitive and may therefpreduce simula-
tion models which contain some irrelevant statements. rkatssumes that
all assignments of a relevant variable are relevant, inddpet of where in
the code they occur. Moreover, Katana assumes that eveiy rgtatement in
model functions are relevant since a conditional returtestant may prevent
later model statements in the local function from being aked. This is an
over-approximation, since some of these statements mighally not impact
the relevant statements. For instance, consider the fotpaxample, where a
local variable is used for two different, unrelated purgos&imilar cases have
been encountered several times when studying industri.co

1: void func(int p)

2: {

3: int status;

4: status = foo(p);
5: if (status < 0)
6: {

7 query = 1,
8 }

9 status = bar(p);
0 if (status < 0)
1

The assignment of the variabdgiery , at line 7, is beforehand known to be
relevant and is the starting point of the example. The cadit line 5 is
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also relevant, since it guards the statement at line 7 (Ruld Bis makes the
variablestatus relevant, since it is used in the condition at line 5. Since
Katana considers all assignments of a model symbol as rél@rale C), the
assignment oftatus  at line 9 will also be included, which implies that the
functionbar() is also included, without being actually relevant. The metu
statements dpar() may in turn include many other irrelevant statements.
Note however that Katana does not completely disregardaefidw, since
it identifies all conditional statements which guard idéeti model statements.
This is however a quite simple analysis, performed on demlapdearching
backwards in the lexeme list. Katana does not constructantyal-flow graph
or similar for this purpose.

5.1.5 Handling of Function Calls

A problem in early approaches to program slicing, such astieeprocedural
solution by Weiser [25], was the handling of function calls,, to correctly
follow dataflow through function call parameters and retuatues. According

to Horwitz et al. [23], the “chief difficulty in interprocedal slicing is correctly
accounting for the calling context of a called proceduredr istance, if the
return value of a functiofoo is used in a relevant assignment or condition, it
naturally makes the specific callfafo relevant, but this does not mean that all
calls offoo are automatically relevant. Therefore, when analyzingren&b
parameter in order to identify the relevant call argumeittis important to
include the relevant calls only.

Katana solves the context sensitivity problem in the foilayway. As
previously introduced, Katana classifies model functicittsee as LMR (lo-
cally model-relevant) or GMR (globally model-relevant).LMR function is
a function which is not a GMR function, but found model-relat/since its re-
turn value is used in a model statement, or since the funtdies a pointer to
a model symbol as argument, used to modify the model symbbkicurrent
function or in any callee, direct or indirect.

A GMR function is a function which calls a model focus functj@r which
assigns/modifies a global variable, or which calls anothdRGunction. Thus,
the GMR functions correspond to the combined incoming aalpg of (1) the
model focus functions and (2) the functions assigning moelelvant global
variables. The identification of GMR functions caused by siddcus func-
tions is the first step of Katana and is performed through arsaee upstream
call-graph search, i.e., from callee to caller, startinghie model focus func-
tions. Every function found in this search is a GMR functiordahe func-



116 Chapter 5. A Method for Automated Model Extraction

tion calls followed are thereby model statements. The baadition is when
a function is already marked GMR, or when no callers exists, (the entry
function). In this way, additional attempts to mark a fuootas GMR will not
cause recursion, but only a single lookup on GMR status.

The main purpose of the LMR/GMR classification is when analyZor-
mal parameters. When a formal parameter is recognized aslalrsygmbol,
the analysis should naturally follow the dataflow upstreararder to analyze
the corresponding call arguments, which implicitly asdiga formal parame-
ter. If the formal parameter belongs to a GMR function, alkcare relevant by
definition. However, for LMR functions, only the call wheretLMR function
was encountered is considered relevant and thereby explore

Note that a LMR function can change status to GMR, if it assigiylobal
variable which later is recognized as a model symbol, or idlkee later be-
comes GMR. In that case, the relevant formal parametersdtiiction needs
to be analyzed again, in order to include all calls of the fiomc The calls
already analyzed under LMR assumptions can be excludedthismanalysis.

If an encountered LMR function already has been analyzedgregious
model statement, n8liceoperation is performed on the function. This is de-
tected using thenalysis cachdcf. Section 5.2) and if this is the case, the
dataflow analysis jumps directly to the function call argmisecorresponding
to those formal parameters already recognized as modelagmb

Recursive calls are handled correctly by Katana. The cefisecognized
as model statements if relevant, but the functions are psatkat most once,
due to the analysis cache (cf. Section 5.2). Recursion isaadly a problem
in Katana — since no value analysis is used, there is no neeskfiarating
different instances of local variables during recursion.

5.1.6 Data structures

Katana allows for analysis of individual members of datadtires through
the use oymbol expressiorendsymbol reference filters

A symbol expression is constructed from a symbol referende@presents
an expression consisting of one or several identifier lexeerfibe first identi-
fier is labeled thgrimary symbal This is followed by a list of data-structure
field identifiers, if any, reduced into a minimal form as ladescribed in this
section. A symbol expression is represented by a lisyofbol specifiefgach
consisting of the symbol’s datatype name (with any typedefslved) and the
symbol name.
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A symbol expression may represent a function call with respeits re-
turn value, using the function name as the primary symbol.eiMiheSlice
function detects that the primary symbol is a function, intboues the recur-
sive analysis with all symbols used in return statemente@ftinction. Func-
tion arguments are considered as separate symbol expressimpared to the
statement where the function is called (and the return vadeel). Arguments
symbols are therefore not included in function symbol egpiens. Any array
index expressions also constitute separate symbol expness

A symbol expression is constructed from a symbol refereémaeigh a scan
for identifiers, on the lexeme level. The scan starts at tkenhee corresponding
to a reference of the primary symbol, and adds all encouthtdemtifiers to the
symbol expression until a disallowed lexeme is found, sisch semicolon or
a comma. If a left bracket (of an index expression) or a lefepthesis (of
a function-call argument list) is found, the scan jumps ® mimatching right
parenthesis/bracket. The scan may find “odd” right paresishe/here the cor-
responding left parentheses is before the lexeme wherecthestarted, e.g.,
due to type casting. Such right parenthesis are acceptadutiaction.

Thus, a symbol expression corresponds to a list of adjadentifier lex-
emes which only may be separated by (any valid combinatiptieffollowing
lexemes:

* member operators, e.fpo.bar " or foo->bar

« function call argument blocks, e.goo(argl, arg2)->bar
* index blocks, e.gfoo[i][j]->bar

* right parentheses, e.(MyType =*)foo)->bar

Note that the expressions within call argument blocks oexlolocks are not
ignored completely by Katana, but they become separate @yembpressions.
Code examples with corresponding symbol expressionsidiielow.

Source code example Symbol expressions
int foo = bar; (foo),(bar)

int » foo = & bar->f2; (foo),(bar,f2)

foo[i] = func(j) (foo),(i),(func),(j)
foo->bar[func(arg)].val  (foo,bar,val),(func),(arg)
func(arg)->val (func,val),(arg)

All examples contain at least two symbol expressions, widfe right
column are delimited using parentheses. Note that the shiypiinformation
is omitted from the field specifiers in this example.
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Linked data structures, such as graphs or linked lists, raage problems
since they allow for multiple ways of referring to the saméadstructure field,
through the same primary symbol. For instance, in a linkedthere is no
point in separating betwegn>next andp->next->next . There is nat-
urally a semantic difference between the expressions, btaré only iden-
tifies potential dependencies between symbols and canpatage the linked
lists nodes, since the possible values of variables (énds. plointers) are not
known. Katana therefore abstracts from repeated (or Qyidtik references.
This is achieved by reducing symbol expressions into a mahiorm, by “fold-
ing” (i.e., removing) any duplicated field specifiers whilegerving their rel-
ative order. Thereby, both->a->a andp->a->a->a  will be folded and
treated likep->a . An expression on a cyclic linked data structure will pre-
serve the first unique identifers, but fold any repeated eegges. This means
thatp->a->b->a->b s folded intop->a->b , assuming thah andb are
link pointers, i.e., of the same datatypepasThis way, the number of possible
symbol expressions for any given symbol is finite and limibgdthe defined
datatypes.

A symbol reference filtedetermines if a particular symbol expression is of
relevance for the current dataflow analyséi¢eoperation). Only symbol ref-
erences where the referenced symbol expression matchesrtieat filter are
considered relevant and thereby analyzed further. The mativation behind
the filter system is to separate between relevant and iaetedata structure
fields. The filter is a list of identifiers, in the same mannesywsbol expres-
sions. Filters are constructed in the same way as symboéssions; symbol
reference filters do not include function call argumentsreayaindex expres-
sions, and expressions containing repeated use of linkgrsiare folded into a
minimal form. Thereby, the folding is applied symmetrigatb both the sym-
bol reference filters and the symbol expressions, which m#ke matching
correct.

A particular symbol expressicBE matches a symbol reference filterif
SEis identical to, or a prefix oF, i.e., if every field specifier ISEexists inF
at the same location.

Thus, a filter(foo, bar)will accept the expressiorfeo andfoo->bar
but not longer expressions likeo->bar->val . The prefix rule is moti-
vated since a primary symbol of pointer type defines the soiféeidress) of
any following field symbols. For instance, for the fil{goo, bar)also assign-
ments offoo are relevant since the value fafo is used in relevant assign-
ments offoo->bar . Another reason why a data-structure pointer liée
is relevant by itself is that all aliases must be analyzedrieoto find other
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pointer assignments of relevant fields, in this dage.

It is however possible to specify a less strict symbol refeeefilter by
using the cod&NY. The reason for this is the analysis of arguments to model
focus functions. If a data structure pointer is passed asaegt to a a model
focus function, e.gipc_send(msg) , then all fields of the data structure are
relevant for the model. (The possibility to relax this asption is discussed
in Section 5.7). For filters ending witANY, symbol expressions containing
the specified identifiers plus any additional field specifegesalso considered
relevant. Thereby, given a filtéfoo, bar, ANY)then the expressioricso and
foo->bar will match the filter, as well as other symbol expressionsiudgg
with the primary symbofoo , followed bybar as the first field reference.
Note thatANY is only allowed in the end, as the last field specifier of a filter

The symbol reference filter for newly discovered model sylmlaoe con-
structed by “projecting” the current filter with respect ketsource and target
symbol expressions of the dataflow dependératyhand. The projection is
a transformation where symbol specifiers are added andfwoved from the
current filter, in order to produce a filter for the new primagynbol about to
be analyzed.

The projection of symbol reference filters is performed wisdice calls
itself recursively in order to explore a symbol which hasrbfrind to impact
the model symbol under analysis. An interesting propertiyasthe projection
is symmetrical, it is performed in the same way independetfie analyzed
dataflow dependency is “upstream” (from target to sourcédownstream”
(from source to target). In both cases, the projection isiasfiormation of the
filter string, which can be described as a function

NF = getNewFilter(CSE, CF, NSE)

which returns the new symbol reference filtsE, given:

» CSE: The current symbol expression, i.e, a reference of the wtiyre
analyzed model symbol.

» CF: The currentfilter (symbol reference filter), i.e., whicBEmatched.

* NSE:The new symbol expression to use when analyzing the new model
symbol (i.e, through a recursive call 8fice).

2Examples of dataflow dependencies are assignment statemedtfunction calls, i.e., the
dependency between a function call argument and the comdsp formal parameter.
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Note that “current” and “new” have different meanings degiag on whether
the dataflow dependency is analyzed “upstream” or “dowastfe In the up-
stream case (from dataflow target to dataflow source), “atitrefers to the
dataflow target, while “new” refers to a dataflow source. Iwdstream anal-
ysis, i.e., when following forwarded pointers, the meanafigcurrent” and
“new” is swapped. The new filter is calculated in the follogriwvay:

1. If there is a new field specifier NSE i.e., which does not exist i@F,
thenNF equalsNSE This is the case when a new dataflow analysis be-
gins and the filter is empty.

2. If all field specifiers ilNSEdo exist inCF (i.e., not counting the primary
symbol) or ifNSEonly contains a single identifier (the primary symbol),
the new filter NF depends d@F andCSEin the following way:

(a) Construct the first part diF by adding each identifier iNSEto
NF, unless a symbol specifier of the same datatype alreadysexist
in NF. The relative order of the identifiers must be preserved.

(b) ExtractUF, the unused (and rightmost) part 6F, from CF by
removing all identifiers fron€F which occur inCSE This should
remove at least the primary symbol, i.e., the first identdfe€SE
If CSEequalsCF, i.e., a complete match, thesF will be empty,
as there are no unused parts.

(c) Append each identifier ilF (if any) to the end ofNF, unless a
symbol specifier of the same datatype already existdfnThe
relative order of the identifiers must be preserved.

The projection of symbol reference filters (getNewFiltar)liustrated us-
ing a code example, presented below. The analysis begihghégtcall of the
model focus function “alarm”. The relevant statements laeedafter identified
according to the Katana algorithm, formally defined in Sett.3.

The first symbol expression (step 1) is found in the if-staetondition.
Sincesis the first model symbol of a new data-flow analysis, thereipnevi-
ous filter, so the new filter (NF) to use when analyzing thereafee to the new
symbolswill equalNSE i.e., the symbol expression found in the condition.

In step 2, the only reference eofis analyzed and found relevant, since it
matches the filter from step 1, i.es,“sn, po& The source expression in the
assignments1, becomes a model symbol with the filtes1| po&, asposwas
not used byCSE i.e., “s1, sH.
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The model symbos1 leads to the inclusion of three model statements, in
steps 3, 4, and 5, but only in the statement of step 5 a new nsgddbol is
found: the formal parametép in the functionupdate

typedef struct{
short pos;
short * adr;
} SENSOR;
typedef struct{
SENSOR* sn;
} SYSTEM;
Step CSE CF NSE NF
SENSOR s1 = {0, 0x0210}; 3 sl s1, pos n/a n/a
void update(SENSOR * fp)
{
fp->pos = bar(fp->adr); 6 fp, pos  fp, pos bar bar
void foo()
SYSTEM s;
sl.pos = O; 4 sl,pos sl,pos nla n/a
s.sn = & si; 2 s, sn S, sh, pos sl s1, pos
update(&s1); 5 sl s1, pos fp fp, pos
if (s.sn->pos == 0) 1 n/a n/a S,sn, pos s, SN, pos
alarm(); MFF call

The statement at step 5 is relevant since a pointer to a mgehd (s1) is
passed as argument (Rule G). The formal parameter rechivéier “fp, pos,
which means that the assignment at step 6 matches the fillethareby is a
model statement. At this point we end this example (whiclentiise would
have continued with the symbols used in the return statejsjentthebar()
function).

Unions is a potential problem for this approach, i.e., cagetl data struc-
tures, where the same memory address may be accessiblendiige sym-
bols (i.e., union members). Since Katana is a symbolic nteite, unaware of
the actual memory layout, unions are treated like normal datictures. This
is a valid simplification in most cases, for well structurede, but it is possi-
ble to construct examples where Katana would miss relevatgments due to
unstructured use of (conflicting) union expressions. Thisdwever bad pro-
gramming style and is believed to be unlikely in industriafiteare systems.
Solving the union issue requires that each data structungaeis translated to
a memory address offset, which requires a memory modelfgperihe size
of primitive datatypes as well as padding/alignment peBodbf the compiler.
This is not addressed in this thesis, but could be a futuensian.
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5.1.7 Pointers, Arrays and Function Pointers

The pointer analysis is a major difference between Katambhpsavious ap-

proaches for program slicing. The traditional approaclo isesolve pointers
before performing program slicing, i.e., a points-to asaywhich finds the

variables which each pointer may refer to. In Katana, poingge handled
much like any other variable in the sense that no separataralysis is per-

formed, they are instead analyzed on demand. During the&ah of Katana,

each model symbol is searched for assignments of any typec(dir pointer

dereference), as well as locations where the address of dldelrsymbol is

obtained using the address-of operator (ipt:, = &foo; ). Thereby, the

definition of relevant pointers are captured, as well as eleférence assign-
ments through these pointers (i.eptr = bar; ). As defined by Rule M,

such pointers become model symbols they are used in a rélégegference
assignment, or if they are part in a dataflow leading to sucisaignment.

In studies of industrial code, it has been observed that rharotions takes
as parameter a pointer to a large data structure, but onlyfynedmall sub-
set of the fields. The additional condition in Rule M, i.eattthe forwarded
pointer must actually be used in a relevant dereferencgrasgnt, is an op-
timization in order to reduce the number of falsely includiectlevant state-
ments. Otherwise, if considering every case of pointer &vding from model
symbols as relevant, many unnecessary function calls wibgiekfore be in-
cluded, where the called functions does not contain any hstaements. This
might not sound like a big problem, since the model versidtisese functions
would be empty. However, if the calls are guarded by condéictatements,
all symbols found in those conditions would falsely be cdastd relevant and
thereby cause other irrelevant statements to be included.

For each case of pointer forwarding detected, Rule M imhas Katana
inspects the local analysis result, i.e., the local regarbranch, originating
in the forwarded pointer and current filter. If no model stagats have been
found (i.e., due to at least one relevant dereference asgigt), the pointer
forwarding statement is deemed irrelevant.

The Katana approach to handling pointers is not waterprsiate it is
symbolic and unaware of the run-time memory layout (as dised earlier,
regarding unions). Itis therefore possible to construeneples where Katana
will fail to identify relevant pointer dereference assigemts. Katana requires
that there exist some statement which “connects” the mogabsl and the
pointer, i.e., by assigning the address of the symbol to theter. If a pointer
is defined without using the model symbol it will not be degectFor instance,
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consider the following case:

1. inta=0 b =0
2. int  xptr = & a;
3. ptr++,

4: *ptr = 1,

If b is amodel symbol, the assignment at line 4 is actually relesiace the
pointerptr , which originally pointed a#g, is incremented at line 3 and after
that points at the following memory address, whieneesides. This cannot be
detected by Katana since there is no obvious connectiordeetthe symbols
a andb; the dependency is only due to the adjacent memory addreshes
is however not a unique limitation of Katana, but a problemdib tools do-
ing symbolic pointer analysis. For instance, the commete@s CodeSurfer
[123] and Imagix 4D [135] cannot detect such dependendiesteiThese tools
are compared against Katana in Chapter 6.

A pragmatic solution to the above exemplified problem, idaen pointers
are modified using arithmetics, is to simply detect suchestants and report
them as warnings. Since pointer arithmetics is hardly goodfamming style
and hopefully not very common, it is reasonable to suggestdich code, if
found, is refactored in order to make it analyzable and mereegally main-
tainable.

Arrays are treated differently than data structures, ehendh both are
used to structure data. The difference is that array exjoresgy/pically involve
index variables. Since Katana is not aware of the possibleegaf symbols,
it is not possible to separate between different array eftsnghen a variable
is used in an index expression. Katana therefore treatefdtences of an
array as equal references to a single variable. There isvesvoae exception:
two array expressions can be separated if the index expressi both cases
are single constant only. In such cases, the names of thg cafestants are
treated like data-structure field names. This is most likelyunusual way to
use arrays, but was observed in industrial code during thkiation and this
exception was therefore implemented in the MXTC tool.

Function pointers can be resolved in two ways. In order to ding func-
tion pointer calls of already known model functions, e.gMi&functions, the
solution is straight-forward and similar to how normal geits are handled in
Katana. Whenever a model function is detected, for any readbstatements
are identified where the address of the model function igyassli to a func-
tion pointer. The forwarding of the function pointer is thexplored (i.e., all
aliases of the pointer) with the purpose of finding functiomgper calls, which
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are added to the callers list of the model function. The séaase is when a
function pointer call is found in a potentially model-redex statement, i.e., an
LMR function pointer call. In this case, the called functipointer might not
be previously known, and must in that case be backtrackertier ¢o find all
possible functions to which the function pointer may reféis is a bit similar
to general pointer analysis, but unlike traditional pairagealysis, this is not a
whole-program analysis which resolves every pointer irpttogram. This is a
limited analysis of specific function pointers which haveh&ncountered in
relevant statements.

Note that the proposed solution for handling function peistis however
not yet implemented in the MXTC prototype. In the MXTC evalaa pre-
sented in Chapter 6, the source code was modified in ordeplacesall func-
tion pointer calls with equivalent static function calls.

5.1.8 Library Routines

Library routines, for which the source code is not availabén be ignored by
Katana if they are reentrant, i.e., without side-effectsarples include most
math library functions, e.gabs() ,sqrt() andcos() . When calls to reen-
trant library functions are found in a model-relevant stetat, Katana will skip
the function body and instead directly explore the argusehthe function.
This assumes that identical library functions are avadatkthe target simula-
tion environment. Calls to non-reentrant library funcdike “memcpy” and
“sprintf”, which write to memory specified via an input paént are relevant
when a pointer to a model symbol is used as argument. In swegscall call
arguments become model symbols and are analyzed accordifghctions
which have other “hidden” side-effects (e.g., “malloc”)osid be specified
as model focus functions if their side-effects are relefanthe model. The
Katana input should include lists of reentrant and nontreenAPI functions.
If a function call is found to an undefined function which ig imothis list, it is
reported as an error.

5.2 Algorithm Efficiency

Since a particular symbol may be used at many locations indbece code, it
is crucial for efficiency to avoid repeating already perfechanalysis jobs, i.e.,
Sliceoperations with specific parameters. This is achieved wsmanalysis

cache a hash table where the parameters of each started analysisg stored
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at the very beginning of the analysis job, before any revarsalls are made.

Before a new analysis job is started, the analysis cacheeiskeld in order
to determine if the job has been performed already, or at leeen started
in another branch of the recursion. In that case, the spemifdysis job is
redundant and will therefore not be started.

The lookup in the analysis cache naturally require some coatipnal
time, both for constructing the key based on the parameteid@ search-
ing for the key in the analysis cache hash table. But the itapbthing is that
the recursion is stopped, so that repeated redundant asalys avoided.

Since the analysis cache is implemented using a hash talites theoret-
ical worst case, a lookup may correspond to a linear searcererthe match
is not found until all entries have been checked. This is awextremely
pessimistic; in the average case a hash lookup is quiterfagth faster than
repeating the analysis of an expression every time it occurs

Since each symbol reference is analyzed at most once areltbiese re-
cursive analysis jobs represent the core operation of than@aalgorithm, the
runtime of Katana is typically linear to the output (slicides The memory
usage of Katana mainly depends on:

* the size of the symbol database, which typically is dongddty, and
directly proportional to the program size, specifically thember of lex-
emes, symbols and symbol references,

* the recursion stack size, bounded by the number of syméaots,

« the analysis cache size, also bounded by the number of gmbo

Thereby, the memory usage is typically linear to the progséra, since
only identifier lexemes have symbol references, and usweally one each.
The theoretical worst-case complexity is however hardeeason about. The
number of analysis jobs is in worst case equal to the numbeniglue symbol
expressions in the code, which is a measure of program sizeyéd do not
know how the runtime of an individual analysis job dependgtenprogram
size, since the lookup operations on the symbol databasenéyrelefined on
a high level, leaving much to the implementation. The alhjonic complexity
these, on which the algorithm relies on, is therefore unkmdwthe prototype
implementation of Katana, this depends on the API of the stdad tool for
which the source code is not available for study.
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5.3 The Katana Algorithm

Formally, the Katana algorithm can be described as a fumdtiatang which
takes as input a set of model focus functions, and returns @séaining the
relevant statements (i.e., the program slice). This maietfan depends on a
set of functions with recursive dependencies, as depigtdtidure 5.6.

e D
s

Figure 5.6: The Katana algorithm illustrated

Figure 5.6 illustrates the relations between the Katanatfons. In this
graph, nodes correspond to the functions presented latbisirsection, and
edges to call-by relations, i.e., the propagation and actation of analysis
results. The edge frofunctionSliceo Katanameans thaFunctionSlicere-
turn results toKatana and thereby implies thd€atana calls FunctionSlice
Note that this description does not include all aspects daKa In order to
simplify the conceptual understanding several detailehsen omitted, for
instance the analysis cache, the handling of symbol rederiters and details
regarding detection and considerations of LMR and GMR fionst These as-
pects have however been extensively described previausitys chapter. This
section mainly focuses on the recursive exploration of tlog@am dependen-
cies, through the symbol database representation.
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In the following function definitions, the following datadgs are used:
SymbalStatemenandBoolean Braces are used to indicate sets of items with a
specific datatype (i.e{,Datatype}). The following notation is used to specify
the datatypes of function parameters and result:

Name : Datatype, Parami, ..., Datatype, Paramy — Datatype

First presented is the functio@nEachandOnEach2 commonly used in
the later algorithm description. These are not visible i ithustration (Fig-
ure 5.6) in order to make the algorithm illustration moredaae. However,
most edges in the illustration correspond to an OnEach tiparadn the below
definitions,ltem represents any datatypg¢.; andfF 2 represent any function
which return a set of statements and which takes one or twanpeters, re-
spectively.

OnEach : Function F1, {Item} S — {Item}
OnEach applies a functiop to every element in the s& and returns the
union of the function results.

OnEach(F,S) = U F(x)
z€S

OnEach2 : Function F, {Item} S, Item a — {Item}
OnEach2 allows for functions with two parametefs (where the second,
is common for all items irs.

OnEach2(f, S,a) = U I (z,a)
zeS

Several other supporting functions are used in the belowtiom defini-
tions. These are presented informally in Section 5.4 andespond to low
level analyses using the symbol database functionalipicfly lookups of
references and various analyses performed on lexeme-level
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Katana

Katana: {Symbo} MFFs— {Statemert

The main function of the Katana algorithm, which returnsradidel statements
of relevance, with respect to a set of model focus functi@measented as
Symbols.

Katang MFFs) = OnEacl{FunctionSliceMFFs)

FunctionSlice

FunctionSlice Symbol Sym- {Statemerit

Returns all statements of relevance for the execution of defnfocus func-
tion, represented as a Symbol. This include all statemawtdvied in deciding
when the function is called and all statements which impaetalues of the
arguments.

FunctionSlicéSyn) =
OnEacttSlice AllCallArgs(Sym)) U
OnEact{SmtSliceAllCallers(Sym))

Slice

Slice: Symbol Sym- {Statemerjt

Returns all statements of relevance for the specified symbglthe backwards
slice. Since the slicing is not control-flow sensitive, tlesult includes all
statements which may impact the symbol at any point in thgnara.

SlicegSym =

DDSlicgSyn) if =IsFunqSymA
—lIsParan{Sym)

DDSlicgSym U OnEach2ParamSlice

CallerSmt$DefFun¢Sym)), Sym) if IsParan{Sym)

DDSlicgSym U

OnEact{ReturnSliceReturnSmtsSyn)) if IsFungSym)
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DDSlice

DDSlice: Symbol Sym- {Statemerjt

Returns all statements of relevance for direct or downstraasignments of
the specified Symbol. A downstream assignment is an assignm®ugh a
pointer dereference, where the specific pointer has beémnasisthe address
of the specific symbol, either directly using the “addreBseperator, or indi-
rectly, from another pointer variable.

DDSlicgSyn) =
OnEact{AsnSliceAsnSmt&sSym)) U
OnEachDownStrSmtPtruseSmtESyn))

ParamSilice

ParamSlice Statement SmtSymbol Sym- {Statemerit

Returns all statements of relevance for the execution o$pleeified function
call (Smt) as well as statements of relevance for the funaigument match-
ing the specified formal parameter, Sym.

ParamSlicéSmt Synm) = SmtSlicéSm) U Slicg ArgOfParan{Smt Syn))

SmtSlice

SmtSlice Statement Smt {Statemerjt

Returns a set of statements containing the input staterSemt) @nd all other
statements of relevance for the execution of Smt, i.e.,wrding conditions
and all statements of relevance for these conditions.

SmtSlicéSmy = {Sm} U OnEact{CondSliceCondSmtsSmy)
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CondSlice

CondSlice Statement Smt {Statemerjt

Given a statement, CondSlice gives a set of statementshwbica condi-
tion statement includes all statements of relevance focanelition. For other
statements (without conditions), the set only containsrtpat statement.

CondSlicéSm) =

{Smt U OnEacl{Slice SymboléSmi) if | CondSmt&Sm) |> 0
{Smt if | CondSmt&Sm) |= 0

AsnSlice

AsnSlice : Statement Smt, Symbol Sym — {Statement}
Returns all statements of relevance for a specific assighstatement (Smt).
They are:

1. Alllocal control-flow statements (conditions) who dilgémpact when
the control-flow reaches the specific statement. This cporeds to the
use of SmtSlice on Smt.

2. All statements of relevance for the source parts of thigyaseent, ex-
cluding arguments to function calls. Call arguments ardyaed later,
when formal parameters of the called function have beendoelevant
with respect to the function return value.

3. If the Symbol is a global variable, all calls of the scopediion and all
statements controlling these calls are also includededimey are GMR
functions. Otherwise, relevant function calls might beleded, when
they do not have parameters.

AsnSlicéSmt Syn) =
SmtSlicéSmy U
OnEact{Slice SymbolsSm}) U
OnEact{SmtSliceAllCallers(Sm}), if IsGlobalSyn)
SmtSlicéSmy U
OnEact{Slice Symbol§Smy}), if —IsGlobalSym)
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DownStrSmts

DownStrSmts Statement SmtSymbol Sym- {Statemerjt

Returns all statements of relevance due to dereferengmassnts of pointers
“forwarded” from the symbol Sym, i.e., when the address ahSgr an ad-

dress stored in Sym) is used in an assignment, function célinztion return.

The resultis an empty set if the “forwarded” pointer is nadig any relevant
dereference assignments.

1. If Smt is an assignment, where the address of Sym is olota@ind as-
signed to a pointer variable, then Sym is analyzed recuysive

2. If Smt contains a function call where Sym is part of a cafjumnent,
where the corresponding formal parameter is of pointer,tfhpen Sym
is analyzed recursively.

3. If Smt is a return statement where Sym is returned and thetifun is
of pointer datatype, then all calls of the function, i.el, wdes of the
function return value, are analyzed recursively.

DownStrSmisSmt Syn) =

OnEacl{Slice AsnTargetéSmt{ Sym)), if —IsCallArg(SmtSymV
—IsReturnedSmt Syn)

OnEacl{Slice AsnTargetésSm{ Synm)) U

SlicgParamOfArgSm{ Syn)), if IsCallArg(Smt Syn)

OnEact{Slice AsnTargetéSmt Syn)) U

SlicgContextFun¢Smy), if IsReturnedSmt Sym)
ReturnSlice

ReturnSlice Statement Smt {Statemerjt
Returns all statements of relevance for the specified retatement.

ReturnSlicéSm) = SmtSlicéSmj U OnEacl{Slice Symbolé§Smi)
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AllCallers

AllCallers: Symbol F— {Statemerjt

Returns the function call statements corresponding to afiers graph of the
specified function, i.e., all direct and indirect “incomfrignction calls.

AllCallers(F) = CallerSmt$F) U OnEacl{AllCallers, CallerSmt$F))

5.4 Supporting Functions

The following supporting functions are assumed by the dédimbf the Katana
algorithm in Section 5.3. They correspond to low level asafyusing the
symbol database functionality, typically lookups of refeces and analyses on
lexeme level.

» AsnSmts Symbol — {Statement}
All statements where the specified model symbol is assigned.

IsGlobal: Symbol — Boolean
True if the symbol is a global variable, else false.

» Symbols Statement — {Symbol}

All symbols in the specified statement, excluding functi@h ergu-
ments.

PtrUseSmts Symbol — {Statement}
All statements where a pointer to the specified symbol istetka

» AsnTargets (Statement, Symbol) — {Symbol}
All symbols assigned from the specified symbol in the spetifiate-
ment. In most cases there is only one target symbol, but thesebe
multiple symbols for statements lille= b = c;

» ParamOfArg: (Statement, Symbol) — Symbol
Gives the formal parameter symbol corresponding to theifspedunc-
tion call argument symbol in the specified function call etaént.

* ArgOfParam: (Statement, Symbol) — Symbol

Gives the call argument in a specified call statement cooredipg to the
specified formal parameter symbol.
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AllCallArgs : Symbol — {Symbol}

Gives all arguments (symbols) used in any call of a particiulaction,
specified as a Symbol.

ContextFunc Statement — Symbol

The function where the specified statement is located.

DefFunc: Symbol — Symbol
The function in which the provided Symbol is declared.

IsCallArg : (Statement, Symbol) — Boolean

True if the specified Symbol is an argument in a function aalthie
specified statement, else false.

IsReturned (Statement, Symbol) — Boolean

True if the specified Symbol is referenced in the specifiedrnestate-
ment, else false.

IsParam: Symbol — Boolean

True if the specified Symbol is a formal parameter of a fungtielse
false.

IsFunc: Symbol — Boolean

True if the specified Symbol is a function call, else false.

CondSmts Statement — {Statement}
Gives the statements of direct relevance forakecutiorof the specified
statement, in the local function. This includes:

1. all conditions of enclosing selections and loops,

2. all break and continue statements of enclosing loops, and

3. all return statements.

CallerSmts Symbol — {Statement}

Returns a list of statements corresponding to all direds cdila specified
function (the Symbol).

ReturnSmts Symbol — {Statement}

Returns a list of statements corresponding to all returieistants in a
specified function (the Symbol).
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5.5 Katana Compared to Related Work

Sandberg et al. [27] propose a program slicing method c&ietpleSlice
which like Katana does not depend on a pre-calculated demeydyraph such
as an SDG. SimpleSlice starts from a set of variables andpesfa fix-point
iteration over all assignments in the code. Any statemeiitivpossibly may
affect the specified variables are added to the output set plitpose of Sim-
pleSlice is to allow for faster WCET analysis by computindieesfor all vari-
ables used in control-flow conditions of the program. Anyestaents not in
that slice cannot impact the program control-flow and carethyebe excluded
from the flow analysis step of static WCET analysis, in oradergduce the
computation time.

Like most existing slicing methods which support point&isypleSlice as-
sumes that a points-to analysis has been performed andqaddupoints-to
set for each pointer, containing the variables possiblytesi to by the specific
pointer. This is a major difference compared to Katana. $®lice and SDG-
based methods resolve pointers beforehand, in a sepamtesio” analysis,
e.g., using the Steensgard approach [73]. In contrastnidadaes not keep
track of what symbols a particular pointer may refer to. Kataimply in-
cludes all statements which forward the address of alredeytified model
symbols and where the pointer forwarding may reach a retgainter deref-
erence modification (e.g., assignments klgr = x;  or some library func-
tion calls likememset(ptr, ...); ).

Enabling support for function pointers however requireggpte form of
points-to analysis, as discussed in Section 5.1.7. Thdiumgointer extension
of Katana is however not applied on the whole source codehi&&teensgard
method, but only on relevant statements and pointer vasaklhich forwards
addresses of newly identified model functions. The analgsémilar to the
analysis of normal (data) pointers, but instead of seagcfindereference as-
signments, the analysis searches for function calls tHrttugfunction pointer,
in order to add the call to the caller list of the model funatio

Unlike Katana, SimpleSlice treats data structures aseiayiiables. Thus,
if SimpleSlice find a particular field of a data structure vald, it will include
any statement assigning any field of that data structure.eMar, the Sim-
pleSlice approach is only presented for intraproceduiahsg}, i.e., within the
scope of a single function, even though it is claimed thaait lbe extended for
interprocedural slicing using standard methods.

Another example of a slicing tool which does not use the SD@B@ach is
the research prototyeprite[69, 70, 68]. In Sprite, the control-flow of each
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function is only represented in an intraprocedural manndraseparate call-
graph is used for representing interprocedural control flhve data-flow anal-
ysis is performed using the control-flow graph (CFG) repméstion. Like Sim-

pleSlice, the Sprite tool is flow-insensitive and uses theeSsgard algorithm
[73] for pointer analysis. An interesting aspect of thidisthat it computes all
program representations on demand, to the extent it istdessihe CFGs and
points-to information is calculated on the first slice congpion, while control-

dependencies and data-flow information are calculated oradd during the
slicing. This is also the approach of Katana, but Katana énewaore “on de-

mand” than Sprite, only the symbol database is pre-cakedlaKatana does
not use the CFG representation but instead performs itg€kincontrol-flow

analysis on the lexeme level.

Compared to traditional SDG approaches, which typicalyflaw-sensitive,
both SimpleSlice and Katana dlew-insensitivemeaning that they do not take
control-flow (fully) into account. Katana, for instancesames that all assign-
ments of a relevant symbol are relevant, even though sorignassnts may be
“killed” by later assignments of the same symbol. In corrafiow-sensitive
approach uses an exact model of control-flow and can theexhpve more
statements due to the control flow constraints. Katana canteaded to allow
for flow-sensitive slicing using the same conceptual apghpaut it has not
been investigated how that would impact the efficiency ofalgerithm or the
accuracy of the result. This is planned for future work.

The author is aware of two commercial tools with support foygram
slicing or dataflow analysis: Grammatech CodeSurfer [12@8] Enagix 4D
[135]. CodeSurfer explicitly supports program slicingingsa variant of the
SDG approach proposed by Reps et al. [21]. The CodeSurferst@ospin-
off from the Wisconsin program slicing group, headed by Htnand Reps,
who originally proposed the SDG-based approach to progliaing At their
website [121] they state that CodeSurfer is limited to a maxnh of 200.000
lines of code.

Imagix 4D is not claimed to do program slicing, but has a featalled
“Calculation Tree” which identifies the statements whick awvolved in the
dataflow which define a specific variable. This is very simiteprogram slic-
ing. The difference is that Imagix 4D does not produce a fxdicaitable slice,
since it does not perform analysis of relevant conditionstfe identified state-
ments. It is not known what method that is used in Imagix 40, l3&s not been
published, from what the author could find. It seems to bedetszcret of the
Imagix Corporation. It however seems likely that also tbisl uses the SDG
or similar approach. The SDG approach has dominated thandsécus in
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program slicing since the early 1990’s and Imagix 4D seentsate similar
scalability problems as CodeSurfer, which is known to useSBG represen-
tation. Using the Calculation Tree analysis of Imagix 4Duiegs many hours
of analysis for larger code-bases, as presented in ChapRureng this time,
the tool probably generates some type of model of the whalgram, since
this step is very time consuming but only necessary oncedch eroject, and
once this is completed there is no significant delay whengusie Calculation
Tree feature.

A big difference between Katana and other slicing approachi¢he use
of a symbol database as program representation, insteadief advanced
representations, such as the CFG, PDG or SDG. The Katanaagbpavoids
computationally costly analyses of the whole program, sagltonstructing
an SDG. In Katana, only statements which are known to be (at tileely)
relevant are analyzed in detail, while the others are ighoféne only whole-
program analysis is the initial generation of the symbobHaste, but this is
very fast, as indicated by the performance evaluation ptedgn Chapter 6.

5.6 Limitations of Katana

This section presents the conceptual limitations of theKatlgorithm, which
is not the same as the current status and implementatiotatioris of the
MXTC prototype implementation, presented in Section 6.he Tain con-
ceptual limitation of Katana is that it is unaware of the ne@&mory addresses
of symbols and functions, which makes it impossible to nesgointers as-
signed direct explicit addresses, i.e., from literal egpi@ens, or pointers which
are modified using arithmetics. For the same reason, statsmiich modify
relevant data trough accidental buffer overflow or “rougafers” are not de-
tected. Typecasting between different datastructuresotibe followed with
maintained accuracy; all fields of the new data structureansidered as rel-
evant in this case. Unions are treated like normal datatstres (struct), and
unstructured, mixed use of union overlays, where differ@entifiers refer to
the same data, will not be handled correctly.

These limitations are however not unique for Katana but plesent for
tools using more detailed but less scalable analysis metHodinstance the
commercial tools Imagix 4D [135] and CodeSurfer [123]. Hoer cases of
pointer arithmetics, problematic typecasting and unstined union usage can
at least be detected by a tool implementing Katana. Suchrstatts are often
“shortcuts” which could have been implemented in a morecttined (and an-
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alyzable) manner. Itis therefore fair to assume that theemad modify such
statements in order to make the code analyzable and to impt®general
maintainability.

Katana is not fully control-flow sensitive, but this is not@nceptual lim-
itation of the algorithm. It does not limit the applicabyliand it is possible to
extend Katana to support at least intraprocedural cofitral-analysis without
conceptual changes of the algorithm. This change only itsgghe implemen-
tation of AsnSmts andPtrUseSmts , which are “supporting functions” of
Katana, as presented in Section 5.4.

5.7 Possible Extensions of Katana

This section presents possible future improvements of thia algorithm
on a conceptual level. Note that these extensions do nottréfe current
implementation status of the MXTC prototype. The statuhefMXTC tool
and remaining issues can however be found in Chapter 6.

Flow-Sensitivity: The Katana approach (and the MXTC prototype) is in
the described version flow-insensitive, meaning that aliggsnents of a rele-
vant variable are considered relevant. This is an overemation, since not
all assignments may reach the relevant statement whereg#uifis symbol
is used. During studies of industrial code, several cases haen observed
where a single local variable is used for several purposegs, ® store re-
turn values from different, possibly completely indepamntdanctions. In such
cases, a control-flow sensitive approach would give a mocerate result
(smaller output models). Even though the control-flow asialwill require
extra analysis in order to exclude some statements, thisao@mally reduce
runtime when the reduction in output size is large, as thémeof MXTC is
mainly dependent on output size, not the total program size.

Task Dependency Analysis:In many embedded systems, tasks commu-
nicate using various methods forterprocess communicatipor IPC, typi-
cally message queues. An IPC message is typically a datdistelcontaining
several fields. Normally, a set of “standard” fields are akvayailable, such
sender ID and message code, i.e., how to interpret the réet aofiessage. Cur-
rently, Katana does not treat IPC functions differentlyntiogher model focus
functions, so all arguments of IPC operations are consiterievant, includ-
ing all parts of sent IPC messages. However, it is not cetteh all fields
are actually used by the receiving task, especially in trdeaesulting from
the model extraction. An interesting optimization wouldtbeinstead of as-
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suming that all fields of outgoing IPC messages are releidatttify the fields
in outgoing IPC messages actually used by the receiving tiastke resulting
simulation model. This way, unused message fields can badeaifrom the
analysis, which most likely leads to reduced model size.

Manual Abstractions: An interesting extension is to provide support for
manually specifieanodeling abstractionswhich may reduce the output size
significantly. An obvious type of abstraction would be tolese a condition
with a constant, or a probabilistic expression, in ordenxtdwe the condition
variables from the model and thereby possibly all statemeritich impact
those variables. However, in order to benefit from such abgtms.all refer-
ences to a specific variable must be removed. It is importetthe modeling
abstractions are valid with respect to the purpose of theamdait typically
one could exclude error-checking conditions if the moddbisaverage case
performance analysis. Based on seven years of researcigdunich several
industrial software systems have been studied with sinaulahodel extrac-
tion in mind, it is the author’s belief that a small amount afe&fully selected
modeling abstractions in many cases can reduce the moeéesigjzificantly.
The modeling abstractions can be stored as code annotétiomsnents) ad-
jacent to the condition in focus. Thereby, the modeling r@osibns remain in
the code for automated reuse during future model extragtion

Supporting C++: Another possible extension is to support C++. Katana
is currently limited to C. An extension to full C++ support, ather object
oriented languages, is probably possible but most likelgh&++ is often
claimed to be a nightmare for reverse engineering tools duanguage fea-
tures like templates, virtual functions, operator ovediog, multiple inheri-
tance and exceptions. However, in many embedded systetyssroall parts
are written in C++ and these parts often only use basic feataf the C++
language. A realistic extension of Katana in this directiauld be to support
a limited subset of C++, e.g., Embedded C++ [128]. This cdddufficient
for many systems.



Chapter 6

A Model Extraction Tool and
Evaluations

This chapter presents an implementation of the Katanaighgopresented in
Chapter 5. The tool is namddXTC — Model e&tractionTool for C. This
chapter presents this implementation and three evalisapenformed using
industrial code:

» A performance evaluation of “Understand for C++", a comamartool
used for constructing th&ymbol database.e., the program representa-
tion used, as discussed in Chapter 5.

» An evaluation of MXTC for simulation model extraction, pemrmed us-
ing two 3rd party software systems, where one is a subsystekBBs
highly complex control system for industrial robots.

» A comparison between MXTC and two commercial program asigly
tools, CodeSurfer and Imagix 4D, with respect to generajjfanm slic-
ing, specifically the scalability and accuracy of the tools.

As introduced in Section 2.4.1, program slicing is a typerofypam analy-
sis which identifies all program statements of relevancafoarticular slicing
criterion, typically a particular variable at a particufgint in the program.
Program slicing is a key analysis in this approach to autedchatmulation
model extraction and is realized using a novel approach étter scalability
compared to existing approaches.

139
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6.1 MXTC — Model Extraction Tool for C

MXTC is a research prototype tool with at least two uses: &timn model
extraction and general program slicing, e.g., for programgrehension pur-
poses. The tool is designed for analysis of ANSI C progranhg @+ is not
yet supported. The common GCC compiler implements sevetahsions of
ANSI C, of which some may cause problems for MXTC in its cutiiemple-
mentation, such as nested functions and loop statemeids iegpressions.

When used for model extraction, its original purpose, tlktikes as input
a list of model focus functionss presented in Chapter 5. Being a prototype,
MXTC does not yet output executable model code; the currersien outputs
a log file, which lists the statements and symbols of relegdacthe model,
i.e., themodel statementand model symbofs The MXTC tool is however
intended to produce a set of code files containing a simulatiodel for the
RTSSim simulation framework, presented in Chapter 3. Timeisition model
is a filtered version of the original code, with additiofi&aecutestatements
added to model the tasks’ consumption of CPU time.

When used for program comprehension, the tool takes as mingle
symbol reference, i.e., a symbol name and a program pointervespeci-
fied symbol (e.g., a variable or function) is used. The progpmint is used
to uniquely identify the symbol in the symbol database. Thalysis is not
control-flow sensitive, so any reference of a specific syngbals the same re-
sult: all statements possibly affecting the value of the lsghnat any location.

The MXTC tool can produce graphical output, an image showidgpen-
dency graph over the identified model statements and symhbdkbles. This
was initially a feature intended to facilitate debuggindXTC, but has been
found to be interesting for general program comprehensfm example of
the dependency graph output is provided in Figure 6.1. Thelgimage is
generated automatically using the DOT tool [126], based taxgfile (in the
DOT input format) produced by the Katana analysis.

In the generated visualization, there are two main nodestyfsatement
nodes (blue) representing model statements and symbosifceth represent-
ing model symbols, except for function return values. Nbg this illustra-
tion does not show the statement execution order, only dgiartiencies and
control-flow dependencies with respect to conditions. Riadishaped state-
ment nodes (i.e, blue) represent conditional statemesets,Joops and selec-
tions. Hexagon-shaped symbol nodes (i.e., red) reprefmntsl parameters

1As introduced in Chapter 5, a model symbol refers to a vagigmrameter, constant or func-
tion discovered in a model statement, i.e., a statementftube relevant for the model.
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of functions, while ellipse-shaped symbol nodes reprefssttion return val-
ues. There are two main types of edges. Blue edges represenleflow de-
pendencies between conditional statements and enclosadigyl) statements,
while red edges correspond to data-flow dependencies. Asdpase is dot-
ted red edges, which represent dependencies between syamuabtonditional
statements where they are used. #he the statement nodes indicates the line
number where the statement starts. There are many oppgetuior improv-
ing the graphical output of MXTC since the visualizationreutly produced

is a result of only a minor development effort.

demo (bug12.c, line 6)

#9 int max = 10;

y
int max
(Local Object)

#12 for (| =0; i<max; i++)

|n! i

#10 int sum = 0; (Local ObJect)

int sum

(Local Object) #14 if (| % 2

#11 int* sum ptr (amp) sum; #16 sumJtr += square(i); <
\\
lT \sq'.@\e (bug12.c, line 1)

int * sum_ptr int param
(Local Object) (Parameter)

l

#3 return param*param;

\

Returnvalue of square

Figure 6.1: An example of the graphical output of MXTC
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MXTC is a Perlimplementation relying on the Perl API of theltdUnder-
stand for C++" [138]. The Understand tool is a commerciatéree engineering
tool which parses source code and constructs a databasethetaaithor calls
asymbol databasen index over the source code describinggihbolsn the
code, such as functions, variables and parameters, ane Wissrare declared,
assigned and used. The symbol database also contains tice sode in to-
kenized form (lexemes). The symbol database constitugepribgram model
on which the Katana algorithm is based, as described in @h&pt

The Understand tool was selected as a base for MXTC since istiavn
to be very fast in processing large amounts of source codaiand it is pro-
vides both C and Perl APIs with good documentation and maagng¥es. The
choice of Perl was mainly since the Perl API has better doctiatien; the
author was initially not aware of the C API. Perl is howevet advad choice,
it a widely used and mature script programming languagenfoch there are
many code examples and free libraries available. Perl hiagersupport for
regular expressions and hash tables, which has been valubbh implement-
ing MXTC. While being a scripting language, Perl is claimede quite fast
since the interpreter uses Just-In-Time (JIT) compilatidowever, in a bench-
mark [143] comparing C++, Perl, Python and PHP, C++ is abdim8s faster
than Perl. In another set of benchmarks [144], the C++ implaations were
64 — 120 faster than the corresponding Perl implementatidihese bench-
marks were however trivial programs containing a singlerafien, executed
in a loop. However, it seems likely that porting MXTC from Pr C/C++
would reduce runtimes significantly.

The development of the Katana algorithm and the MXTC toolrkgsired
a substantial effort, even though the author did this aldftee development
started in January 2008 and lasted until October 2009, wieewaluation and
documentation phase started. Well over one person-yeapwadato this de-
velopment during this time — quite a lot for an academic regearototype.
MXTC consists of around 9000 lines of Perl code, not countiregUnder-
stand API. The relatively long development time was pdytsihce the overall
algorithm was fundamentally changed two times during tloeg@ss. This since
it was hard to identify all requirements of the solution aakit them into ac-
count during the high level algorithm design. Problems vwiestead realized
later during implementation which caused major re-designok three at-
tempts before a suitable algorithm design was found. Anmgtheblem was
that the Katana algorithm turned out to be quite hard to imelet and verify,



6.1 MXTC — Model Extraction Tool for C 143

since most analyzes are made on demand, in a Sipgles analysis. This is
however also believed to be the key to scalability.

As mentioned, MXTC does not yet output simulation modelsnily lists
the relevant statements. In order to reach a state wherethedn output
compilable RTSSim simulation models, the following issteEsain:

1. A solution for handling references of irrelevant symbiolsotherwise
relevant model statements, as discussed in Section 5.1h& g the
main issue preventing output of compilable simulation niede

2. Identifying and reporting all occurrences of pointettarietics, i.e., mod-
ifications of pointers using arithmetics, as discussed ictiGe 5.1.7.
MXTC/Katana is not aware of the memory layout, so any suchtgoi
manipulations of relevance would be missed, which is a mealéity
threat.

3. Resolving function pointers, using the method propos&eiction 5.1.7.
This is important for the model validity, since function lsathrough
function pointers otherwise would be missed.

4. Allowing for timing accurate simulation. From the persipee of MXTC,
this requires:

(a) ldentification and enumerationtirhe synchronization poin{3 SPs),
i.e., points in the simulation model where the simulatioockl
should be updated with respect to run-time measurementsserh
corresponds to calls of model focus functions and all kirfdssk
inputs and outputs, e.g, IPC and use of global variablesedhze-
tween tasks.

(b) Adding Executecalls in the model code at the TSP locations, in
order to models the consumption of CPU time as presented-Chap
ter 3. In the envisioned solution, this data is sampled frammang
profile, constructed from recordings as presented in Section 7.5.

The MXTC tool is currently limited to preprocessed code, athiequires
that the code is preprocessed before constructing the dytatadase using the
Understand tool. In this activity, which is the first stepfpemed by C compil-
ers, all preprocessor directives are resolved, such asosiaand each source
file is merged with the included header files. The limitatiorpteprocessed

2|f not counting preprocessing and symbol database coristnuc



144 Chapter 6. A Model Extraction Tool and Evaluations

code is necessary since complex macros, e.g., containiegadestatements,
otherwise may cause serious problems for MXTC since theysisals per-
formed on source-code level. Most compilers can outputrpegssed code,
including GCC and Microsoft Visual C++, and typically qudaickly. This is
therefore not a problem if all header files are available.

6.2 An Evaluation of “Understand for C++”

The Understand tool was selected as a base for the MXTC tonoé st is
claimed (and was also found to be) capable of processing langounts of
source code in little time. In order to investigate the doiity of the sym-
bol database approach used by MXTC/Katana, a performaradeation has
been performed of Understand, focusing on the time to cocisthe symbol
database from source code. The specific version of the Utaahersool was
version 1.4, build 449. The results are presented in Talile 6.

Table 6.1: Measured parsing times of “Understand for C++”"
Name LOC ExSmt | Functions| Files | Runtime (s)
ABB-1 1083604| 448963| 9728 1699 | 118
ABB-2 183492 | 81203 | 3116 416 | 16
ABB-3 136537 | 83118 | 3125 89 14
ECU 41320 18515 | 1169 324 | 5
RTSSim || 3802 1572 152 58 2

The computer used for this experiment was a Dell LatitudeOBddptop
from 2009, equipped with an Intel P8400 CPU (2.26 GHz), 4 GERAM,
a Western Digital WD1600 hard drive and used Microsoft WindXP SP3.
The first three cases correspond to different subsystentedRC 5 control
system for industrial robots, developed by ABB Robotics8[1The ECU case
is the whole source code for a vehicular control unit, predithy an anony-
mous company. The RTSSim case is the simulator framewordepted in
Chapter 3. Th&OC metric, Lines Of Code, is the number of source code lines
containing actual code, i.e., excluding comments and efimg. The metric
ExSmtis the number of executable statements, which also exchyges and
variable declarations.
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Figure 6.2: Parsing times of “Understand for C++”, obserard extrapolated

Figure 6.2 shows a plot of the data from Table 6.1 with a resjoescurve
generated using Microsoft Excel, with the equatsonl0 = * 22 4+ 8 x 1072 x
x + 1.8954. A second degree polynomial function was found to produbed t
best fit. TheR? value is an indication of how well the curve fits the data; the
scale is from 0 — 1 where 1 corresponds to a perfect fit. Thertep®&? of
0.9998 indicates that the curve fits the data very well. Harenly five data
points were used. Since three data points is the minimum eufobdefining
a second degree polynomial, there are only two additionahtiol points”,
which is a bit low. A few more would strengthen the validitytbfs analysis.

Assuming that this equation is correct, the runtime is esagnlinear for
small- and medium-sized systems (note that the diagrane $ealot linear
but logarithmic). There is a quadratic term but its coeffitis very small,
which makes its impact negligible for smaller amounts ofecoHor instance,
at 100000 lines of code (100 KLOC) thé term is only accountable for about
3 % of the predicted runtime, 10.2 seconds. Theontribution does not reach
50 % of the total until at around 2.67 MLOC.

The predicted runtime at 10 MLOC is 3802 seconds, i.e., a®uiinutes.
This is probably most acceptable for large industrial systesince this is typi-
cally much less than the build time for a system of this siZee(omany hours)
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and it is only necessary once per system version. MoredverJnderstand
tool allows for incremental update. This means that oncenaptete symbol
database has been constructed, the following updates améyth analyze the
modified source files. This reduces the analysis time coreditie

The author believes that performance of the Understandcmokes from
its light-weight program representation; it does not seemgéanerate abstract
syntax trees (ASTs) or control-flow graphs (CFGs) during @halysis, but
instead operates directly on the lexeme level, i.e., tadexhsource code. This
is not known for sure, but seems likely since the performassignificantly
higher compared to tools using heavy-weight program mddeélSection 6.4),
and since the Understand API provides a lexeme library, baonresponding
AST or CFG functionality.

6.3 An Evaluation of Model Extraction

This section presents an evaluation of the proposed appfoaautomated
simulation model extraction, Katana, and of the MXTC togblementing this
algorithm, on two 3rd party, multi-threaded software systea proprietary in-
dustrial system (ABB IRC 5) and an open-source web servengdose). The
large ABB system has however not been studied in whole, onlyie small
subsystem. The evaluation focuses on the model extraatioimre and the
size of the resulting model. The amount of code is relatigahall compared
to the typical systems targeted by this work, but cases alepplications of
non-trivial size and complexity.

The results of this evaluation indicate that the MXTC toold ahe Katana
approach in general, scales to much larger programs thaorteg used in
this study, since the runtimes are short and, more impdytanginly depend
on the number of statements of relevance for the simulatiodet i.e., the
number of model statements, rather than the total size afagies. The only
explicit dependency between runtime and total programisifze the very first
step, the generation of the symbol database using the Uaddr®ol. This is
however a lightweight analysis which has been shown to b fast also for
millions of lines of code, as presented in Section 6.2.

6.3.1 Case 1 - SAF - A Subsystem of ABB IRC 5

IRC 5is an advanced control system for industrial roboteetiged by ABB [118].
It is a very large and complex software system, containingual3 million
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lines of code, mainly in C, and 50 — 100 tasks depending ongoration. It
is structured in about 10 subsystems, roughly correspgrtdisubject areas,
e.g., motion control, fieldbus communication, welding t@gaes, user inter-
face, etc.

The MXTC tool has been applied on the safety subsysf#k; which is
responsible for monitoring a large set of signals relategatiety and system
integrity. Some signals come from physical safety devisash as light/laser
sensors which detect if a human (or other obstacle) entersvtiiking area.
In such cases, the robot must stop immediately. Other sicaral related to
the physical state of the computer, such as CPU temperatdravailable disk
space. If an unexpected signal value (or combination ofps®oved, a suitable
action is taken, which usually means to stop the robot andhegrror.

The choice of the SAF subsystem for this evaluation was stggédy ABB
personnel since it was considered relatively independesht@t as business
sensitive than other parts, e.g., motion control. SAF i9phty the smallest
subsystem in IRC 5 and contains, in the version studied,tad 8061 lines
of code or 3994 executable statements. This includes gongjtassignments,
function calls, etc., but not declarations or initializats. This code is dis-
tributed over 6 tasks and 196 functions. In contrast, thezesaveral tasks in
the ABB system where each task contain thousands of furecéind hundreds
of KLOC. Although small, the SAF code is however rather cozmpl The
amount of conditional statements is almost twice as highAf 8s in other
subsystems studied.

Four SAF tasks out of the six are used in the evaluation. Twkstare
excluded since they only contained about 50 lines of codlk,dao little to be
representative cases. The model focus functions specHiétpat to MXTC
included all functions for IPC communication (in tHeC class), the semaphore
operations, anthskDelayin total 9 functions.

6.3.2 Case 2 - MG - The Mongoose Web Server

Mongoose [119] is an open-soufageb server and is included to broaden the
scope of this evaluation with a rather different system. Nose is a multi-
threaded application developed in C. It is a complete smhutif manageable
but non-trivial size, 2410 lines of code distributed oveT fidnctions and three
threads. It contains a large amount of conditional stateésne323 in total,
corresponding to 24.9 % of its 1 297 executable statements.

3Mongoose is released under the liberal MIT license.



148 Chapter 6. A Model Extraction Tool and Evaluations

For this case MXTC is configured for another type of modelamwtion,
focused on dynamic memory usage which implies three modekféunctions,
mallog callocandfreg, i.e., the standard functions for allocating and releasing
heap memory.

6.3.3 Results

This section presents results from applying MXTC on the tesalibed cases.
Figures are presented per task/thread as well as in totagliftasks of the
specific system. The author is not allowed to reveal the taskes in the SAF
case. The SAF tasks are therefore labeled SAF-T1 ... SARHTthSAF-ALL
refers to the whole SAF code. For symmetry, the Mongoose (k&Rs are
labeled in the same manner. The results are presented ia Gabl

Table 6.2: Results from MXTC on Case 1 (SAF) and Case 2 (MG)
Task/Case|| LOC | FI Sl Cl FO | SO CO || RT
MG-ALL || 2410| 107 | 1297 | 323 77 | 604 | 179 26
MG-T1 1969| 85 | 1010 | 246 62 | 531 | 166 | 23.2
MG-T2 705 31 | 379 71 15 | 97 27 6.6
MG-T3 223 |15 | 142 | 36 2 13 4 1.8
SAF-ALL || 6061 | 196 | 3994 | 1003 || 137 | 1967 | 643 | 186.2
SAF-T1 3592 | 131 | 2479 | 629 81 | 1137 402 109.1
SAF-T2 2710| 64 | 1666 | 477 52 | 990 | 343|| 123.6
SAF-T3 880 | 23 | 479 | 138 13 | 145 |49 || 6.9
SAF-T4 550 | 15 | 290 | 80 2 9 3 2.1

The columns of Table 6.2 have quite cryptic labels in ordentake them
short enough. Their meanings are:

* LOC - Lines Of Code: a measure of program size excluding oaiyments and

empty lines.

FI - Function In: the number of functions in the input code.

S| - Statements In: the number of executable statemenkgimput code. This

excludes comments, empty lines and declarations.

« CI - Conditions In: the number of conditional statements,, iselections and
loops, in the input code.

* FO - Functions Out: the number of model functions, i.e.cfions found rele-
vant, which are included in the output.

* SO - Statements Out: the number of model statements,tagensents found rel-
evant, which are included in the output. Like for SI, only exble statements
are counted.
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* CO - Conditions Out: the number of conditions in the output, conditional
model statements.
* RT - Runtime: the time required by MXTC to finish, in seconds.

Regarding the number of statements (LOC, S| and SO), notestimae
functions are used by more than one task, so the total nunfilséatements is
often smaller than the sum of the task sizes.

Diagrams of the Table 6.2 data are presented next in ordaciiddte inter-
pretation of the results. Figure 6.3 shows the number ofgabte statements
in total (SI), for each task and case, as well as the numbeodkistatements
identified by MXTC (SO). Figure 6.4 shows the number of modaiesnents
(SO) in relation to the total number of executable stateméi), per task and
in total. In most cases, the identified model statements @@espond to
between 26 — 59 % of the input code (SI), but in two cases ttatidres are
much smaller, 3 % and 9 %. These cases correspond to the shiafiks in
the study, with only 290 and 142 executable statementsecéigply. The rea-
son why these tasks are so heavily abstracted is that they duate simple
behavior and contain only few calls of the specified modelfdftinctions.

Figure 6.5 presents the runtimes of MXTC on the differenkgaand in
total. Figure 6.6 shows another view of the runtimes, ptbttmether with the
total size of the analyzed tasks (Sl) and the resulting meidel (SO), with a
linear scaling applied on the runtimes in order to fit thero ithie same scale.
From this visualization (i.e., Figure 6.6) it seem likelyetruntime is mainly
dependent on the resulting model size (SO) rather than otothksize of the
tasks (SlI). The scale factors, 10 for SAF and 20 for MG, weigseh to line
up the runtime data points next to the model size (SO) datagan order to
graphically compare their relation, since the hypothedilsat they are strongly
dependent.

One can argue that by using another scale factor it would bsilple to fit
the runtime data to the total size (Sl) data instead, sineeetheem to exist a
correlation between these as well. In order to objectivelestigate the cor-
relation between the data sets SlI, SO and Runtime, Micr&safl was used
to calculate correlation factors (i.e., a value between Qwitere 0 means no
correlation and 1 means total correlation). The reportecetation factor for
model size (SO) and runtime is in this case 0.979, while thieetattion factor
between total size (SlI) and runtime is only 0.913. Thus,gli®&a correlation
also in the latter case, but it is weaker, meaning that thémenis primarily
dependent on SO, i.e., the number of model-relevant statisnire the code.
This is very important for the scalability of the approach.
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Figure 6.7 shows the amount of conditional statements irirntpet code
(Cl/Sl) and in the identified model statements (CO/SO). @lesthe general
increase in condition density caused by the model extnacGonditional state-
ments are more likely be model-relevant than statementsrnieml, since any
model statement enclosed by a conditional statement wiBethe conditional
statement to be relevant as well. Both the SAF and MG casdsioaamlarge
amount of conditions, the percentage is 25 — 29 % for SAF and 29 %
for MG (i.e., 100*Cl/SI). As a comparison, a large subsethaf iotion con-
trol (MOC) subsystem was studied, containing 84 156 ex&teitstatements
in 3829 C functions. This code would have been very intangstis a larger
test case for the MXTC tool, but this was not possible sineeais not avail-
able in full. The condition density was however found to be-14& % for the
MOC code, i.e., about half the SAF condition density. Theandjfference in
condition density could mean that MXTC would perform betteMOC than
on SAF, in the sense that the resulting simulation modelddvoe: (relatively)
smaller. This since fewer conditional statements in totabpbly mean fewer
model-relevant conditions, which probably means fewer@hegmbols found
due to such conditions. With fewer model symbols, fewerestants should
be of relevance for the model.

The possibility for a correlation between condition densind relative
model size was studied on the SAF code, in order to see if thditton den-
sity could be used to as a predictor of model size. No sucteladion could
however be found, maybe because the variance in conditiims (@5 — 29 %)
was not large enough in comparison to the “noise” caused diy itidividual
differences, which may be large.

The relative model size does however not depend directihemtimber
of conditions, but rather on what variables used in the moelelant condi-
tions. If a model condition only refers to already includedisbles it does not
increase the model size at all. However, in a worst case 6ogeassingle con-
dition could depend on every variable and statement of thgram. Related
to this is a study by Harman et al. [17], which reported thegdalependence
clusters i.e., sets of interdependent statements, are very comiarman et
al. analyzed the source code for 45 open source progranhsgding common
programs such as cvs, gcc, sendmail and ftpd, and they rdgadmost of the
studied programs contain large dependence clusters.
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6.4 Katana Slicing vs. Commercial Tools

Program slicing is a general program analysis method withymses. The
author is aware of two commercial program comprehensiols teith support
for program slicing or data-flow analysis: Grammatech Caulfes [123] and
Imagix 4D [135]. This section presents an evaluation oféhesls on indus-
trial code and a comparison with MXTC, with respect to sciditsghaccuracy,
and type of analysis provided.

6.4.1 CodeSurfer

CodeSurfer, from Grammatech, Inc. [123], is a spin-off frdme Wiscon-
sin program slicing group, headed by Horwitz and Reps whgettter with
Binkley, originally proposed the approach to program slicj23] based on the
System Dependence Graph,®DG as discussed in Section 2.4.1. This is a
very detailed program model, which can be time-consumingptustruct for
larger amounts of code. They patented the SDG represaniatitf9?2 [22].
CodeSurfer is based on an improved version [21] on the ai@DG slicing
method. The website [121] of the research group headed byiktaand Reps
states that CodeSurfer is limited to maximum 200 000 linesooe. Complex
industrial systems may however contain millions of linesadie, and it is un-
clear if this is a practical limitation, in order to get a reaable runtime, or an
absolute maximum assuming no practical restrictions otimen

CodeSurfer can be configured in many different ways in ordlérade ac-
curacy for scalability. There are five level of accuracyhoild presets“super-
lite”, “lite”, “medium”, “high”, and “highest”. Interproedural program slicing
is only supported if using build presets “high” (CS-High) “tighest” (CS-
Highest). The exact meaning of the CodeSurfer build prasetgplained in
detail by the CodeSurfer documentation and from this it candncluded that
CS-High is actually less accurate than MXTC in some aspbuatsnore accu-
rate in others:

» CS-High is more accurate than MXTC with respect to intrapdural
control-flow, since MXTC is not fully control-flow sensitiveCS-High
can exclude irrelevant assignments of relevant varialdas, assign-
ments which are “killed” by later assignments of the vardixfore the
impact reaches the relevant code location. MXTC assuméesthas-
signments of a relevant variable are relevant.

* MXTC is more accurate than CS-High with respect to intecpdural
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data-flow, since it is “context-sensitive” with respect tmétion calls.
This means that MXTC separates between irrelevant andamieall-
sites when analyzing formal parameters.

* MXTC is more accurate than CS-High with respect to datacstines
since it allows for analysis of individual fields. In contra€S-High
treats all fields of a data structure as if they where a singtiable.

Which tool that is more accurate, CS-High or MXTC, thus defsean the
source code analyzed. CS-Highest however employs veryaecmethods
which should make it more accurate in all aspects comparbtXtoC. How-
ever, as presented later in this section, the scalabili@afeSurfer has been
found to be severely restricted and not suitable for analylarge industrial
systems, at least if using build presets “High” or “Highesthich are required
for program slicing.

The CodeSurfer documentation claimfith build presets high and above,
400 KLOC should usually be possible, given enough time ssidgiace” As
previously mentioned, the research group behind CodeSstdi¢es at their
website [121] that 200 KLOC is the upper limit. This figure magwever
be a few years old. Moreover, there are different ways of g lines of
code (LOC). The LOC figures reported by the thesis authowis fthe “Un-
derstand for C++”, specifically its “Lines Code” metric, whiincludes declar-
ative statements and executable statements, but not commreblank lines.
The author has however not found any information regardovg thhe 200/400
KLOC limits for CodeSurfer has been measured. CodeSurfes dot have
a similar metric from what the author could find, but insteagarts program
size measured in “program points”, which is more exact batirectly com-
parable to lines of code. A statement may correspond to agwergram points
and the number of program points may vary drastically betvatatements.

The scalability of CodeSurfer (version “2.1p1”) has beamstigated using
industrial code from ABB’s control system for industriabats, IRC 5. The
whole system contains some 3 million lines of code, but thidywas limited
to a subsystem containing 183 KLOC, which in Section 6.2bglked ABB-2.

CodeSurfer crashed repeatedly when trying to analyze tlis asing build
preset “highest” (CS-Highest). It reported an error messaating that it failed
to allocate memory. When using the less accurate build ptesgh” (CS-
High) it did not crash, but the analysis did not finish in rezdde time. After
about 92 hours it was terminated and the log file indicatedtes still on one
of the first analysis steps, label&omputing call graph and modified globals
(CG)”, which had executed for about 90 hours before it was aboiéden
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analyzing smaller cases, several more time-consuming &édpwed this one,
so even if this step would have been finished in just a few hmoee, the
whole analysis would probably take much longer, probablesd additional
days, or even weeks. Up until the point where it was abortedeSurfer had
stored 2.8 GB of intermediate data and used 900 MB or RAM.

In comparison, the tool used for constructing the symbahlate for MXTC,
“Understand for C++”, processed the 183 KLOC code (ABB-2pbout 16
seconds, as presented in Section 6.2. MXTC could then ssfatlgshe used
for performing backwards slicing. As an example, a slice osaradomly se-
lected variable in the ABB-2 identified 24 statements in £dbsids. The state-
ments were distributed over three functions. In anothemgte, the runtime
was only three minutes for calculating a large slice comgjsvf about 2 000
statements in about 140 functions.

CodeSurfer however worked fine on a smaller test case, th&RTSim-
ulation framework presented in Chapter 3, which contain8®BIBOC. This
allowed for a comparison between CodeSurfer and MXTC. Thepasison
was made by querying a commonly used global variable in RhiS®ie sim-
ulation clockclk, which was expected to produce a large slice. The results are
summarized in Table 6.3. In this table, “Parse Time” refetthe time required
in order to construct the program model from the source doglean SDG for
CodeSurfer and a symbol database for MXTC (using Underktét@licing
Time” refers to the time required for calculating the backigaslice for the
global variableclk in RTSSim, based on the respective program model.

Table 6.3: MXTC/Understand compared to CodeSurfer

Parse Time (s) Slicing Time (s)
MXTC/Understand| 2 51.6
CS-High 158 <1
CS-Highest 160 <1

As previously presented in Section 6.2, the Understandremplires only
about 2 seconds for creating a symbol database over this Thédeslice com-
puted by MXTC contained 568 executable statements, i.eytad¥ % of the
1586 executable statements of RTSSim. The runtime for MXBE 54..6 sec-
onds and its peak RAM usage was 18.7 MB. The runtime for C3idigs
158 seconds, during which it stored 312 MB of intermediata.ddts peak
RAM usage was about 240 MB, almost 13 times more than for MXTla&
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runtime of CS-Highest was 160 seconds, only slightly highan the run-
time of CS-High. Note however, after CodeSurfer has congalits program
model, backwards slicing and other types of program analjz@erformed
very quickly, without noticeable delay. This is not the cémeMXTC, which
performs most calculation on demand, given a specific query.

The slice produced using CS-Highest contained 8 253 out 4#437ro-
gram points, i.e., 22.2 % of the analyzed program. When uSiagHigh the
slice is considerably larger, 11 770 program points, cpoading to 31.7 % of
the program. Note that CodeSurfer and MXTC present theteesutlifferent
ways, program points vs. statements, so this figure is nettijrcomparable.

The slice size ratios should however give an indication afusacy and
it seems as CS-High is more accurate (31.7 %) than MXTC (37rP4his
case, although the validity of this comparison is questibma MXTC was
however about three times faster than CodeSurfer in eithwfiguration; the
total analysis time of MXTC/Understand (parse + slice tirngepnly 33.5 —
33.9 % of the parse time of CodeSurfer in this case.

6.4.2 Imagix 4D

Imagix 4D, from the Imagix Corporation [135], is a similapty of tool as
CodesSurfer, but no information is available regarding thalgsis algorithm
used by Imagix 4D; it seems to be a secret of the Imagix Cotjooralt is
however likely that also this tool uses the SDG approach,simélar depen-
dency graph model. This since Imagix 4D has similar scatghiloblems as
CodeSurfer, many hours for larger amounts of code, and $he&DG ap-
proach seems to have been the de-facto solution for prodieimgssince the
mid 1990's.

The company behind Imagix 4D, Imagix Corporation, does nes@nt any
figures regarding scalability; an evaluation thereforenj@&formed using the
ABB-2 case, like for CodeSurfer. As previously mentionéis is a subsys-
tem from ABB’s control system for industrial robots, IRC ®nsisting of 416
source files containing in total 183492 lines of code, nontiog whitespace
or comments, and 3 116 functions.

The comparison was made with respect to randomly selectadbles
from different parts of the ABB code. The “Calculation Trée&ture of Imagix
4D (version 6.6.1) was used to find the relevant dataflow degreeies. Unlike
MXTC and CodeSurfer, Imagix 4D does not produce full exellatalices; it
identifies the directly relevant dataflow but does not arabyanditions guard-
ing relevant statements. In order to allow for a fair comgami the MXTC tool
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was configured to perform the same kind of analysis as Im&gikylignoring
conditions and thereby any statements on which they depend.

The Imagix 4D tool gave a warning regarding the size of theggatpin-
dicating that the analysis could take several hours. Itiredialmost 7 hours,
and the peak memory usage was 1.5 GB. The analysis time shedihilar
for any other variable since the main cause of the long rusmtinfprobably) the
construction of a detailed whole-program model, i.e., ai&SID similar. Like
for CodeSurfer, once this program model has been consttuatelyzes are
very quick. However, the many hours required for constngcthe program
model is obviously a serious scalability problem.

When using MXTC on this variable, the runtime was only 2 selsonif
also including the 16 seconds required for constructingsimabol database,
as presented in Section 6.2, MXTC is about 1 400 times faséer imagix 4D
in this case. This experiment was repeated on all four slecariables and
the runtime was around two seconds in all cases. The peak Rgdgeuof
MXTC was 33 MB, i.e., about 45 times less than for Imagix 4DeTdrentified
slices were quite small, around 10 statements, since oelylittect dataflow
was included. This is typically only a small subset of thatslice obtained
when taking conditions into account. Both MXTC and Imagix géve sim-
ilar results with respect to the number of identified statetsiebut a detailed
comparison was however never made.
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6.5 Conclusions

This chapter has demonstrated that the MXTC tool, based eié#tana al-
gorithm, works on real industrial code and scales to lardevaoe systems.
Even though the cases used in this evaluation are relatve#l, they are real
systems of non-trivial size and complexity. The runtime8AXTC are short,
just over 3 minutes in total for four tasks containing in t&@00 lines of code,
and, more importantly, mainly depends on the number of rsiates found to
be of relevance for the simulation model, i.e., the numbenodel statements,
rather than the total program size of the tasks. If extrapgahese numbers,
the MXTC prototype would process a 1.2 MLOC system in 10 hotinss is of
course longer than desired, but the tool is still a prototype is implemented
in Perl, a scripting language. According to benchmark camspas [143, 144]
between C++ and Perl, C++ has been observed to be 8 — 120 tistes Perl.
If a C++ version of MXTC could be made 10 times faster than ypdavould
be able to process the whole ABB IRC 5 code in about 3 houranasg the
previous extrapolation.

The amount of model statements can be quite small, in oneasdéile as
3 % of task code, but is most cases in the range 25 — 50 %. Foashentith
largest relative model size 59 % of the executable statesngete identified
as model statements. However, the relative model size calikely be re-
duced significantly by taking intraprocedural control-flawlly into account.
The current solution, which is not fully control-flow sem&t, may in some
situations include irrelevant statements, which in turryinave dependencies
to other irrelevant symbols and statements, which therebinaluded as well.

For general program slicing, the MXTC tool has shown to oritpen
the commercial tools CodeSurfer and Imagix 4D with respecdalability.
MXTC could successfully operate on a 183 KLOC code base,irieguonly
16 seconds for constructing the program model (the symhbabdae, using
Understand), and 1.7 seconds for identifying a prograne slansisting of 24
statements in three functions. In practice, the runtime ¥fT\@ seems to scale
linearly with the number of statements found relevant. Retdance, an analy-
sis identifying about 2 000 statements, distributed ové&rfisctions, required
only 3 minutes. In contrast, CodeSurfer could did not teatérin 92 hours
when attempting to process the 183 KLOC code-base. Imagjxvhizh pro-
vides a less detailed analysis, was able to analyze thisiooaleout 7 hours.
MXTC was 1400 times faster than Imagix 4D in this case, and d&etimes
less memory.

On a smaller example which CodeSurfer could handle (the R $8de,
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3800 LOC) MXTC was found to be three times faster and usedm@8diless
memory. As expected, CodeSurfer was however more accuvateMXTC,
even though an exact comparison is not possible since eliffsize metrics are
used by the tools. Using the most accurate configurationeSorer found
22.2 % of all program points to be relevant for a particularniatsle and if
using the more scalable but less accurate configuratiold(ptgset “High”),
CodeSurfer found 31.7 % of the program points relevant ferstime case. In
comparison, MXTC found 37 % of the executable statementsteetevant
for this variable. This probably corresponds to more thar2 22 or 31.7 %
of the program points even though these measures of program size (program
points vs. executable statements) are not directly corbpsmes an executable
statement may contain several program points.

This chapter has also demonstrated that the program repadisa used by
MXTC/Katana, the symbol database, can be constructedmiitfinutes also
for large software systems, containing millions of linescofle. The Under-
stand tool, which MXTC uses for constructing the symbol Hat®, has proved
itself able to process 183 KLOC in 16 seconds and 1084 KLOC ob@e in
just under 2 minutes. The predicted time for analyzing a lemgye code-base
of 10 MLOC is 63 minutes. Thus, constructing the symbol dasahis not a
threshold which limits the scalability of the approach,ikmltools using the
heavy-weight SDG program model.



Chapter 7

Uses and Experiences of
Software Trace Recording

This chapter discuss recording of event traces during éxecaf embedded
software systems, drace recordingfor short, with a primary focus on task
scheduling. The chapter has three main purposes:

1. to explain the role of trace recording in the context of édmwisioned
analysis framework,

2. to present techniques for trace recording, including,specific solu-
tions and more general methods, and

3. to presentexperiences from five industry collaboratiojgets performed
where software trace recorders have been developed feraliffindus-
trial software systems and evaluated with respect to CPUR#M over-
head.

This chapter is mainly motivated by research ques@i presented in
Section 1.3. Since trace recording is a key component ofriasiened anal-
ysis framework, presented in Section 1.2, the general egiplity of trace
recording is naturally of high importance. This has two aspeimplemen-
tation feasibility on common real-time operating systewmsg the overhead
with respect to CPU and RAM usage. The scientific contrimgiof this chap-
ter are mainly the presented experiences from industrlimoration projects,
with respect to the two aspects of trace recording applitabi
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The chapter also presents an approach for recorditignafg profilesfor
the RTSSim simulation framework. This section shows howlarfiplementa-
tion of the envisioned analysis framework could use tracending in order to
populate the simulation models with timing data recordedifthe real system.

7.1 Uses of Trace Recording

The approach of this thesis requires trace recording fars¢purposes. Trace
recording is necessary in order to do execution-time measents under real-
istic circumstances, since the systems in focus typicalynaultitasking and
use preemptive scheduling. In order to measure executioa-it is neces-
sary to monitor the context-switching and only account fer €PU time ac-
tually consumed by the specific task. Trace recording is més@ssary during
simulations, in order to record a detailed simulation tréarelater analysis
and comparison. Moreover, the three analyses presenteeciio$ 1.2 (im-
pact analysis, model validation and regression analyflisgguires methods
for comparing trace recordings. This naturally assumesgheh traces can
be recorded in the first place, either from a real system on facsimulation.
Trace comparison is discussed further in Chapter 8.

Another aspect of trace recordingiace visualizationwhich can be used
for comparison of traces and for inspecting details in satiahs or real sys-
tem traces. A trace visualization tool has been developé#usresearch, the
Tracealyzer, which originally targeted the simulatiomfiework. However, it
can also be used to study traced recorded from real systeththenuse of
the Tracealyzer has served as a “low hanging fruit” for indusollaboration,
since industrial developers often can have immediate uski®tool for de-
bugging, performance optimization and general system nsteteding.

7.2 Trace Recording Fundamentals

This work focuses on software-based recording, where gadruimentation is
inserted at suitable code locations in order to log the ddsifformation. This
typically implies adding function calls to a software reder module, which is
integrated in the base platform of the system. There areVewvadso hardware
solutions [109] and hybrid solutions [136], using both heade support and
software probes. The added code instrumentation for exgist events are
often referred to asoftware probes Thus, eventsrefer to the instances of
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recorded data, whilprobesrefers to the code responsible for recording the
events.

In the context of this thesis, the events in focus of recayaire primarily
scheduling events where the operating system schedulet®sithe currently
running task, i.e., théask-switchevent, but also other types of event may be
stored, such as calls of operating system services (e mageres or IPC
operations) and application-specific “user events”. s thork task-switches
are considered as instantaneous actions and only a singdestamp is stored
for each task-switch event. The context-switch time (frtve ©S) is thereby
accounted to the execution time of the tasks.

It is possible to detect scheduling events on most real-tiperating sys-
tems, either by registering callbacks (hooks) on systemtsvie task-switches,
task creation and termination, or by modifying the kernelrse code. The
callback approach is possible on at least VxWorks (from WRiekr) and OSE
(from ENEA). Operating systems with available kernel sewrade, e.g., Linux
and RTXC Quadrds can be modified to call the trace recorder module on
relevant events. Asberg et al. [1] has shown that for Linug {&rnel), the
only kernel modification required is to remove the “consty\werd from a
specific function pointer declaration. It is however polesiio realize Linux
trace recording without kernel modifications, if using atons scheduler like
RESCH [2].

Software trace recorders typically operate by storingveeie events in a
circular RAM buffer, as binary data in fixed-size recordstHis manner, the
recorder always holds the most recent history. In allim@etations presented
in this paper, a single ring-buffer is used for storing ajfieg of events. An al-
ternative strategy is to store events of different typedfiiei@nt buffers, to be
able to use different sized events for better memory effigieSuch a solution
however becomes more complex and thereby less robust, aedtita logic re-
quired, and buffer dimensioning problems, may cancel caibnefits of this
solution. Storing different types of events in the same baffer requires that
the events have a common location for storingeaent codgtypically the first
byte, which indicates how the data should be interpretedstBsing all types
of events in the same buffer, the relative order of the evientwintained au-
tomatically and it is thereby possible to use relative tistemps, as discussed
later.

Each task-switch event corresponds to exactlyeeeution fragment.e.,
the interval of uninterrupted execution until the next tagktch event. For

www.quadros.com
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each execution fragment, the following information needsé registered:
» What task that executes, i.e., atask ID.
» When the execution fragment started, i.e., a time-stamp.

» Why the task-switch occurred, i.e., the scheduling staftise task after
the execution fragment has ended.

The rest of this section will discuss these three aspectat(wfhen and
why) of task-switch event recording and finally also recogdof other types
events, such as calls of operating system services. Thisde®a foundation
for the following descriptions of the five industry collalatipn projects where
trace recorders have been developed for different indisoftware systems.

7.2.1 Task Identity (the “What”)

The most obvious and fundamental piece of information ins& teace is the
task identity of each execution fragment. Most operatingeays use 32-bit
IDs for tasks, even though many embedded system only coataandful of
tasks, at most a few hundred. It is therefore often a good toéatroduce
a short task IDSTID, using 8 bits or 16 bits only in order to make the task-
switch events less memory consuming. Saving 2 or 3 bytes/eat enight not
sound like a big deal, but the recorder solutions describelis chapter only
require 4 — 8 bytes per event in total, so the reduction isifsagmt. With an
8-bit STID it is possible to handle up to 256 unique tasks,olhis sufficient
for many systems. In other cases a 16-bit STID would surelgrizrigh, as it
allows for over 65,000 unique tasks.

The STIDs needs to be allocated on the creation of tasks aicllygue-
trieved when storing task-switch events. This can be aellidy storing the
task’s STID in its task control block (TCB), either by modifg the kernel
(possible in Linux and RTXC Quadros [137]) or by using an wtlspare”
field of the TCB data structure, which are available in Vx\Wofk32]. In OSE
[134] there is a “user area” of each process which can be wsehi$§ purpose.

Complex embedded systems with event-triggered behauich as tele-
com systems, often create and terminate tasks dynamitaltiis context, it
is important to recycle the STIDs, otherwise the recorddirseioner or later
run out of STIDs. This means that the termination of taskstrhasegistered
in order to mark the particular STID as no longer in use. AnCsfrlay how-
ever not be reused for newly created tasks as long as therefarences to a
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particular STID in the event ring buffer, unless the newlgated task is iden-
tical to the last task referred by the STID. Otherwise, thauld change the
meaning of the older task-switch events and make the traceriect.

7.2.2 Time-stamping (the “When”)

For timing analysis purposes each execution fragment navet & time-stamp,
typically stored as an integer value. Since the trace cosithie complete se-
guence of execution fragments, a single time-stamp is guifiper fragment,
either when it started or when it ended, it does not mattesrag &s it is consis-
tent. From here on, it is assumed that time-stamps refeetst#rt of execution
fragments. This implies that the operating system overhieadthe execution
time of the context-switch code, is accounted to the taskugi@n times.

Obtaining a time-stamp is normally a trivial operation, lstandard li-
braries typically only allow for getting clock readings tvia resolution of
maximum 1 or even 10 milliseconds, depending on the tick ohtidhe OS.
This is too coarse-grained for embedded systems timing/sisakince many
tasks, and especially interrupt routines, often have di@ttimes measured in
microseconds. Fortunately, embedded systems usuallytzadevare features
for getting more accurate time-stamps, such as real-tioeksIRTC. In other
cases, if the CPU frequency is constant, it is possible tauSBU instruction
counter register.

In order to reduce the memory usage when storing the evergsod
method is to encode the time-stamps in a relative mannerta.®nly store
the time passed since the previously stored event, i.edutaions of the ex-
ecution fragments. If the absolute time of the last storezheis kept, it is
possible to recreate absolute time-stamps during offdimaysis. This allows
for correlating the trace recording with other time-stachjmgs created by the
system, which can be important for troubleshooting purpose

The relative time-stamp encoding allows for using fewes Ifiitr storing
time-stamps, typically between 8 — 16 bits per event. A probhowever oc-
curs in cases where the duration of an execution fragmeeeglsthe capacity
of the time-stamp field, i.e., 255 or 65535 time units. Hamgithe overflow is-
sue for relative time-stamps introduces a tradeoff betweemory usage and
recorder-induced jitter (i.e., predictability). The mastiable but least effi-
cient solution is to use enough bits for this purpose so tiabwerflow does
not occur. A more efficient solution is to reduce the numbeiné-stamp bits
to better fit the typical fragment duration, and insteadoidtice an alternative
handling of the few cases where the number of time-stam@lstesufficient.
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In this case, an extra “XTS” event (eXtended Time-Stamphséeited before
the original event, carrying the time-stamp using enoud) (&s. This how-
ever introduces a control branch in the task switch probéchvimight cause
timing jitter in the recorder overhead and thereby add#ldiming jitter in
the system as a whole, which can be bad for testability andigiebility. We
however believe that this jitter is negligible compared ther sources of jit-
ter, such as execution time variations. The XTS approacisésl in all five
recorder implementations presented in this chapter.

Note that the higher resolution used for storing time-stsufepg., nanosec-
onds instead of microseconds), the higher RAM usage. Thdsiésto either
the need for a wider time-stamp field (more bits) or more fesjiXTS events.
However, if using a too low time-stamp resolution (e.g. lisgiconds), some
execution fragments may get a zero duration and thus bectnwsible” in
off-line visualization and analysis, e.g., with respeci®8U usage contribu-
tion.

7.2.3 Task-switch Cause (the “Why")

In preemptive fixed-priority scheduling [98, 99] a task-®limay occur for
several reasons: the running task might have been blockeal Ibgked re-
source, it might have suspended itself, terminated, orlkadBkigher priority
might have preempted the task. This information is necggsaiecord in or-
der to allow grouping of execution fragments into tasktancesalso known
as tasljobs A task instance corresponds to one logical execution oféble,
i.e., the processing of one work-package. The end of anriosti referred to
as theinstance finishand corresponds to the termination of the task, i.e., exit
from main function, or for non-terminating tasks when thekthas performed
one iteration of the main loop and enters a blocked or watiage awaiting
the next task activation, i.e., the start of the next instanc

From a trace perspective, a task instance corresponds tar segeral con-
secutive execution fragments of the same task, possitdylé@atved by execu-
tion fragments of other tasks, where the last fragment iy the instance
finish, and where any previous fragments of the same instsneaded by
preemption or blocking. The concepts of instances and d¢xecfragments
are illustrated by Figure 7.1, using an example with threksawhere task
has the most significant priority and talskhe least significant priority. Each
execution fragment is labelel s, whereT is the task name, the instance
number and the execution fragment number within the instance. The uppe
row indicates the task-switch cause: preempt®nof termination T).
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Figure 7.1: Execution fragments and task instances

What counts as an instance finish for non-terminating taskgstem spe-
cific and depends on the software architecture. For noniteting tasks there
are two options for detecting instance finish: using the dulieg status or us-
ing code instrumentation. If a certain scheduling statuslbmunambiguously
associated with the inactive state of a task, a task-switehtal this scheduling
status can be regarded as the instance finish. The next exefaigment of
this task is thereby the start of the next instance. This@gyris however dif-
ficult if the task may be blocked for other reasons (other gdmoee or message
queues), since the scheduling status at best tells the fy@saurce causing
the blocking, but not the identity of the specific resource.

A pragmatic solution is to add code instrumentation in tis& taain loop,
immediately before the operating system call correspantiinthe instance
finish. A problem with code instrumentation in the applioatcode is that the
application developer needs to be aware of the recordentaiaithe instru-
mentation points properly and also adding new instrumimathen adding
new tasks to the system.

7.2.4 Recording Operating System Services and User Events

Apart from recording the task scheduling trace, there magther events of
importance for recording, such as calls of certain opegaystem services and
application-specific “user events”.

Operating systems calls can easily be recorded if the syhtesman OS
isolation layer, which contain wrappers for operating sgsteatures, or if the
kernel source code is available for modifications, like famux and RTXC
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Quadros [137]. For potentially blocking OS services, likiempting to lock a
semaphore, it is a good idea to use two probes, an “entry’"eimimediately
before entering the OS service and and “exit” probe direatlgr the return.
An off-line analysis or visualization tool can thereby iti§nthe beginning and
corresponding end of any operating system blocking.

It is possible to detect blocking from the recorder’s eveate, either off-
line or during run-time, by checking if any task-switch etexists between the
entry and exit probes. The chance of a task-switch occufoingther reasons
than blocking between the entry and exit probes of a OS seigigery small.
This risk can however be eliminated completely by a contrahie recorder's
task-switch event handling routine: if the last stored ¢i®an entry event for
a particular OS service and the task scheduling statusradécaites “blocked”,
it is for sure a blocking call of the specific OS service. If task scheduling
status however is “ready”, it was actually a preemption Whi@ppened to
occur between the entry and exit probes.

One can argue that a simple solution of preventing such elgligreemp-
tions, and thereby make the task-switch control describede@unnecessary,
is to disable interrupts before storing the entry event avadbke them after stor-
ing the exit event. This would however increase the intdrtagency and the
OS kernel may enable interrupts during the processing gidingcular service,
so preemptions might still be possible before the exit piudsebeen stored.

User eventgorrespond to explicitly logged information from the apph
tion code, which is stored usingser probestypically inserted by the applica-
tion developer. This can be used in order to log events or afdataportance
for, e.g., troubleshooting purposes. It can however alagskd for fine grained
execution-time measurements (between any two points iprtbgram code)
and for monitoring application-specific limited resources

A concept ofprobe channeldias been used to avoid enable logging of
named events. A probe channel connects a string name to aricumaedle
during system initiation. The numeric handles,psobe channel IDss then
used to label the later stored user events. A similar teclenogn be used for
storing names for particular probe values, so that the naanebe displayed
instead of a numeric value in off-line visualization and Igsis tools. This is
be valuable when monitoring e.g., state variables, whiglags hold the value
of a named constant, since the state names are typically faimigar to the
developerthan the corresponding numeric codes, which imayge during the
system evolution.
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7.3 The Tracealyzer

Tracealyzer is a visualization tool with analysis capéb#ifor various timing
and resource usage properties. It is mentioned at severdldos in this thesis
as it can be used for studying the output of the RTSSim siroylas presented
in Chapter 3, and for model validation purposes, as predemt€hapter 8.

The main view of the tool displays a task trace using an nagellization
technique. Other trace visualization tools, such as thedWiver WindView,
uses a trace visualization technique similar to a logicya®alor Gantt-style
charts, where the status of every task is displayed at a#igjrwith one row
or column per task. Such visualizations become hard to cehgmd when
zooming out to overview a longer scenario and the user mag teescroll in
two dimensions.

In contrast, the visualization used by the Tracealyzerdeswn the task
preemption nesting and only shows the currently activestaa& depicted by
Figure 7.2. This makes the trace easier to overview, edpeltag and com-
plex scenarios with many tasks involved. The tool also ptesia CPU load
view over the entire trace. The two views are synchronizegl time window
display in the main window is indicated in the CPU load ovewand by click-
ing in the CPU load overview the trace view displays the cgpomding time
window. The tool has advanced features for searching, witkral filters, and
can also generate a report with detailed timing statisticeéch task. The tool
also allows for exporting timing data regarding tasks ardpevents to text
format. More information about the tool is availablenatw.percepio.se
where a demo version can be downloaded.

The Tracealyzer was originally developed as a means fofyuggi the
trace recorder developed for the robotics control systerARB system, as
described in Section 7.4.1. The tool was however soon foahdble by ABB
developers, for troubleshooting and performance analgaisto the possibili-
ties for visualizing and analyzing recordings of the sysiemperation. Even
though the ABB developers had access to a commercial tratéMndView,
from the operating system developer Wind River, they detalseady in 2005
to integrate the newly developed Tracealyzer recordemdibése software plat-
form and to have it active by default, also in the productiersion. This means
that it is actively monitoring all industrial robots delies by ABB since 2005,
several thousand per year. The Tracealyzer is today useensyscally at
ABB Robotics; at least 30 developers have used it at somé,@rid many use
it frequently.

The second generation Tracealyzer (i.e., version 2.0h&es2009 in com-
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mercialization by Percepio AB, in collaboration with QuasiSystems, Inc.
who develops the real-time operating system RTXC Quadrospekial ver-
sion for RTXC Quadros will be released in September 2010 utidename
RTXCview, which becomes the official tracing tool for the RT>Quadros
platform. For more information about RTXCview, see/w.quadros.com
Note that the first generation Tracealyzer, i.e., up untibiam 1.31, is still
freely available for non-commercial use, and for existingimercial users ac-
cording to prior agreements.
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Figure 7.2: The Tracealyzer/RTXCview

7.4 Five Industrial Trace Recorder Projects

Another purpose of this chapter is to document experierroas five indus-
try collaboration projects where trace recording solugibave been developed
for industrial software systems and from these experieattempt to summa-
rize a list of observations or recommendations. The fivegutgjhave been
performed in collaboration with respective companies amthe end, at least
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Figure 7.3: The Tracealyzer/RTXCview, CPU load view

evaluated by system developers. Three of the projects leaeetd industrial
deployment of the results, in one case as the official traciobfor a commer-
cial real-time operating system.

The purpose of these projects have varied slightly, but ahehincluded
trace recording and visualization using the Tracealyzscdbed in Section 7.3.
The research motivation for these projects have been téy\thd applicability
of trace recording techniques on different embedded systdatforms, since
trace recording is a key enabler for the timing analysis aquoof this work.

7.4.1 The RBT Project

ABB develops a control system for industrial robots, IRC hisTis a large
and complex embedded software system, consisting of ar@umitlion lines
code. The operating system used is VxWorks, and the hardvaferm is an
Intel-based Industry PC. At the time of the evaluation, yistem used an Intel
Pentium 11l CPU and had 256 MB of RAM. It moreover has a flashdubhard
drive, a network connection and an onboard FTP server.

Since VxWorks has features for registering callbacks ok-tagitch, task
creation and task deletion, these events could be captuteduwkernel mod-
ifications. The task-switch callback function receivesyeis to the task con-
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trol blocks (TCBs) of both the previously executing task &mndhe task that is
about to start. The developed recorder uses 8-bit STID®din an available
“spare” field in the TCB by the task create callback routinbe Task names
are stored at creation time in a list of tasks, indexed by tH®S

All types of events are stored in a single ring buffer, usinfixad event
size of 6 bytes. This required the use of bit-wise encodingrier to fit the
desired information into the 48 bits available. The two fligtes are used
to store two pieces of information in an asymmetric mannéene 2 bits are
used for the event code and 14 bits for a relative time-staiiained from an
instruction counter of the Intel CPU used by this systemc&the time-stamp
resolution used in this recorder is b, this solution allows for a execution
fragment duration up t@'# us (16.4 ms). This is typically more than enough
for this system; there are usually several task-switch svevrery millisecond.
However, in some system modes, such as during system stinttpsk-switch
rate is much lower and the 14 bits may then be insufficient. fi®aaution, an
additional “XTS” event (eXtended Time-Stamp) is storechié relative time-
stamp does not fit in 14 bits. The XTS event stores the relditiwe-stamp
using 32 bits and overrides the time-stamp field of the aasedi(following)
event.

Recording inter-process communication events was coreldenportant
and this was accomplished by adding code instrumentatiadharOS isola-
tion layer. Semaphore operations are however not instrtedethey are very
frequent in this system and it was feared that monitoringeheould cause a
major additional recording overhead. The event rate of tB8 Aystem when
recording task scheduling and IPC operations was found todnend 10 KHz.
Aring buffer capacity of 100 000 events (600 000 bytes) tfegeegives a trace
history of around 10 seconds. The runtime of a recorder pnatsefound to be
on average 0.8s, which at the typical event-rate of 10 KHz translates into a
CPU overhead of 0.8 %.

As mentioned, ABB Robotics personnel decided after thiggoetdo inte-
grate the recorder in their control system IRC 5 and to keagtive by default,
also in the production version. The Tracealyzer is today systematically
at ABB Robotics for troubleshooting and for performance sueaments. The
recorder is triggered by the central error handling systnwhenever a se-
rious problem occur a trace file is automatically stored ® glistem’s hard
drive. A trace file is in this case only about 600 KB and candfae easily be
sent by e-mail for quick analysis, e.g., if a customer exgeres a problem.
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7.4.2 The ECU project

The system in focus of this project was the software of an E@Ua computer
node in a vehicular distributed system developed by Bombéaftansporta-
tion?. Since also this system used VxWorks a similar recordegdesiuld be
used as in the RBT project. The company developers were ynaitdrested
in the CPU usage per task, as well as for interrupt routinesnd long-term
operation of the vehicle. The hardware platform was a MdédrBowerPC
603 running at 80 MHz.

In initial experiments using the Tracealyzer tool, the mpinoblem was
the endianness; the Motorola CPU uses big endian encodhilg the Trace-
alyzer expected little-endian encoding. In the first experits in using the
Tracealyzer for this system, the solution was a recorddagdeshere all data
is stored in little-endian format during run-time, by assigy each byte explic-
itly. This is far from optimal with respect to the CPU overted the recording
and should be avoided. The latest version of the Traceagsmmes that the
recorder writes the data to a binary file in native format dretdfore detects
the endianness, and converts if necessary, while readériggte file. The endi-
anness is detected by using a predefined 32-bit value, winefeur bytes have
different values, which is written to a predefined file looatby the recorder,
typically in the very beginning. An off-line analysis tooawr then find the
endianness from the order of these values.

Unlike the RBT project, this project included recording oferrupt rou-
tines. The operating system VxWorks does not have any cthenctionality
or similar for interrupts, but the interrupt controller bEtCPU allowed for this.
Interrupt routines could thereby be recorded as high-jyitasks, by adding
task-switch events to the main ring buffer in the same wapeaeadrmal tasks.

An interesting requirement from Bombardier was that theréed infor-
mation should survive a sudden restart of the system anddikalale for post-
mortem analysis. This was accomplished by using a hardvesterfe of the
ECU; the event buffer was stored in Non-Volatile RAM (NVRAM)uring
the startup of the system, the recorder recovers any traeestiared in the
NVRAM and writes it to a file, thereby allowing for post-momeanalysis.
The ECU was equipped with 4 MB of NVRAM which is plenty since ttom-
pany only needed a 2.5 second trace history. Since it wasdadyed to log
task-switch events in this project, i.e., no IPC events iikéhe RBT case, it
was possible to reduce the event size from six to four bytesynt.

2www.bombardier.com
3Now Freescale
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A recorder and a company-specific analysis tool was devdlopa Mas-
ter's thesis at Bombardier [97], but the Tracealyzer wasigetl after the initial
tests leading to the thesis project. One of the students axaever employed
by the company after the thesis project.

7.4.3 The WLD Project

This system is also an ECU-like computer, although not invést@icular do-
main and the company is anonymous in this case. The compygtms in
focus is a node in a distributed system, with the overall psepof automated
welding for production of heavy industrial products. Thenguter in focus
controls an electrical motor and is connected to a set of@imomputer nodes
over afield bus. The CPU used was an Infineon XC167, a 16-bit@Rhing
at only 20 MHz. The operating system used was RTXC Quadros.

Since the kernel source code of RTXC Quadros is availableUdstomers,
the recorder could be integrated in a custom version of thasgkelt was how-
ever not trivial to find the right location where to add therdarinstrumen-
tation, especially for the task-switch events, since pafithie context-switch
handling is written in assembly language. Time-stamps wétained from
the real-time clock (RTC) feature of the Infineon XC167 CPU atored in a
relative manner in the same way as in the previous cases.

There was no need for using short task IDs (STIDs) for reduorem-
ory usage, since RTXC Quadros already uses 8-bit task randlewever,
dynamic creation of tasks required an indirect approachgltmg a lookup
table, as the task handles of the operating system are relisedookup table
contains a mapping between the RTXC task ID and the indexeotabk in
an recorder-internal list of tasks, which is included in tfemerated trace file.
The recorder task list contains the name and other infoomdtr up to 256
tasks. On task creation, the list is searched in order to fimétzhing task, so
repeated dynamic creations of a single task only generaiegke entry. How-
ever, there was no “garbage collection” in the recorder liaskso tasks which
are no longer in the trace history still occupy an entry. Tisésie is however
solved in the latest recorder implementation, describeSeation 7.4.5. In-
terrupt routines were recorded by adding two probes in ewvgeyrupt service
routine (ISR). Task-switch events are stored in the begimaind in the end of
the ISR, using the interrupt code to look up a “faked” taskerspecified in
a static table containing all interrupts. Nested intersugye supported using a
special purpose stack, holding the identity of the preethii&s, as well as
the currently executing task.
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The CPU overhead of the recording was measured and founetigéan
in previous cases, although still acceptable. The eveatwat found to be
around 500 Hz, i.e., about ten times less than in the ABB sy gbeit the slow,
low-end CPU (16-bit, 20 MHz) caused relatively high probe@xion times,
around 60us. This is 75 times longer than the probe execution timesen th
ABB system (0.8us). With a 500 Hz event rate, this translates into a CPU
overhead of 3 %, which is significant, but probably not a sevitssue com-
pared to the potential benefits of trace recording. Howetés,recorder was
not optimized for CPU usage; it was rather a first prototypehis platform.
Several optimizations/fixes are possible in order to redheeCPU usage of
this recorder solution, as discussed in Section 7.4.6.

In a first evaluation by developers at the company, the wgldiystem
recorder was used together with the Tracealyzer tool inraaeinpoint the
cause of a transient error which they previously had not laddmto find. By
studying a recorded trace in the Tracealyzer tool they chinttthat the error
was caused by a wrongly placed “interrupt disable” instamtwhich allowed
for interrupts occurring during a critical section wheréimupts should have
been disabled. The company did however not integrate thelajeed recorder
solution on a permanent basis, but has used the solutianféatsimilar pur-
poses. On those occasions, they have created a custom buigdthe instru-
mented RTXC Quadros kernel. This can lead to probe effedtjBsblems,
i.e., that the activation (or deactivation) of recordinguebes the system be-
havior.

7.4.4 The TEL Project

This project was performed together with an anonymous comathe tele-
com industry, which develops products based on the opegraiistem OSE
from ENEA. The particular system studied used a high-enddéPe®@ CPU,
running at 1 GHz and with 256 MB of RAM. This project had the o
providing means for exact CPU load measurements. Preyitlusy had used
a tool which sampled the currently executing task at rangiaelected times
and in that way got an approximate picture of the CPU usagbef/arious
tasks. This was however considered too inaccurate. A Maghersis project
was initiated in 2008 in order to develop a recorder for tlyigteam [96].
Arecorder for the Tracealyzer tool was developed and etedussing stan-
dard performance tests of the system. The recorder usedénee! hooks”
feature of OSE, which is similar to the callback features ¥Wérks, and 16-
bit STIDs for tasks frocessesn OSE terminology), stored in the “user area”
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of the process. The main problem was that OSE did not alloectiaccess to
the kernel memory, for reading the process control blockvas thereby not
possible to get the scheduling status of the tasks, whickdgessary in order
to identify task instances. A workaround was implementhd, Tracealyzer
was modified for this case, so that priorities were used a&ustd status. This
assumes that the priorities are static since the recordeotaead them at the
task-switch events, only at task creation. The resulticgmer was evaluated
in the company lab using their normal test-cases for loatihges The CPU
overhead of the recorder was found to be 1.1 % at an event fdt@ KHz
and a CPU load of 30 %. This result has to be considered as moeptable,
especially since the recorder was not optimized for CPU eisag

The company did however not use the resulting recorder singas not
mature enough for industrial deployment, which requiregwy vobust solu-
tion, and since there was no obvious receiver at the compaiayoould take
over the recorder development and verification.

7.4.5 The RTOS Project

In 2009 the thesis author was contacted by a representdt@eaadros Sys-
tems, Inc. who expressed interest in a collaboration ainaingeveloping a
new trace tool for their operating system. This resultechandevelopment of
the second generation Tracealyzer, along with a specialorefor Quadros
Systems nameBTXCview This project also included the development of a
whole new recorder design, in close collaboration with thiefcengineer at
Quadros Systems.

This recorder has little in common with the previous foursiens. A ma-
jor difference is that this recorder is designed for loggifigeneric operating
system services without any hard-coded information in gworder design.
The recorder contains no assumptions on the operatingnsystevices that
should be logged, this is configured through kernel instmiatéon and using
a configuration file of the Tracealyzer/RTXCview. All infoation needed by
the off-line tool is stored in a single block of data whichftatially initialized
during compile-time. This eliminates the need for callinggeorder initializa-
tion routine at system startup, which was necessary in teeiqus versions.
This design reduces the startup time of the system and miaé&syi to retrieve
the trace recording, e.qg., if the system has stopped on &pwd using a de-
bugger. This recorder does not use any bit-wise manipulstihich should
reduce its CPU usage significantly. To achieve this, a laggent size was
necessary, using eight bytes per event instead of four dnyges.
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In this design, there is no explicit task-list, as in othetiearecorders, but
instead there is a generic symbol table which contains theesaf tasks, user
events, semaphores, and other named objects. A string addeid symbol
table returns a 16-bit reference, the byte index of thegirirthe symbol table.
If an identical string already exists in the symbol tablegf@rence to the exist-
ing string is returned instead of creating a new entry. Thtkérefore memory
efficient and solves the issue of repeatedly created dyn@sks. The symbol
table lookup is fast since all symbol names which share a 6Haicksum are
connected in a linked list, as depicted by Figure 7.4. Thigdwer requires two
extra bytes per symbol name, for storing the index of the sgxtbol with the
same checksum, and an array holding 64 16-bit values, tkediist heads.
If a longer checksum (i.e., more checksum bits) is used,dbk-Up time is
reduced, but the amount of memory required for the arraynéElil-list heads
doubles for every extra checksum bit. For systems with glehtnemory, an
8-bit checksum should however not be any problems, sincdyitrequires 512
bytes.

Array of linked-list heads, value -1 means NULL. (index: 6-bit string checksum, O - 63)

0 63

“““" 0 I"I“"““ 1:”tsk10” (checksum x) -> sym. ref. 0
2:”X" (checksum y) -> sym. ref. 7
3:”tsk01” (checksum x) -> sym. ref. 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LofrfsfelsfofwlalxJw]afrfsfcfo]s[v]

Symbol table (byte pool)

Figure 7.4: The symbol table

On task-switch events, the 8-bit RTXC task handles are dtar¢hout
bothering about possible later reuse of the handle, whieh thight change
the meaning of the currently stored handles. This is insteadived off-line.
The names of the currently active tasks are stored in a “dimabject” ta-
ble which is updated on task creation. When a task is termih@tlosed” in
Quadros terminology), the name from the dynamic objectetabs$tored in the
symbol table and the resulting reference is stored, togetitle the RTXC task
handle, in a special “close” event, which informs the offelianalysis tool that
this mapping was valid up until this point. The off-line aysit can then find
the correct task hames of each execution fragment by redldéngvent trace
backwards, starting at the trace end, and for each clos¢ epdate the current
mapping between RTXC task handle and name.
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The described approach for handling reuse of dynamic tagklles is
used for all types of dynamically created kernel objects TTXR Quadros,
i.e., tasks, semaphores, mailboxes, alarms, etc. Tinmepstare stored in
a relative manner, using 8, 16 or 32 bits per event, deperainthe num-
ber of bytes available for each event type. Like in the othrejguts, XTS
events are inserted when the normal time-stamp field isfiogrit. The time
unit of the time-stamps does not have to be microsecondseatintle-stamp
clock rate is specified in the recorder and provided to thdiiodf analysis tool,
which converts into microseconds. It is thereby possibles® the hardware-
provided resolution directly without run-time conversimino microseconds.
Another time-related aspect is that absolute time-stamgsiaintained also if
the recording is stopped abruptly, e.g., due to a crash @kpant. The ab-
solute time of the last stored event is kept updated in therdeer’'s main data
structure and is thereby available for the off-line anaygirom this informa-
tion and the relative time-stamps of the earlier eventspioissible to recreate
the absolute time-stamps of all events in the trace.

A prototype of this recorder has been implemented and delii® Quadros
Systems, who at the moment (Spring 2010) are working on liatieg of the
recorder in their kernel. There are no big problems to sdtv@mainly a ques-
tion of the limited development resources of Quadros Systéwio evaluation
regarding the CPU overhead of this recorder has yet beeorpeeti. Devel-
oping and verifying a trace recorder for an operating syseemuch harder
than for a specific embedded system, since an operatingisyst®rder has to
work for all hardware platforms supported by the operatiysjem.

7.4.6 Summary of Recording Overhead Results

This section summarizes the measured recording overhepasied by the
recorders in the four cases where such measurements haveriaeke, i.e.,

all cases except for the RTOS case (Section 7.4.5). Thetsema presented
in Table 7.1. In all cases except RBT, each event requiresesbin the RBT

case, 6 bytes per event is used.

Table 7.1: Measured recording overheads in four industeaés

Case | 0S CPU F(MHz) | ET(us) ER(KHz) CPUOH (%) RAMOH (KB/s)
RBT | VW P 533 0.8 0.0 08 60.0
ECU | VW PPC 603 80 2.0 0.8 0.2 3.1
WLD | RTXC  XC167 20 60.0 0.5 3.0 2.0

TEL OSE PPC 750 100 0.6 18.0 11 72.0



7.4 Five Industrial Trace Recorder Projects 181

The four right column of Table 7.1 have the following mearsing
» ET — average probe execution time
* ER —average event rate
* CPU OH - percentage of CPU used by recorder (overhead)
* RAM OH — number of event buffer bytes used per second

Note the relatively long probe execution time in the WLD ca&@us. The
second longest probe execution time (for the ECU case) wdisn@g shorter
although the clock frequency was only four times highersTifiprobably due
to the difference in CPU type, the CPU in the WLD case is a 16¥lgro-
controller, while more powerful 32-bit CPUs were used indiiger cases.

The four evaluated recorders were optimized for low RAM esam the
expense of higher CPU usage. It therefore possible to raiec@PU overhead
significantly by instead optimizing for CPU overhead, ebg.increasing event
size in order to avoid bit-wise encoding. Other possiblémizations are to
move as much functionality as possible off-line (e.g., tiste@mp conversion)
and by using “inline” functions and macros instead of C fiord. The lat-
est recorder design, presented in Section 7.4.5, incldsesstimprovements
and should thereby give significantly lower CPU overheatioaigh not yet
confirmed by experiments.

7.4.7 Measuring Probe Execution Time

Estimating the CPU overhead requires that the typical di@ttime of a sin-
gle probe can be accurately measured. This is performed d&guérg two
probes in direct sequence, and taking the difference in-fitamps. The sec-
ond probe may execute faster than the first, due to cachingthied hardware
features, but the execution-time obtained would mainlyespond to the first
probe, assuming that the time-stamp is obtained in the vegynbing of the
probe.

For the ABB case and the telecom case, the probe executiemtas found
to be shorter than is, the measurements gave a (truncated) difference:ef O
In such case, the time-stamp resolution has to be increasgd by a factor
10. In the new design, developed for RTXC Quadros, this idyeascom-
plished since the time-stamp resolution is configurablesdrier versions of
the Tracealyzer tool, this was hard-coded and assumed ta.be 1
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Another tested solution for measuring probe execution timgto measure
over a sequence of adjacent probes and dividing the totauéra time by
the number of probes. Such a result will however be optimis®©nly the
first probe executes under realistic conditions, while tileding probes may
execute faster due to caches and other hardware optinizatio

7.4.8 Lessons Learned

The five described projects have identified several issudsa@msiderations re-
lated to trace recording, primarily with a technical focus &lso a few “softer”
organizational questions, related to technology transfajects in general. The
experiences have been condensed into a list of recommendationsidera-
tions and general reflections.

An important consideration is choosing an appropriatelle¥eletail for
the trace recording, e.g., should the recording includetsv&ich as interrupts
or semaphore operations? This is ultimately a trade-offieen the value of
the information, with respect to the purpose of the recgydicompared to
the consequences of the associated recording overheddasue reduction
in system performance, or increased unit cost if compemgdkie overhead
with better but more expensive hardware. Including totelittformation may
however also lead to increased costs, if quality assuraecerbes harder and
more time consuming due to the missing information. Suclscar® however
very hard to measure, since there is no “control case” to ewenyith.

A related consideration is the trade-off between CPU usagenzemory
usage implied by using more advanced storage techniquers adbit-wise en-
coding or data compression, which are more memory efficiahalso more
CPU demanding. It is however the author’s belief that suchnigues should
generally be avoided in order to reduce the CPU overheadorilyeexception
would be low-end embedded systems with very limited RAM ahéneg a long
trace history is more important that system performance.

Another consideration is whether the recorder should kegiated in the
system on a permanent basis, or only activated when negegspermanent
integration means that the CPU and memory overhead of the texording
becomes permanent, and thus may degrade the system paréerfoaits cus-
tomers. The author however recommends this approach farsysems, for
several reasons:

» The risk for probe effects is eliminated, since the reaoydiecomes an
integrated, and tested part of the system.
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» A trace is always available for diagnostic purposes, & ghe system
fails in post-release use, and can simply be e-mailed byraouservice
engineer to the development office.

» The automatic availability of a trace lowers the thresHoltdevelopers
to begin using the trace recorder. If additional configarats required
for activating the recorder, the recorder might seldom feelus

» The recording cost, in terms of CPU and memory usage, ic&jlgi
small, in many cases not noticeable, and therefore wellaietil by the
benefits.

An exception to this recommendation would be systems whietaghly fo-
cused on average performance and where the unit cost is ais®gje, such as
low-end multimedia devices.

A good strategy is to store the information in a single stdéta structure,
which is initiated in compile-time. By storing all eventsarsingle buffer with
fixed-size entries, the relative order of events is mairigitMore advanced so-
lutions, using multiple buffers and/or variable-sizedregemay reduce mem-
ory usage, but leads to higher recorder complexity, higtsér af errors and
higher CPU overhead.

The feasibility of using a custom trace recorder, i.e., restedoped by the
operating system vendor, mainly depends on the possibilitgapturing task-
switch events. This is possible on all real-time operatirsjesms studied, either
using built-in event callbacks, available in VxWorks andE)8r by modifying
the kernel, which is possible for open source platforms sisdhinux, and also
for proprietary platforms where the source code is providedustomers, such
as RTXC Quadros.

The CPU overhead of trace recording can be expected to ber i€d6 in
average on high-end systems, and below 5 % in average onrldvwgyestems,
such as 16-bit micro controllers. The memory usage of therdes can be
expected to be between 4 — 8 bytes per event, depending cecibreler design,
and the frequency of task-switch events seems to be in tige @firange 5 — 20
KHz for high-end systems, and below 1000 Hz for low-end systeThereby,
the memory required can be as low as 4 KB per second of eveantyiplus
some 5 KB for additional meta-information, e.g., a symbbléaA five second
event history would in this case require 25 KB, in total, add\dB buffer gives
over 4 minutes trace history. For a high-end system with la$astch event
rate of 20 KHz, e.g., the telecom system described in Se¢tid, the required
amount of memory is 80 — 160 KB per second of event historyedding
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on event size, which allows for 12 — 25 seconds of trace hjisfat MB is
allocated for the purpose.

A recommendation is to design trace recorders as simplednstas pos-
sible and instead place the “intelligence”in the off-linelt For instance, time-
stamps should not be converted during run-time, bit-wissdimg should be
avoided, and complex startup initialization routines stidwe replaced by static
initialization. A simplistic recorder design is also impamt if the recorder is
to be maintained by the target system development orgamizathich may
have limited time or interest in understanding a complerreéer design.

Don’t expect developers (i.e., the trace recorder useig)rieediately re-
alize the possibilities of all recorder features. They ¢gfliy have little time
available for pro-active, quality-oriented work, such ddiag custom monitor-
ing of application data (“user probes”) in order to faciitduture diagnostics.
In larger organizations, such activities often have to bdopmed as explicit
“quality” projects, approved and budgeted for by managdmen

If developing a trace recorder for another organizatioayesxternal expert
in the area, make sure there is an explicit receiver of thatisol, typically a
developer or lower level manager, which have competenterest and time
available for taking over the responsibility for the deyedd solution. This was
the main success factor in the projects which led to indalaise.

7.5 Recording of Simulation Timing Profiles

The RTSSim simulation framework presented in Chapter 3ireguiming
data, execution times and inter-arrival times, which aataly describe the
modeled system. In the current implementation this is hewewot explicit;
the timing data is provided manually in the model code. Tlam @ however
to keep all such data in a separate data file, loaded by RT$8ioh contains
different data-sets to which the RTSSim model refer. This dite is referred
to as atiming profile The context of the timing profile in the overall analysis
framework is presented in Figure 7.5. The timing profile miap @ontain task
response time data, for use in model validation and impaalyais.

A straight-forward approach to constructing such timingfipes for ex-
isting systems is trace recording with additional coderumsentation for de-
tailed execution time measurements between relevantamogoints. Typical
execution-time information is thereby obtained from reaaitions, under re-
alistic conditions. This data can also be complemented WI@ET analysis
results, in order to provide safe upper bounds.
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Simulation
Instrumentation :
points and '% Model Extraction \Simulation model (code)
Code Simulation
Instrumentation (RTSSim)
Run-time / Timing profile (data)
Profiling

Figure 7.5: The context of the timing profile

This section presents a solution for this purpose, an coemtaf the over-
all vision presented in Section 1.2. This solution has nbbgen implemented,
but a detailed design is here presented which is plannediolementation in
future work.

In an automated analysis, the application code is instraedewith soft-
ware probes, which when executed records a time-stamp amnaderical probe
identifier associated to the code location. Two types of suroles are pro-
posed:execution-time probg&ETP9 andinput event probedEPS). The IEPs
are discussed in Section 7.5.2.

7.5.1 Recording Execution Times

The recording of execution time data for the timing profilguies that an ETP
is inserted at each point in the program where accurate snué ielevance
in the simulation model, i.e., at thteme synchronization point®r TSPs (as
discussed in Section 6.1). The TSPs should include the anogoints corre-
sponding to task inputs and outputs, including IPC and diedx@ables shared
between tasks, and calls of model focus functions. Thes#pare identified
by the model extraction tool, e.g., the MXTC tool presente@hapter 6.

The sequence of ETP events resulting from executing theumsnted
software can be viewed as a directed graph, named “Instriati@m Point
Graph” by Betts and Bernat [9]. The ETPs corresponds to nindinés graph
and a graph edge represent all code paths which directlyeot$itwo consec-
utive ETPs, i.e., without other ETPs in between. In this wwekrefer to such
edges aprobe graph edge®r PGEs

The approachis illustrated by Figure 7.6 using an examggram, a sim-
ple task containing two ETPs with IDs 1 and 2. The illustmatedso shows a
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Instrunent ed code
TaskA(){
init(); Recorded trace -]
while(alive){
msg = input(); 200 TaskA BEGIN
ETP(1); 300 TS TaskA -> TaskB
switch (msg){ 310 TS TaskB -> TaskA
case A: 340 ETP 1 (PGE B,1: 130)
res = a(); 440 ETP 2 (PGE 1,2: 100)
output(res); 450 ETP 1 (PGE 2,1: 10)
ETP(2); 500 ETP 1 (PGE 1,1: 50)
break: 510 TS TaskA -> TaskC
case B: 520 TS TaskC -> TaskA
b0 565 ETP 1 (PGE 1,1: 45)
break, 665 TaskA END (PGE 1,E: 100)
}
}
cleanup();

Figure 7.6: An instrumented program and resulting events

corresponding example trdbehere the first column is the absolute time of the
events, the second column is the type of evefihe annotations on the ETP
events refer to the resulting PGE execution times. As an pi&fGE B, 1:
130means that an execution time of 130 time units has been cxsbriween
the task beginning (the B event) and ETP 1. In this exampig assumed that
task begin events (B) and task end event (E) are detecteduwtitising explicit
probes, but instead derived from the task-switch events.

The execution-time data of the timing profile corresponds set of PGE
data sets, each representing the execution times for afispe@E, i.e., the
CPU time used between the ETP events corresponding to the H@&EPGE
data points are calculated by first taking the time-stanfei@ifice between the
two ETPs corresponding to the PGE and then subtracting thé tidfe used
by other tasks during this period.

Figure 7.7 shows the possible PGE edges, as a graph, arnthafittethe
PGE execution times observed. Note that “PGE 2, E”, i.emfioTP 2 to
the task end, has not been executed and execution time déi@rédore not
available in this case. This highlights a central issue isfdpproach, and with
testing in general: getting sufficient test case coverade ability to assess
the coverage is discussed in Section 7.5.6.

4In textual rather than binary form, for illustration puress
5TS stands for a task-switch event
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Figure 7.7: The probe graph of the example in Figure 7.6

7.5.2 Recording System Inputs

The inter-arrival time data describe the typical timingvibetn input events,
such as messages received from a TCP/IP socket or the triggdran inter-
rupt service routine by an external signal. Such events fie®@ aot periodic
but occur in a seemingly random pattern.

Assuming that input event probes (IEPs) can be inserteceatdtle loca-
tions corresponding to the arrival of such events, e.geriapt service rou-
tines, recording such events is only a matter of log@mpyt event€ontaining
an IEP identity and a time-stamp. This can be implementeduiagiaevent for
atrace recorder, as discussed in Section 7.2.4. The satofdrrival times for
each input event probe can then be extracted from the segteace) of input
events. Since this is independent of the task scheduliigpiily a matter of
measuring the distance in time between IEP events with tine sdentity.

If an input event provides data of relevance for the simafathodel, e.g.,
a command code, there are two strategies, either modelagntar-arrival
time data and the input data separately, or together. THeofit®n is easiest
and the resulting model will be smaller storage-wise, but dave a larger
search space, which may include infeasible behaviors. drtter case, both
inter-arrival time data and input data is modeled as a dicbgraph, where
the nodes corresponds to specific input values and the edgesponding to
observed input data sequences. Each edge is associated wéthof inter-
arrival time observations. This is the same technique astleeproposed for
execution time, but with one graph per IEP probe, observéd dalues as
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nodes (instead of probe IDs) and inter-arrival times in th&adets (instead
of execution times). This solution however assumes thaptssible input

values are relatively few, e.g., command codes or states iliput has a large
amount of possible values, e.g., a 16-bit sensor readiigreépresentation is
not suitable. In such cases, it may be possible to use a mddehwredicts

sensor readings by using a model of the physical, continggstem. Another
solution is to use separate, independent models of inpatatad inter-arrival

times.

7.5.3 Modeling Recorded Timing Data

The measured data, i.e., execution times, inter-arrivadsiand response times,
will vary from time to time due to differences in software dmardware state
between the executions and are therefore modeled usingiptity distribu-
tions. A simple, straight-forward approach is to use a unifaistribution
between the lowest and highest observation (watermarld) $pecific PGE ex-
ecution time. This is suitable when using simulation optition methods, as
presented in Chapter 4. In this case, the focus is to find asiceas extreme as
possible with respect to the specified property, e.g., @sfianse times. This is
essentially a search problem, where the main concern riegePGE execution
times is the feasible intervals. A question in this regaiifltis add a “margin”,
since the watermarks probably does not represent the bestamd worst-case
execution times. This is highly related to the RapiTime piaf Rapita Sys-
tems, Ltd. [136], which predicts the worst-case executiowetbased on this
type of measurements. This is however outside the scopésahibsis.

For performance analysis, i.e., of typical timing, unifodistributions are
however not suitable since they do not preserve the meaewvalushapes of
the real execution-time distributions. In this case it istéad recommended
to use empirical distributions, in which every observed R&XEcution is rep-
resented as a individual data-point. During simulatioreceion times for a
specific PGE are selected by random (sampled) from the PGEsaatusing
a uniform probability distribution. Thereby, each PGE axémn time will be
chosen with the same probability as observed in the measmtsnirhe down-
side is that this requires a lot of memory and only the obgkexecution times
will be used. In some cases, not every value in a specific P&#Eval might
be observed, even though very similar values have beendeddooth smaller
and larger. Larger “gaps” should be taken into account,essuch are most
likely caused by control-flow conditions. However, smalafi$”, a single or a
few individual missing values, should be regarded as misdata points, i.e.,
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values which most likely are possible. It is desired to idel@lso such values
in the timing profile.

An interesting solution is to mix the two methods: startinighwthe em-
pirical distribution, group (stratify) nearby data poiirt¢o intervals (stratas),
where the mean value of the strata bounds is as close as lpassthe mean
value of the included data points. Thus, the data pointsat sarata should be
fairly evenly distributed within the strata interval. Easthata is given a prob-
ability corresponding to the number of data points withia ¢itoup divided by
the total amount of data points. This gives a PGE data setstomgof stratas,
where each strata has an upper bound, a lower bound and apitgbs/hen
using such a timing model in RTSSim, the simulator first deldtat strata to
sample from, based on their respective probabilities, &ed select a value
from the selected strata interval, using a uniform proligidistribution. Note
that the stratas (their intervals) may overlap withoutrietsbns.

7.5.4 Using Timing Profiles in Simulation

The timing profile, a data file, is loaded by the simulator befstarting sim-
ulation. It contains a set of data-sets of different type®¢ation-time, inter-
arrival time or response-time), with identities. In thidwgmn, the Execute
function takes as parameter a ETP identifier. This is asdiggenodel extrac-
tion tool when the time synchronization point (TSP) is idiéed. Note that the
TSP exists in the real system source code as well as in thelode, in the
former as an execution time probe (ETP) and in the latter &Sxacutecall,
both using the same identifier as argument.

The ETP ID is used to calculate a PGE ID, in the beginning oBkecute
function, by merging the ETP ID with the recent history of EJfheETP
history. In Figure 7.7, a ETP history of 1 is used, which is the minim ot
a longer history can be kept using a fixed-size ring-buffése ETP history is
updated in the end of thexecutdunction, where the current ETP ID is added
to the ETP history.

Note that the PGE data-sets refers to the execution-tinvedegtwo ETPs
independent of ETP history length, but if using a longerdrigtof two (2) or
more, there may be multiple data-sets for a PGE, dependinigeoaxecution
path leading to the first ETP. A longer history reduces thie afsthe simula-
tion exploring infeasible scenarios, i.e., selecting aisege of PGE execution
times which cannot occur in practice, e.g., due to hardweleged dependen-
cies between different code segments, such as cache carflmivever, it also
requires a larger amount of measurements in order to getletengpverage,
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since the number of PGE data-sets grows with the historytherlg a future
simulation tool, the ETP history could be a parameter foruber to decide.

7.5.5 Systematic Data Collection

The instrumented software system needs to be exposed t® dangunts of
testing in order to collect a sufficient amount of data on €Glt, especially
if using a longer ETP history (as discussed in Section 7.%.d)ge scale data
collection for simulation timing profiles can be achievediggrating the ETP
and |IEP instrumentation into the system on a permanent badiselying on
the existing system testing process to stimulate the systdfitiently. If a
trace recorder exists in the system, and if the ETPs can bedaddomatically,
e.g., by the model extraction tool, this is only a matter oflagng the test
case specifications with instructions to collect, labes{egn version and build
configuration, etc.) and store the trace recording aftet afdests have been
performed. This way, large amounts of trace data becomékbleaat very
little extra effort, and the risk of a probe effect [89], j.¢hat the activation
(or deactivation) of recording changes the system behdsieliminated since
the release version is identical to the analyzed systems 3Jdiution would
however imply an additional performance overhead, whiempetding on the
amount of ETPs and IEPs, might be significantly larger thanoerheads in
the case studies presented earlier. An evaluation of tiisoapgh with respect
to recording overhead is planned for future work.

A possible extension of this approach is to perform the etitva of PGE
data periodically during run-time, e.g., by using a lowspity task which reg-
ularly analyze the last recorded events and perhaps eves kesmplete tim-
ing profile updated, i.e., describing the whole executiorsisystem startup.
In this way, the RAM buffer can be much smaller, compared toiihg the
analysis off-line. However, this means keeping the timingfite in target sys-
tem RAM, which imposes requirements on its size. Thereforaight not be
wise to store every observation separately, since themaysitay be running for
days, weeks, or even months continuously when in postgelaae. A more
memory efficient solution is required, where the observetiare grouped into
intervals, as discussed in Section 7.5.3.

The low priority of the profiling task means that it will notfa€t system
performance, but also a risk of losing data. If higher ptjotasks delay the
profiling task for a long time, and during this time create snprobe events,
there is a risk that unprocessed probe events are ovemviitteircular event
buffer. This risk can be reduced by increasing the rate ofptiodiling task
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and/or increasing the event buffer size. However, in thestwcaise, a data loss
does not invalidate the result, it only implies a temporaslof data and the
profiling can resume once the profiling task is allowed to akec

Another possibility for the profiling is to use a hardwareaeter, like the
RTBx product from Rapita Systems, Ltd. [136], as preseme8dction 2.5.
The hardware support minimizes the CPU overhead of the aedlyystem, as
it only need to output the probe identifier on a digital I/Otptypically a matter
of 1 — 2 instructions, while the time-stamping and data gfetia performed by
the recorder hardware (a separate computer). The downkities@pproach
is that it requires quite large and expensive hardware,wte be hard to use
for post-release data collection since the equipment isigdly too expensive
(and large) to be included in products.

7.5.6 Coverage

The coverage of the timing profile, with respect to PGE exeauimes, can be
determined in at least two ways. The safest approach is tpataall possible

PGEs through static analysis of the source code and comidréw PGEs in

the timing profile. The computational complexity of calding the CFG can

however be a scalability problem for analysis of complex edd®zd systems,
especially since the calculation must be performed withoaa@lscope, i.e., as
an interprocedural analysis. Another approach is to relthensimulation of

the model for assessing the coverage. If the simulationestga PGE which
does not exist in the timing profile, an error is produced ghhght this issue.

This approach is easier, but depends on the coverage oftindagions.

If PGEs are found to be missing, additional test-cases meistdoled in
order to include the code path(s) corresponding to the P@Eh&more, if
PGEs are found to have too few data points this must be addtesspecially
if the PGEs represent a larger block of code, containing rpatlys. This thesis
does however not elaborate on the necessary number of dais-per PGE,
nor the process of selecting test-cases for maximum tegtfe&E coverage.

The probabilistic modeling of execution time is associdted risk of pro-
ducing simulation results which are not feasible in pragtie.g., if there are
hidden dependencies between different PGE due to hardwstee d~or in-
stance, say that we have two PGEs, PGE 1 and PGE 2, which a¢éxagate
in sequence. There is one task with higher priority which mo@gempt either
in PGE 1 or PGE 2, but never in both during the same task insfang., due
to the task periods. The preempting task impacts the cacheaarses a cache-
miss when the preempted task resumes, which increases ¢oatmn time
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significantly. Such cases correspond to the highest obdexxecution times
for both PGE 1 and PGE 2. The simulation may however seleantbémum
values from both PGEs in the same instance and thereby pratuexecu-
tion time which is not feasible in practice. Solving thisliehowever requires
a more detailed timing profile which takes the previouslestld execution
times into account. This would quickly increase the sizeheftiming profile,
which thereby requires more measurements for construction

7.6 Conclusions

This chapter has presented uses, experiences and techfogueace record-
ing in the context of embedded systems in general, and indhtext of the
overall analysis framework presented in Section 1.2, whrare recording is a
necessary and important component.

A central use of trace recording in the envisioned analyaiméwork is to
collect timing data for the simulation models. For this mse, this chapter
has presented an approach for recording, modeling andratieqg of timing
profilesin simulation frameworks like RTSSim.

Visualization, analysis and comparison of traces from &utens or real
system recordings is necessary during impact analysisehadidation and
regression analysis. Note that trace comparison is disdiesChapter 8. Out-
side the scope of simulation-based analysis, trace vimatadn is of direct rel-
evance for industry, e.g., for troubleshooting, optimimatnd overall system
understanding. A trace visualization tool, the Tracealylzas been developed
during this work. This is today used in all ABB robots and teeand version
of this tool is commercialization together with Quadrost8gss, Inc., under
the name RTXCview.

Since trace recording is a key component of the envisionalysis frame-
work, the general applicability of trace recording is natlyrof high impor-
tance and is targeted by research quesfi@npresented in Section 1.3. This
has two aspects, implementation feasibility on common-ties operating
systems, and the overhead with respect to CPU and RAM us&igehds been
investigated in five industry collaboration projects wheeee recorders have
been implemented.

Evaluations of overhead has been performed in four caspssgenting
the domains of industrial robotics, vehicular systemsdein systems, and
automated welding systems. The system used three diffepenating systems
and four different CPUs, ranging from a 20 MHz, 16-bit micamtroller to a
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1 GHz, 32-bit CPU. The CPU overhead from the trace recordeptemented
on these systems was found to be between 0.2 — 1.1 % for 32Phis@nd
3 % for the 16-bit MCU. The RAM buffer usage was found to be 2 KR
per second of trace history, depending on event rate (0.5kH and event
size (4 — 8 bytes). All three evaluated operating systenosvdibr third-party
trace recorders, in two cases through callbacks/hooksemie case since the
kernel source-code was available and thereby could be raddifi

No evaluation of overheads has yet been performed in thedifthmost
recent recorder project, which is still ongoing. In this jpad, a generic trace
recorder has been implemented and integrated in the conahexal-time op-
erating system RTXC Quadros [137]. This is included in otdepresent the
latest recorder design, based on the author’s experierfcie dour earlier
projects combined with the expertise of the RTOS develoge@uadros Sys-
tems, Inc. [137].

Recorder implementation was possible on all five casesoudth the op-
erating system OSE, from ENEA AB [134], caused some problduoesto
security mechanisms preventing direct access to kernal dathile context-
switches (task-switches) could be logged with respectsioitientity and times-
tamp (the “what” and “when”), it was not possible to log thehyy, i.e., the
status of the suspended task (ready, blocked or terminafBu}¥ is needed
for correct trace visualization. A workaround was found jekhhowever as-
sumes static process priorities in order to guarantee ctodigplay. Note that
this problem does not concern recording of timing profilekicl is straight-
forward in all five cases.

These results confirm the feasibility of trace recordindnim ¢ontext of the
overall approach, presented in Section 1.2. The answerstareh question
Q3 is thereby “yes” — custom trace recording is generally figlasiwith low
overhead. Note that the presented overhead figures do notéthe instru-
mentation necessary for recording of timing profiles, iE€IPs and IEPs as
proposed in Section 7.5. Adding such probes would increasehead a lot,
since the ETPs may be frequent. The evaluated recordershiosu@ver not
been optimized for CPU overhead, so it is likely that the bigéwvent rate can
be somewhat compensated by shorter probe execution tiresdver, the ad-
ditional profiling (ETPs and IEPs) would also give improvealibleshooting
support and thereby at least partially motivate the adudi@verhead, since
these events could be presented visually, in the Traceatyzsimilar tool,
which would help pinpointing errors and performance baottleks.






Chapter 8

Model Validity, Validation
and Trace Comparison

This chapter discusses the issue of model validity and #fierepresents a
five step process for validation of simulation models, tigtoeomparison of

simulation traces with traces from the modeled system. Trseffiur steps

of this process is actually a general method for trace coisqarwhich can

be used for impact analysis and regression analysis as Wk#se uses are
described on a conceptual level in Section 1.2. A literasioely on model

validation is presented in Section 2.6.

Since a model is, by definition, an abstraction of the modejedem, a
model cannot be expected to exactly predict the behavioicohgplex system
in all situations. In context of the simulation analysisnfi@vork presented
in this thesis, the abstractions correspond to the prolstibiexecution time
modeling (Section 7.5) and use of explicit, manual modetibgtractions, as
discussed in Section 5.7. However, if all details of the nedeystem soft-
ware and hardware was to be taken into account, e.g., in twdaodel the
executiontimes in an exact manner, the result would be adetsiled simula-
tor like Virtutech Simics [124], which would be several mégdes slower and
therefore not suitable for this approach.

A valid model does not have to be “perfect”, as discussedshaotid give
predictions that are “good enough”, with respect to acouaac confidence. A
major problem is, how accurate and confident does a resudttodee, in order
to be good enough, i.e., valid? This question cannot be arfewthe general
case. The validity of a model is investigated in an activibokn asmodel

195
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validation Schlesinger et al. [41] defines model validation as thé'Stantia-

tion that a computerized model within its domain of appliibbpossesses a
satisfactory range of accuracy consistent with the intehalgplication of the

model. This definition relies on that the following has been define

» The domain of applicability specifies the system that is described by
the model. For a model of the temporal behavior of a compldxeztded
system, this includes versions and setup of software, ds@whhrdware.

» The required accuracy is dependent on the properties of interest and
the intended use of the model predictions.

» The intended application of the modelconsidered is, as discussed in
Chapter 1, impact analysis with respect to run-time proggrduring
software maintenance.

Thus, a model cannot be shown valid in general, only for aifiperse, in
a specific context. The required accuracy (and confidengerdis to a large
extent on the purpose of the analysis model. For instantiee imodel is used
for studying the response times of software functions withward real-time
requirements but with requirements on user-perceivecpegnce, i.e., typ-
ical response times, it may be sufficient with a 20 % marginradrein the
predictions, since the consequences of a minor prediction eegarding user-
perceived performance is not critical and since it is easyetdfy this after
implementation. However, if the model is used to predictperties critical
for correct system operation, such as extreme-values jponsg time, a much
higher accuracy is required since the consequences of tedtohg such an
error might be a system failure and, moreover, since themdrcase scenar-
ios found through simulations might be hard to reproducetaston the real
system.

This chapter proposes a five-step process for validatioimaflations mod-
els for task-level timing analysis of embedded softwardesys, which also
can be used for impact analysis and regression analysis.nible! valida-
tion process utilizes the trace recording techniques aedithcealyzer tool,
presented in Chapter 7, and the simulation framework RTSBimsented in
Chapter 3. Section 8.1 provides a discussion of the potdghtieats against
the validity of a model. Section 8.2 presents the proposédatin process,
consisting of five tests of the model. Section 8.3 discussétection of com-
parison properties, a necessary and crucial step in thisepso Section 8.4
gives an introduction to the two-sample Kolmogorov-Smiftest, a statisti-
cal test which is useful in several steps of this processti@®e8.5 discusses
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model robustness and presents the fifth and final test in fidatian process,
the sensitivity analysis, which is a test of model robusindsnally, Section
8.6 concludes the chapter.

8.1 \alidity Threats

The need for model validation emerges from the risk of makiegjsions based
on a model that contains errors or lacks information abopbirrant details of
the system’s behavior. The proposed analysis frameworkistsnof several
activities and tools and errors could be introduced in arthefm. There are at
least five potential error sources:

» Manual modeling abstractions,
» Execution-time modeling,

» Model extraction configuration,
» The probe effect, and

» Side-effects of black-box software.

Manual Modeling Abstractions The envisioned solution for automated model
extraction includes support for manually specifieddeling abstractionsvhere
selected condition expressions are replaced with corsstantmodeled in a
probabilistic manner. It is believed a small amount of aaligfselected mod-
eling abstractions in many cases can reduce the model gidicintly and
thereby shorten the time required per simulation. It is he@wémportant that
manually specified abstractions are valid with respect éopghrpose of the
model. For instance, if the purpose of the model is typicalggenance, con-
ditions for error checking can probably be removed from thoelet, but if the
purpose is extreme value analysis such abstractions migltervalid.

Execution-time Modeling When recording execution time data for the tim-
ing profile, as discussed in Section 7.5, it is important tesgéficient coverage.
Insufficient coverage can however be detected during thalation. A more
serious problems is if there are hidden dependencies irxdwigon-time data,
e.g., due to hardware state, which may cause the simulagmrterate scenar-
ios which are not feasible in practice, as discussed in @et.
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Model Extraction Configuration The presented method for automated model
extraction requires as input the setobdel focus functionge., the API func-
tions of relevance for the run-time properties in focus & thodel. It is im-
portant that this list is complete, since the model will athise fail to include
relevant behavior, but including too many (irrelevant) mloidcus functions
will make the simulation model larger and more complex thaoessary, so
it is important to select the model focus functions cargfullnother input of
importance is to specify the right source code directones@eprocessor di-
rectives. In a large system, this is not always obvious abtiild environment
is complex and often heterogenous. Some files might be geddracompile-
time. There are commercial tools which solve this by momnigpithe build
process in order to record what files and preprocessor tiesdhat are used.
This method is used by both CodeSurfer [123] and Coverit2]14

The Probe Effect If the code instrumentation used for constructing the tim-
ing profile is not permanent but added on demand, the behalvibe modeled
system might not be the same as the behavior of the produati®ion. The
impact of adding or removing code instrumentation is comiyneferred to as
the probe effect [89]. In this thesis it is assumed that tlubereffect can be
avoided by allowing the probes to remain in the system. Hewdhis might
not be possible for some systems due to the cost of these priobe the ad-
ditional CPU and memory usage. Another solution to avoidpitede effect is
to use specialized hardware monitors that non-intrusisblerve the system
without affecting the temporal behavior of the system [10Bjis is however
not always an option, since custom hardware is required.

Side-Effects of Black-box Software Large software systems often contain
third party software, e.g., databases, drivers, libragts, for which the source
code is not available. The approach to automated modelatingpresented
this thesis generally requires that the source code isablail but provides a
mechanism for allowing black-box library functions. It isveever assumed
that most code is available, and that any such black-boarjbiunctions only
perform simple operations with no side-effects of relewafue the simulation
model.

However, larger black-box software components, like an 8@tabase, are
likely to have such side-effects, e.g., spawning tasks ckifg a semaphore.
In order to model black-box software with such behaviorsdtage approaches
based on dynamic analysis (trace recording), such as tHeswgmHuselius [100]
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and Jensen [49, 116]. A literature study on modeling methisidsy dynamic
analysis is presented in Section 2.5. Such methods coulddikas a comple-
ment to model extraction from source code.

8.2 A Process for Trace Comparison

Model validation is in the context of this thesis a matter ofmparing sim-
ulation results with real world observations of modeledays i.e., a matter
of trace comparison. The tertrace data seis used as a common label for
all information contained in (or derived from) a trace rating. Comparison
of trace data sets is necessary in all three scenarios inglen\presented in
Section 1.2, i.e., model validation, impact analysis amgiession analysis. In
all cases, the issue in focus is whether or not there arefisigni differences
between two trace data sets with respect to relevant aspectpared. The
three uses for trace comparison are illustrated by Figure 8.

System S, Execution Recorded Trace 2

Change(s) implemented Comparison = Regression Analysis
System S; Execution Recorded Trace 1

Model extraction Comparison = Model Validation
Model M, Simulation Simulation Trace 1

Change(s) prototyped Comparison = Impact Analysis
Model M, >| Simulation > Simulation Trace 2

Figure 8.1: The uses for trace data comparison

This section presents a five-step process for finding difiegs between
trace data sets. The process is presented in perspectivaded nalidation, but
the first four steps can also be used for impact analysis oessgpn analysis.
The fifth step, sensitivity analysis, is however only for rebehlidation.

The five steps are increasingly harder test of similarityveen two trace
data sets, one from Monte Carlo simulation of the model aredfoym moni-
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toring during real system operation. Each test either taigsmodel (i.e., not
valid), or allows the model to pass to the next test in the canispn process.
The reason for starting with less accurate tests is thatdheyaster than the
more accurate tests, but are still likely to detect any majors in the model.
The more accurate but time-consuming tests are only applieh the model
has passed the previous, less accurate tests. Some ofthbades been pre-
viously proposed in research literature, by e.g., Law an€dfoas [60] and
Sargent [62], but not in the context of validating simulatimnodels of embed-
ded software systems.

It is important to remember that this process cannot progevdiidity of
a model. This is not possible, in the same way as it is not plessb prove
the absence of software errors using testing; there is lysaialastronomic
number of possible scenarios, too many to allow for a sysfepexhaustive
comparison of each one. Model validation is therefore aenait attempting
to show that the model is incorrect, i.e., that there areifsoggimt differences
between two trace data sets. The more tests performed thed &now that
the model is incorrect, the more confidence in the model.

Next follows an overview of the comparison process. Notée tha first
half of the process uses subjective methods, based on ivistiahs, while the
later tests are based on statistical methods. Steps 1 — 4emenped in detail
in sections 8.2.1 — 8.2.4, respectively, while Step 5 isgmwt=d separately in
Section 8.5.

1. Subjective Trace ComparisonTask execution trace are visualized and
compared subjectively, e.g., using the Tracealyzer tcedgmted in Sec-
tion 7.3. The purpose of this first test is to quickly deteraniithere are
major, obvious differences.

2. Subjective Property ComparisonSpecific properties of the trace data
sets are selected (tlo®mparison propertigs visualized and compared
subjectively. This test is more detailed than the tracealization test,
but still subjective.

3. Variability Analysis Several trace data sets from the same source are

compared in order to study the amount of variability in thenparison

properties. If trace data sets from the same origin shove laagiations,
larger trace data sets are necessary. The variability dlhelhvestigated
by using statistical methods; the two-sample Kolmogoravif8off test

is suggested.
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4. Statistical Property Comparison In this test, statistical methods are
applied in order to determine the similarity between thedrdata sets,
with respect to the selected comparison properties. Likedvariability
analysis, the two-sample Kolmogorov-Smirnofftest is rmogended for
statistical comparison.

5. Sensitivity Analysis This test is rather time consuming and is only rec-
ommended for initial model validation, and for verificatiofthe overall
simulation framework. This test checks if the simulationdalisrobust
with respect to typical changes, meaning that the predistfoom the
model should correspond to the actual outcome when impléntetine
change in the real system. Model robustness and sens#inalysis is
discussed in a Section 8.5.

Before the validation process can be initiated it is impatrta select at least
one system environment on which the tests in the model v@ditigrocess
can be based, thelidation environment(s)An environment specifies at least
what test-cases that are used to stimulate the systeng@mrerate input), the
hardware platform used (what timing profile to use for thewdations) and the
software configuration.

Preferably, more than one validation environment shoulddsal to better
compare the system and the model, since a model that is wadide environ-
ment may not be valid in other environments. Unfortunatgilyce the effort
of performing the test is proportional to the number of vatfidn environments
used, only a limited amount of validation environments cam$ed in order to
keep the required effort on a realistic level. It is therefonportant to select
the validation environments with care.

The validation environments should stimulate the model amyndifferent
ways in order to compare as much as possible of the model lmehvaith the
corresponding behavior of the real system. Since only addnhumber of
validation environments can be used they should differ ashmas possible
from each other in order to compare the model with the reaéayi a variety
of situations. At least one validation environment shoaldespond to extreme
cases scenarios with respect to system stimuli, but it & iadportant to use
validation environments corresponding to the normal usb®tystem.

The selected validation environments are used in all stéffseoprocess.
Each test is performed once for each validation environpazert if a test fails
for any of the validation environments, the model validatie terminated in
order to investigate the cause of the discrepancy.
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8.2.1 Step 1: Subjective Trace Comparison

In the first step in the process, traces are visualized usgutable tool (e.g.,
the Tracealyzer, presented in Section 7.3), and subjéctbempared. The
purpose of this test is to quickly spot any major differenuely.

When comparing the traces, it is important to note that theets are sam-
ples of a very large set of possible behaviors due to seeynmagldom vari-
ations in execution-times and input event timing. Even giothe validation
environment has been specified, the model is still an aligtraof the real
system, modeled in a probabilistic manner with respect ézetion times and
input events. Hence, an exact match cannot be expected. vdagviteshould
be possible to identify patterns in the task execution degdiby the two traces.
If the execution pattern of a task that has been predictetidyrtodel differs
considerably from the observation, the model will fail thett

An example is depicted in Figure 8.2, where two executiotesaare com-
pared side-by-side, one from an analysis of the model (omigi) and the
other recorded on the corresponding real system. In thesysém, the task
Drive always preempts th€trl task, but in the model this is not the case. As
depicted by Figure 8.2, thBrive task has a matching inter-arrival time (pe-
riodicity) and execution time, but it has a different offsdth respect to the
Ctrl task and the preemption pattern is therefore differents han example
of a pattern which may also be used as a comparison propetttg iproperty
visualization test, discussed in Section 8.2.2.

8.2.2 Step 2: Subjective Property Comparison

In the second test, specific properties of the real systeravi@hand the cor-
responding model simulation are visualized and comparbjbstively. This
test has been discussed by Sargent [62], where it was réferi@s theoper-
ational graphicstest. This test is stronger than the trace comparison (Step 1
as it apart from a set of validation environments also regpuselecting a set of
concrete properties to compare, ttemparison properties

The selection of comparison properties is a very important @f the val-
idation process, since the comparison properties are nsalll later steps of
the process. For each validation environment, all compansoperties are to
be visualized and compared. Suitable properties to conipainés test are re-
sponse time distributions (an example is depicted in Fi§ug and utilization
of logical resources over time (Figure 8.4). Such propsie sensitive to a
large set of possible differences between the model andetidesystem. The
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Figure 8.2: Trace comparison using the Tracealyzer tool
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selection of comparison properties is discussed in Se6ti®n

The comparison properties may, e.g., be presented in a&spdt, with
the X-axis as a time-line and the Y-axis showing the corradpa value, i.e.,
response-time of task instance or the utilization of a djge@source. Since
execution traces should already be available from the pusvétep, the main
effort of this test is the actual comparisons of propertyalizations. The
amount of comparisons required may be significant sincethiiédsproduct of
the number of environments and the number of propertiesrtgpace. If 5 en-
vironments are used for the model validation and 20 progedie to be com-
pared, each data set will generate 100 visualizations totmpared. However,
even if each comparison takes on average 1 minute, this lisd®than 2 hours
for a single person to perform.
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Figure 8.3: Visualization of the usage of a task response tim

Itis important to understand that the purpose of this testlisok for major
differences only. In most cases there will be small diffeeeven if the model
is of good quality. However, to determine if these differemare small enough
is done in a more systematic and objective way later in thielaabn process.
Property visualization is a fairly quick method of identifg the significant
errors in specific properties, at an early stage in the védidgrocess prior to
more time-consuming tests.
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Figure 8.4: Visualization of the usage of a logical resource

8.2.3 Step 3: Variability Analysis

The third step in the validation process, the variabilitalgsis, is important
since seemingly random variations in execution time andtirgvent timing
will cause trace data sets from the same source to show isagabetween
replications of the data sets. The output from Monte Canbousation will
show variations due to the use of probabilistic modelingilevieal system
measurements will show variations due to variations in Wware state, such
as cache memories, or due to variations in the timing of eaténput events.
If the amount of variability in the analysis results is largieis implies that
the predictions are based on an inadequate number of olisas/ésimulation
or real system recordings) and might therefore not be reptative for the
system behavior in general. The simulation results are madriect in the
sense that the behavior predicted by the model may occueinetl system,
but the results are of low confidence. This applies mainly redjetion of
average-case behavior, using Monte Carlo simulation.

However, small variations between data sets from the samresare ex-
pected, and normal. Comparing data sets therefore recuinesthod where
smaller variations can be tolerated, while larger (stiicgignificant) differ-
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ences are clearly identified. There are several establista¢idtical methods
for this purpose, i.e., to for determining if there are siigaint differences be-
tween two sets of data. The two-sample Kolmogorov-Smirtedf (cf. Sec-
tion 8.4 is recommended for this purpose, since it is norupatric and makes
no assumptions on the underlying distribution of the dataotAer method is
the one proposed by Huselius [100], a former departmengagile of the au-
thor. Huselius dismissed the KS test for this purpose uddeassumption that
one of the data-sets compared needs to be modeled as a mttaédistribu-
tion. This is however not true for the two-sample KS test,ahtis discussed
in Section 8.4.

8.2.4 Step 4: Statistical Property Comparison

In Step 2 of this process, comparison properties were seleeisualized and
compared in a subjective manner, which can quickly showals/ifferences.
However, in order to test the model validity in more detajladcurate and
objective way, a statistical comparison is necessary.

However, it does not makes sense to compare the trace datlireetly. As
an example consider Figure 8.5, which depicts the predanedeal response
times of a task. Each data point represents the responsetiatask instance.
The data-points are plotted in chronological order acewydd the start times
of the task instances.

Simulation Real System Recording

Task response time (ms)
3
1
3
1
4
H
i
i
t
3
1
]
i
Task response time (ms)

Instance start time (s) Instance start time (s)

Figure 8.5: Response-time distribution — simulation val system

The temporal behavior predicted by the model clearly resesrtbe response-
time distribution from the real system measurements. misttlasses of re-
sponse times can be identified in the observed and the peddiethavior and
these match very well. However, it is not possible to complaese two data
sets instance by instance, since ¢ instance of tasi” in a simulation trace
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will probably not match the* instance of tasi in a real system trace, even if
the traces were synchronized, due to the probabilisticdi@ctime modeling.

Obviously, an exact match of the execution traces is a téai stiterion of
equivalence for probabilistic models. Instead, the exenutaces have to be
compared on a higher level of abstraction. Like in the valitganalysis (Step
3), the comparison properties should here be compared tlsnig§S test (cf.
Section 8.4), but instead of comparing data sets from the saurce (i.e., two
simulation results or two real system recordings), the data are in this case
of different origin.

The result of this step shows if there are any significanedifices between
the two compared data sets with respect to the comparis@epies. This is
conceptually similar to a comparison of two physical obgémdm photographs
taken from different perspectives; a photo of a cylindeapsid object may ap-
pear very similar to a photo of a spherical object in a cefpairspective, but not
in others. It is therefore important to include a sufficiemioaint of comparison
properties (perspectives), in order to detect any diffegsrihat exist.

8.3 Selecting Comparison Properties

Statistical property comparison naturally requires actila of the properties
to compare. If a sufficient number of comparison propertegetbeen used
and the comparison has been made with low tolerance, anyIni@de@asses
this test should be highly accurate.

In the same way as when defining test cases for normal softestiag,
it is crucial to select the right test cases. As many comparsoperties (test
cases) as possible should be used, but at the same timeliy igassible to use
a limited amount for practical reasons.

The comparison properties typically include explicit gystrequirements
and other system properties of high interest, but may aldadie system prop-
erties that are of less interest for the actual used of theeiiodorder to
increase the coverage of the comparison. Such extra preparte labeled
supporting properties They are affected by many aspects of the system and
characterize the temporal behavior. Typical supportirgpprties are statistics
on task inter-arrival times and utilization of logical resoes, such as message
gueues.

As mentioned, as many relevant system properties as paHgtuossible
should be included in the set of comparison properties. Wewehe use of
irrelevant comparison properties may result in the repectif a valid model.
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Sargent [62] denotes thisType | error, or themodel builder’s risk The op-
posite situation, i.e., an erroneous model is acceptedlis rey occur if too
few relevant comparison properties are used or if the maaehlot been suffi-
ciently analyzed in order to detect the erroneous behaSamgent [62] denotes
this aType Il error, or themodel user’s risk.

Even if a large set of system properties are used for a cosgathere is
a risk of accepting an invalid model, if they represent tam fgpes of system
properties, For instance, consider a case where only respiime properties
are used as comparison properties. This would not deteleifriter-arrival
time of a task is (slightly) different, but would have if thernparison proper-
ties included preemption patterns. Thus, the selecteémsygtoperties should
not only be relevant, but also represent a variety of aspddte temporal be-
havior. Three general types of run-time properties have Entified as suit-
able for comparison of the temporal behavior of complex atded systems:
response-time properties,pattern properties, and resatitization properties.

Response-time properties The response time of tasks can be used as a com-
parison property, since it is dependant on not only the ei@tdime of the
task, but it also depends on the temporal behavior of otls&stal he response
time may be interesting in terms of worst case, since it imigha requirement

(a deadline), but also the distribution of response timesbezaused as a sup-
porting property, as it contains a significant amount of infation about the
temporal behavior of the system.

Pattern properties It is often possible to identify patterns in the scheduling
of tasks and in the occurrence of different internal eveAitsexample is how
often a certain task, Task A, is preempted by another sp¢asfic Task B. The
occurrence of a certain pattern in the execution time of lnitaalso a pattern
property that can be used for comparison.

Resource utilization properties Properties in this category include those re-
lated to logical resources, such as the minimum or maximulizatton of
message queues, how long a task waits for a message, or hemvatask
writes or reads messages from the buffer. Another examadf a property
is the probability of a certain message buffer being emptyu(d).
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8.4 The Two-Sample Kolmogorov-Smirnoff Test

The two-sample Kolmogorov-Smirnoff test [38], or KS testrécommended
for the statistical comparison of trace data in the modetiadéibn process pro-
posed. A good overview of this test can be found at the U.STNA&b-
site [125]. The KS test is non-parametric and makes no asomspon the
underlying distribution of the data, which is importante@nresponse-times
and execution-times are often not normal distributed hilierahas a complex,
multi-modal probability density distributions, as illeasted by Figure 8.5.

The KS test assumes that the data is of continuous naturen tBeegh
time is discrete in RTSSim simulations, since modeled bynéegier counter,
the underlying concept of time is continuous and the exenutnd response
times are typically measured in hundreds or thousands d-tinits. Such
distributions can be regarded as continuous.

The KS test is based on the cumulative distribution funatibiiie data set,
which gives the ratio of data elements smaller than the §pdalement. For
a uniform distribution, the cumulative distribution fuist is a linear function
from (0,0) to (1, 1), while for a data set containing only identical values, the
cumulative distribution function will be a step functiore.i the function value
is zero (0) before the value and one (1) afterwards. Theghate/o extremes,
but most cumulative distribution are somewhere in betwidanin the example
illustration provided in Figure 8.6, where the same datésgatesented using a
histogram (the left diagram) and the cumulative distrilmufiunction (the right
diagram). The presented data distribution is clusterexditiervals of 100 time
units.

The KS-test is an hypothesis test, where the null-hypaghissthat the
two data sets are identical. The KS test is performed by t#log a statis-
tic measure which describes the maximum difference betweenoumulative
distribution functions of the two data sets, as illustrabydrigure 8.7. The
null-hypothesis is rejected (i.e., a significant differefcpresent) if

niy *x N9
ni + no

x* D > K,

wheren; andns is the number of elements in the two data sets. Disatistic
is, as illustrated by Figure 8.7, the maximum distance betwbe cumulative
distribution functions. This is calculated by

D= Sup|Fn(:C> - Fn’(x”
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where F, (z) is the cumulative distribution function for data set withele-

ments andup denotes the supernum of the resulting set, in practice theda
difference between the two cumulative distribution fuoot. K, is given by
the Kolmogorov distribution (K), such that

Pr(K <K, =1-«

whereq is the desired level of significance (typically 0.95).

8.5 Model Robustness and Sensitivity Analysis

A simulation model igobustwith respect to a certain type of changes if such
changes, when applied to the simulation model, impactsithelation result

in the same way as the corresponding change impacts the etosigstem.
This section presents a method for determining the robastaka behavior
model of a complex embedded system. This activity is refeiwassensitivity
analysis This is the fifth and final step in the proposed process forehod
validation.

To demonstrate the importance of model robustness, carsgystem con-
taining a binary semaphore protecting a shared resourcanedout occurs if
a task has been waiting for the semaphore for a certain pneditime. If the
timeout occurs, the task is activated and executes longer ormal due to
error handling. In all previous versions of the system, timseout has never
occurred. If the timeout is left out when modeling the systerng., due to a
manually specified modeling abstraction, or due a bug in théehextraction
tool) the model will still seem accurate since the timeowemeccurs. How-
ever, if a change to the system (e.g., a new feature) causdstout to occur
in some situation, the simulation model will no longer beidaince it does
not include this mechanism.

This approach to sensitivity analysis is influencedsigtem identificatiogn
a technique used in the domain of control theory [110]. By sneiag and ob-
serving the input-output relationship between signaldhangrocess, a model
can be determined in terms of a transfer function. Validptimodels based
upon the system identification approach is somewhat retatézbsting. Typi-
cally, output signals are predicted by using the model whighthen compared
with the output signals of the physical process. Hence, thdahis regarded
as correct if the analysis and the physical processes geramaroximately the
same output, when fed with the same input.
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Testing the model with different input signals and compatire prediction
with the signals produced by the actual system is accepgikea that the pro-
cess is continuous in its nature, since it is possible tapaiate the behavior
between the tested signals. However, computers are nahaons systems,
they are discrete systems where the behavior may changeticatly as a
result of small changes. A model of a software system caretber quickly
become invalid as the system evolves, if the model is notgobith respect to
typical changes.

The robustness of a model can be assessed throaghsitivity analysis
The basic idea is to perform impact analysis with respectotoroon types
of changes and verify that they impact the behavior predibtethe model in
the same way as they impact the behavior of the system. Faett @fchange
scenarioshas to be selected. The change scenarios should be rejtesent
for the probable changes that the system may undergo. Typieanples of
change scenarios are:

* to introduce a new task,
» to change priority or rate of an existing task,

 to modify existing functionality of a task and thereby charits execu-
tion time distribution,

« to add new dependencies between existing tasks, e.gughmew uses
of semaphores or interprocess communication.

The selection of change scenarios requires experiencedesmng that can
describe typical types of changes to the system. It is alkabte to study the
documentation of previous changes to the system, i.e. gehlags, in order to
identify different types of common changes.

Given that a set oV changes scenarios have been defined, the next step is
to construct a set aV systems variant§Sy, ..., Sy } and a set of correspond-
ing models{ M, ..., My} by applying the change scenarios on the original
versions of the system and model.

Note that applying the change scenarios to the system doesqwre real
implementations of new features, i.e., functional improeats of the system.
The sole purpose of the necessary changes is to reflect tlaefmpthe tempo-
ral behavior caused by the change scenarios, for instanedding an empty
loop that increases the execution time of a specific task.sd lebhanges are
therefore easy to implement. The model variants are castetiun a similar
way, by applying the N change scenarios to the original model
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Each model variant is then compared to its correspondingsysariant
using the first four steps of the comparison process presdénthis chapter. If
no discrepancies can be found, the model is consideredtrolithsrespect to
the change scenarios. As an example, consider a sensithatysis consisting
of a single validation environment and a single change saenan overall
increase in the execution time of task Y by 108 The increase in execution
time is implemented in the real system by, e.g., an emptyioned to execute
for 100us. A corresponding model is changed by adding an executerstat
to the task, specifying 10@s additional execution-time consumption.

The next step is to perform recordings of the modified systersion in the
selected validation environment and an analysis of the fieadimodel using
the appropriate environment model. The recording of thesgstem is com-
pared to the analysis output with respect to the comparisopgties, which,
in this case, should include at a minimum the average respiimgs of task
Y. If the model is robust with respect to this change scenidwgoe should not
be any statistically significant differences in this conigam, assuming that
the model was sufficiently accurate prior to the sensitigityalysis. The gen-
eral sensitivity analysis process is illustrated by Fig8r@ This process is
performed for each validation environment.

Model M, —PG-> Model M,
3
(—g Model M,
A
b
<+> Model My
A
Y y
Change Change | . .| Change Comparison Comparison | | Comparison
Scenario 1| | Scenario 2 Scenario N M;-S; M, -S, My - Sy
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Figure 8.8: The sensitivity analysis
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A sensitivity analysis can be regarded as an impact analygisre the
expected result is known from recordings of the prototypplémentations.
Since change scenarios are rather abstract descriptiotisaofjes, they are
representative for a large set of concrete changes of thu#figpktype. For in-
stance, the change scenariocrease the execution time of task X with 130
in all executions”is representative for a large set of changes to internal com-
putations in the task which results in a similar increasevierage execution
time. Itis therefore not necessary to perform the sensjtanalysis every time
the model is updated. It is sufficient if a sensitivity anadyis performed on
the initial model of system, after major changes of the systechitecture or
simulator framework, or if new change scenarios are ideutifi

A sensitivity analysis typically represents a significafior. If e is the
number of validation environments,is the number of change scenarios, and
p is the number of concrete comparison properties, the nuibeumerical
comparisons required in a sensitivity analysis isc x p. The time consuming
part of this analysis is to run the real-system measureniemsler to obtain
reference data sets for comparison. Complex embeddedsysiften takes
considerable time to compile and start up. A full build maguiee hours, and
even the smallest change, a single module, often gives a 20tencycle time
for building, rebooting, running the test and finally cotiag the data. Since
e X c recordings are necessary, this can take a considerabledofdime. For
instance, if three validation environments and five chawgearios have been
defined, recording the execution traces takes at least Simgphlours.
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8.6 Conclusions

This has proposed a process for comparison of trace dajdrsetssimulations
or real system measurements, which can be used for modéatiah, but also
for impact analysis and regression analysis. The propggaach consists of
a five-step process of increasingly demanding tests of ttateeset similarity.
The first four tests are can be used both for model validatimhfar impact
analysis. The fifth test, the sensitivity analysis, is hosvestrictly a test for use
in model validation. Since this test is quite time consumihg not realistic
(or necessary) to perform after every change of the modak dufficient if
a sensitivity analysis is performed on the initial model yétem, after major
changes of the system architecture or simulator framewmwrk,new change
scenarios are identified.

Some of these tests have been previously proposed in redéarature,
but in other contexts. Even though there are other methakahble for model
validation, these five methods should be suitable for vabdaf RTSSim sim-
ulation models. Evaluation of these methods for model edilich however re-
quires simulation models describing real (and sufficientdynplex) software
systems. However, since the MXTC tool is not yet able to gatieesuch mod-
els, as discussed in Chapter 6, this evaluation has not getfessible.






Chapter 9

Conclusions and Future
Work

This thesis has proposed a framework for simulation-bdsgdg analysis tar-
geting complex embedded software systems. The motivagbmi this work
is large industrial systems with requirements on timing/ang@erformance,
but where timing analysis has not been taken into accouhtisystem design
and evolution. As a result, these systems violate the astomspf analytical
methods for response time analysis. Using formal analysihaouds such as
model checking is typically not an option in the context afgkindustrial sys-
tems, since such methods does not scale sufficiently and i@ftgiire expertise
in formal modeling.

Simulation can be applied on virtually any system since tle¢hod does
not impose any assumptions, at least not on a conceptuél [Elve RTSSim
simulator framework is however limited to analysis of sysseusing a tradi-
tional single-core CPU. Simulation does not require mamuadieling, since
the simulation model can be generated automatically froenstburce code.
Simulation can be used to study virtually any property ofrilre-time behav-
ior. The drawback of simulation is the lower confidence coragdo model
checking or analytical methods for response time analytsis;a best-effort
analysis and can only show the presence of errors, not phmie absence.
This is however still very valuable for industrial systemisigh today have in-
sufficient means for timing analysis, i.e., systems whegdyaical or formal
analysis methods are difficult to apply. On such systemsldpers typically
rely on system-level testing for finding timing problems. ig'Is inefficient

217
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since timing problems often only manifests in rare situaiodependant on
event timing, which are difficult to identify and reproducktroducing the
proposed analysis framework for such systems can improaktgjassurance
by enabling predictions of potential timing errors in egshyases. This analy-
sis support can help system designers avoid choosing abgudesigns which
otherwise might cause major additional costs and projdatde

This thesis has presented scientific contributions in tlareas related to
the proposed analysis framework:

» The simulation framework RTSSim and two techniques forusation
optimization: MABERA and HCRR.

» Automated extraction of simulation models based on a ngwagzh to
program slicing, which unlike existing methods scales tgdasoftware
systems.

« Efficient trace recording techniques for embedded systéonsuse in
impact analysis, model validation and task profiling dunmgdel ex-
traction.

These contributions include methods, implementations &l ag evalu-
ations of key components of the envisioned analysis framewadditional
framework components have also been presented in thisthesinot claimed
as scientific contributions: the trace visualization todealyzer, and a not
yet evaluated process for comparison of trace data, prddosese in impact
analysis and model validation.

The Tracealyzer tool served as a “low hanging fruit” for istiy collabora-
tion, which allowed the author to perform five industry cbli@ation projects
where trace recording was developed for different plat®rmhree of these
projects lead to industrial use of the Tracealyzer. In oise cat ABB Robotics,
the recorder was integrated in their system permanentigrye&BB robot de-
livered since 2005 is monitored by a Tracealyzer recordea]ldimes. This
approach eliminates the “probe effect” issue and the aviéitha of the trace
facilitates troubleshooting greatly. The Tracealyzeoiay a product of Per-
cepio AB.

The two approaches to simulation optimization were evalllan simula-
tion models describing fictive but realistic systems, withikar analysis chal-
lenges as observed in industrial systems studied. The HCBRad gave
promising results. It found 4 — 11 % higher response times tha previously
proposed MABERA method (which in turn found higher resultart Monte
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Carlo simulation) and reached the final result 13 — 112 tiraggef than the
time required for the MABERA results.

The scalability of HCRR on real models of industrial systassowever
yet unknown, since the automated model extraction is stilfully operational.
However, unlike model checking, simulation does not regjain exhaustive
search of the model state space and is therefore alway<ablgj although
more complex models (with larger state space) gives lestHikod of finding
extreme cases close to (or equal to) the worst case scenaii®.however
not fair to compare this approach with formal verificationthoels, which can
prove properties of a model. This approach should ratherbarded as a
specialized type of testing, for problems related to tiang resource usage.

Future work in this area includes a simulator supportingtirtare proces-
sors and distributed systems, “smarter” heuristics fougtion optimization
(as discussed in Section 4.7), as well as an evaluation agheoach to exe-
cution time modeling presented in Section 7.5.

The solution for automated model extraction has been eteduan indus-
trial code from ABB Robotics, with respect to model size andlgsis runtime.
The industrial code used is rather small, only 6 000 linesooles but it is real
industrial code of high complexity. The model extractiosuks were satisfy-
ing, although improvements are possible. The size of thdtieg simulation
models (the number of model-relevant executable stateshesmiged from 3
— 59 % of the total amount of executable statements but thénatime was
only 3 minutes. Itis believed possible to shorten the ruatsignificantly, per-
haps with a factor 10, by porting the model extraction toohfrPer| to C/C++.
The resulting simulation models are relatively large. lalkest case observed,
the model extraction removed 97 % of the executable statenétowever,
even if these number were true for the system as a whole, 3 #edjriginal
code is still an overwhelming amount of code for large indaksystems. For
the ABB Robotics system, this corresponds to about 90 0@3 lof code. In
early work, we believed that the simulation models couldseas architecture
documentation, but a simulation model of that size hag hifllue as documen-
tation or for program comprehension purposes. This typearfehextraction
is therefore mainly useful as a means for speeding up thelaiioos by re-
ducing their size. However, as presented in Chapter 5, fhwssibilities have
been found for reducing the model size further: (1) enaldimgtrol-flow sen-
sitive model extraction, (2) eliminating unused task otgpand (3) allowing
for manual modeling abstractions. Implementing and evaigdahese are im-
portant parts of future work.
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Chapter 1 presented three research questions, which haneabswered
by the five formal contributions of this thesis:

» Q1: Can simulation models be extracted automatically from Cra®u
code, with sufficient efficiency and accuracy for scalingdmplex em-
bedded systems?

Answer: Yes, using the Katana approach (contribut@®h), which ac-
cording to an evaluation on industrial code (contribut@) is high scal-
able and sufficiently accurate.

* Q2: Is simulation optimization an efficient approach for preutig ex-
treme cases in the temporal behavior of complex embeddéeinsys
compared to existing methods for timing analysis?

Answer: Yes. Two methods for this purpose, MABERA and HCRR,
has been developed, evaluated and found to be significamttg effi-
cient than traditional Monte Carlo simulation (contrilmnsC3 andC4).
HCRR however found 4 — 11 % higher response times and reabbed t
end result 13 to 112 times faster than MABERA. When compatting
traditional analytical methods (on simple system modelalyeable us-
ing such methods), HCRR found the theoretical worst cagmrese time
for a particular task every time, MABERA found it sometimesile it
was never found using Monte Carlo simulation.

* Q3: Is software trace recording generally applicable on commom-
mercial operating systems for embedded systems, for ptatfeers (prod-
uct developers), with respect to implementation feagjbéind run-time
overhead?

Answer: Yes. This is based on experiences from five industry collab-
oration projects where such such monitoring support wexeldped
(contributionC5). CPU and memory overhead is very small on 32-
bit computer systems, negligible in practice, and accédptalv also

for resource constrained 16-bit computer systems. Impiation was
straight-forward in four out of five cases, and a sufficiemtchionality
could be achieved also in the last case.
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To enable real use of the proposed analysis framework, arfwework
components are however missing. The below “to do” list agsuastrict focus
on impact analysis; the other two types of analysis propos8ection 1.2 (ex-
plorative analysis and regression analysis) require mdait results and have
not yet been investigated.

» Three minor issues remain in the source code model extrgcs pre-
sented in Section 6.1.

— Supporting function pointers.
— Detecting unsupported pointer arithmetics.
— Handling references to irrelevant symbols in model statéme

» The approachto execution time modeling, presented in@ect5, would
need to be implemented.

» The proposed approach to model validation (Section 8.8jisd¢o be
evaluated on reference cases before it can be used to egifypodels
produced using automated model extraction.

When these issues have been solved, the next step is a lalgstrial eval-
uation of the integrated framework, evaluating simulatiptimization meth-
ods on models from automated model extraction on industyistiems. This
allows for verifying the simulation predictions with regpé¢o traces recorded
from the real system after the change has been applied.

Taking this a step further, an interesting but very demagdindy would
be to perform an “impact analysis of impact analysis”, i@ study the impact
of using this analysis framework on maintenance costs afidiae quality.
This requires that the proposed analysis framework can pkykd for sys-
tematic industrial use; an empirical study on the economjzact of using the
approach would then be possible, after some time, by stgdiie number of
errors of the targeted types (timing-related errors) whiate been discovered
in late testing or post-release compared to before usingrtalysis framework.
This study is however far from a trivial, to say the leastgsiit is real-world
research with many influencing factors.

Finally, note that the Katana method presented in Chaptershiliject for a
U.S. patent application — patent pending.






Appendix A

The Katana Algorithm

This appendix only serves to provide a more compact preSentaf the Katana
algorithm, presented in Section 5.3. The algorithm desicniprelies on a set
of supporting functions, presented in Section 5.4.

Formally, the Katana algorithm can be described as a fumcKatang
which takes as input a set of model focus functions, andmetaset containing
the relevant statements (i.e., the program slice). Thisirhaiction depends
on a set of functions with recursive dependencies, as depimt Figure A.1.

Figure A.1 illustrates the relations between the Katanations. In this
graph, nodes correspond to the functions presented lathisrsection, and
edges to call-by relations, i.e., the propagation and aatation of analysis
results. The edge frofunctionSliceo Katanameans thaFunctionSlicere-
turn results toKatana and thereby implies thdatana calls FunctionSlice
Note that this description does not include all aspects daKa In order to
simplify the conceptual understanding several detailehsen omitted, for
instance the analysis cache, the handling of symbol rederiters and details
regarding detection and considerations of LMR and GMR fionst These
aspects are however described in Chapter 5.

Especially note the functior@nEachandOnEach2 which are commonly
used in the later algorithm description. These are not Msib the illustra-
tion (Figure A.1) in order to make the algorithm illustrationore readable.
However, most edges in the illustration correspond to ana@hBperation.
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Figure A.1: The Katana algorithm illustrated

Katang MFFs) = OnEacl{FunctionSliceMFFs)

FunctionSlicéSyn) =
OnEact{Slice AllCallArgs(Syn)) U
OnEact{SmtSliceAllCallers(Sym))

Slicg'Sym) =
DDSlicgSyn) if =IsFunqSymA
—lIsParan{Sym)
DDSlicgSym U OnEach2ParamSlice
CallerSmt$DefFun¢Sym)), Sym) if IsParan{Sym)

DDSlicgSym U
OnEact{ReturnSliceReturnSmtsSyn)) if IsFungSym)
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DDSlicgSyn) =
OnEact{AsnSliceAsnSmt&Sym)) U
OnEachDownStrSmtPtruseSmt&Syn))

ParamSlicéSmt Sym = SmtSlicéSmy U Slicg ArgOfParanfSmt Sy))

SmtSlicéSmy = {Sm} U OnEact{CondSliceCondSmtsSmy)

CondSlicgSm} =

{Sm{ U OnEacl{Slice Symbol§Smi) if | CondSmt&Sm) |> 0
{Smt if | CondSmt&Sm) |= 0

AsnSlicéSmt Syn) =
SmtSlicéSmy U
OnEact{Slice SymbolsSmy) U
OnEact{SmtSliceAllCallers(Sm}), if IsGlobalSym)

SmtSlicéSmy U

OnEact{Slice SymbolsSmy), if —IsGlobalSym)
DownStrSmi{sSmt Syn) =
OnEacl{Slice AsnTargetéSmt{ Sym)), if —IsCallArg(SmtSymV

—IsReturnedSmt Syn)
OnEaclt{Slice AsnTargetéSmt Syn)) U
SlicgParamOfArgSmt Syn)), if IsCallArg(Smt Syn)
OnEaclt{Slice AsnTargetéSmt Syn)) U
SlicgContextFun¢Smy), if IsReturnedSmt Sym)
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ReturnSlicéSm) = SmtSlicéSm) U OnEacl{Slice SymboléSm)

AllCallers(F) = CallerSmt$F) U OnEacl{AllCallers, CallerSmt$F))

OnEach(F ,S) = U F(z)
z€eS

OnEach2(f,S,a) = U I (z,a)
zeS



Appendix B

The RTSSIm API

The RTSSim simulation framework, presented in Chapter@®yiges a “sand-
box” environment with the core services and run-time meigdms of most
common real-time operating systems. It does not target anycplar oper-
ating system, but the design is somewhat influenced by WirdrRixWorks
[132], used at ABB Robotics, although the APIs and providedises are not
identical.

The simulation framework expects the simulation model totam a func-
tion namedmodel_init where tasks, mailboxes and semaphores are expected
to be created. This function is called by RTSSim before theukition starts.
Tasks, mailboxes and semaphores may also be created dyflignaiaring the
simulation, by calling the corresponding API functionsrfrthe task models.
When creating tasks dynamically, the offset should be satgoint in the fu-
ture, i.e., a value larger thank.

The API of RTSSim contains the following functions:

» CreateTask(name, priority, period, offset, jitter, func)
Creates a task with the specified task attributes and entigtitn. The
scheduling attributes are described in greater depth iid®e8.2.4.

» CreateMailbox(name, size)
Creates a mailbox, for communication between tasks. Theages are
stored in a fixed size FIFO buffer, and the size parameteiifggethe
maximum number of buffered messages. The return value iséepto
the created mailbox object.
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CreateSemaphore(name)
Creates a binary semaphore, i.e., a mutex, which initiallyrilocked.
The return value is a pointer to the created semaphore object

CreateUEChannel(name)
Creates a named user-event channel, i.e., a label for @yarttype of
user events. The return value is a user-event channelfiéenti

SendMessage(mailbox, msg, timeout)

Attempts to send a message to the specified mailbox. If thébmais

full, the SendMessage operation will block the task un# dperation
can complete or until the specified timeout expires. Thenetalue is 0
on success, otherwise negative.

RecvMessage(mailbox, buf, timeout)

Reads the oldest message from a mailbox, or if the mailboxniste
blocks the calling task until a message exists or a timeoctise If a
message was successfully received, it is written to theifspeduffer.
The return value is 0 on success, otherwise negative.

SemWait(semaphore, timeout)

Attempts to lock the specified semaphore. If it already ikéak; the
calling task is blocked until the semaphore successfultkéd by the
calling task, or until a timeout occurs. The return value @nOsuccess,
otherwise negative.

SemPost(semaphore)
Releases the specified semaphore, if locked. No return.value

Delay(duration)
Suspends the calling task for the specified duration. Nametalue.

Execute(duration)
Consumes the specified amount of CPU time. No return value.

UserEvent(UEChannel)
Stores a time-stamped user event on specified user evemeathdyo
return value.

UserEventl6(UEChannel, value)
Stores a time-stamped user event on specified user evemtethearry-
ing a 16-bit value. No return value.
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» UserEvent32(UEChannel, value)
Stores a time-stamped user event on specified user evemeihaar-
rying a 32-bit value. This probe is more costly to use comganethe
16-bit version, as it require two entries in the trace evarifen. No
return value.

The timeout semantics is the same for all functions with &tot parame-
ter: -1 specifies no timeout, 0 specifies immediate timeoithfmt blocking) if
the resource is not immediately available, and a positivezeyo value speci-
fies a finite timeout duration, causing a timeout event to patti k +timeout,
where clk is the current time at the call of the service. Atdleurrence of a
timeout event, RTSSim wakes up the blocked task by changgngtatus to
“ready” and thereafter invoking the scheduler. Observettlia does not mean
that the task will begin executing at this point; it dependstee scheduler. On
successful completion of the service, the return value Eh@. return value on
timeout is -1.






Appendix C

An Example RTSSim Model

This section gives an example of a fairly complex RTSSim rhodee pre-

sented model has been used in the evaluation of the simulagibmization

methods presented in Chapter 4; it was there labeled “MadeThis model

is hand made and describes a fictive system, with similayaisathallenges
as ABB'’s control system for industrial robots. The tasksha$ tmodel vio-

late several assumptions of the traditional methods fdiytioal response-time
analysis. The tasks in the model may:

* trigger the execution of other tasks through communicatising mes-
sage queues,

* be triggered both by timers and events, or a combinatiorotf,b

« have different temporal behaviors depending on the cesteireceived
messages and the value of shared state variables,

* be blocked on sending and receiving of messages, and
» change the scheduling priority of tasks as a response taic&vents.

The modeled fictive system controls a set of electric motaset on pe-
riodic sensor readings and aperiodic events. The calonktiecessary for a
real control system is not included in this model, the modainty describes
execution time, communication and other behavior that chgge temporal
behavior. The model contains four periodic tasks:

An overview of the model is given in Figure C.1, where colaies ased to
indicate priority (red indicates top priority, yellow meun priority and green
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Task Priority | Period
PLAN_TASK 50 40000 or 10000
CTRL_TASK 40 or 20| 10000 or 20000
IO_TASK 30 5000
DRIVE_TASK 10 2000

lowest priority. The illustration also shows the messageugs (named XXQ)
which the tasks use to communicate. The queue DDQ (in reditisat in the
application and is not allowed to become empty.

PLAN_TASK is responsible for high level planning of how to wecthe
physical object connected to the motors. It periodicallydsecoordinates to
CTRL_TASK through the queue CDQ (CTRL Data Queue). CTRL_KAS
calculates control references for the motors with respeatpgut from CDQ
and from IO_TASK, through the queue 10Q (I/O event Queue)e Tesult-
ing motor control references from CTRL_TASK are sent to DRIVASK,
through DDQ (Drive Data Queue), which controls the motorse Ppurpose
of I0_TASK is to collect buffered I/O events from the systemhvironment
(from a low level buffer) and send this information to CTRIASK. Depend-
ing on the physical state of the controlled system, diffeneimbers of I/O mes-
sages are received from the environment (e.g., sensorsndinber of incom-
ing messages for IO_TASK is modeled using the integer viriabfEvents
which is increased by the environment task I0_ENVTASK, b 0r 2, every
1000 time units. 10_TASK, which has a period of 5000, deasdbis vari-
able by 1 for each message that is sent to 10Q. The increméntdevents in
I0_ENVTASK is a simulator input (i.e., determined by a randoumber).

As indicated by the table, both CTRL_TASK and PLAN_TASK magnge
priority and periodicity in response to specific events ia thodel. The pe-
riod of CTRL_TASK is normally 20000 time units, but when a reawent
is approaching the target, the period is decreased to 10r0@@dier to im-
prove control performance. The priority of CTRL_TASK is lsted if the
input queue for DRIVE_TASK (DDQ) has decreased below a gettaesh-
old, since this queue must never become empty. PLAN_TASK asghorter
periodicity when idle, in order to faster detect a start éven

There are three types of events from the system environm®&MRT,
STOP and GETSTATUS. These events are sent to PLAN_TASK g¢fir tlie
queue PCQ (PLAN Command Queue), which processes them &uglyrd
some are forwarded to CTRL_TASK and DRIVE_TASK, throughitltem-
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mand queues CCQ and DCQ. The START event will cause the system
change state into active, which means that it powers up anttate the mo-
tors. The STOP event causes the system to power down thesvatdrgo to
idle state. The GETSTATUS event causes all tasks to sendus steessage
to the user interface (an environment task). These evempdhthe execution
time of the tasks. The events are generated by the envirdriasis GETSTA-
TUS_ENVTASK, START_ENVTASK and STOP_ENVTASK.

cca | DCQ
CTRL
TASK
10Q
PCQ Hssa Hesa
10
TASK
A
. nofEvents += incr;

Environment Tasks

Figure C.1: Tasks and IPC in the example model

This model cannot be analyzed using traditional methodh sscRTA,
but an extreme scenario regarding the response time of CT&REK has been
identified using a simulation optimization method, HCRRRLT TASK is the
most complex task in the model and the case found is beli@/bd the worst
case response time. The response time of CTRL_TASK is inubmge case
around 3200, but can in a specific scenario be as long as 8M&4itits. The
scenario depends on the following conditions:
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» The number of messages in 10Q is 32 when the critical ingtasfc
CTRL_TASK begins to execute. This is very high, in fact theyést
I0Q size observed in any experiment on this model.

* An instance of I0_TASK preempts the critical CTRL_TASK tiausce
and refills 10Q with 10 messages during the CTRL_TASK'’s I0@dre
loop, increasing the iterations of this loop from 32 to 42.

» Arare sporadic event (GETSTATUS) had just occurred, whislts in
messages for the following instance of CTRL_TASK and DRIVESK,
which increase their execution times.

» Asaresultof the long execution time of the critical instanf CTRL_TASK
(6224), itis preempted by five instances of DRIVE_TASK, ofieftone
with an unusually long execution time due to a preceding GEAT®IS
event, and two instances of IO_TASK.

The number of messages in I0Q has a major impact on the egadirtie
of CTRL_TASK. The number of messages in 10Q is increased WbBeAASK
executes, every 5000 time units, and depends on the glotiablenofEvents.
Maximum 12 messages are sent to |OQ at each instance of IGK.TA%
nofEvents variable is in turn increased by an environmesit 1®© ENVTASK,
which executes every 1 000 time units and increases noftewedit1 or 2 (ac-
cording to simulator input data or random selection, dependn simulation
mode). Reaching an 10Q size of 32 required an intricate segpief input
data, i.e. selections of the nofEvent increase, by 0, 1 arr@aly seem natural
that the worst case would occur if always increasing by thgimam num-
ber of events, i.e. 2. This gives a high response time as &8R4, but 150
less than the maximum found, 8 474, since the 10Q size onlghr@eamaxi-
umum of 30 in this case, compared to 32 in the 8474 case. Thenmdar
this is in the relative timing between previous instance€®RL_TASK and
I0_TASK: In the worst-case scenario identified, i.e., the/8 4¢ase, the in-
stance of CTRL_TASK preceding the critical instance hag @ninessages in
10Q to consume, which allowed it to finish the read loop bet@eTASK re-
filled it, which implied that these messages were insteadgased by the next
(the critical) CTRL_TASK instance. In the 8324 case, i.eheve nofEvents
is always increased by 2, the previous CTRL_TASK instan@krhare mes-
sages in 10Q to consume, compared to in the 8474 case, whighdager
time and caused the I0_TASK to preempt and refill IOQ durirggrékad-loop.
Thereby, in the 8 324 case also these messages were consytheddrevious
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task instance, which caused the lower 10Q size (30) for tHeviing, critical
instance of CTRL_TASK, compared to the 8 474 case (32).

The large 10Q size the 8474 case was partly caused by DRIVEKTA
it increased the priority of CTRL_TASK momentarily, as thember of mes-
sages in DDQ has dropped below a specified threshold. Thimechanism to
prevent buffer-underrun situations on DDQ (it may not bee@mpty) and im-
plies that instances of I0_TASK are delayed, which changesdlative timing
between 10Q’s producer (I0_TASK) and consumer (CTRL_TASK)

Next follows the simulation model in detail. Note that deatéoons of
global variables anélinclude  directives have been omitted.

#define FOREVER -1
#define CDQSIZE 13

#define PLANSTATE_IDLE 0
#define PLANSTATE_BEGIN 1
#define PLANSTATE_WORKING 2

#define MSG_START 1
#define MSG_STOP 2

#define MSG_GETSTS 4
#define MSG_FLC 5

#define MSG_LAST 6
#define MSG_MOVING 7
#define MSG_NOTMOVING 8
#define MSG_STS_PLAN 9
#define MSG_STS_CTRL 10
#define MSG_STS_DRIVE 11

#define MSG_SLC 12
#define MSG_SLCD 13

#define cPLANstart 300
#define cPLANstop 300
#define cPLANgetsts 100
#define cPLANdecode 10
#define cPLANflc 2000
#define cPlanLast 100
#define clOEvent 23
#define cCTRLdecode 18
#define cCTRLslc 398
#define cCTRLslcd 198
#define cCTRLgetsts 96
#define cCTRLioevent 48
#define cCTRLlast 18
#define cDRIVEdecode 18
#define cDRIVEsIc 298
#define cDRIVEsIcd 198
#define cDRIVEgetsts 98

#define MINDDQSIZE 5
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void PLAN_TASK(TCB * tch)
int nFLCs, cmd, status;

do  // process all requests in PCQ

{
status = RecvMessage(PCQ, &cmd, 0);
Execute(cPLANdecode);
if (status == 0)

switch(cmd)

case MSG_START:
remainingFLC = 130;
UserProbel6(probe_remaining_FLC, remainingFLC);
planstate = PLANSTATE_BEGIN;
UserProbel6(probe_plan_task_state, planstate);
Execute(cPLANStart);
break;

case MSG_STOP:
planstate = PLANSTATE_IDLE;
UserProbel6(probe_plan_task_state, planstate);
Execute(cPLANSstop);
break;

case MSG_GETSTS:
Execute(cPLANgetsts);
SendMessage(GSQ, MSG_STS_PLAN, FOREVER);
SendMessage(CCQ, MSG_GETSTS, FOREVER);
break;

default:
sim_fail_int("Warning, got message: %d\n", cmd);

}

twhile (cmd != -1); // until no more messages

/I Execute periodic behavior, depending on state
switch (planstate)

case PLANSTATE_BEGIN:
planstate = PLANSTATE_WORKING;
UserProbel6(probe_plan_task_state, planstate);
closeToTarget = 0;

if (remainingFLC < CDQSIZE)
{

nFLCs = remainingFLC;
Jelse{
nFLCs = CDQSIZE;

}
while (nFLCs > 0)
{
Execute(cPLAN(Ic);
SendMessage(CDQ, MSG_FLC, FOREVER);
nFLCs--;
remainingFLC--;

}
tchb->period = 40000;
break;
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case PLANSTATE_WORKING:
if (remainingFLC < 4)

nFLCs = remainingFLC;
Jelse{
nFLCs = 4;

}
while (nFLCs > 0)
{
Execute(cPLAN(Ic);
SendMessage(CDQ, MSG_FLC, FOREVER);
nFLCs--;
remainingFLC--;

}
tch->period = 40000;
break;

case PLANSTATE_IDLE:
tcb->period = 10000;
break;

}
UserProbel6(probe_remaining_FLC, remainingFLC);

if (((remainingFLC <= 0) &&
(planstate != PLANSTATE_IDLE)) ||
((remainingFLC > 0) &&
(planstate == PLANSTATE_IDLE)))

{

Execute(cPlanLast);

planstate = PLANSTATE_IDLE;

closeToTarget = 1;

remainingFLC = O;

SendMessage(CDQ, MSG_LAST, FOREVER);

UserProbel6(probe_plan_task_state, planstate);
}

void CTRL_TASK(TCB * tch)
{

int msg, ioevent, status, i, nSLC = -1;

msg = RecvMessage(CCQ, &msg, 0);
Execute(cCTRLdecode);

if (msg > -1)
{

if (msg == MSG_GETSTS)
{

SendMessage(GSQ, MSG_STS_CTRL, FOREVER);

Execute(cCTRLgetsts);
SendMessage(DCQ, MSG_GETSTS, FOREVER);
Jelse{

}

sim_fail_int("CTRL_TASK got message: %d\n", msg);
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/I read all pending messages in IO queue
i=0;
dof
if (RecvMessage(I0Q, &ioevent, 0) == 0)
{
i++;
Execute(cCTRLioevent);

}while (status == 0);
if (closeToTarget == 0)

nSLC = 10;

tcb->period = 20000;
Jelsef{

nSLC = 5;

tch->period = 10000;

}

/I Process any FLC message from PLAN_TASK (maximum 1)
if (RecvMessage(CDQ, &msg, 0) == 0)
{

switch(msg)

case MSG_FLC:
if (idle == 1)

idle = 0;
UserProbel6(probe_ctrl_idle, idle);

}
while (nSLC-- > 0)

/I generate SLC data to DRIVE

Execute(cCTRLsIc);

SendMessage(DDQ, MSG_SLC, FOREVER);
}

break;

case MSG_LAST:
idle = 1;
closeToTarget = 0;
Execute(cCTRLIast);
UserProbel6(probe_ctrl_idle, idle);
break;

default:
sim_fail_int("CTRL_TASK got message %d\n", msg);
break;

}
else // if no message
if (idle == 0)

/I if expecting message
sim_fail("CTRL_TASK starvation\n");
}
}
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/I if idle, generate default data (slcd)
if (idle == 1)

while (nSLC-- > 0)

Execute(cCTRLslcd);
SendMessage(DDQ, MSG_SLCD, FOREVER);
}
}
}

void DRIVE_TASK(TCB * tcb)
{
int msg;
if (RecvMessage(DDQ, &msg, 0) != 0)

sim_fail("DRIVE_TASK starvation/\n");

Execute(cDRIVEdecode);
if (DDQ->current_size < MINDDQSIZE)

/I boost priority of CTRL_TASK, above I0_TASK
ctrl_task_tcb->prio = 20;
}

else

/I normal priority of CTRL_TASK
ctrl_task_tcb->prio = 40;

UserProbel6(probe_ctrl_prio, ctrl_task->prio);

/I process data message from CTRL_TASK
switch(msg)

case MSG_SLC:
Execute(cDRIVEsIc);
if (isMoving == 0)
{
isMoving = 1;
UserProbel6(probe_drive_ismoving, ismoving);
SendMessage(SSQ, MSG_MOVING, FOREVER);
}
break;
case MSG_SLCD:
Execute(cDRIVEslcd);
if (ismoving == 1)

ismoving = 0;
UserProbel6(probe_drive_ismoving, ismoving);
SendMessage(SSQ, MSG_NOTMOVING, FOREVER);
}
break;
default:
sim_fail_int("Warning, got message: %d\n", msg);
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break;

/I check for a getstatus request
if (RecvMessage(DCQ, &msg, 0) == 0)

{
switch(msg)
case MSG_GETSTS:
Execute(cDRIVEQgetsts);
SendMessage(GSQ, MSG_STS_DRIVE, FOREVER);
break;
default:
sim_fail_int("Warning, got message %d\n", msg);
break;
}
}

void IO_TASK(TCB * tcb)

{

int status;

int eventsToProcess = 0;

if (nofEvents > 12)
/I limit to 12, process remaining IO events later
eventsToProcess = 12;

}

else

/I normal case, process all 10 events (<= 12)
eventsToProcess = nofEvents;

while(eventsToProcess-- > 0)
{
Execute(clOEvent);
nofEvents--;

/I The value (42) of I0Q messages is not used...
if (SendMessage(10Q, 42, 0) != 0)

printf("lOQ overflow! clk: %d\n", clk);

void 10_ENVTASK(TCB * tcb)

nofEvents += (int)(getRandomValue() % 3);
}



241

void GETSTATUS_ENVTASK(TCB tcb)

{

int reply;
SendMessage(PCQ, MSG_GETSTS, FOREVER);
RecvMessage(GSQ, &reply, FOREVER);
if (reply != MSG_STS_PLAN)

printf("Warning, got unexpected message %d\n",reply);
RecvMessage(GSQ, &reply, FOREVER);
if (reply '= MSG_STS_CTRL)

printf("Warning, got unexpected message %d\n",reply);
RecvMessage(GSQ, &reply, FOREVER);
if (reply !'= MSG_STS_DRIVE)
{

printf("Warning, unexpected message %d\n" reply);

void START_ENVTASK(TCB* tch)

{

int reply;

SendMessage(PCQ, MSG_START, FOREVER);
RecvMessage(SSQ, &reply, FOREVER);

if (reply '= MSG_MOVING)

{

printf("Warning, unexpected message %d\n" reply);

/I create the STOP task dynamically as a one-shot task
createTask("STOP_ENVTASK",

0, /I priority (highest)

-1, /I period (-1 means one-shot)
clk + 100000, // earliest start time of task
100000, /I max additional delay (jitter)

STOP_ENVTASK);

void STOP_ENVTASK(TCB* tch)

{

int reply;

SendMessage(PCQ, MSG_STOP, FOREVER);
RecvMessage(SSQ, &reply, FOREVER);

if (reply != MSG_NOTMOVING)

printf("Warning, got unexpected message %d\n",reply);
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void model_init()

PCQ = CreateMailbox("PLAN_CMD", 3);

CCQ = CreateMailbox("CTRL_CMD", 6);

CDQ = CreateMailbox("CTRL_DATA", CDQSIZE);
DDQ = CreateMailbox("DRIVE_DATA", 9);

DCQ = CreateMailbox("DRIVE_CMD", 6);

SSQ = CreateMailbox("START_STOP_STATUS", 6);
10Q = CreateMailbox("IO_DATA", 40);

/I Create normal application tasks
CreateTask("PLAN_TASK",

50,// priority (lowest)

40000,/ period (can change to 10000)
0, /I offset

0,// max jitter

PLAN_TASK // task entry function

);

/I Keep the tcb handle for use in DRIVE_TASK
ctrl_task_tcb = CreateTask("CTRL_TASK",

40,// priority (can change to 20)
10000,// period (can change to 20000)
0, /I offset

0,// max jitter

CTRL_TASK // task entry function

);

CreateTask("IO_TASK",

30, /I priority

5000, /I period

500, /I offset

0, /I max jitter

IO_TASK  // task entry function
);

CreateTask("DRIVE_TASK",

10, /I priority

2000, // period

12001, /I offset

0, // max jitter

DRIVE_TASK // task entry function
);

/I Create the "invisible" environment tasks
CreateTask("IO_ENVTASK",

0,// priority (highest)

2000,// period

0,// offset

0,// max jitter

IO_ENVTASK // task entry function
);

CreateTask("START_ENVTASK",
0,// priority (highest)
-1, /I period (one-shot)
0,/ offset
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100000,// max jitter
START_ENVTASK
);

CreateTask("GETSTATUS_ENVTASK",

0,// priority (highest)

90000,// period

20000,// offset

20000,// max jitter

GETSTATUS_ENVTASK // task entry function
);

/I Register probe channels for Tracealyzer output
probe_remaining_FLC = CreateUEChannel("REMAINING_FLC" );
probe_plan_task_state = CreateUEChannel("PLAN_STATE") ;
probe_ctrl_idle = CreateUEChannel("CTRL_IS_IDLE");
probe_drive_ismoving = CreateUEChannel("DRIVE_ISMOVIN G");
probe_ctrl_prio = CreateUEChannel("CTRL_PRIORITY_BOOS T

/I Clear all global state variables
closeToTarget = O;
remainingFLC = O;

planstate = PLANSTATE_IDLE;
idle = 1;

nofEvents = 0;

isMoving = 0;
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