
Mälardalen University Press Doctoral Theses
No.84

Enabling Timing Analysis of
Complex Embedded Software

Systems

Johan Kraft

August 2010

School of Innovation, Design and Technology
Mälardalen University

Copyright © Johan Kraft, 2010
ISSN 1651-4238
ISBN 978-91-86135-76-8
Printed by Mälardalen University Press
Distribution: Mälardalen University Press

Abstract

Cars, trains, trucks, telecom networks and industrial robots are examples of
products relying on complex embedded software systems, running on embed-
ded computers. Such systems may consist of millions of linesof program code
developed by hundreds of engineers over many years, often decades.

Over the long life-cycle of such systems, the main part of theproduct de-
velopment costs is typically not the initial development, but thesoftware main-
tenance, i.e., improvements and corrections of defects, over the years. Of the
maintenance costs, a major cost is the verification of the system after changes
has been applied, which often requires a huge amount of testing. However, to-
day’s techniques are not sufficient, as defects often are found post-release, by
the customers. This area is therefore of high relevance for industry.

Complex embedded systems often control machinery where timing is cru-
cial for accuracy and safety. Such systems therefore have important require-
ments on timing, such as maximum response times to differentevents. How-
ever, when maintaining complex embedded software systems,it is difficult to
predict how changes may impact the system’s run-time behavior and timing,
e.g., response times. Analytical and formal methods for timing analysis ex-
ist, but are often hard to apply in practice on complex embedded systems, for
several reasons. As a result, the industrial practice in deciding the suitability
of a proposed change, with respect to its run-time impact, isto rely on the
subjective judgment of experienced developers and architects. This is a risky
and inefficient, trial-and-error approach, which may wastelarge amounts of
person-hours on implementing unsuitable software designs, with potential tim-
ing or performance problems. This can generally not be detected at all until
late stages of testing, when the updated software system canbe tested on sys-
tem level, under realistic conditions. Even then, it is easyto miss such prob-
lems. If products are released containing software with latent timing errors, it
may cause huge costs, such as car recalls, or even accidents.Even when such

i

ii

problems are found using testing, they necessitate design changes late in the
development project, which cause delays and increase costs.

This thesis presents a framework for impact analysis with respect to run-
time behavior such as timing and performance, targeting complex embedded
systems. The impact analysis is performed through optimizing simulation,
where the simulation models are automatically generated from the system im-
plementation. This approach allows for predicting the consequences of pro-
posed designs, for new or modified features, by prototyping the change in the
simulation model on a high level of abstraction. This could be to simply in-
crease the execution time of a particular task. Thereby, unsuitable designs can
be identified early, before implementation, and a late redesigns are thereby
avoided, which improves development efficiency and predictability, as well as
software quality.

The contributions presented in this thesis are within four areas related to
simulation-based analysis of complex embedded systems: (1) simulation and
simulation optimization techniques, (2) automated model extraction of simu-
lation models from source code, (3) methods for validation of such simulation
models and (4) recording techniques for model extraction, impact analysis and
model validation purposes. Several tools has been developed during this work,
of which two are in commercialization in the spin-off company Percepio AB.

Note that the Katana approach presented in Chapter 5 is subject for a U.S.
patent application – patent pending.

Sammanfattning

Mobiltelefoner, bilar, tåg, automationssystem och industrirobotar är exempel
på produkter som är beroende av komplexa inbyggda mjukvarusystem, ofta
bestående av milliontals rader programkod som utvecklats under många år.
Dessa mjukvarusystem har möjliggjort helt nya funktioner,men även gjort pro-
duktutveckling mer komplex. När nya funktioner läggs till komplexa system
är det stor risk att fel uppstår, på grund av svårigheten att överblicka alla kon-
sekvenser av ändringarna. Trots att produktföretagen lägger mycket tid och
pengar på testning upptäcks inte alla fel vilket orsakar stora kostnader, t.ex.
i form av återkallade bilar. Stora summor kan sparas och bättre produktk-
valitet uppnås genom nya typer av utvecklingsverktyg som bättre identifierar
mjukvaruproblem så tidigt som möjligt i produktutvecklingsprocessen. Vissa
typer av mjukvarufel är extra svåra att hitta och återskapa eftersom de bara
uppstår i mycket speciella situationer, som t.ex. när datorns processor inte
hinner köra en viss programkod inom avsedd tid. För vanliga PC datorer är så-
dana fördröjningar vanliga, men orsakar oftast inte några större problem. För
industriella mjukvarusystem, ofta tidskritiska, kan dockfördröjningar mätta
i millisekunder orsaka allvarliga fel. Därför vill man tidigt i utvecklingen
av nya funktioner kunna förutse hur CPU belastning och svarstider kommer
att påverkas. Med denna analys kan produktföretag minska sina kostnader
eftersom man kan förutse och undvika problem som annars orsakat kostnader,
och man förbättrar produktens tillförlitlighet genom man minskar risken att
införa svårfunna fel. För komplexa industriella system kräver denna analys
en analyserbar modell som beskriver hur systemets delprogram utnyttjar de-
lade resurser, som t.ex. processorn, och de möjliga kommunikationerna mellan
delprogrammen samt med omgivningen. En sådan modell kan sedan analy-
seras i ett simulatorprogram, utvecklad i för detta syfte, som visar effekten av
föreslagna förändringar. Avhandlingen beskriver metoderoch verktyg för att
automatiskt skapa sådana modeller, baserat på analys av programkod och in-

iii

iv

spelningar av mjukvarusystemet i drift, metoder för att analysera de skapade
modellerna, metoder för att spela in information från simuleringar eller från
det skarpa mjukvarusystem under drift, samt metoder för attjämföra simuler-
ingsresultat med verkliga inspelningar från det modellerade mjukvarusystemet.
De viktigaste delarna av detta har utvärderats på ett skarptindustriellt system,
ett styrsystem för industrirobotar från ABB; dock finns ännuingen integrerad
helheltslösning som möjliggör skarp användning av analysramverket. Dellös-
ningar är dock under separat kommersialisering i författarens företag, Percepio
AB. Observera att lösningen som presenteras i Kapitel 5, Katana, är under
patentering i USA.

Till Birgitta och Gabriel

Preface

This work has been supported by ABB, Bombardier Transportation, the Knowl-
edge Foundation (KKS), and the Swedish Foundation for Strategic Research
(SSF), through the strategic research center PROGRESS.

This thesis concludes a long and probably quite unusual journey which
started back in 2002, in my Magister thesis project togetherwith Jonas Ne-
ander, at ABB Robotics. My main supervisor, Christer Norström, was at the
time in a position as development manager at ABB Robotics. From his back-
ground in academic real-time systems research he realized their need for real-
time analysis support and initiated a quite open magister thesis project in that
direction. In that work we first investigated simulation as ameans for tim-
ing analysis and proposed a simulator solution named ART-ML. An interesting
story from the magister thesis project is the reactions fromexperienced devel-
opers when we showed them recordings of their system’s run-time behavior;
even highly skilled, senior developers were surprised by some details. After
working some time with embedded software development at ABBRobotics,
as a consultant, in 2004 I got the opportunity to develop a newsolution for
trace recording and trace visualization. This resulted in the Tracealyzer tool
and the trcrec recorder module, which quickly became an integrated part of
their control system. The Tracealyzer is still (2010) used for monitoring and
troubleshooting purposes at ABB Robotics and is now also a commercial prod-
uct of Percepio AB. The initial purpose of the Tracealyzer was however trace
visualization in the context of simulation-based timing analysis and it is still a
key part in the timing analysis framework presented in this thesis.

In April 2003 I enrolled as a PhD student at MDH with support from ABB
and ASTEC, a Vinnova competence center, initially working 50/50 at ABB
Robotics and MDH. The first years were quite straight-forward; I developed
some tools, including the first version of the RTSSim simulator, and outlined
a process for (manual) simulation modeling and validation,which lead to a

vii

viii

licentiate thesis presented in 2005.
Since January 2006 I have been employed 100 % at MDH, up until 2009

in the EXTRACT project, supported by KKS in collaboration with ABB and
Bombardier Transportation, and thereafter in PROGRESS, supported by SSF.
After my licentiate thesis (2005) I started working on methods and tools for
automated model extraction since it was realized that manual modeling is not
realistic for large industrial systems. Initially I workedon a semi-automated
approach where some manual modeling still was required. However, during
2007 I realized that also the semi-automated approach wouldrequire too much
manual modeling to be realistic and a fully automated model extraction tool
would be necessary for realistic applicability on large industrial systems. Fi-
nally, I ended up spending 18 months (almost full time) on developing the
Katana algorithm and implementing a tool using this approach. I am however
very happy with the end result; a U.S. patent application hasrecently been filed
regarding Katana. I hope the reader will find this thesis as interesting to read
as I found it interesting to write!

I would like to thank my current and former supervisors, especially Christer
Norström for trying to keep me focused and for sharing his industrial insights,
and Anders Wall for the many creative discussions during these years. Björn
Lisper contributed as assistant supervisor up until my licentiate thesis and pro-
vided many interesting ideas. I greatly appreciate the enthusiastic support
from people at ABB, especially Peter Eriksson, Anders Wall,Goran Mustapic
and Magnus Larsson, and from Bombardier Transportation, through Erik Gyl-
lenswärd, Christer Persson and Anders Östmark. Our discussions during these
years has provided a lot of valuable input from an industrialperspective and
given me a much better understanding of software development for complex
embedded systems. Your enthusiasm and positive spirit havebeen very sup-
portive. Thanks a lot. I also want to thank Anders Öberg, Stefan Rönning and
Mikael Åkerholm1 at CC Systems2 for all your help and enthusiasm.

I greatly appreciate the feedback I have received on my thesis drafts, from
more people than expected. Apart from my supervisors, also Jan Carlsson, Ste-
fan Bygde, Holger Kienle, Daniel Sundmark, Joel Huselius, and Bill Dittmann
(Quadros Systems, Inc.) have provided great feedback! Thanks!

I really enjoyed working with Joel Huselius during 2004 – 2007, especially
during the Sydney trip! I hope that we can stay in touch in the future, as friends
and hopefully also as colleagues. Since 2006 I have worked a lot with Yue Lu,
a nice and interesting collaboration with significant cultural differences from I

1Now at ABB
2Now Cross Control

ix

have learned a lot. I hope we continue this in the future.
In February 2008 I met Markus Bohlin at the hospital where ourrespec-

tive wives were recovering after delivering Idun and Gabriel. Markus and I
knew each other briefly from our undergraduate studies, but this started a col-
laboration which lead to quite interesting results, presented in Chapter 4. This
collaboration, which also involved Yue Lu, Per Kreuger and Thomas Nolte,
was very interesting and fun, and I think we can do great things in the future.

I would like to thank all current and former colleagues at thedepartment,
including Joel Huselius, Thomas Nolte, Markus Bohlin, Holger Kienle, Hans
Hansson, Yue Lu, Farhang Nemati, Mikael Åsberg, Moris Benham, Daniel
Sundmark, Anders Pettersson, Mikael Åkerholm, Johan Fredriksson, Jonas
Neander, Stefan Bygde, Dag Nyström, Jan Carlsson, Andreas Hjertström, Ste-
fan Cedergren, Joakim Fröberg, Jukka Mäki-Turja, Stig Larsson, Kaj Hän-
ninen, Sara Dersten, Peter Wallin, Rikard Lindell, HüseyinAysan, Hongyu
Pei-Breivold, Rikard Land, Christer Sandberg, Andreas Ermedahl, Sigrid Eldh,
Filip Öhman, Gunnar Widforss, Malin Rosquist, Ivica Crnkovic, Mikael Sjödin,
Mats Björkman, Mikael Ekström, Martin Ekström, Jörgen Lidholm, Monica
Wasell and Harriet Ekwall. Working with you has been great and I hope to see
you around also in the future. The “SAVE-IT rockers” deservespecial thanks
for nice company during our morale-boosting school trips, like Grenoble!

My dear friends and fishing buddies Christian Hultman, Christian Anders-
son and Rickard Söderbäck deserve many thanks for all the fun(with or without
fishing gear) and for keeping me connected to reality during the periods I have
been deep into my algorithms.

My parents, Lennart and Susanne, and sisters, Josefin and Kim, deserve
many thanks for your love and support during all the years. Thanks for helping
me in so many ways. I love you! My mother-in-law, Margareta, has been curi-
ous and supportive throughout this journey. I am very grateful that you raised
such a great girl and sent her to Västerås for me to find! Last but definitely not
least, Birgitta and Gabriel, my beloved wife and son. Being with you give me
inspiration and energy and without you, life would not be thesame. I love you
with all my heart!

Johan Kraft
June 2010

Publications

The thesis author has previously authored or co-authored the following pub-
lications. Note that the thesis author was named Johan Andersson up until
October 2006.

Theses

Modeling the Temporal Behavior of Complex Embedded Systems– A Reverse Engineer-
ing Approach, Johan Andersson, Licentiate Thesis, Mälardalen University Press, June,
2005.

Timing analysis of a robot controller, Johan Andersson and Jonas Neander, Magister
Thesis, Mälardalen University, October, 2002.

Articles in Collection
Decreasing Maintenance Costs by Introducing Formal Analysis of Real-Time Behavior
in Industrial Settings, Anders Wall, Johan Andersson and Christer Norström. In “Lever-
aging Applications of Formal Methods, Lecture Notes in Computer Science (LNCS)
4313", p 130 – 145, Springer, November, 2006.

A Framework for Analysis of Timing and Resource Utilizationtargeting Complex Em-
bedded Systems, Johan Andersson, Anders Wall and Christer Norström. In “ARTES –
A network for Real-Time research and graduate Education in Sweden 1997 – 2006", p
297 – 329, Uppsala University, Editor(s): Hans Hansson, 2006.

A Dependable Open Platform for Industrial Robotics – A Case Study, Goran Mustapic,
Johan Andersson, Christer Norström and Anders Wall. In “Architecting Dependable
Systems II, Lecture Notes in Computer Science (LNCS) 3069",Editors: Rogerio de
Lemos, Cristina Gacek, Alexander Romanovsky, 2004.

xi

xii

Conferences and Workshops

Trace Recording for Embedded Systems: Lessons Learned fromFive Industrial Projects,
Johan Kraft, Anders Wall and Holger Kienle. To appear in Proceedings of the 1st Inter-
national Conference on Runtime Verification, Malta, November, 2010.

A Statistical Approach for Validation of Task Simulation Models with Intricate Temporal
Execution Dependencies, Yue Lu, Johan Kraft, Thomas Nolte and Christer Norström.
In Proceedings (Work-In-Progress track) of the 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’10), Stockholm, Sweden, April, 2010.

System-specific Static Code Analyses for Complex Embedded Systems, Holger Kienle,
Johan Kraft and Thomas Nolte. In Proceedings of the 4th International Workshop on
Software Quality and Maintainability (SQM’10), Madrid, Spain, March, 2010.

Statistical-based Response-Time Analysis of Systems withExecution Dependencies be-
tween Tasks, Yue Lu, Thomas Nolte, Johan Kraft and Christer Norström. InProceedings
of 15th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’10), St. Anne’s College, University of Oxford, March, 2010.

Statistical-based Response-Time Analysis of Systems withExecution Dependencies be-
tween Tasks, Yue Lu, Thomas Nolte, Johan Kraft and Christer Norström. InProceedings
(Work-In-Progress track) of the 30th IEEE Real-Time Systems Symposium (RTSS’09),
Washington, DC, USA, December, 2009.

Simulation-Based Timing Analysis of Complex Real-Time Systems, Markus Bohlin, Yue
Lu, Johan Kraft, Per Kreuger and Thomas Nolte. In Proceedings of the 15th IEEE
International Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA’09), p 321 – 328, Beijing, China, August, 2009.

Transformational Specification of Complex Legacy Real-Time Systems via Semantic An-
choring, Yue Lu, Antonio Cicchetti, Stefan Bygde, Johan Kraft, Thomas Nolte and
Christer Norström. In Proceedings of the 2nd IEEE International Workshop on Component-
Based Design of Resource-Constrained Systems (CORCS’09),p 510 – 515, IEEE Com-
puter Society Press, Seattle, Washington, USA, July, 2009.

Approximate Timing Analysis of Complex Legacy Real-Time Systems using Simulation
Optimization, Yue Lu, Markus Bohlin, Johan Kraft, Per Kreuger, Thomas Nolte and
Christer Norström. In Proceedings (Work-In-Progress track) of the 29th IEEE Real-
Time Systems Symposium (RTSS’08), p 29 – 32, Barcelona, Spain, December, 2008.

xiii

Towards Migrating Legacy Real-Time Systems to Multi-Core Platforms, Farhang Ne-
mati, Johan Kraft and Thomas Nolte. In Proceedings (Work-In-Progress track) of the
13th IEEE International Conference on Emerging Technologies and Factory Automa-
tion (ETFA’08), p 717 – 720, IEEE Industrial Electronics Society, Hamburg, Germany,
September, 2008.

Validation of Temporal Simulation Models of Complex Real-Time Systems, Farhang
Nemati, Johan Kraft and Christer Norström. In Proceedings of the 1st IEEE Inter-
national Workshop On Component-Based Design Of Resource-Constrained Systems
(CORCS’08), Turku, Finland, July, 2008.

A Metaheuristic Approach for Best Effort Timing Analysis targeting Complex Legacy
Real-Time Systems, Johan Kraft, Yue Lu, Christer Norström and Anders Wall. In Pro-
ceedings of the 14th IEEE Real-Time and Embedded Technologyand Applications
Symposium (RTAS’08), St. Louis, MO, USA, April, 2008.

Extracting Simulation Models from Complex Embedded Real-Time Systems, Johan Kraft,
Joel Huselius, Anders Wall and Christer Norström. Real-Time in Sweden 2007, Västerås,
August, 2007.

Evaluating the Quality of Models Extracted from Embedded Real-Time Software, Joel
Huselius, Johan Kraft, Hans Hansson and Sasikumar Punnekkat. In Proceedings of
the 14th Annual IEEE International Conference and Workshopon the Engineering of
Computer Based Systems, p 577 – 585, IEEE, Tucson, USA, March, 2007.

Extracting Simulation Models from Complex Embedded Real-Time Systems, Johan An-
dersson, Joel Huselius, Christer Norström and Anders Wall.In Proceedings of the 2006
International Conference on Software Engineering Advances, IEEE, Tahiti, French Poly-
nesia, October, 2006.Best Paper Award.

Automatic Generation and Validation of Models of Legacy Software, Joel Huselius, Jo-
han Andersson, Hans Hansson and Sasikumar Punnekkat. In Proceedings of the 12th
IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’06), p 342 – 349, Sydney, Australia, August, 2006.

Model Synthesis for Real-Time Systems, Joel G Huselius and Johan Andersson. In Pro-
ceedings of the 9th European Conference on Software Maintenance and Reengineering
(CSMR’05), p 52 – 60, Manchester, UK, March, 2005.

Decreasing Maintenance Costs by Introducing Formal Analysis of Real-Time Behav-
ior in Industrial Settings, Johan Andersson, Anders Wall and Christer Norström. In
Proceedings of the 1st International Symposium on Leveraging Applications of Formal
Methods (ISoLA’04), Paphos, Cyprus, October, 2004.

xiv

Validating Temporal Behavior Models of Complex Real-Time Systems, Johan Ander-
sson, Anders Wall and Christer Norström. In Proceedings of the 4th Conference on
Software Engineering Research and Practice in Sweden (SERPS’04), Linköping, Swe-
den, September, 2004.

Real World Influences on Software Architecture – Interviewswith Industrial Experts,
Goran Mustapic, Anders Wall, Christer Norström, Ivica Crnkovic, Kristian Sandström,
Joakim Fröberg and Johan Andersson. In Proceedings of the 4th IEEE Working Con-
ference on Software Architectures (WICSA’04), Oslo, Norway, June, 2004.

Correctness Criteria for Models Validation – A Philosophical Perspective, Ijeoma San-
dra Irobi, Johan Andersson and Anders Wall. In Proceedings of the International Mul-
ticonferences in Computer Science and Computer Engineering (MSV’04), Las Vegas,
June, 2004.

Increasing Maintainability in Complex Industrial Real-Time Systems by Employing a
Non-Intrusive Method, Christer Norström, Anders Wall, Johan Andersson and Kristian
Sandström. In Proceedings of the Workshop on Migration and Evolvability of Long-life
Software Systems (MELLS’03), Erfurt, Germany, September,2003.

Probabilistic Simulation-based Analysis of Complex Real-Times Systems, Anders Wall,
Johan Andersson and Christer Norström. In Proceedings of the 6th IEEE International
Symposium on Object-oriented Real-time distributed Computing, IEEE Computer So-
ciety, Hakodate, Hokkaido, Japan, May, 2003.

A Dependable Real-Time Platform for Industrial Robotics, Goran Mustapic, Johan An-
dersson and Christer Norström. In Proceedings of the ICSE 2003 Workshop on Soft-
ware Architectures for Dependable Systems, Portland, Oregon, USA, May, 2003.

Introducing Temporal Analyzability Late in the Lifecycle of Complex Real-Time Sys-
tems, Anders Wall, Johan Andersson, Jonas Neander, Christer Norström and Martin
Lembke. In Proceedings of the 9th International Conferenceon Real-Time and Em-
bedded Computing Systems and Applications (RTCSA’03), Tainan, Taiwan, February,
2003.

xv

Technical Reports

Best-Effort Simulation-Based Timing Analysis using Hill-Climbing with Random Restarts,
Markus Bohlin, Yue Lu, Johan Kraft, Per Kreuger and Thomas Nolte. MRTC report,
ISSN 1404-3041, ISRN MDH-MRTC-236/2009-1-SE, MälardalenReal-Time Research
Centre, Mälardalen University, June, 2009.

A Framework for Real-Time Systems Migration to Multi-Cores, Farhang Nemati, Jo-
han Kraft and Thomas Nolte. MRTC report, ISSN 1404-3041, ISRN MDH-MRTC-
235/2009-1-SE, Mälardalen Real-Time Research Centre, Mälardalen University, May,
2009.

RTSSim – A Simulation Framework for Complex Embedded Systems, Johan Kraft. Tech-
nical Report, MRTC, March, 2009.

Legacy Issues in Industrial Software Development, Johan Kraft and Joel Huselius. MRTC
report, ISSN 1404-3041, ISRN MDH-MRTC-213/2007-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, May, 2007.

Experimental Model Synthesis for Timing Analysis of an Industrial Robot, Joel Huselius,
Johan Andersson, Hans Hansson and Sasikumar Punnekkat. MRTC report, ISSN 1404-
3041, ISRN MDH-MRTC-193/2005-1-SE, Mälardalen University, November, 2005.

Influences between Software Architecture and its Environment in Industrial Systems –
a Case Study, Goran Mustapic, Anders Wall, Christer Norström, Ivica Crnkovic, Kris-
tian Sandström, Joakim Fröberg and Johan Andersson. MRTC report ISSN 1404-3041
ISRN MDH-MRTC-164/2004-1-SE, Mälardalen Real-Time Research Centre, Mälardalen
University, February, 2004.

A Framework for Analysis of Timing and Resource UtilizationTargeting Industrial Real-
Time Systems, Johan Andersson, Anders Wall and Christer Norström. Technical Report,
MRTC, August, 2004.

List of Figures

1.1 System functionality as a function of total developmenteffort . 3
1.2 The envisioned analysis framework 9
1.3 The research method . 14

2.1 A small example of (UppAal) timed automata 28
2.2 An example of program slicing 33
2.3 An example of a System Dependence Graph (SDG) 35

3.1 The RTSSim framework . 56
3.2 A simulation trace from the example model 62

4.1 MABERA – conceptual . 73
4.2 Seed schedule mutation in MABERA 75
4.3 Neighborhood procedure of HCRR 89
4.4 Final RT distributions and convergence for Model 1 95
4.5 Final RT distributions and convergence for Model 2 97
4.6 Final RT distributions and convergence for the validation model 98
4.7 Convergence for Model 1 using 2-4 subsystems 102

5.1 Overview – simulation model extraction 103
5.2 The context of the Katana algorithm 106
5.3 The structure of the symbol database representation 107
5.4 An example of a symbol database 108
5.5 A high-level view of the Katana algorithm 111
5.6 The Katana algorithm illustrated 126

6.1 An example of the graphical output of MXTC 141

xvii

xviii List of Figures

6.2 Parsing times of “Understand for C++”, observed and extrapo-
lated . 145

6.3 Total size (Statements In) and model size (Statements Out) . . 150
6.4 Relative model size (Statements Out/Statements In) 151
6.5 Runtimes of MXTC, for individual tasks and in total (seconds) 152
6.6 Runtimes (scaled), total size (SI) and model size (SO) 153
6.7 The amounts of conditional statements 154

7.1 Execution fragments and task instances 169
7.2 The Tracealyzer/RTXCview 172
7.3 The Tracealyzer/RTXCview, CPU load view 173
7.4 The symbol table . 179
7.5 The context of the timing profile 185
7.6 An instrumented program and resulting events186
7.7 The probe graph of the example in Figure 7.6 187

8.1 The uses for trace data comparison 199
8.2 Trace comparison using the Tracealyzer tool203
8.3 Visualization of the usage of a task response time 204
8.4 Visualization of the usage of a logical resource 205
8.5 Response-time distribution – simulation vs. real system 206
8.6 Probability density (left) and cumulative (right) distribution

(clustered data) . 210
8.7 The Kolmogorov-Smirnoff statistic (D) 210
8.8 The sensitivity analysis . 213

A.1 The Katana algorithm illustrated 224

C.1 Tasks and IPC in the example model 233

List of Tables

4.1 Test of MABERA reliability 81
4.2 Average iteration count of MABERA in different configurations 83
4.3 Comparable MABERA parameters 84
4.4 MABERA results using comparable parameters 85
4.5 Parameter selection for HCRR 94
4.6 Run times of Monte Carlo, MABERA and HCRR (minutes) . 99
4.7 Average end result of Monte Carlo, MABERA and HCRR . . 99
4.8 Convergence of Monte Carlo, MABERA and HCRR 100

6.1 Measured parsing times of “Understand for C++” 144
6.2 Results from MXTC on Case 1 (SAF) and Case 2 (MG) 148
6.3 MXTC/Understand compared to CodeSurfer 158

7.1 Measured recording overheads in four industrial cases 180

xix

List of Algorithms

1 The parent selection procedure of MABERA 77
2 The mutation procedure of MABERA 77
3 The procedure for populating a new generation in MABERA . 77
4 The overall MABERA algorithm 77
5 Hill Climbing with Random Restarts (HCRR) 88

xxi

Contents

1 Introduction 1
1.1 Problem and Possible Solutions 4

1.1.1 RTA – Response Time Analysis 6
1.1.2 Model Checking . 6
1.1.3 Discrete Event Simulation 7

1.2 Vision . 9
1.3 Research Questions . 11
1.4 Scientific Contributions . 12
1.5 Research Method . 13
1.6 Thesis Outline . 15

2 Timing Analysis, Modeling and Model Validation 17
2.1 Real-Time Systems and Timing Analysis 18

2.1.1 Schedulability- and Response-Time Analysis 21
2.1.2 Execution Time Analysis 21

2.2 Timing Analysis using Model Checking 23
2.2.1 Basic Concepts . 23
2.2.2 The model checker SPIN 25
2.2.3 Model Checking for Real-Time Systems 27

2.3 Timing Analysis using Simulation 30
2.3.1 STRESS . 31
2.3.2 DRTSS . 31
2.3.3 ARTISST . 31
2.3.4 VirtualTime . 32

2.4 Modeling using Source-code Analysis 32
2.4.1 Program Slicing . 32
2.4.2 Reverse Engineering 37

xxiii

xxiv Contents

2.4.3 Formal Verification Tools using Source Code Analysis 39
2.5 Modeling using Dynamic Analysis 42
2.6 Model Validation . 44
2.7 Conclusions . 47

3 Timing Analysis using Discrete Event Simulation 53
3.1 Motivations for Simulation 54
3.2 The RTSSim Simulation Framework 56

3.2.1 The Simulation Model 58
3.2.2 A Small Example Model 59
3.2.3 Execute . 61
3.2.4 Task and Scheduling Implementation 63
3.2.5 Environment Modeling 65
3.2.6 Stochastic Selections 65
3.2.7 Pseudo-Random Number Generation 66

3.3 Conclusions . 67

4 Simulation Optimization 69
4.1 MABERA . 70

4.1.1 Selection Heuristics 74
4.1.2 Mutation . 74
4.1.3 The MABERA Algorithm 76

4.2 The MABERA Parameters 78
4.3 Selecting Parameters for MABERA 80

4.3.1 Step 1: Selecting Simulation Length 80
4.3.2 Step 2: Selectingp/s quota andtt value 81
4.3.3 Step 3: Selecting Population Size 85

4.4 Hill Climbing with Random Restarts 86
4.4.1 Simulator Input Representation 86
4.4.2 The HCRR Algorithm 88

4.5 Evaluations of MABERA and HCRR 90
4.5.1 Model 1 . 90
4.5.2 Model 2 . 91
4.5.3 The Validation Model 91

4.6 Experimental Evaluation . 92
4.6.1 Results . 94
4.6.2 Average Convergence 99

4.7 Conclusions . 100

Contents xxv

5 A Method for Automated Model Extraction 103
5.1 The Katana Approach to Program Slicing 105

5.1.1 An Overview of the Katana Algorithm 110
5.1.2 Katana on Example Code 111
5.1.3 Producing the Simulation Model 113
5.1.4 Control Flow Sensitivity 114
5.1.5 Handling of Function Calls 115
5.1.6 Data structures . 116
5.1.7 Pointers, Arrays and Function Pointers 122
5.1.8 Library Routines . 124

5.2 Algorithm Efficiency . 124
5.3 The Katana Algorithm . 126
5.4 Supporting Functions . 132
5.5 Katana Compared to Related Work 134
5.6 Limitations of Katana . 136
5.7 Possible Extensions of Katana 137

6 A Model Extraction Tool and Evaluations 139
6.1 MXTC – Model Extraction Tool for C 140
6.2 An Evaluation of “Understand for C++” 144
6.3 An Evaluation of Model Extraction 146

6.3.1 Case 1 - SAF - A Subsystem of ABB IRC 5 146
6.3.2 Case 2 - MG - The Mongoose Web Server 147
6.3.3 Results . 148

6.4 Katana Slicing vs. Commercial Tools 156
6.4.1 CodeSurfer . 156
6.4.2 Imagix 4D . 159

6.5 Conclusions . 161

7 Uses and Experiences of Software Trace Recording 163
7.1 Uses of Trace Recording . 164
7.2 Trace Recording Fundamentals 164

7.2.1 Task Identity (the “What”) 166
7.2.2 Time-stamping (the “When”) 167
7.2.3 Task-switch Cause (the “Why”) 168
7.2.4 Recording Operating System Services and User Events 169

7.3 The Tracealyzer . 171
7.4 Five Industrial Trace Recorder Projects172

7.4.1 The RBT Project . 173

xxvi Contents

7.4.2 The ECU project . 175
7.4.3 The WLD Project . 176
7.4.4 The TEL Project . 177
7.4.5 The RTOS Project 178
7.4.6 Summary of Recording Overhead Results 180
7.4.7 Measuring Probe Execution Time 181
7.4.8 Lessons Learned . 182

7.5 Recording of Simulation Timing Profiles 184
7.5.1 Recording Execution Times 185
7.5.2 Recording System Inputs 187
7.5.3 Modeling Recorded Timing Data 188
7.5.4 Using Timing Profiles in Simulation 189
7.5.5 Systematic Data Collection 190
7.5.6 Coverage . 191

7.6 Conclusions . 192

8 Model Validity, Validation and Trace Comparison 195
8.1 Validity Threats . 197
8.2 A Process for Trace Comparison 199

8.2.1 Step 1: Subjective Trace Comparison 202
8.2.2 Step 2: Subjective Property Comparison 202
8.2.3 Step 3: Variability Analysis 205
8.2.4 Step 4: Statistical Property Comparison 206

8.3 Selecting Comparison Properties 207
8.4 The Two-Sample Kolmogorov-Smirnoff Test 209
8.5 Model Robustness and Sensitivity Analysis 211
8.6 Conclusions . 215

9 Conclusions and Future Work 217

Appendices 223

A The Katana Algorithm 223

B The RTSSim API 227

C An Example RTSSim Model 231

Bibliography 247

Chapter 1

Introduction

When most people hear the word “computer” they think of a PC. However,
over 99 % of all computer processors manufactured are used inembedded
computer systems[127]. These are specialized computers, integrated in many
types of products, from advanced industrial products such as cars, trains, air-
planes, telecom switches, industrial robots, factory automation systems, medi-
cal equipment to consumer electronics such as mobile phones, wireless routers,
TVs, cameras and toys. Software development is today dominating the product
development for many companies and most new innovations today are imple-
mented in software. As an example, Volvo (the truck company), estimates that
90 % of their new innovations are in the field of electronics, and 80 % thereof is
software [84]. In total, Swedish industry spends 60 billionSEK (6 billion Eu-
ros) annually on software development. In the ten largest Swedish companies,
software development accounts for 60 % of the research and development bud-
gets. Ericsson alone spends 25 billion SEK yearly on software development –
80 % of its research and development budget [85].

Product companies are using embedded computers in their products for
several reasons. In several domains, older electromechanical solutions are be-
ing replaced with software solutions, running on small and cheap embedded
computers, in order to reduce unit cost, size, weight or allow for new, ad-
vanced functionality previously not possible, such as vehicle stability control
or advanced fuel injection with reduces fuel consumption. Cheap, high perfor-
mance embedded computers have also enabled new products, previously not
possible (or very expensive) such as GPS navigation systems, portable media
players and advanced mobile phones.

1

2 Chapter 1. Introduction

Embedded computers come in all sizes, from very small and simple 8-bit
single-chip computers, with 1 kilobyte of memory, to gigahertz 64-bit multi-
core computers with the performance and resources of a PC. This thesis focuses
on complex embedded software systems, which typically runson relatively
powerful hardware. Examples of such systems are industrialrobot control sys-
tems, automation systems and telecommunication systems. Such systems of-
ten consist of millions of lines of source code, which have been developed and
maintained by hundreds of engineers over many years. A system of this size
is too large and complex for any single person to understand in detail. In this
thesis, such software systems are labeledcomplex embedded systems.

Embedded computer systems are typically in control of machinery and
thereby often safety-critical and/or business-critical systems. They therefore
have requirements on dependability, such as safety, reliability and availability.
Moreover, many embedded systems arereal-time systems, i.e., systems with
strict requirements on timeliness; they must respond to input from its environ-
ment in a timely manner. For non-real-time computers such ashome PC’s the
focus is on the average performance, while for real-time systems another prop-
erty is much more important: a predictableworst case response time, i.e., the
highest possible latency of an event, from the input signal to the corresponding
reaction. A violation of a temporal requirement may cause a system failure; it
is therefore of great importance that the worst case response time is known for
each time-sensitive system function.

Another aspect of complex embedded systems (and of large software sys-
tems in general) is their long life-cycles, many years, often decades [106].
Since the development of such a system represents a major investment for a
company, often hundreds of person years, it is seldom economically feasible
to “start over” and redesign such a system from scratch. Consequently, sys-
tems of this type are maintained over many years during whichthousands of
changes are made in order to, e.g., implement new requirements, correct errors,
improve performance or improve the software design.

Conceptually, the life cycle of a complex software system can be divided
into three different phases as depicted in Figure 1.1: (1) the early phase, (2)
the evolution phase, and (3) the legacy phase. The curve shows a conceptual
illustration of the increasingly harder development; the horizontal axis shows
the total, accumulated development effort invested in the system (the cost),
while the vertical axis shows the achieved system functionality (the resulting
value).

In the early phase (1), a lot of effort is required for development of the
platform, which causes a relatively low productivity with respect to customer

3

Development Effort

321

Sy
ste

m
Fu

nc
tio

na
llit

y
Complexity

Figure 1.1: System functionality as a function of total development effort

value. This investment however pays off in the evolution phase (2), where the
developed platform facilitates development of new features, which gives high
productivity. Large amount of changes are made which cause the system to
evolve from its original design and gradually become largerand more com-
plex. The legacy phase (3) begins when the complexity approach the practical
limit of the development tools and methods used, which causes a decrease in
productivity. Adding new features is now much harder than itused to be.

Lehman et al. [107] recognizes the phenomenon of increasingcomplexity
as the second1 law of software evolution: “As an E-type2 system evolves its
complexity increases unless work is done to maintain or reduce it”.

The increased complexity is partially due to the increased size of the sys-
tem, caused by new functionality, and partially due to the fact that the software
architecture, and documentation, tends to degrade as changes are made over the
years, often in a less than optimal manner due to time pressure or inadequate
design documentation. Another reason is that not all software developers have
backgrounds in computer science or software engineering. In industry many
developers have their expertise in domain-specific technology, such as combus-
tion engines, control theory or welding techniques. Moreover, for long-lived
systems, the requirements typically change over time due tofactors such as
legislation, standards, technology development and competitor initiatives, and

1The Lehman paper includes eight “laws” in total (observations really).
2A system solving a problem or addressing an application in the real world.

4 Chapter 1. Introduction

it is often hard to adapt existing architectures in a good waywithout making
large (and thereby time consuming) changes. Yet another issue is the person-
nel turnover over the long system life-cycle. Experienced developers leave,
together with their knowledge, and newly employed inexperienced developers
have to take over.

In order to combat the increasing complexity, i.e., to extend the period of
efficient software development, developers need better means for finding latent
defects, for predicting the consequences of proposed changes and for avoiding
bad design decisions. Today, most companies that develop complex embedded
systems rely heavily on code inspection and testing, which are necessary but
not sufficient. Huge amounts of testing are performed on eachrelease version
in order to capture as many defects as possible, but it is still common that
defects are missed and instead experienced by the customers.

According to a 2002 study from by the National Institute of Standards and
Technology at the U.S. Department of Commerce, software defects cost the
U.S. economy an estimated $59.5 billion annually [4]. The study concluded
that more than a third of these costs could be eliminated by improved testing
infrastructure that enables earlier and more effective identification and removal
of software defects, i.e., by finding an increased percentage of errors closer to
the development stages in which they are introduced. Moreover, over half of all
errors are not found until “downstream” in the development process or during
post-sale software use.

1.1 Problem and Possible Solutions

When maintaining complex embedded systems it is important to verify that the
system still complies with its temporal requirements, i.e., the requirements on
worst case response time, after a change has been made to the system. The
response time for a particular event is dependent on the timeit takes to execute
the software, which depends on the design of the software itself. Therefore, if
the software is changed, e.g., simply to correct a minor defect, it might cause
the response time to exceed the specified limit, thedeadline.

In a worst case scenario, a maintenance operation will causethe system
to violate its temporal requirements in rare situations only. Such errors are
easily missed during the testing of a system, but if they occur after the system
has been delivered to customers, it may result in a system failure with severe
consequences for the user of the system. For instance, a software defect could
cause an industrial robot to fail and thereby halt a car production line for hours,

1.1 Problem and Possible Solutions 5

causing a large monetary loss.

Developers of complex embedded systems today rely on system-level test-
ing in order to detect timing errors, but this is inefficient,since the search space
is so large and since such errors depend on program executiontimes, which
typically vary from time to time. It is well known that timingerrors are often
hard to detect and to reproduce using testing [89, 105], but existing methods
for timing analysis are often hard to apply on complex embedded systems for
a number of reasons, as discussed in the following sections.

The risk of introducing timing errors when changing a systemcan be sig-
nificantly reduced if the impact of the change can be predicted at an early stage
of development. The ability to performimpact analysisof proposed changes
(e.g., new features) with respect to important run-time properties could allow
developers to produce software of higher quality, in less time and more reliably.

To manually analyze the timing impact of a change is difficultsince the de-
tails and dependencies of a software system’s temporal behavior is not visible
in the source code. Studying recordings of the system can help, but this view of
the run-time system is however difficult to extrapolate withrespect to proposed
changes, due to the system complexity.

Industrial use of timing impact analysis requires tools andmodels which
give analyzability with respect to relevant system properties, such as response
times. Introducing such analysis support for existing systems can be achieved
in two ways, either intrusively or non-intrusively. In an intrusive approach, the
system is changed in order to be more predictable and analyzable. This could
for instance mean to change from an event-triggered to a time-triggered soft-
ware architecture. The major problem with an intrusive approach is the large
effort and risks involved in a major redesign. This would be very costly, will
most likely introduce new defects in the system, and would probably be hard to
motivate economically. Moreover, the current software architecture has proba-
bly been selected for a good reason, so changing it for improved analyzability
might mean other drawbacks, such as lower performance or reduced flexibility.

The work in this thesis follows a non-intrusive approach, where the focus
is to find or develop means for analysis which can be applied tothe existing
system, without changing3 the implementation.

3Even though introduction of a software-based trace recorder (cf. Chapter 7) is technically
intrusive, this is a negligible change compared to a major re-design of the system.

6 Chapter 1. Introduction

1.1.1 RTA – Response Time Analysis

Several analytical methods have been proposed forresponse-time analysisof
real-time systems [98, 99, 101, 37, 112, 113, 114, 115]. In this thesis, such
methods are commonly labeled RTA. Such methods however all use a rather
simplistic system model and have several assumptions whichmakes them in-
applicable or highly pessimistic for embedded software systems which have
not been designed with such analysis in mind. For instance, there are industrial
systems which violate the assumptions of RTA by containing tasks which

• trigger other tasks in complex, often undocumented chainsof task acti-
vations depending on input,

• share data with other tasks, e.g., through global variables or inter-process
communication (IPC),

• have radically different behavior and execution time depending on shared
data and input,

• change priorities dynamically, e.g., as a solution to previously identified
timing problems,

• have timing requirements expressed in functional behavior rather than
explicit task deadline, such as availability of data in input buffers at task
activation.

In general, RTA methods are overly pessimistic for complex embedded
systems since they do not take behavioral dependencies between tasks into
account, for instance the above listed types. Analyzing complex embedded
systems requires a more detailed system model which includes relevant behav-
ior as well as resource usage of tasks. Two approaches are presented in the
following sections where detailed behavior models are used: model checking
and discrete event simulation.

1.1.2 Model Checking

There are several formal analysis tools which can be used to verify different
properties of models throughmodel checking, such as UppAal [129], KRONOS
[131] and ComFoRT [130]. Model checking implies an exhaustive search of
the state-space of the analyzed model and can therefore allows for identification
of worst-case behaviors, e.g., for response times. However, model checking is
not widely used in industry, apart from domains with extremedependability

1.1 Problem and Possible Solutions 7

requirements, such as aerospace systems, military systemsor nuclear power
plants, where the software systems where the consequences of a failure are
catastrophic. Such systems are typically quite small and are rarely modified
after deployment.

Model checking is however difficult to apply on large industrial software
systems for a number of reasons. One problem is the size and complexity of
these systems which implies an astronomic amount of possible scenarios. This
makes exhaustive analysis techniques, like model checking, extremely resource
demanding. In many cases, the analysis will not terminate, as the model state-
space is too large to search in realistic time.

Another issue is that formal analysis tools requires an analyzable model in a
formal notation, such as timed automata [82]. The formal methods community
tends to assume a model-driven development approach, wherethe model to an-
alyze is the system specification and is used to automatically generate (synthe-
size) the run-time system. However, with few exceptions, industrial software
systems are still developed in a traditional code-orientedmanner; there are no
analyzable models available. These would therefore have tobe created based
on the implementation in a major modeling project. Moreover, even if an initial
modeling effort could be managed, e.g., by hiring a team of experts in formal
modeling, the developers would still need to keep the model up-to-date with
the system source code as it evolves. This is likely to be neglected, e.g., due
to focus on short term development goals, which would invalidate the analysis
model. If updating the model requires too much effort, or is too hard, it is likely
that the developers would stop maintaining and using the analysis model.

1.1.3 Discrete Event Simulation

Discrete event simulation (hereafter just “simulation”) is an approach to tim-
ing analysis which avoids the state-space explosion problem by sacrificing the
guaranteed safety of the result. In a simulation, the state space of the model
is sampled, typically in a random manner, rather than searched exhaustively.
The random sampling (simulation) is repeated for a certain duration (e.g., over
night), or until a problem is found. This means that it is not possible to identify
worst-case situations using simulation, since not all possibilities are necessar-
ily explored. Note that the worst-case might have occurred in a simulation, but
the simulation result does not tell if this is the case.

A general problem when using simulation is to determine the simulation
budget, i.e., how many simulations to run and the length of the individual sim-
ulations, and the resulting confidence in the simulation results.

8 Chapter 1. Introduction

Simulation can however be used for predicting typical performance (or re-
sponsiveness) and for findingextreme cases, i.e., situations far from the typi-
cal, but not necessarily the worst case. This can be enough inmany cases. If
the extreme case is a requirement violation, e.g., an exceeded deadline, a real
problem has been found (assuming a correct simulation model) which other-
wise could have been missed during system testing. A negative result from a
simulation-based analysis, i.e., that no problem is found,is however no guar-
antee of correctness. The simulation approach is closer to testing than formal
analysis, since it can only show the presence of errors, not their absence.

Simulation is however a much more efficient method for findingtiming
problems than system-level testing, the dominating methodin industry today.
Moreover, simulation is applicable for any system, also forcomplex industrial
systems where model checking or RTA falls short. Furthermore, by using sim-
ulation it is possible to eliminate the modeling problem, assimulation models
are typically expressed in normal programming languages, like C, and can be
automatically generated (extracted) from the original source code, as demon-
strated in this thesis. Note that simulation is a very general technique, which
can be used for predicting any measurable run-time property, not just response-
time. Examples of other properties of interest are occurrence of certain error
conditions, such as buffer under-run, and the utilization of dynamically allo-
cated resources.

Monte Carlo simulation (random sampling) is best suited forperformance
analysis, i.e., average-case behavior. Analysis of extreme value properties can
however be made efficiently usingSimulation Optimization, an iterative pro-
cess where repeated simulations of a model are guided using heuristic opti-
mization techniques in order to maximize a specified property, such as highest
response times of specific tasks.

1.2 Vision 9

1.2 Vision

A framework for simulation-based analysis is envisioned, illustrated by Fig-
ure 1.2, which to a large extend has been implemented in this thesis work. The
framework is integrated in the system development process and is highly auto-
mated. An updated simulation model is always available, using an automatic
model extraction tool which is either executed on demand or during every sys-
tem build. In the latter case, the simulation model is a development artifact that
is available as naturally as the compiled executable files.

Trace RecordingsSource code

Simulation
Model

Timing Impact
Analysis

Explorative
Analysis

Regression
Analysis

Instrumentation

Proposed
Changes

Uses Identified timing
requirements

System testing, field maintenance

Timing Model
Extractor

Simulation Model
Extractor

Optimizing
Simulator

Timing Model
Database

Runtime
System

Figure 1.2: The envisioned analysis framework

The simulation model is a filtered version of the original code, contain-
ing only the statements of importance for timing and usage ofspecific re-
sources. In order to reduce the size of the simulation model and thereby the
simulation runtime, modeling abstractions may be providedmanually, e.g.,
as code annotations which becomes an integrated part of the system source
code. Timing-accurate simulation is achieved using timingdata from a soft-
waretrace recorder, permanently integrated and always active in the modeled
system. The model extraction tool instruments the source code with calls to the
recorder, in order to record three kinds of quantitative run-time information: (1)
task-switches, i.e., the task scheduling trace, (2) execution of instrumentation

10 Chapter 1. Introduction

points, for execution time profiling, and (3) relevant system input events, such
as commands/requests.

The run-time information is systematically collected during in-house sys-
tem testing and possibly also during field maintenance, e.g., if troubleshooting
a system in customer operation, labeled with the system version and config-
uration, and stored in a central database of the developmentorganization, the
timing model database. When performing simulation, this database is used
by the simulator to get the quantitative information neededby the simulation
model. This framework for simulation-based analysis allows for at least three
kinds of analysis:

• Impact analysis, i.e., “what-if” analysis on specific proposed changes.
This is used on demand, before implementing large changes, such as
adding new tasks or changing a task’s priority.

• Explorative analysis, in which a large amount of simulations are per-
formed, with random changes in the quantitative information (execution
times, inputs), in order to find the limits where errors startto occur, i.e.,
the timing requirements. The analysis would generate a report describ-
ing what parts of the system that are most timing sensitive, i.e., where
timing error might occur today or might occur after a small change of
the system. This analysis would be performed in the verification phase,
as soon as a new version is available for system-level testing.

• Regression analysis, in which differences and trends are identified be-
tween different versions of the same system. In this analysis, the timing
requirements identified during the explorative timing analysis is used as
reference for comparison; the analysis gives a warning if anexecution
time is getting close to violating such a timing requirement. This analy-
sis is a part of long term quality assurance.

The properties in focus can be related to either typical, average-case behav-
ior or extreme-case behavior, where the latter is accomplished using simulation
optimization, e.g., as presented in Chapter 4.

Model validation is integrated in this framework, but is however not in-
cluded in the illustration. The automated approach to modelextraction does
not eliminate the model validity issue, it just moves the problem to ensuring
the correctness of the model extraction tool and its configuration. After ma-
jor changes of the system, such as major architectural changes or new hard-
ware, model validation is performed throughsensitivity analysis, where differ-
ent types of changes are tested in order to verify that the analysis framework

1.3 Research Questions 11

can accurately predict their impact. This is an impact analysis with respect to
dummy changes where the prediction is compared against the actual impact,
measured on the real system after the dummy change has been implemented.

Most components of the envisioned framework have been implemented and
separately evaluated in this thesis work, partly on industrial cases. A case study
using the complete framework on real industrial cases remains for future work.

1.3 Research Questions

The research questions of this thesis are related to the feasibility and practical
applicability of the above vision with respect to complex embedded systems.
Concretely, three research questions are stated:

• Q1: Can simulation models be extracted automatically from C source
code, with sufficient efficiency and accuracy for scaling to complex em-
bedded systems?

• Q2: Is simulation optimization an efficient approach for predicting ex-
treme cases in the temporal behavior of complex embedded systems,
compared to existing methods for timing analysis?

• Q3: Is software trace recording generally applicable on commoncom-
mercial operating systems for embedded systems with respect to imple-
mentation feasibility and run-time overhead?

Given that a solution for automated model extraction can be developed,
the important questions are the scalability of the model extraction solution,
i.e., how the runtime of the tool relates to the amount of codeto analyze, as
well as the size of the extracted simulation models in relation to the original
program. The model size is important for the simulation speed and thereby
model coverage of simulation optimization methods.

Simulation optimization is a promising method which may allow for more
efficient prediction of extreme-case behavior compared to system-level testing
and Monte Carlo simulation, intended for systems where analytical or formal
methods are difficult to apply. This is a “best effort” approach, but if suffi-
ciently efficient this can extend the applicability of simulation to also include
efficient search for extreme-case timing behaviors.

Trace recording is a key component in this analysis framework but requires
permanent integration of a software recorder, unless dedicated hardware is used
for this purpose. If adding a trace recorder to the system on demand only, e.g.,

12 Chapter 1. Introduction

during testing, there is a risk ofprobe effects[89], i.e., that the system behavior
changes as a result of the added recording overhead. Thereby, the modeled, an-
alyzed system is not identical to the release version, used by customers, which
threatens the validity of the analysis. An easy answer to this problem is to keep
the trace recorder in the system, always active, and treating it as an integrated
part of the system. This also has the advantage of improved debugging sup-
port, since traces are always available, but has a cost in theform of a CPU and
RAM overhead. The size of the recorder overhead is of great importance to the
applicability of this approach, since product companies naturally wants to get
as much product performance as possible while keeping hardware costs down.

1.4 Scientific Contributions

The contributions of this thesis are addressing the research questions presented
in Section 1.3 and are necessary components in realizing thevision presented
Section 1.2. The contributions are:

• C1: An algorithm for automatic extraction of simulation modelsfrom
source code,Katana, which is based on a new approach to program slic-
ing. This method was developed to answerQ1.

• C2: A prototype implementation of Katana, MXTC, and an evaluation
of MXTC on industrial code, which indicates thatC1 is indeed an answer
to Q1, i.e., that the Katana approach is sufficiently efficient andscalable
for complex embedded systems.

• C3: An efficient simulation framework for analysis of embedded sys-
tems, RTSSim, which is a key component in answeringQ2.

• C4: Two methods for simulation optimization, HCRR and MABERA,
with performance evaluations. Together withC3, this answersQ2.

• C5: Experiences regarding trace recorder implementation feasibility and
typical run-time overheads, from five industry collaboration projects where
trace recorders were implemented. This answersQ3.

The experiences of trace recorder implementations on several industrial
systems should be of general interest for the embedded community. However,
the results are not related to the scientific body-of-knowledge,since monitoring
is a vast research area but, at the same time, not the researchfocus.

1.5 Research Method 13

The issue of model validity is discussed in Chapter 8, which also presents
ideas on trace comparison methods for general use in the envisioned analysis
framework. This is however not counted as a formal scientificcontribution due
to the lack of evaluation but should rather be considered as work-in-progress.

All other contributions in this thesis are innovations of the author alone,
except for the HCRR algorithm inC5. The author however initiated the collab-
orative project which resulted in the HCRR algorithm and played a significant
role in the discussions leading to HCRR as well as in the HCRR evaluation.

Chapter 4 is based on two publications, the first publications of MABERA
[15] and HCRR [14]. Chapter 1, Chapter 2 and Chapter 8 are based on the au-
thor’s licentiate thesis [95]. The remaining chapters (i.e., 3, 4, 6, 7 and 9) have
been written specifically for this thesis and present previously not published
results.

1.5 Research Method

This thesis presents engineering research performed in collaboration with ABB
and Bombardier. In this type of research, technical solutions are created or
identified in response to industrial problems. The solutions are evaluated in
order to determine their suitability and find possibilitiesfor further improve-
ment. The academic body-of-knowledge is used and extended throughout the
process, through publications and conference presentations. The research fol-
lows an iterative model where the problem definition and solution design are
refined through prototype development, evaluation and industrial feedback, as
illustrated by Figure 1.3. Note that the edges leading “backwards”, e.g., from
internal evaluation to problem definition, corresponds to feedback from de-
velopment and evaluation phases, when the proposed solution has been found
suboptimal. This ranges from minor adjustments of the proposed solution de-
sign, to reformulating the overall research focus.

The problem described in the introduction was initially identified by ABB
Robotics, a manufacturer of industrial robots and robot control systems. An
on-site study was conducted on the subject in the form of a Master’s thesis
[94]. Between September 2002 and December 2004, the thesis author worked
in embedded software development at ABB Robotics, which resulted in a good
understanding of the challenges of developing and maintaining complex em-
bedded software systems. In April 2003, the author enrolledas an industrial
PhD student, working 50 % at ABB and on 50 % continuing the research ini-
tiated in the Master’s thesis project [92, 93, 91, 90]. This initial work outlined

14 Chapter 1. Introduction

Problem
Definition

Solution
Design

Internal
Evaluation

Prototype
Development

Industrial Partners

Industrial
Evaluation

AcademicBody-of-knowledge

Publication?

Useful methods and tools

Publication?

Publication?

Publication
Feedback

Solution

Original
Problem

Feedback

Seminars

Feedback

Seminars

Figure 1.3: The research method

the overall approach, which resulted in a licentiate thesison the subject [95].
With that, the core problems had been identified (see Section1.3) and in the
following years several solutions where developed, which are presented in this
thesis.

In order to get feedback on the problem formulation and the approach pro-
posed in this thesis, seminars have been arranged on a regular basis, with sys-
tem experts from ABB Corporate Research, ABB Robotics and Bombardier
Transportation, as well as researchers from other universities. Further, sev-
eral publications on this subject have been presented on international scientific
conferences in mainly two areas: Software Engineering [56,108, 58] and Real-
Time Systems [15, 14, 92, 93, 91, 64].

The methods and tools developed in this work have been evaluated on real
cases provided by the industrial partners. The thesis author has visited both
ABB Robotics and Bombardier Transportation for shorter industrial stays dur-
ing which parts of these evaluations have been performed. The author has also
been given access to proprietary source code and equipment.The evaluations
of trace recording techniques, presented in Chapter 7, wereperformed on cases
from four systems from four different companies: ABB Robotics, Bombardier
Transportation, a major telecom company and a developer of automated weld-
ing equipment. In a fifth project a trace recorder was developed in close col-

1.6 Thesis Outline 15

laboration with Quadros Systems, Inc. [137], a U.S. companydeveloping a
real-time operating system.

The strong industrial connection enables the research to befocused on
problems relevant for industry. In order to verify the scientific relevance and
uniqueness, the literature in several related research areas has been studied:
real-time systems, simulation, model validation, model checking, reverse engi-
neering and program slicing.

The work presented in this thesis is primarily influenced by the analysis
challenges of ABB’s control system for industrial robots, but there is nothing
“robot-specific” in the proposed approach; it is general andcan conceptually
be applied on any software system, although the need is greatest on complex
embedded systems, with highly dynamic run-time behavior.

1.6 Thesis Outline

This thesis is organized in nine chapters. Chapter 2 presents a state-of-the-art
report on related research areas. Then follows five contribution chapters, fo-
cusing on different aspects of the envisioned analysis framework. Chapter 3
presents the use of simulation for timing analysis and introduces the RTSSim
simulation framework. Chapter 4 presents two techniques for simulation opti-
mization, MABERA and HCRR, together with an evaluation and comparison
with other methods for timing analysis. Chapter 5 presents Katana, a method
for automated extraction of simulation models from source code, through a
novel approach to program slicing. An evaluation of Katana on industrial
source code is presented in Chapter 6. Chapter 7 presents techniques for
trace recording, experiences from five industrial trace recorder implementa-
tion projects, as well as ideas for how to obtain and model simulation timing
models using trace recording. Chapter 8 discusses the threats against model va-
lidity and presents a process for comparison of trace data, which can be used in
model validation and impact analysis. Finally, Chapter 9 concludes the thesis
and outlines future work.

Chapter 2

Timing Analysis, Modeling
and Model Validation

This chapter gives a background regarding related work in six areas of aca-
demic research, where some are alternative methods for similar purposes. The
overall purposes of the described works fall into three maincategories: timing
analysis, modeling and model validation. The structure of this chapter is as
follows:

• Real-Time Systems and Timing Analysis

• Timing Analysis using Model Checking

• Timing Analysis using Simulation

• Modeling using Source Code Analysis

• Modeling using Dynamic Analysis

• Model Validation

The first three sections (Section 2.1 – Section 2.3) describes different meth-
ods for timing analysis proposed in academia, including response-time and
execution-time analysis. Since it is believed that detailed models are necessary
in order to allow sufficiently accurate timing analysis of complex embedded
software systems, and since such systems are too large for manual modeling,

17

18 Chapter 2. Timing Analysis, Modeling and Model Validation

a central problem is to find methods for automated generationof such mod-
els from existing implementations. The next two sections (Section 2.4 and
Section 2.5) therefore describe works of relevance for automated modeling of
existing implementations, using source code analysis and run-time measure-
ments, respectively. The last section, Section 2.6, is about how to ensure the
validity of the system model that is used for the analysis describes results re-
lated to model validation, both subjective methods and methods based on statis-
tics. The chapter is concluded by Section 2.7, which discusshow the approach
proposed in this thesis relates to the works (and research areas) presented in
this chapter.

2.1 Real-Time Systems and Timing Analysis

This section describes the area of real-time systems and different types of tim-
ing analysis, i.e., methods of direct relevance for the overall research goal.

A real-time systemis a system where correct behavior is not only depen-
dent on what results that are delivered, but also when they are delivered, i.e.,
a computer system with requirements on timeliness. Real-time systems are
often connected to machinery, i.e., sensors and actuators,controlling a physi-
cal process. The demands on the timeliness, the temporal constraints, on such
systems are defined by the process that is controlled. The main problem in
real-time system’s research is how to verify that a system meets its temporal
constraints.

Real-time systems are often composed oftasks, which are threads or pro-
cesses implementing a particular system function, which typically execute pe-
riodically. An activity is often broken down into several tasks and tasks there-
fore often communicate, e.g., in order to forward their results as input to other
tasks, or in order to send commands/request to other tasks.

Obviously,periodic tasks are tasks which are activated periodically, i.e.,
with a constantinter-arrival time. Many systems however also contain tasks
which are recurring but not strictly periodic, which are typically labeledspo-
radic or aperiodictasks. The difference between these is that sporadic tasks
have a minimum inter-arrival time, aperiodic tasks does not. Such may cor-
respond to interrupt service routines, triggered by hardware signals from an
external system, e.g., a network.

Theresponse timeof a task in a real-time system is the latency from stimuli
(input) to reaction (output). A task’s response time is affected by both the
execution timeof the task, i.e., the CPU time required to process the code of

2.1 Real-Time Systems and Timing Analysis 19

the task, as well as interference from other tasks in the system with higher
priorities and blocking semaphores. If a task is allowed to execute without
disturbances, the response time of the task will be equal to its execution time.

A transactionis a chain of related tasks withprecedence constraintswhich
dictate their execution order. This is often realized usingoffsets, which changes
the phasing of the task periods. A deadline over a chain of related events, like
a transaction, is known as anend-to-endresponse time.

The temporal constraints of a real-time system is usually expressed asdead-
lines, which specify the highest response time allowed. If a real-time system
is unable to finish a task before its deadline, it is adeadline violation. Such
are often the result of anoverload situation, i.e., that the currently active tasks
in the system together require more CPU time than available in order to finish
before their corresponding deadlines. However, a deadlineviolation may also
occur in other situations, e.g., due to a deadlock causing indefinite blocking
even though the CPU may be idle.

Real-time systems are often divided into two categories based on the sever-
ity of the consequences of a deadline violation,hardandsoftreal-time systems.
A soft real-time system allows some occasional deadline violations. An exam-
ple is a telecom system. The system’s temporal requirementsdo not need to be
guaranteed at all times — it is not a disaster if a phone call isdisconnected in
rare circumstances, as long as it does not happen frequently. Another example
of a soft real-time system is DVD player software on a PC, which must decom-
press a certain number of frames every second. The temporal requirements are
in this case more focused on quality of service rather than 100 % reliability.
A software DVD-player can tolerate small transient delays in the video pro-
cessing; this does not result in a failure, only a minor disturbance in a reduced
quality of the result, which the user (viewer) might not evennotice.

Note that “real-time” does not have to mean “fast”, even though many real-
time systems run at high speeds. The critical concern is the importance of the
timing constraints and the consequences if they would be violated.

In a hard real-time systema single missed deadline is considered a fail-
ure. If the system issafety-criticalit might result in injuries or catastrophic
damage. An example is modern “fly-by-wire” airplanes, such as the Swedish
fighter-jet JAS 39 “Gripen” or the Boeing 777, where there is no physical con-
nection (e.g., hydraulics) between the pilot’s controls and the rudders, etc., but
only electronic signaling. Another example in a different domain is a railway
signaling system. For such safety-critical real-time systems, there is a need to
guarantee that the system will never violate its temporal requirements.

20 Chapter 2. Timing Analysis, Modeling and Model Validation

Most real-time systems aremulti-taskingsystems where the CPU1 is shared
by several tasks. This is achieved by using a multi-tasking operating system
where aschedulerdecides which task that should execute at any particular
moment.

A large area within real-time research isscheduling theory, i.e., methods
for setting task scheduling attributes, such as priorities, in order to fulfill a
(multi-tasking) system´s timing requirements. The scheduling algorithms can
be divided into off-line and on-line scheduling. When usingon-line schedul-
ing, the scheduling decisions are taken during run-time. Anoff-line scheduled
system makes no decisions regarding the execution order of the tasks during
run-time, instead a pre-calculated schedule is used. However, in such systems
it is not possible to create new tasks during run-time since adding of new tasks
to the system requires reconstructing the schedule. A more flexible scheduling
policy is on-line scheduling. In this case, no schedule exists, but the operating
system makes all the scheduling decisions during run-time.There are however
operating systems where both types of scheduling can be usedin parallel, such
as Rubus from Articus Systems [120].

A very common algorithm for on-line scheduling is Fixed Priority Schedul-
ing (FPS). Each task has a priority, which is used by the operating system to
select the next task to execute if there is more than one task ready. Most com-
mercial real-time operating systems usepreemptivefixed priority scheduling,
meaning that the executing task can be preempted by higher priority tasks at
any time.

The other major paradigm in on-line scheduling is Earliest Deadline First
(EDF), an approach which is less common in commercial operating systems
but often assumed in academic research. An EDF scheduler always select the
task with least time left until its deadline. EDF guaranteesthat all deadlines
are met if the CPU utilization (U) is less than 100 %. In an overload situation
(U > 100 %) it is not possible to finish all tasks before their corresponding
deadlines. EDF is not a good algorithm in overload-situations. Since it does not
do anything to lower the CPU utilization, i.e., reject tasks, it tends to let every
task miss its deadline. EDF can however be combined with other scheduling
algorithms, such as overload handling or aperiodic server algorithms such as
Total Bandwidth Server [104] or Constant Bandwidth Server [50]. Such server
algorithms allocate a certain percentage of the CPU time, the server bandwidth,
to aperiodic or sporadic tasks, if such are pending.

1For multi-core CPUs, each CPU core is shared by several tasks.

2.1 Real-Time Systems and Timing Analysis 21

2.1.1 Schedulability- and Response-Time Analysis

A variety of analytical methods exists for schedulability analysis, i.e., methods
which determine if a real-time system is schedulable with respect to the system
deadlines. This section presents the major results within scheduling theory and
the analytical response-time analysis methods.

The most well known result in the real-time community is the one by Liu
and Layland from 1973 [99], in which they introduced fixed priority scheduling
which is widely used today in many real-time operating systems. They showed
that a system with strictly periodic and independent tasks that is scheduled us-
ing fixed priority scheduling is alwaysschedulable, i.e., will meet its deadlines,
if the total CPU utilization (U) is below a certain value, theLiu-Layland bound,
and the tasks have been assigned priorities according to therate monotonicpol-
icy. Rate monotonic is a policy for assigning priorities to the tasks based on
their rate, i.e., period time, where the task with the highest rate (shortest period)
receives the highest priority. The value of the Liu-Laylandbound is dependent
on the number of tasks in the system, but as the number of tasksincrease, this
bound approachesln 2, approximately 69.3 %. For systems containing only
tasks with harmonic periods, the bound is 100 %. Harmonic periods means
that all task periods are multiples of the shortest task period.

TheExact Analysiswas presented by Joseph and Pandya [101] in 1986. It
is a method for calculating the worst case response-times ofperiodic indepen-
dent tasks with deadlines less or equal to the periods, scheduled using fixed
priority scheduling. It is a fix-point method that from a set of tasks calculates
the worst case response time for each task, i.e., the response time of the tasks
in the critical instant, where all tasks are ready to execute at the same time,
with their individual worst-case execution time. The method has later been
extended to handle, e.g., semaphores [37], deadlines longer than the periods
[112], variations (jitter) in the task periodicity [113, 114] and distributed sys-
tems [115]. This family of analytical methods for response time analysis is
commonly known as RTA.

2.1.2 Execution Time Analysis

When modeling a real-time system for analysis of timing related properties, the
model needs to contain execution time information, i.e., how much CPU time
needed by each task individually, if executing undisturbed. A common method
in industry is to obtain timing information by performing measurements of the
real system as it is executed under realistic conditions. The major problem

22 Chapter 2. Timing Analysis, Modeling and Model Validation

with this approach is the coverage; it is very hard to select test cases which
generate high execution times and it is not possible to know if the worst case
execution time (WCET) has been observed. Some companies compensates this
to some extent through a “brute force” approach, where they systematically
collect statistics from deployed systems, over long periods of real operation.
This is however very dependent on how the system has been usedand is still
an “optimistic” approach, as the real WCET might be higher than the highest
value observed.

Measuring is however not the only way to find execution time information.
Execution time analysisis a well studied area in the intersection of program
analysis and real-time systems research, where the focus ismainly onWCET
analysis. Static WCET analysis tools such as AIT [139], Bound-T [141]and
the (local) SWEET tool [140] strive to compute a safe, but tight, upper bound
for the execution time of a program, given a specific hardware. On complex
hardware architectures, with cache memory, pipelines, branch prediction ta-
bles and out-of-order execution, estimating a tight but safe WCET is however
difficult. Complex embedded systems however often use relatively powerful
and complex CPUs, such as Intel Pentium III, Pentium M or PowerPC 750 (cf.
Chapter 7).

Since static WCET analysis depends on a model of the hardware, which
however cannot predict every detail and therefore requiresconservative, worst
case assumptions in order to report a safe WCET estimate. Dueto these as-
sumptions the estimated WCET becomes pessimistic. However, there are sev-
eral groups doing WCET research and during the last years there is an open
exchange format for such tools, ALF [3], which is now being adopted by aca-
demic research groups and WCET tool vendors.

The WCET approach by Bernat et al. [39, 40] is however quite different.
Their solution, probabilistic WCET (or pWCET), combines program analysis
with execution-time measurements on basic-block2 The execution time data
is used to construct a probabilistic WCET for each basic block, i.e., an ex-
ecution time with a specified probability of not being exceeded. The block
pWCETs are combined using the static analysis in order to produce a total
pWCET for the specified code. This is today a commercial WCET and profil-
ing tool, RapiTime, from Rapita Systems, Ltd. [136].

The pWCET approach is not dependent on a model of the hardware, as in
the case with static WCET analysis, but instead relies on execution time mea-
surements. The dependence on a hardware timing model is a major criticism

2A basic -block is a sequence of unconditional instructions,i.e., without jumps.

2.2 Timing Analysis using Model Checking 23

against the static approach, as it is an abstraction of the real hardware behav-
ior and might not describe all effects of the real hardware. On the other hand,
this is a probabilistic approach based on measurements and may therefore be
optimistic in some cases, meaning that the WCET estimate might be too low.
Bernat et al. [39] however argue that static WCET analysis for real complex
software, executing on complex hardware, is “extremely difficult to perform
and results in unacceptable levels of pessimism”. Static WCET analysis tools
are today limited to fairly simple CPUs, while the pWCET approach is appli-
cable on any CPU.

The pWCET approach is today implemented in the RapiTime product of
Rapita Systems, Ltd. [136]. This solution can be combined with a hardware
monitoring tool, the RTBx data logger. The RapiTime source code analysis
adds source-code instrumentation points (IPoints), whichwrite an identifier to
a generic I/O port of the CPU, to which the RTBx is connected. According to
Rapita Systems, an IPoint only require two CPU instructions. The RTBx is a
separate computer, equipped with a large hard drive and a data acquisition card
which samples the I/O port at a very high frequency. This solution however
requires the existence of a generic I/O port, and the RTBx is aquite large and
expensive device mainly intended for lab use.

2.2 Timing Analysis using Model Checking

Model checking is a method for verifying that a model (of a system) meets
formally specified requirements and has been proposed as a method for soft-
ware verification, including verification of timeliness properties for real-time
systems. The method is commonly used to verify hardware designs and com-
munication protocols. In recent years model checkers for software have been
developed and proposed as method for software verification.Many case studies
have been performed where defects have been identified in existing software by
using model checking. This section will describe the basic concepts of model
checking and temporal logics, a widely used model checking tool as well as
two model checkers especially targeting real-time systems.

2.2.1 Basic Concepts

By describing the behavior of a system in a model where all constructs have
formally defined semantics, it is possible to automaticallyverify properties of
the modeled system by using a model checking tool. The model is described

24 Chapter 2. Timing Analysis, Modeling and Model Validation

in a modeling language, the input language of the tool, oftena variant of finite-
state automata. A system is often modeled using a network of automata, where
the automata are connected by synchronization channels. When the model
checking tool is to analyze the model, it performs aparallel composition, re-
sulting in a single, much larger automaton describing the complete system.

The properties that are to be checked are usually specified ina temporal
logic, such as CTL [71] or LTL [72]. Temporal logics allow specification of
safety properties, i.e., ”something (bad) will never happen”, and liveness prop-
erties, i.e., ”something (good) must eventually happen”. An example of a CTL
safety property is:

AG not (A and B)

which states that A and B may never be true at the same time, using the tem-
poral operator AG (“always”). Imagine that the logical propositionsA andB
describe valves in a chemical production plant, the proposition is true if the
valve is open, false if closed. This formula then states thatthey may not be
open at the same time (since that would cause, e.g., a dangerous spill). CTL
contains several temporal operators, apart from AG, and is presented further in
Section 2.2.3.

Model checking is a general approach, as it can be applied to many domains
such as hardware verification, software engineering, communication protocols
and embedded systems. Model checking has been shown to be usable in indus-
trial settings for finding subtle errors that are hard to find using other methods
and according to Katoen [74], case studies have shown that the use of model
checking does not delay the design process more than using simulation and
testing. Also, model checking is based on a sound mathematical foundation,
including e.g., semantics, concurrency theory, logic and automata theory.

There are also problems associated with model checking. Oneof the most
well-known problems is commonly known as thestate-space explosionprob-
lem, meaning that the number of possible states in the systemeasily becomes
very large as it grows exponentially with the number of parallel processes. This
is a serious problem, as model checking tools often needs to search the state
space exhaustively in order to verify or falsify the property to check. If the
state space becomes too large, it is not possible to perform this search due to
memory or run time constraints.

Another problem is the need for a detailed analysis model in aformal nota-
tion, which typically is specific for each tool. Model checking has great poten-
tial in model-driven development, where the verified model is a specification

2.2 Timing Analysis using Model Checking 25

for automatic code generation tools. However, for complex embedded sys-
tems developed in a traditional code-oriented manner, no analyzable models
are available and model checking therefore typically3 requires a major mod-
eling effort, which is very time consuming and may introduceerrors in the
model.

2.2.2 The model checker SPIN

SPIN [75] is a well established tool for model checking and simulation of soft-
ware. SPIN supports simulation (random, guided and interactive) and model
checking of formulas in the temporal logic LTL [72]. According to the SPIN
website [117], SPIN is designed to scale well and can performexhaustive ver-
ification of very large state-space models. The modeling language of SPIN is
called Promela, “PROcess MEta Language”. Promela is a “guarded command
language” with a syntax similar to the programming languageC. SPIN is open-
source and available for most platforms, including Linux, Windows and Mac.
For further information about SPIN, there is a book by Holzmann [76] contain-
ing tutorials on using SPIN and Promela, as well as referencematerial.

Promela

A Promela model roughly consists of a set of sequential processes, local and
global variables and communication channels. Each processis a sequence of
statements, where each statement may be enabled or disabled. A disabled state-
ment blocks the execution of the process until the statementbecomes enabled.

Promela support non-deterministic selection. The if-statement allows sev-
eral alternative behaviors to be specified. Each behavior may be associated
with a guard, a condition, in the same way as in common programming lan-
guages, but if several behaviors are enabled, i.e., have guard conditions which
are true, one is selected in a non-deterministic way. As an example, consider
the following:

if :: (a > 10) -> smtA;
:: (true) -> smtB;
:: (true) -> smtC;

fi;

3Unless an automatic model extraction tool can be used, such as Modex (cf. Section 2.4.3)
which generates models for the model checker SPIN (cf. Section 2.2.2). SPIN is however not
suitable for timing analysis of real-time systems, since itdoes not have a notion of quantitative
time.

26 Chapter 2. Timing Analysis, Modeling and Model Validation

The two last statements are always enabled (true) and may therefore be
executed, but the first has a guard allowing execution only when “a” is larger
than 10. Promela also supports loops, using the do-statement; the syntax is
similar to if.

i = 1;
do :: i <= 10 -> looping;

:: i > 10 -> break;
od;

Promela processes may communicate using communication channels. A
channel is a fixed-size FIFO buffer. The size of the buffer maybe 0; in such a
case it is a synchronization operation, which blocks until the send and receive
operations can occur simultaneously. If the buffer size is 1or more, the com-
munication becomes asynchronous, as a send operation may occur even though
the receiver is not ready to receive. To declare and use channels is very straight-
forward. A send-operation is expressed using a “!” togetherwith the channel
name and data. A receive-operation is similar, using “?”: The following exam-
ple demonstrates how to declare a channel and use it for communication.

chan chn = [4] of byte; / * four slots * /
...
chn ! 42 / * send data ‘‘42’’ to chn * /
...
chn ? foo / * receive from chn * /

A process may be instantiated and invoked dynamically and processes may
be executed in parallel. For instance, consider the following example, a simple
but complete Promela model:

proctype prc(byte ident)
{

printf("%d\n",ident);
}

init{
atomic{

run prc(1);
run prc(2);

}
}

2.2 Timing Analysis using Model Checking 27

The init-section specifies the entry point, i.e., like the “main” function in
common programming languages. The atomic-statement creates a critical sec-
tion, which ensures that the contained statements executessequentially, with-
out preemptions. The two “run” commands creates two new processes, which
are released at the same time, when leaving the atomic section.

LTL

One way4 to specify the properties for SPIN to verify is linear temporal logic
(LTL), which is classic propositional logic extended with temporal operators.
Using LTL for program verification was first proposed by Pnueli [72]. The
LTL operators supported by SPIN are:

[] always && logical and
<> eventually || logical or
! logical negation -> implication
U strong until <-> equivalence

As an example, the following LTL formula specifies that the logical proposition
L should remain true untilE becomes true:

[](L U E)

The logical propositionsL andE could be electrical signals, e.g., in a washing
machine, whereL is true if the door is locked, andE is true if the machine
is empty of water, and thereby safe to open. The LTL formula inthe above
example then means “the door must never open while there is still water in the
machine”.

2.2.3 Model Checking for Real-Time Systems

Model checkers such as SPIN do not have a notion of quantitative time and
can therefore not analyze requirements on timeliness, e.g., “if X, then Y must
occur within 10 ms”. There are however tools for model checking of real-time
systems. The most well-known are UppAal [129] and KRONOS [131], both
described later in this section. These tools analyze modelsdescribed intimed
automatausing variants of the temporal logic CTL.

4Another method is to insert “assert” commands in the Promelamodel.

28 Chapter 2. Timing Analysis, Modeling and Model Validation

Timed Automata

The concept of timed automata was first proposed by Alur and Dill [82], who
extended regular finite automata with real-valued clocks. Atimed automaton
may contain an arbitrary number of clocks, which run at the same rate. There
are extensions of timed automata where clocks can have different rates [81].
The clocks may be reset to zero, independently of each other,and used in
conditions on state transitions and state invariants. A simple yet illustrative
example is presented in Figure 2.1, from the UppAal tool.

Figure 2.1: A small example of (UppAal) timed automata

The modeled system in Figure 2.1 changes state fromA to B if eventa oc-
curs twice within 2 time units. There is a clock,t, which is reset after an initial
occurrence of eventa. If the clock reaches 2 time units before any additional
eventa arrives, the invariant on the middle state forces a state transition back
to the initial stateA.

CTL

Both the UppAal and KRONOS model checkers use variants Computation Tree
Logic [71], or CTL, which is a branching-time temporal logic. This means
that in each moment there may be several possible futures, incontrast to LTL.
Therefore, CTL allows for expressing possibility properties such as “in the
future, X may be true”, which is not possible in LTL. On the other hand, CTL
cannot express fairness properties, such as “if A is scheduled to run, it will
eventually run”. Neither of these logics fully includes theother, but there are
extensions of CTL, such as CTL* [87], which subsume both LTL and CTL. A
CTL formula consists of a state formula and a path formula. The state formulae
describe properties of individual states, whereas path formulae quantify over
paths, i.e., potential executions of the model.

2.2 Timing Analysis using Model Checking 29

Apart from ordinary propositional logic, CTL contains fourtemporal opera-
tors:

EX for some time next A for all paths
E for some path U until

Based on the four temporal operators and the propositional logic, it is possible
to derive an additional five useful temporal operators:

EF possible AG always
AF inevitable AX next
EG potentially always

UppAal

The tool UppAal [77, 78, 79] is based on Timed Automata and a subset of
CTL. UppAal is an integrated tool environment for the modeling, simulation
and verification of real-time systems. This tool has been developed jointly by
Basic Research in Computer Science at Aalborg University, Denmark, and the
Department of Computer Systems at Uppsala University in Sweden.

UppAal is described as “appropriate for systems that can be modeled as
a collection of non-deterministic processes with finite control structure and
real-valued clocks, communicating through channels or shared variables.” In
practice, typical application areas include real-time controllers and communi-
cation protocols where timing aspects are critical. The tool was first proposed
in the mid 90’s and has now (2010) reached version 4.0. The tool is available
for many platforms including Windows and Linux, and can be downloaded
without charge from the UppAal website [129].

UppAal extends Timed Automata with support for, e.g., automaton tem-
plates, bounded integer variables, arrays, and different variants of restricted
synchronization channels and locations. The query language used is a simpli-
fied version of CTL, which allows for reachability properties, safety properties
and liveness properties. Timeliness properties are expressed as conditions on
clocks and state in the state formula part of the CTL formulae.

TIMES

Times [122] is a tool set for modeling, simulation, schedulability analysis and
synthesis (code generation) of systems that can be described as a set of peri-
odic or event-triggered tasks. The Times tool was first proposed by Amnell
et al. [13] and allows for specifying both the triggering mechanisms of tasks

30 Chapter 2. Timing Analysis, Modeling and Model Validation

and the internal behavior of tasks using timed automata models, extended with
data variables and the notion of tasks [57]. The verificationparts of Times is
based on UppAal, developed by the same group. The Times tool can synthe-
size source code from the developed models, but currently only for the LegoOS
operating system. This tool can be regarded as a special version of UppAal for
real-time systems analysis.

KRONOS

Another model checker for real-time system is Kronos [81, 80] which has been
developed at Verimag in France. Like UppAal it is based on Timed Automata
but uses a more powerful query language, Timed Computation Tree Logic [83],
or TCTL, an extension of CTL to include quantitative time forthe purpose of
specifying timeliness properties, i.e., liveness properties with a deadline. Kro-
nos also allows for checking safety properties and can also check models and
properties expressed in other, less common formalisms. Thetool is available
for several platforms, including Windows and Linux, and canbe downloaded
without charge at the Kronos website [131].

2.3 Timing Analysis using Simulation

Another method for analysis of response times of software systems, and for
analysis of other properties, is the use of discrete event simulation, or simu-
lation for short. Using simulation, rich modeling languages can be used to
construct very realistic models. Often ordinary programming languages, such
as C, are used in combination with a special simulation library. This is the case
for both the DRTSS [103], ARTISST [88] and VirtualTime [136]simulation
frameworks, outlined below. The rich modeling languages allow modeling of
the semantic dependencies between tasks in the system, e.g., communication,
synchronization and shared state variables. Simulation models may contain
non-deterministic or probabilistic selections. By using probabilistic selections,
task execution times can be modeled with high realism, as probability distribu-
tions.

A problem with simulation is the lower confidence in the result in com-
parison to formal or analytical methods. A simulator executes the model and
randomly explore the possible execution scenarios. Even though it is possible
to perform a large amount of simulations in short time, the number of possible
execution scenarios, i.e., the state space, is often too large for an exhaustive

2.3 Timing Analysis using Simulation 31

analysis. On the other hand, simulation allows for an analysis, even though not
exhaustive, in situations where other analysis methods fail.

2.3.1 STRESS

The STRESS environment [102] is a collection of tools for analysis and sim-
ulation of hard real-time applications, based on a special-purpose modeling
language, essentially a procedural programming language,in which the behav-
ior of the modeled system is described. It is focused on tasksand intended as
a tool for testing various scheduling and resource management algorithms. It
can also be used to study the general behavior of applications.

2.3.2 DRTSS

The DRTSS simulation framework [103] allows for easy construction of dis-
crete event simulators describing complex distributed real-time systems. Com-
pared to STRESS, DRTSS is a more generic tool, not only focusing on hard
real-time. Unlike STRESS, DRTSS does not define an own modeling language
for behavior, but instead models the task behaviors using executable code ex-
pressed in C, C++ or any other language which can be linked with C++. The
framework consists of three major components: a search controller, which se-
lects parameters for each individual simulation run, an execution engine and
SETI, “the System for Extraction of Timing Information”, which analyzes the
simulation output. The DRTSS framework is a member of the PERTS family
of timing-oriented prototyping and verification tools, which also contain tools
for analytical schedulability analysis.

2.3.3 ARTISST

The ARTISST simulation framework [88] targets performanceevaluation of
“complex dynamic real-time systems made of tasks performing arbitrary com-
putations and exhibiting a complex and realistic pattern for their arrival law,
synchronization relations, and execution time.”, which isessentially also the
focus of all other known simulation frameworks. Like STRESS, the AR-
TISST solution was initially intended for evaluation of different scheduling
algorithms. The specific solution is very similar to VirtualTime and RTSSim
(cf. Chapter 3). ARTISST is task-centric and allows for specifying behavior
of tasks in C or C++. Time is advanced in an explicit manner using an API

32 Chapter 2. Timing Analysis, Modeling and Model Validation

function called “hold_cpu”, which has direct correspondence in both Virtu-
alTime and RTSSim. The authors behind ARTISST emphasize itsmodular,
object-oriented design; it is not dedicated to a particularoperating system but
fully customizable allowing for simulation of systems using different operat-
ing system APIs. The name ARTISST is a recursive acronym, “ARTISST is a
Real-Time System Simulation Tool”.

2.3.4 VirtualTime

An example of a commercial simulation framework is VirtualTime [136]. It
is suitable for analysis of the temporal behavior of complexsystems, typi-
cally soft real-time systems. The simulation framework allows detailed models
including process interactions, scheduling, message passing, queue behavior
and dynamic priority changes. According to the company behind VirtualTime,
Rapita Systems, Ltd. [136], there are few limitations to themodels that can be
produced using VirtualTime. VirtualTime is specifically targeting the OSE op-
erating system from ENEA [134], mainly used in the telecom domain. Rapita
Systems, Ltd. is a spin-off company from the Real-Time Systems Research
Group at the University of York, UK.

2.4 Modeling using Source-code Analysis

This section describe works related to automated analysis of software systems.
For large industrial systems, it is not realistic to construct detailed analysis
models by hand; the models must be generated using automaticanalysis tools.
There are two primary information sources when analyzing existing systems:
the source code itself and measurements of the run-time system. This sec-
tion presents related works in source code analysis, while Section 2.5 presents
related works indynamic analysis, i.e., analysis of information recorded dur-
ing run-time. Some solutions uses both static and dynamic information. This
section presents results from three fields of research: program slicing, reverse
engineering and formal verification of source code.

2.4.1 Program Slicing

Program slicing, first proposed by Weiser [20], is a type of program analysis
which identifies the statements of a program of relevance fora particular slic-
ing criterion, typically the value of a certain variable at aparticular point in

2.4 Modeling using Source-code Analysis 33

the program. This analysis is highly relevant for automatedextraction of sim-
ulation models from source code and is used for this purpose in the approach
presented in Chapter 5.

The most common type of program slicing isbackward slicing, the process
of identifying all statements which might affect a particular variable, typically
at a particular point in the program. A less common analysis is forward slicing,
which identifies the statements which might be affected by a particular variable.
Unless otherwise stated, the termprogram slicinghereafter refers to backwards
slicing.

An example of program slicing is given in Figure 2.2. The example code is
a C function which counts the number of characters and line-breaks in a string.
The code in the left part is the original program, while the right side code is the
backwards slice with respect to the variablelines, used in the lastprintf call (in
blue text). In the slice illustration, red statements are those of direct relevance
for the slicing criterion, i.e., modifications oflines, while the remaining code
corresponds to indirectly relevant statements.

void count(char* text)
{

int i = 0;
int lines = 1;
int chars = 0;
while (text[i])
{

if (text[i] == '\n’)
lines = lines + 1;

else
chars = chars + 1;

i = i + 1;
}
printf("chars: %d\n", chars);
printf("lines: %d\n", lines);

}

void count(char* text)
{

int i = 0;
int lines = 1;

while (text[i])
{

if (text[i] == '\n’)
lines = lines + 1;

i = i + 1;
}

}

Figure 2.2: An example of program slicing

The approach to program slicing proposed by Weiser [20, 26] is an iterative
process operating on thecontrol-flow graphof the program and produced back-
wards slices of the program. A control-flow graph (or CFG) is arepresentation
of a program as a directed graph, where the vertices represents the program´s

34 Chapter 2. Timing Analysis, Modeling and Model Validation

statements and the edges represent possible control flow. This first approach
to program slicing was however restricted to slicing withina single subroutine
(i.e., intraprocedural slicing), and did not address issues such as data structures
or pointers. During the 1980´s there were however many results following up
Weiser’s first approach. Weiser later proposed an extension[25] to his original
approach, which allowed forinterproceduralprogram slicing, i.e., slicing of
more realistic programs divided up in several subroutines (functions). Leung
and Reghbati later proposed a set of corrections of Weiser’sextended approach
[24].

In 1988, Horwitz, Reps and Binkley proposed theSystem Dependence
Graph, SDG, as a base for program slicing [23]. The SDG is an extension
of the Program Dependence Graph, first proposed by Ottenstein and Otten-
stein [35, 36]. The main difference is that the SDG allowed for representing
call dependencies between functions, while the PDG represented each func-
tion/procedure separately and thereby only allowed for intraprocedural slicing.
Both the PDG and SDG represent a program as a directed graph, with vertices
corresponding to statements and edges representing control-flow and data-flow
dependencies. In the SDG there are also special vertices andedges represent-
ing the data flow between function call arguments and the corresponding for-
mal parameters of the callee, and similar for data flow through function return
values. On this representation, program slicing is realized through a reacha-
bility search starting from the specified program point, i.e., SDG vertex. An
illustration of a SDG is given in Figure 2.3. The corresponding source code is:

void main()
{

int sum = 0;
int i = 1;
while (i<11)
{

sum = add(sum,i);
i = add(i, 1);

}
printf("sum=%d\n", sum);
printf("i=%d\n", i);

}

int add(int a, int b)
{

return (a+b);
}

In Figure 2.3, the blue arcs represent control dependencies, while the green arcs

2.4 Modeling using Source-code Analysis 35

represent data dependencies. The dotted green arcs represent interprocedural
dataflow dependencies, through function parameters and return values.

entry main

sum = 0 i = 1 while i < 11 print sum print i

call add call add

ain = sum bin = i sum = ret ain = i i = ret

entry add

a = ain b = bin r = a + b ret = r

bin= 1

Figure 2.3: An example of a System Dependence Graph (SDG)

(Published with permission from GrammaTech, Inc. [123])

The SDG representation was patented in 1992 [22]. The patenthowever
only concerns the construction of the SDG, not the actual slicing algorithm. An
improved version on the SDG slicing method [21] was used in the commercial
tool CodeSurfer, developed by GrammaTech, Inc. [123]. According to the
research group website of Horwitz and Reps [121], the CodeSurfer tool scales
to maximum 200 000 lines of code.

In conditional program slicing[30], additional input is provided in the
form of known facts about variable values, which results in smaller slices.
This can be regarded as something between traditional static slicing and dy-
namic program slicing methods, which uses recorded execution history (cf.
Section 2.5).An implementation of a conditioned program slicer, ConSIT, has
been presented by Danicic et al. [31]. ConSIT uses traditional static slicing
together with symbolic execution and theorem proving.

Amorphous program slicingwas proposed by Harman et al. [32]. An amor-
phous slice of a program only preserves the semantics, not the syntax. The idea
is to produce a simplified subprogram, which is semanticallyidentical to the
original program with respect to a set of selected variables. Amorphous pro-

36 Chapter 2. Timing Analysis, Modeling and Model Validation

gram slicing is more like program transformation than traditional static slicing.
By relaxing the requirement on preserved syntax, smaller slices can be ob-

tained. This is not suitable when the correlation with the original code is impor-
tant, like in debugging, but can be an efficient technique forpurposes such as
program comprehension and reengineering. A method for amorphous slicing
was later proposed by Harman et al. [29]. The method is interprocedural, un-
like earlier proposed methods for amorphous slicing, and operates directly on
the abstract syntax tree (AST) representation of the program. The amorphous
slicer is part of an analysis framework called GUSTT.

Sandberg et al. [27] presents an alternative method for program slicing.
The overall purpose of this work is to speed up WCET analysis through pro-
gram slicing, by removing statements which cannot affect the program flow.
The paper introduces an alternative method for program slicing, named Sim-
pleSlice. Starting from a set of variables, a fix-point iteration is performed
over the assignments in the code, where all statements possibly affecting the
variable are added to the output set. SimpleSlice requires as input lists of all
assignments and all variables in the code. SimpleSlice handles pointers in
the same way as most other slicing methods; it is assumed thata points-to
analysishas been performed and produced apoints-to setfor each pointer and
program point. The points-to set for a specific pointer contains all variables
possibly pointed to by the pointer. A common method for points-to analysis
is the method proposed by Steensgard [73], which is interprocedural and fast;
it has almost linear time complexity with respect to the program size. It does
however not take control-flow into account. A more accurate method is the one
proposed by Andersen [86], which however is considerably slower.

The SDG-based slicing methods are typicallycontrol flow-sensitive, which
means that they can exclude irrelevant assignments of relevant variables. The
SimpleSlice approach is howeverflow-insensitive, which means that it does
not analyze the control flow in order to exclude irrelevant assignment, but in-
stead includes all assignments of relevant variables. Thisis less accurate, but
much faster and gives a less complex implementation. SimpleSlice treats data
structures and arrays as single variables, for which all assignments are treated
equally, independent of referenced field or index. The SimpleSlice approach is
only presented for intraprocedural slicing.

Another approach to program slicing is the work presented byBent et
al. [69, 70, 68], implemented in a prototype tool calledSprite. It has been
developed with scalability as a primary concern. It represents the control-flow
of each function in an intraprocedural manner and uses a separate call-graph
for representing interprocedural control flow. The data-flow analysis is per-

2.4 Modeling using Source-code Analysis 37

formed using the control-flow graph (CFG) representation. Like SimpleSlice,
the Sprite tool uses the Steensgard algorithm [73] for pointer analysis. An in-
teresting aspect of this tool is that it computes all programrepresentations on
demand to the extent this is possible. The CFGs and the points-to informa-
tion are calculated on the first slice computation, while control-dependencies
and data-flow information is calculated on demand during theslicing. Sprite
is part of a larger package called ICARIA, which is a C specificinstance of a
generic program analysis system called PONDER. In [69], it is compared with
CodeSurfer [123] with respect to slice size and runtime.

Espresso [65] is described as aslicer generatorwhich, given a program to
analyze outputs a multi-threaded Java program which produce static slices for
the program at hand. Due to the multi-threaded approach, thesolution benefits
from multi-core CPUs, which allows for parallel processing. Each Java thread
correspond to a node in the CFG of the program to analyze, and communi-
cates with other threads according to the edges of the CFG. The messages sent
between the CFG nodes (Java threads) contains variable names and node IDs.
Espresso assumes that all expressions are free from side-effects, and that there
are no unstructured control-flow due to goto statements.

Jackson and Rollins [67] proposed the concept ofChoppingas a general-
ization of program slicing, where the slicing (or chopping)criterion contains
two sets,sinks(uses) andsources(definitions). Chopping a program means
to identify all statements involved in dependencies from sources to sinks. A
backwards slice corresponds to a “chop” of the program wherethe sink corre-
sponds to the traditional slicing criteria (a variable at a certain program point)
and where the source set contains all statements of the program. An interpro-
cedural method for chopping was later proposed [66].

For further reading, a good start is the survey on program slicing techniques
by Tip [18] and the more recent slicing overview by Xu et al. [8].

2.4.2 Reverse Engineering

The process of extracting information from an implementation is commonly
referred to asreverse engineering. A related term isreengineering, which ac-
cording to the “horseshoe model of reengineering” [42] is the process of reverse
engineering an implementation into a higher level of abstraction,restructuring
the result of the reverse engineering, and finallyforward engineeringin order
to implement the new requirements and/or new architecture.An extensive an-
notated bibliography is presented by van den Brand [43] describing around 100
works in the area of Reengineering and Reverse Engineering.

38 Chapter 2. Timing Analysis, Modeling and Model Validation

There are several tools and results focusing on reverse engineering for im-
proved comprehension of software. Bellay and Gall [44] presented a compar-
ison of four reverse engineering tools:Refine/C, Imagix 4D, Rigi andSniff+.
The comparison was made by applying each of the tools to a commercial em-
bedded system implemented in C. They compared 45 propertiesof these tools
in the four categories:analysis, representation, editing/browsingandgeneral
capabilities. Examples of properties in the analysis-category are supported
source languages and the fault-tolerance of the parser. In the representation-
category, properties such as support for filtering and grouping of information
can be found. The editing/browsing category contains information about how
the tool displays the program text, e.g., syntax highlighting, search support
and hypertext capabilities. Finally, in general capabilities we find information
about, e.g., supported platforms, multiuser support and extensibility.

The Bellay and Gall paper [44] references a tool called Refine/C, “an exten-
sible, interactive workbench” for reverse engineering of Cprograms. However,
no further information about Refine/C could be found, apart from references in
rather old research papers. Refine/C is a product of the company Reasoning
Systems, Inc., which no longer supports this tool.

The second tool presented in the Bellay and Gall paper [44] isImagix 4D
(cf. Chapter 6). This is a tool for analysis of C and C++ programs and is a
commercial product from Imagix Corp. [135]. This tool can, among other
things, perform control flow analysis and program slicing (the “Calculation
Tree” feature). It can identify unused variables, present metrics of the individ-
ual routines in the code, such as line count, McCabe complexity, fan in, etc.
The Imagix tool also allows for using 3D visualizations, which in many cases
can produce a more compact view, for, e.g., function call graphs.

The third tool studied by Bellay and Gall [44] is Rigi, a public domain tool
developed over the last decade by the Rigi Research Project at the University
of Victoria, Canada. The Rigi tool can present the dependencies between func-
tions, variables and datatypes and has a lot of features for filtering and grouping
of functions into subsystems. Rigi is also highly customizable. In order to use
Rigi, the code that is to be analyzed first has to be parsed intoa graph. This is
done using a separate program.

The last tool presented in this study is Sniff+, a commercialdevelopment
environment from Wind River [132], supporting reverse engineering activities.
Sniff+ targets embedded solutions but is no longer maintained by Wind River.

A study by Kollmann et al. [45], compares four tools for UML based static
reverse engineering:Together, Rational Rose, FujabaandIdea. The first two
are commercial products and the latter ones are research prototypes. The tools

2.4 Modeling using Source-code Analysis 39

are compared by using them for analyzing a Java implementation consisting of
about 450 classes. Nine properties of the generated information are compared,
such as the number of classes reported.

Reverse engineering tools of a more lightweight nature areRevealer[47]
andSemantic Grep[48]. Revealer is a tool for architectural recovery based on
syntactical analysis. It allows searching for complex patterns in source code,
corresponding to “hotspots” of a specific architectural view. For instance, the
tool can be instructed to extract the hotspots, i.e., the relevant program state-
ments, of socket communication. Revealer does not parse thesource code in
the traditional sense, e.g., by building a parse tree, instead it performs a high-
level scan for syntactic patterns. It is therefore very error tolerant, allowing
analysis of code containing errors or references to missingfiles. This error tol-
erance is very useful for, e.g., a researcher analyzing a part of a commercial
system off site, when the full source code is not available.

Semantic Grep [48] allows queries on the source code, for instance “show
all functions in parser.c” or “ show all function calls from parser.c to scan-
ner.c” The tool is based on the established tools grok and grep. It transforms
its queries into commands for these tools. This tool is however an academic
prototype and does not seem to be available for downloading or purchase.

Understand, from Scientific Toolworks, Inc. [138], is a reverse engineer-
ing tool available for a large set of programming languages,including C and
C++. This tool allows for studying control-flow, inside and between functions.
The tool can also present header-file relationships, where variables are defined
and used and many other similar tasks. The tool is focused on assisting main-
tenance of large software systems and provides open, well documented APIs
in Perl and C, which enable implementation of custom analyses. Understand
does however not provide support for program slicing or other forms of data-
flow analysis, like CodeSurfer or Imagix 4D does. The strength of this tool
is its performance on parsing large amounts of code, together with flexibility
and extension possibilities through the open APIs. A performance evaluation
of Understand is presented in Chapter 6.

2.4.3 Formal Verification Tools using Source Code Analysis

There are many works related to reverse engineering in the area of formal ver-
ification of programs. There are model checkers for softwarewhich can ana-
lyze implementations in general purpose languages such as Cor Java. Some of
these tools translate the program into a modeling language,such as Promela,
and perform abstractions by removing details irrelevant for the properties that

40 Chapter 2. Timing Analysis, Modeling and Model Validation

are to be analyzed. This is the approach of the tools SLAM [51], BLAST [52],
FeaVer/Modex [55] and Bandera [53].

SLAM is a toolkit developed at Microsoft Research for checking safety
properties of system software. A case study has been presented [51] where the
SLAM toolkit has been used to verify Windows NT device drivers. SLAM con-
tains three tools. First, the toolC2BPis used to generate an abstraction of the C
program, called aboolean program.Such programs are basically C programs,
but contain only Boolean variables and may also contain non-deterministic se-
lections. The abstraction is made with respect to the properties of interest for
analysis, specified as state machines in the specification languageSLIC. The
Boolean program is analyzed using theBEBOPmodel checker in order to find
a path through the program that violates the specified safetyproperties. If such
a path is found, the toolNEWTONis used to verify that the path is possible in
the real program.

BLAST, the Berkeley Lazy Abstraction Software verificationTool [52], is
another solution for checking safety properties of C programs. The safety prop-
erty to check is specified by adding a specialerror locationto the program. If
the code corresponding to the error location is executed, itrepresents a viola-
tion of the property. The tool transforms a C program into an abstract model,
based on the property to check. The model of the program is internally repre-
sented usingcontrol flow automata, CFA. Model checking is then used in order
to search all possible locations of the model to determine ifthe error location
is reachable or not. If the error location is not reachable inthe model, BLAST
reports that the program is safe and also provides a proof of this. If there is
a path to the error location in the model, it is verified that the path is possible
in the real program by using symbolic execution. If the path is possible, it is
reported to the user; otherwise the model is refined by changing the abstraction
process.

According to Henzinger et al. [52], BLAST has been used in case stud-
ies to verify safety properties of, e.g., Windows and Linux device drivers. In
some cases, defects have been found and in other cases BLAST proved that the
drivers correctly implemented a specification.

An interesting result is the tool Modex [55, 59], a model extractor for the
SPIN model checker described in Section 2.2.2. There is a name confusion re-
garding this model extraction tool. Modex is an acronym of Model Extractor,
a tool for extracting verification models from ANSI C. Modex was previously
known as AX (Automata Extractor). FeaVer is the user interface of Modex.
The output format of Modex is Promela, the input language of the software
model checker SPIN. Modex first parses the C code and generatea parse tree.

2.4 Modeling using Source-code Analysis 41

Thereafter it processes all basic actions and conditions ofthe program with
respect to a set of rules, resulting in a Promela model. This approach effec-
tively moves the effort from manual modeling to defining the table of rules,
which specify patterns for what statements that should be included in the model
(Promela allows for including C statements) and what to ignore. There are stan-
dard rules that can be used, but the user may add their own rules to improve the
quality of the resulting model.

Bandera [53] is an integrated collection of program analysis and transfor-
mation tools for automatic extraction of finite-state models from Java code.
The models can be used for verifying correctness propertiesusing existing
model checking tools. No model checker is included; insteadBandera is de-
signed to interoperate with existing, widely used model checkers such as SPIN
[117] and SMV [133]. The authors argue that the single most important method
for extracting analyzable models of software is abstraction. Their goal is to
provide automated support for the abstractions used by experienced model de-
signers. Bandera uses program slicing and abstract interpretation in order to
eliminate irrelevant program components and to support data abstraction. They
argue that specialized models should be used for checking specific properties
rather than developing a general model describing many aspects of a program.
That way, the model can be optimized for analysis of that single property and
thereby smaller and less complex. This is important since a major problem
with model checking techniques is the state space explosionproblem. Devel-
oping property specific models is rarely done when modeling systems by hand,
due to the effort required, but if models are automatically generated, this is
feasible.

A different approach to model checking is the one used in VeriSoft [54]. It
is not a traditional model checking tool, in the sense that noexplicit model is
required. VeriSoft instead uses the source code itself as the “model” to check.
Verifying the behavior of a concurrent system using VeriSoft is similar to tra-
ditional testing, the difference is that it executes under the control of VeriSoft,
which systematically explores the behaviors of the system.This requires that
the system that is to be verified can be compiled and executed on a platform
supported by VeriSoft, which today are limited to SunOS and Linux. Even
though Linux is growing as platform for embedded systems, this solution is not
possible to apply on closed platforms, such as VxWorks [132]or OSE [134].

42 Chapter 2. Timing Analysis, Modeling and Model Validation

2.5 Modeling using Dynamic Analysis

The use of dynamic analysis techniques for the modeling of complex embed-
ded systems is interesting as the approach allows for capturing realistic timing
information. This kind of information is generally not possible to obtain using
static analysis, at least not for more advanced hardware platforms. As dis-
cussed in Section 2.1.2, static WCET analysis is restrictedto rather simple,
low performance CPUs. Moreover, research in this area focuses on providing
safe upper bounds for theworst caseexecution time, but alsotypicalexecution
times are of relevance for performance analysis.

One interesting study is the one presented by Marburger and Westfechtel
[28]. They report on a set of reverse engineering tools, developed in coop-
eration with Ericsson Eurolab Deutschland, which include support for both
structural analysis and behavioral analysis. The behavioral analysis includes
state machine extraction from PLEX source code (a proprietary asynchronous
real-time language). Traces recorded from a system emulator can be used to
animate the state machines in order to illustrate the systembehavior. This is
basically low-speed simulation, using pre-recorded data to stimulate the model.
The extraction of state machines from source code is highly related to construc-
tion of models for impact analysis, unfortunately this study focuses on telecom
system and the Ericsson-specific PLEX language.

Related to the Marburger and Westfechtel work is that of Systä and Koskimies
[34] where state diagrams are synthesized from traces. The source code of the
system in focus is instrumented in order to generate a trace,which is fed into
the SCED tool which in turn generates a minimal state diagramcorrespond-
ing to the observed behavior. The work does however not address real-time
systems, as no timing information is recorded.

A system called DiscoTech was presented by Yan et al. [46], which based
on run-time observations generates an architectural view of the system. If the
general design pattern used in the system is known, mappingscan be made
that transforms low level system events into high level architectural operations.
With this information an architectural description of the system can be con-
structed. The system presented is designed for Java based systems. The types
of operations monitored are typically object creation, method invocation and
instance variable assignments. Note that the resulting model describes only
the architectural structure of the system and does not include any behavioral
descriptions.

Jensen [49, 116] proposed a solution for automatic generation of behavioral
models from recordings of a real-time systems behavior, i.e. model synthesis

2.5 Modeling using Dynamic Analysis 43

from traces. The resulting model is expressed as timed automata for the Up-
pAal model checking tool [77, 78, 79]. The aim of the tool is verification of
properties such as response time of an implemented system against implemen-
tation requirements, using model checking. For the verification it is assumed
that the requirements are available in the form of timed automata which are
then parallel composed with the synthesized model by the UppAal tool to allow
model checking. Jensen’s thesis includes a schedulabilitytest, which instead
of WCET uses a measure called Reliable Worst Case execution time, or RWC,
a statistical measure introduced in the thesis. As a proof ofconcept, Jensen
includes a one shot experiment of the model synthesis. The work by Jensen as-
sumes that the system conforms to a generic architecture as follows: a system
has a set of abstracttasksthat each are implemented as a sequence ofsubtasks
distributed over several servers (CPUs). The allocation ofsubtasks to servers is
derived from requirements such as periodicity and deadline. Thus, eachjob of
a task is a sequence of interactions betweensubjobson several servers. Jensen
imposes restrictions on how selections are used in the model– no selections
are allowed within the subtasks, they can only occur at the start of the job or
after a message from another subtask has been received. Another restriction is
an assumption of normal distributed subtask execution times. According to the
author´s own experiences of trace recording and execution time measurement
on real industrial systems (cf. Chapter 7), task-level execution times often fol-
low complex multi-modal distributions, with several “peaks”, corresponding to
different control-flow branches. The distributions are rarely normal distributed.

Another type of dynamic program analysis is dynamic programslicing,
proposed by Korel and Laski [33]. In contrast to program slicing based on
source code analysis, dynamic program slicing is performedusing a trace de-
scribing a specific execution of the program. Since the resulting slice only
takes a specific execution into account, the slices are typically smaller. This
approach is mainly intended for facilitating debugging. A potential problem
with this approach is that the recorded execution history (the trace) often be-
comes very large, since many details must be recorded.

44 Chapter 2. Timing Analysis, Modeling and Model Validation

2.6 Model Validation

When constructing a model of the behavior of a software system, model val-
idation is necessary in order to assure that the model accurately describes the
system at an appropriate level of abstraction. By validating the model, the an-
alyst and system experts gain enough confidence in the model in order to trust
its predictions.

The validity of models have been studied in the simulation community.
Law and McComas [60] define model validation as ”the process of determin-
ing whether a simulation model is an accurate representation of the system,
for the particular objectives of the study”. They address validation of simula-
tion models in general, e.g., of models describing a physical process. A book
by Law [63], on simulation studies, includes one chapter on model validation
which presents two statistical methods for comparing a model with the corre-
sponding real system:

• Inspection approach: to compute one or more statistics from the real
world observation and the corresponding statistics from the model output
data, and then compare the two sets of statistics without theuse of a
formal statistical procedure.

• Confidence-interval approach: a more reliable but also more demanding
method. Several independent observations are made of the real system as
well as of the corresponding model. From each observation the average
value is calculated for the property that is to be compared. This results in
two sets of average values where each value represents an observation,
one set of values from the model and one set of values from the real
system. These two sets of average values are compared and a confidence
interval can be constructed using statistical methods. This confidence
interval reveals if the difference is statistically significant, and also gives
an indication of how close the model is to the system, in this particular
aspect.

Balci [61] presented guidelines for simulation studies, including a simu-
lation study life cycle with 10 phases: problem formulation, investigation of
solution techniques, system investigation, model formulation, model represen-
tation, programming, design of experiments, experimentation, redefinition, and
finally, presentation of simulation results. Associated with these processes are
13 credibility assessment stages, including model validation. According to
Balci [61] there are basically two main techniques for modelvalidation: sub-
jective validation techniquesandstatistical validation techniques. The paper

2.6 Model Validation 45

presents a summary of common subjective validation techniques, of which the
most interesting are:

• Face Validation: This is a useful preliminary approach. System experts
are allowed to study the model and subjectively compare the model with
their knowledge of the system.

• Graphical Comparison: A subjective, but, according to Balci [61] and
the author’s own experiences, also a practical method especially useful
as a preliminary approach. By presenting data based on the model and
data from the real system, graphically, patterns can easilybe identified
and compared.

• Predictive Validation: The model is driven with past (real) system input
data and its predictions are compared with the corresponding past system
output data. Obviously, this requires that there are measurements made
of the real systems input and corresponding output, which isnot always
possible or practical.

• Sensitivity Analysis: This implies to systematically apply changes to
the model or model input variables and observing the effect on model
behavior. The idea is that unexpected effects may reveal flaws in the
model. This analysis is further discussed in Chapter 8.

• Turing tests: System experts are shown two anonymous outputs, one
from the model and one from the real system, generated from identical
inputs. The experts are asked to identify which is which. If they succeed,
they are asked how they did it and their feedback is used to improve the
model.

Balci [61] also lists 22 statistical techniques which have been proposed for
use in model validation, but the techniques are not described further. Model va-
lidity from a general simulation point of view is also discussed by Sargent [62].
Different processes for validation of models are describedin the paper; one
process isIndependent Verification and Validation, IV&V. It states that a third
party reviewer should be used to increase the confidence in the model. A scor-
ing model is also described, where various aspects are weighted and a total
score can be calculated as a measure of validity for the model. This is, as
pointed out in the paper, dangerous since it appears more objective than it re-
ally is and may result in over-confidence in the model validity. A simplified
version of Balci’s modeling process is proposed, consisting of theProblem En-
tity (the system), aConceptual Model(the understanding of the system), and

46 Chapter 2. Timing Analysis, Modeling and Model Validation

a Computerized Model(the implementation of the Conceptual Model). Fur-
thermore, Conceptual Model validity is defined as the relationship between the
Problem Entity and the Conceptual Model, i.e., if the personconstructing the
model had a correct understanding of the system. Operational Validity is the
relationship between the Computerized Model and the Problem Entity, i.e., if
the Computerized model was correctly implemented.

Law and McComas [60] discuss many aspects of the validity of models in
general and describe a seven-step approach for conducting asuccessful simu-
lation studies. This approach is specified on a high level of abstraction and can
be applied on any domain. The steps are: problem formulation, collecting data
and construction of the conceptual model, validation of theconceptual model,
programming the model, validation of programmed model, experiments and
analysis, and presentation of results. The paper emphasizes the importance of
a definite problem formulation, comparisons between the model and the sys-
tem, and the use of sensitivity analysis.

2.7 Conclusions 47

2.7 Conclusions

Many analytical methods for response-time analysis (RTA) have been proposed
in research literature. However, the system models used by such methods are
not expressive enough in order to capture the behavior of large and complex
systems. They do not consider the behavior of the tasks, onlytheir individual
worst-case execution time, which can make it very pessimistic for large indus-
trial systems as their software architectures often violate the assumptions of
analytical methods regarding independence between tasks.RTA analyzes the
“critical instant”, i.e., the worst case scenario when all tasks attempts to exe-
cute at the same time, and with their individually highest execution times. If
this situation can be managed, the system is truly safe. However, on complex
embedded systems, this scenario might not be possible, or soextremely im-
probable that it will not occur in practice. For instance, the individual worst
case execution times of different tasks may be mutually exclusive if they de-
pend on different states of the same shared state variable. For systems which
violate the RTA assumptions, only a positive RTA result is useful (i.e., that re-
sponse times are below deadline requirements), while a negative result does not
say much, since it is not known if the analyzed worst case scenario is feasible.

Moreover, RTA targets timeliness properties only, i.e., whether or not any
deadlines are violated. In many real systems the temporal requirements are
not specified in terms of deadlines, but may be specified as invariants on the
functional behavior. In some situations it may be possible to derive task dead-
lines from such requirements, but this is often difficult. A typical example is
a FIFO data buffer shared between two tasks, one “consumer” and one “pro-
ducer”. The invariant is that the buffer must never be empty when the consumer
attempts to read. This requirement is formulated in terms ofthe functional be-
havior but highly dependent on the temporal behavior of the two tasks involved.
Such requirements cannot easily be verified by using the existing methods for
response-time analysis. Even though fixed priority scheduling is a common
scheduling algorithm in complex embedded systems, RTA may be problem-
atic to apply since many systems are not designed to allow analyzability. They
might contain aperiodic tasks scheduled with a fixed priority, or tasks that alter
their priority due to some application specific condition.

Compared to the simplistic system models used in RTA, model checking
allows for using detailed system models expressed in rich modeling languages
such as Promela [117, 76] or timed automata [82, 79], where functional behav-
ior and task dependencies can be specified. Timed automata moreover allows
for the modeling of real-time systems, where a notion of quantitative time is

48 Chapter 2. Timing Analysis, Modeling and Model Validation

important. However, model-checking does not scale properly to larger systems
due to the state-space explosion problem.

Another problem with model checking is the need for a detailed analysis
model, which describes the relevant aspects of the system ina formal notation,
which typically is specific for each tool. The exception is the model checker
SPIN [117, 76], which has support for Promela model extraction from C code
(the Modex tool), but SPIN does not support timing analysis of real-time sys-
tems, since it has no concept of quantitative time, only relative event order.

Unless an automatic model extraction tool is available, using model check-
ing on large, existing systems implies a major, error-pronemodeling effort, and
in the end, the state-space explosion problem might make theresulting model
useless if it cannot be analyzed with realistic memory and run time constraints.
Model checking is today mainly used for small systems with extreme require-
ments on dependability, where the consequences of a failureare catastrophic.
One can argue that model checking will be possible on more andmore complex
systems as computers are getting faster and faster, and model checking tools
better and better. That is true, but the systems out in industry also benefit from
the trend of ever faster CPUs as a result grow larger and larger.

The custom modeling required makes formal methods quite expensive to
use and it might not give the best return on investment in terms of software
quality. Even though timing analysis is important for many companies, most
of their quality problems are likely due to “ordinary” (functional) errors. For
such companies, the value of timing analysis is proportional to the number of
system failures it prevents. Investments in increased software quality through
timing analysis must be economically motivated compared toother software
quality investments, like refactoring, improved test frameworks or extended
code reviews.

Discrete event simulation is another approach which like model checking
also allows for using detailed models of the system. Simulation does not suf-
fer from the state-space explosion problem, at least not in the same way, since
no exhaustive search is performed. The state-space is instead randomly sam-
pled. A disadvantage of the simulation approach is the lowerconfidence in the
result. No guarantees can be given regarding the propertiesof the analyzed
models since the whole state-space is typically not explored. In fact, the size
of the state-space or the number of explored states are typically not known
since they are not represented explicitly. The confidence issue is obviously a
larger problem for models with very large state-space and can be seen as the
state-space explosion problem applied to the simulation approach.

Simulation is more like testing in the sense that it can show the presence

2.7 Conclusions 49

of (timing) errors, but not guarantee their absence. However, even though a
simulation is not an exhaustive analysis and thus might missthe worst case
situation, it may still point out potential problems and assist the developers in
making the right decisions.

Based on this analysis, the author decided to focus on the possibilities of
using simulation-based analysis, an area that has receivedlittle attention. In
the general case simulation suffers from the same modeling problem as model
checking and has confidence problems instead of scalabilityproblems. Possi-
ble solutions have however been identified and are addressedby the research
questions of this thesis.

Research questionQ1 address the modeling issue, concretely the possi-
bility of automated model extraction. Chapter 5 proposes a method for au-
tomated model extraction, Katana, using a new approach to program slicing.
In response to research questionQ2 two methods forsimulation optimization,
which improves accuracy and confidence, are presented in Chapter 4.

With these contributions, simulation models can be automatically gener-
ated from an existing system and analyzed in an efficient manner in order to
quickly assess the typical performance or to identify extreme scenarios which
may constitute timing errors. This approach is therefore quite cheap to use
in terms of man hours required for training and application,especially com-
pared to formal analysis methods. Imagine that timing errors constitute 5 %
of all errors for a system, and 80 % of these are found using a simulation-
based approach, compared to 100 % when using formal methods such as model
checking. This means that the advantage of using model checking compared to
simulation would be only a 1 % increase in the ratio of detected errors, while
the cost to achieve this would be large even forsmall projects, several hun-
dred hours, and extremely high for larger projects. This automated approach
to simulation-based timing analysis should be realistic todeploy in industrial
settings and could in that case improve software quality andreduce costs.

Program slicing is a highly interesting techniques for extraction of sim-
ulation models from the source code of existing systems. Thedesired sim-
ulation model can be regarded as an executable slice, with respect to a spe-
cific slicing criterion. However, the existing tools for program slicing, such as
CodeSurfer [123] and Imagix 4D [135], do not scale sufficiently. As presented
in Section 5.5, the scalability of such tools are limited to systems with at most
200 000 lines of code (as stated by the research group behind the CodeSurfer
tool [121]). According to experiments presented in Chapter6, the practical ap-
plicability is however even more restricted, and industrial systems often con-
sists of many hundred thousands of lines of code, or even millions [106].

50 Chapter 2. Timing Analysis, Modeling and Model Validation

There are however reverse engineering tools which scale much better, but
which offers less functionality. For instance, Understand[138] scales to sev-
eral millions of lines of code (as presented in Chapter 6), but has no support for
program slicing. Many reverse engineering tools have however APIs, which al-
lows for implementation of custom algorithms. For instance, the API of Under-
stand has been used to implement the MXTC prototype presented in Chapter 6.

Timing-accurate simulation also requires quantitative data from the system,
e.g., execution times. Profiling of embedded systems is however a fairly mature
area, and apart from software solutions (e.g., those described in Chapter 7)
there are also hardware solutions which allows for days or weeks of continuous
execution time recording, such as the RTBx data logger from Rapita Systems,
Ltd. [136]. Such a solution could be used for populating simulation models
with execution time data.

The advantage of software recorders is the possibility of performing exe-
cution time recording at all times, also post-release, since no extra hardware
is required. This imposes an overhead, i.e., additional CPUand RAM usage,
and amount of RAM available limits the amount of data which can be stored.
Research questionQ3 was therefore formulated to verify the practical applica-
bility of this approach on common operating systems in the embedded systems
domain and to investigating the overhead of trace recordingon real systems.
The results are presented in Chapter 7, based on experiencesfrom five industry
collaboration project where trace recorders have been developed and evaluated.

Model validationis the process of assuring that a model correctly describes
the intended system. Techniques for model validation are important also when
using automated model extraction, as the model validation also verifies the
model extraction and simulation tools and their configuration. Moreover, the
coverage of the execution time measurements is another validity threat which
needs to be investigated as a part of the model validation process. If manual
abstractions are allowed, e.g., through code annotations,model validation is
critical in order to ensure the validity of the abstractionsmade. Works exist
regarding validation of models in the general simulation community, while the
model checking community seems to take model validity for granted. In many
cases, model checkers are used to verify a specification of a system that has
not yet been implemented. In such a case, this assumption might be valid;
the question is in that case if the implementation conforms to the specifica-
tions. However, if the model describes an existing system and is the result of
a reverse-engineering activity (automated or manual), themodel validity can-
not be assumed. The results found in the simulation community include two
main classes of model validation techniques, subjective techniques (i.e., in-

2.7 Conclusions 51

spection) and those based on statistics. Both can be used to validate models
in this approach. Chapter 8 presents a five-step process for model validation
which should be suitable for this approach.

Chapter 3

Timing Analysis using
Discrete Event Simulation

This chapter presents discrete event simulation as a methodfor timing- and
performance analysis of complex embedded systems and introduces the sim-
ulation frameworkRTSSimdeveloped for this purpose. This type of analysis
can be used for predicting any run-time property where the logic involved is
implemented in software and available as source code. Run-time properties
strongly dependant on the hardware architecture, e.g., cache hit ratio, are not
supported or targeted by this work.

Simulation is a broad term which easily can be misunderstood, even in the
context of analysis of embedded systems. Simulation is the process of imitat-
ing key characteristics of a system or process, and typically implemented as
computer programs. One type of simulation is used during design of physi-
cal structures, e.g., for predicting wind forces for a bridge. Such a simulation
model consist of mathematical equations. However, in the context of this work,
the termsimulationimpliesdiscrete event simulation, unless otherwise stated.

Law and Kelton [63] defines discrete event simulation as“modeling of a
system as it evolves over time by a representation in which the state variables
change instantaneously at separate points in time”. This naturally includes
simulation of computer-based systems.

Simulation can be performed on different levels of abstraction. In one end
of the scale, simulators such as Virtutech Simics [124] are found, which sim-
ulates software and hardware of a computer system in detail.Such simulators
are used for low-level debugging, where a very detailed viewis necessary, or

53

54 Chapter 3. Timing Analysis using Discrete Event Simulation

for hardware/software co-design, i.e., when developing software for new hard-
ware that is not yet physically available, but can be modeledusing a simulator.
This type of simulation is considerably slower than normal execution, typically
magnitudes slower, but gives an exact analysis which takes every detail of the
behavior and timing into account.

In the other end of the scale we find scheduling simulators, who abstract
from the actual behavior of the system and only analyzes the scheduling of the
system’s tasks, specified by scheduling attributes and execution times. One ex-
ample in this category is the approach by Samii et al. [12]. Such simulators are
applicable for strictly periodic real-time systems. However, complex embed-
ded systems often contain aperiodic tasks, triggered by messages from other
tasks or interrupts. Moreover, tasks may have different behaviors, and thereby
execution times, depending on message content. A simulatormust therefore
take relevant aspects of the task behavior into account in order to accurately
simulate a complex embedded system.

In the simulation approach presented in this chapter, RTSSim, the source
code of the analyzed system is used as a base for constructinga simulation
model, expressed in the same programming language as the original system.
In the domain of embedded systems this typically implies C/C++. RTSSim has
therefore been developed in C, which allows for both C and C++models.

Even though the implementation details of RTSSim may be of interest for
some people, RTSSim is not proposed as a novel contribution in itself, at least
not conceptually. Similar approaches are “Virtual Time”, from Rapita Systems,
Ltd. [136] and the ARTISST simulator [88]. Additional worksin the area
can be found in Section 2.3. The purpose of this chapter is mainly to give
the reader an understanding of the type of simulation in focus and thereby to
set the context for the following chapters which present results in simulation
optimization, simulation model extraction and model validation.

3.1 Motivations for Simulation

Compared to other methods for timing analysis, simulation has the advantage
of not posing restrictions (by making assumptions) regarding the design of
the software system. Simulation allows for analysis of any measurable run-
time property, in contrast to the analytical methods for response time analysis
[45, 47, 46] which have many assumptions and are specializedfor a specific
property, task response times.

Simulation does not have the state-space explosion problemin the same

3.1 Motivations for Simulation 55

way as model checking tools, like UPPAAL [48] or KRONOS [49].Such tools
attempt to search the model state-space exhaustively, which for large industrial
systems will require more time and memory than realistically available. In
contrast, simulation is a best-effort analysis which randomly explore the pos-
sible behaviors of the model for as long time as allowed. A simulation-based
analysis can therefore not identify worst-case scenarios,since only a random
subset of the state-space is explored. Note that the worst-case scenario might
have been encountered during a simulation, but the simulation result does not
tell if this is the case.

The state-space explosion problem exists in the context of simulation as
well, but due to the best-effort approach instead manifestsin lower state-space
coverage and thereby simulation results of lower confidence. This is however
better than no results at all.

Simulation using randomized input, i.e.,Monte Carlo simulation, will mainly
explore the typical behaviors, while rare, extreme scenarios are less likely to
be found. The efficiency of using simulation for finding extreme behaviors can
however be significantly increased throughsimulation optimization, which is
presented in Chapter 4.

In the perspective of analyzing an existing software system, simulation
does not require formal modeling, like most model checking tool does (at
least those targeting real-time systems), since a simulation model can be au-
tomatically extracted from the system implementation, e.g., using the method
presented in Chapter 5.

Simulation-based analysis should be regarded as a form of specialized test-
ing, in this case focusing on timing and resource usage, and used as a com-
plement to traditional testing. Since a simulation model only need to include
the code of relevance for the properties in focus, and since aPC is typically
much faster than embedded hardware, simulations can be performed in much
less time than required to run the corresponding test cases on the real system,
which means that more scenarios can be explored in the same time. If using
a PC with a multi-core CPU, multiple simulations can be executed in parallel.
Moreover, a simulation can explore scenarios which are hardto generate on a
real system, can be extensively monitored without causing probe effect prob-
lems1 (discussed by Schutz [89]), and a simulation is completely deterministic
and reproducible, as explained in Section 3.2.6. In contrast, for multi-tasking
systems, system-level testing is not always deterministicand repeatable since
execution times and input timing varies between test runs.

1A probe effect is an accidental change in system behavior dueto altered execution times when
activating or deactivating the recording.

56 Chapter 3. Timing Analysis using Discrete Event Simulation

3.2 The RTSSim Simulation Framework

RTSSim was developed for the purpose of simulation-based analysis of run-
time properties related to timing, performance and resource usage, targeting
complex embedded systems where such properties are otherwise hard to pre-
dict. RTSSim has been designed to provide a generic simulation environment
which provides functionality similar to most real-time operating systems.

The RTSSim simulation framework allows for simulating an embedded
software system on a standard PC, many times faster than normal execution
on the embedded hardware (i.e., testing), with approximately correct timing
and with complete control and reproducibility.

Simulation Model (C code)
Tasks Mailboxes Semaphores

PC Operating System

�������������
Timing
Data

PC Hardware

Simulator.exe
Compile and link

Inputs

Simulation
Trace

��	��
��� RTSSim API

RTSSim

Figure 3.1: The RTSSim framework

As depicted by Figure 3.1, a simulation is performed by executing the sim-
ulation model in the RTSSim environment, which emulates a real-time operat-
ing system on a PC and works as a “sandbox” with respect to timing. The real
timing of the simulator executable, which naturally is affected by the host PC,
does not impact the simulated timing (i.e., the simulation result) since CPU us-
age is modeled explicitly. All time-triggered events in RTSSim are controlled
by a simulation clock, which is incremented by explicitExecutestatements in
the simulation model (cf. Section 3.2.3), using timing datarecorded from mon-
itoring of the modeled system. The timing of the modeled system is thereby
preserved in the simulation, or at least a good approximation. This is however
not guaranteed to be 100 % identical to the real timing, i.e.,when executing
the code on the intended hardware. This is the case since the simulation model
is probabilistic with respect to execution times; it abstracts from details in the

3.2 The RTSSim Simulation Framework 57

hardware platform and instead describe the execution time between relevant
points in the source code in a probabilistic manner. An approach for execution
time profiling and modeling, for this purpose, is presented in Section 7.5.

The simulation input decides the simulation length and the outcome of any
stochastic selections in the model, e.g., execution-time variations (cf. Sec-
tion 3.2.6). The input which decides stochastic selectionsbe a seed value, used
to initialize a pseudo-random number generator (cf. Section 3.2.7, or a data set
specifying the outcome of each stochastic selection individually.

The tasks of an RTSSim simulation model are scheduled using preemptive
fixed-priority scheduling, as described in Section 3.2.4, and are assumed to
share a single CPU core.

A simulation model can theoretically contain the full source code of the an-
alyzed software system, but the intension of the RTSSim framework is to use
it together with amodel extractiontool, which produces a simulation model
only containing the source code of relevance for the properties in focus, to-
gether with addedExecutestatements. The execution time of the excluded
code is still taken into account by the simulation model since the execution
time measurements are performed on the original system. A method for sim-
ulation model extraction is presented in Chapter 5 and an evaluation of this
approach on industrial code is presented in Chapter 6.

RTSSim can produce two kinds of output, a detailed simulation trace and a
text file containing selected statistics on task timing, such as highest response
time observed for the selected task. The simulation trace isproduced using a
trace recorder, i.e., an event logger, very similar to the one described in Section
7.4.5, which outputs a simulation trace for the Tracealyzertool, presented in
Section 7.3, including task scheduling, task communication and synchroniza-
tion events. The trace recorder in RTSSim also supports “user events”, i.e.,
user-specific events and data, logged through explicit calls to the trace recorder
from the simulation model.

An RTSSim simulation is performed by compiling and linking the simu-
lation model, which is expressed in C code, together with theRTSSim library
and running the resulting executable, as depicted by Figure3.1. The RTSSim
framework is implemented in C using the Win32 library of Windows XP, and
has only been tested in this environment. Porting to other operating systems is
possible, but requires that the current use of Win32 fibers (cf. Section 3.2.4) is
replaced with a more portable solution, e.g., by using the POSIX thread library.

58 Chapter 3. Timing Analysis using Discrete Event Simulation

3.2.1 The Simulation Model

An RTSSim simulation model is focused on tasks, which in C describe be-
havior of relevance for timing, i.e., timing, scheduling, communication, syn-
chronization and relevant state changes. The current RTSSim implementation
allows for using tasks, mailboxes and semaphores, but otheroperating system
features can quite easily be added since the core functionality is in place. The
RTSSim API is presented in detail by Appendix B.

Tasks

RTSSim stores each task in a list oftask control blocks, orTCBs, which include
the following attributes:

• Name: an identification string used for logging purposes.

• Status: READY, BLOCKED, WAITING or DORMANT.

• Priority: an unsigned 8-bit integer, where 0 is the highestpriority and 255 the
lowest priority.

• Period: the (minimum) inter-arrival time of the task.

• Offset: the activation time of the first instance.

• Jitter: allows for adding a stochastic inter-arrival timejitter.

• Entry function: the main function of the task.

The task scheduling of RTSSim is described in greater depth by Section 3.2.4.

Mailboxes and Semaphores

A mailbox is used for asynchronous message passing between tasks and con-
tains a fixed-size FIFO buffer where the messages are stored.A message is a
32-bit integer value, typically a message code or a pointer to a data-structure.
A semaphoreis a basic binary semaphore for mutual exclusion, which initially
is unlocked. No resource management protocol has been implemented for pre-
venting priority inversion.

Mailboxes and semaphores may block the execution of tasks. An attempt
to send a message to a full mailbox, or to receive a message from an empty
mailbox, or an attempt to lock an already locked semaphore will block the
executing task until the operation is successfully completed or, optionally, until
a specified timeout expires. If the timeout is set to zero (0),the timeout will
occur immediately, without blocking, if the operation cannot complete directly.
The timeout option is disabled by using -1 as timeout duration; the task may

3.2 The RTSSim Simulation Framework 59

in such cases be blocked indefinitely, i.e., until simulation termination, if the
resource does not become available. As can be expected, if more than one task
are waiting to acquire a specific resource (e.g., putting a message in a mailbox,
or locking a semaphore), the task with highest priority willget the resource
when it becomes available.

Time and Scheduling

In RTSSim simulation models, time is discrete and is represented by an integer
simulation clock, a global variable namedclk. All time-triggered events in an
RTSSim simulation depend onclk, which in turn depends onExecute, which
models the consumption of CPU time by incrementingclk as described in Sec-
tion 3.2.3. Theclk variable may be used in order to read the current time, and
it is also used by the RTSSim trace recorder for time-stamping of events.

As mentioned, tasks are scheduled using preemptive fixed-priority schedul-
ing, as described in Section 3.2.4, and are assumed to share asingle CPU core.
Task-switches can however only occur inside RTSSim API functions which in-
vokes the scheduler, such asExecute. Other model code always execute in an
atomic manner, i.e., without preemptions, since the scheduler is only invoked
by explicit RTSSim API calls. In order to allow for preemptions between two
“normal” code statements, it is necessary to insert anExecutestatement in be-
tween.

Unlike VirtualTime [136], RTSSim does not yet support simulation of mul-
tiple CPU cores in parallel, i.e., parallel/multi-core computers or distributed
systems. RTSSim however allows for simulating individual CPU cores of a
parallel (or distributed) system in isolation, by modelinginput from other CPU
cores as “system environment”, as described in Section 3.2.5.

3.2.2 A Small Example Model

Next follows an example of a simple RTSSim model containing two interacting
tasks:SenderandReceiver. TheSendertask begins by callingExecutein order
to consume between 130 – 150 units of CPU time. A message is then sent to
Receiver, using the mailboxMBox. The Executecorresponds to real system
calculations found irrelevant for the model and therefore only included with
respect to execution time.

As specified inmodel_init, theSendertask is activated periodically (every
2000 time units) and thereby uses 7 % of the CPU time since eachtask instance
in average consumes 140 time units. TheReceivertask executes less frequently

60 Chapter 3. Timing Analysis using Discrete Event Simulation

(every 5000 time units) and reads all messages stored in the mailbox (note the
secondRecvMessage, in the “while” loop). Each message is associated to a
processing time of 500 time units inReceiver, but the number of messages in
the mailbox whenReceiverstarts will vary due to inharmonic task periods.

void Sender(TCB * task)
{

Execute(130 + getRandomValue(20));
SendMessage(MBox, m++, FOREVER);

}

void Receiver(TCB * task)
{

int msg = 0;
msg = RecvMessage(MBox, 0);
Execute(10);
if (msg < 0)
{

UserEvent(ue_no_msg);
}
else
{

while (msg >= 0)
{

Execute(500);
msg = RecvMessage(M, 0);

}
}
Execute(10);

}

void model_init()
{

MBox = CreateMailbox("M", 10);
CreateTask("Sender", 1, 2000, 500, 0, Sender);
CreateTask("Receiver", 2, 5000, 0, 0, Receiver);
ue_no_msg = CreateUEChannel("No msg");

}

Since theSendertask produces a message every 2000 time units, and since all
messages produced are at some point processed byReceiver, using 500 time
units each, the average CPU load ofReceivershould be just over 25 %. Note
thatSenderhas an offset of 500 time units, which causes the first instance of
Receiverto find an empty mailbox, which fires the user event “No msg” at time
10.

Figure 3.2 shows a Tracealyzer2 view over the first 12 000 time units of an
RTSSim simulation of the above example model. The sending and receiving of
messages is shown as system events, and at time 10, the user event registered by
Receiver, to indicate that mailboxMBoxwas empty, is shown in yellow. The

2The tool used in the figure, RTXCview, is a commercial versionof the Tracealyzer.

3.2 The RTSSim Simulation Framework 61

CPU load view shows that the CPU usage is around 33 % in total, of which
Receiveruses about 7 % andSender26 %, which matches the expectations.
The Tracealyzer tool is presented further in Section 7.3.

A larger example of an RTSSim simulation model is found in Appendix C.
This simulation model was used in the evaluation of simulation optimization
methods, as presented in Chapter 4.

3.2.3 Execute

The Executefunction is used to model the consumption of CPU time by in-
crementing the simulation clock,clk. The amount of CPU time to consume,
i.e., to add toclk, is given as a parameter (incr in the below code). TheExe-
cutefunction is also responsible for the processing of time-triggered simulation
events, such as activation of time-triggered tasks, timeouts, and terminating the
simulation. Such events are created by different mechanisms in RTSSim, e.g.,
by the scheduler. The event list, where such events are stored, keeps the events
sorted by their scheduled time of activation. The core functionality of Execute
is presented in C code below:

void Execute(TCB * tcb, int incr)
{

while(incr > 0)
{

event = getNextEvent(clk + incr);
if (event == NULL)
{

clk = clk + incr;
incr = 0;

}
else
{

do{
incr = incr - (event->time - clk);
clk = event->time;
processEvent(event->action);
event = getNextEvent(clk);

}while(event != NULL);
schedule(tcb);

}
}

}

The getNextEventfunction gives the earliest simulation event scheduled
to occur at latest on the specified time. If no event are scheduled to occur
within the time-window[clk, clk + incr], the current timeclk jumps directly
to clk + incr, and theExecuteis finished. If there is at least one event in
the specific time-window (e.g., an activation of a time-triggered task)clk is

62 Chapter 3. Timing Analysis using Discrete Event Simulation

Figure 3.2: A simulation trace from the example model

3.2 The RTSSim Simulation Framework 63

advanced to the time of the first event. The remaining amount of CPU time to
consume,incr, is decreased accordingly. The event is thereafter executed and
the inner loop makes sure that all events scheduled at the same time instant
(e.g., task activations) are processed before the scheduler is called. When the
amount of CPU time remaining to consume (incr) reaches zero, theExecute
function is completed and returns.

RTSSim contains a pre-defined idle task at lowest priority (255). This task
is always ready to execute if no other task is, since it contains a singleExecute
statement placed in an infinite loop. The idle-task is important since it prevents
that RTSSim goes into a deadlock state if no tasks are ready toexecute at some
point in the simulation.

3.2.4 Task and Scheduling Implementation

In RTSSim, each simulation model task is mapped to afiber, a concept in Mi-
crosoft’s Win32 API which implies a lightweight thread which the application
is responsible for scheduling, i.e., within a single thread. This fits the RTSSim
framework perfectly, since a separate, explicit scheduleris desired. A context-
switch between fibers is achieved by letting the currently running fiber call the
Win32 API functionSwitchToFiber, with the handle of the new fiber as pa-
rameter. This is faster than normal context-switching, i.e., between threads, as
fibers have less state information than threads or processes.

The scheduling in the RTSSim framework is explicit, in the sense that the
tasks calls the scheduler, although not directly but through Executeand most
other RTSSim API functions also call the scheduler. The corefunctionality of
Scheduleis presented below in C code:

void Schedule(void)
{

TCB* NewTask = SelectTask();
if(NewTask != RunningTask)
{

RunningTask = NewTask;
SwitchToFiber(NewTask->fiberHandle);

}
}

The scheduler begins by looking up the currently ready task of highest
priority in the TCB list (usingSelectTask). If the selected task is not identical
to the currently executing task (RunningTask), the scheduler performs a task-
switch by updating theRunningTaskpointer and then calling the Win32 API
functionSwitchToFiber, which blocks the caller task (fiber) and activates the

64 Chapter 3. Timing Analysis using Discrete Event Simulation

new. In this manner, only one task (fiber) executes at any given time, while all
others fibers are blocked by theSwitchToFibercall in Schedule.

The scheduling attributes are stored in the TCB of each task and thereby
possible to read and modify from the task code, in order to implement cus-
tom scheduling algorithms on top of the normal scheduler. The scheduling
attributes of tasks in an RTSSim model are:

• priority,

• period (minimum),

• offset, and

• jitter (maximum).

The highest priority in RTSSim is 0 and the lowest priority is255. In the
current implementation, tasks are expected to have unique priorities. If two
tasks have identical priorities and are ready at the same time, their order in
the TCB list will decide. This depends on the order of creation and is not by
design, but more of a side-effect of the implementation. A perhaps better so-
lution would be to perform round-robin scheduling for taskswith the identical
priorities, since this allows for fair scheduling of tasks of equal importance.

The second attribute, period, specifies the periodicity of tasks and if they
should be recurring (periodic/sporadic) or one-shot tasks. This also involves
the jitter attribute. If the jitter attribute is zero, the result is a periodic task,
which is activated (becomes ready to execute) everyperiod time units. If a
non-zero maximum jitter is specified, a random value in the range[0, jitter)
is added to the inter-arrival time of each task instance, thereby creating a ran-
dom but bounded inter-arrival time variation. The period thus specifies the
minimum inter-arrival time. Periodic and sporadic tasks must terminate after
each instance, i.e., return from their entry-function, since the activation event
of the next instance is not created until the previous instance has finished. Non-
terminating tasks are common in many industrial systems. Such tasks contain
“infinite” main-loops where a loop iteration corresponds toa task instance.
Such tasks are realized in RTSSim using one-shot tasks, which is the result if
specifying a period of -1 (or any other negative value).

The offset sets the activation time of the first task instanceand thereby
shifts the activation time of the later instances with that amount. Note that the
activation time is the time when the task becomes ready to execute, not the time
when it actually starts to execute, and is therefore predictable for time-triggered

3.2 The RTSSim Simulation Framework 65

tasks. The activation time is calculated using the following formula:

ATi =

{

ATi−1 + period + rand(jitter) if (i > 0)

offset + rand(jitter) if (i = 0)

whereATi refers to the activation time of instancei and rand provides a
“stochastic” jitter selection (as described in Section 3.2.6).

3.2.5 Environment Modeling

RTSSim allows for modeling external systems, e.g., other connected computer
systems (or CPU cores), sensors, operator controls, etc., using environment
tasks. These are RTSSim tasks that do not consume CPU time and therefore
only impact the simulation by the input events they generate, e.g., IPC mes-
sages sent to other tasks or modified global variables.

Environment tasks are “invisible” during the simulation inthe sense that
they does not affect the scheduling or show up in the simulation trace output.
Environment tasks may use all RTSSim API functions except for Execute. The
set of environment tasks used in a simulation can be regardedas anenvironment
model, a necessary subset of a complete simulation model. As an example, the
larger RTSSim model presented in Appendix C includes three environment
tasks, those with the suffix “ENVTASK”.

3.2.6 Stochastic Selections

An RTSSim simulation model may contain “stochastic” selections, which are
not decided by the simulation model but by inputs to the simulation, either di-
rectly or through the pseudo-random number generator. The most visible type
of stochastic selection is the random variations in task release time specified
by the jitter attribute. Other types of stochastic selections are execution time
variations (stochastic increment of the simulation clock)and stochastic behav-
ior selections (typically in environment tasks). RTSSim determines stochastic
selections using either pseudo-random numbers, resultingin Monte Carlo sim-
ulation, or by using explicit selection values, specified asinput. In the latter
mode, RTSSim is completely deterministic and can be controlled by an external
tool for simulation optimization purposes, as described inChapter 4. In order
to realize Monte Carlo simulation, RTSSim obtains a “seed” value from a high
resolution timer which used to initiate the pseudo-random number generator.
The seed value is reported in the output which makes it possible to replicate
previous simulations. This is discussed in greater depth inSection 3.2.7.

66 Chapter 3. Timing Analysis using Discrete Event Simulation

3.2.7 Pseudo-Random Number Generation

A pseudo-random number generator is an algorithm which generates numbers
that are seemingly random, typically according a uniform probability distribu-
tion. However, a produced sequence of pseudo-random numbers is not truly
random (hence “pseudo”) since the sequence is completely determined by the
seed value used to initialize the pseudo-random number generator. Thus, given
a specific seed, a specific sequence of seemingly random values is produced.
A good approximation of truly random values can be produced by using a seed
value from a high resolution hardware clock.

However, the standard library function for generating pseudo-random num-
bers in the Win32 API,rand, only produces 15-bit values, i.e., in the range
[0, 32767]. This is a problem since a simulation model may pseudo-random
number larger than 32767, e.g., as execution time or inter-arrival time jitter.
One solution is to compensate this by merging two 15-bit values into a 30-bit
value, but this requires calling therand twice for each 30-bit random number.
This was used in an earlier version of RTSSim, but was later replaced with a
faster solution, a custom random number generator based on the AS 183 algo-
rithm [10] which produces 32-bit values.

In a benchmark test, the AS 183 solution required 56 seconds for producing
2 billion (2 ∗ 109) 32-bit random numbers. The earlier approach, i.e., when
combining the results of two calls of the standard library functionrand into a
30-bit random number, required 88 seconds for the same amount of random
numbers, i.e., 57 % longer time.

A more recently proposed algorithm for generating pseudo-random num-
bers is the Mersenne Twister [19]. It is claimed to be fast andgenerate pseudo-
random numbers of very high quality. An interesting direction of future work
could be to compare the performance of RTSSim using different pseudo-random
number generators, AS 183, Mersenne Twister, and other solutions available
(many exists).

3.3 Conclusions 67

3.3 Conclusions

This chapter has presented simulation as method for timing analysis of complex
embedded systems, including motivations and limitations for the approach. It
has moreover presented a technical solution for this purpose, the simulation
framework RTSSim, how it works and roughly how it is used. TheRTSSim
API is presented in detail by Appendix B and a larger example of an RTSSim
model is presented in Appendix C. Ideas on recording and generation of tim-
ing profilescontaining timing data for RTSSim models are presented in Sec-
tion 7.5.

In a thesis perspective, this chapter is not to be considereda novel research
contribution on its own; at least four similar solutions aredescribed in Section
2.3. The RTSSim simulation framework is however the technical platform of
this research and a conceptual understanding of RTSSim is therefore important
for a good understanding of the following chapters, which indifferent ways all
relate to the simulation-based timing analysis.

The next chapter describes novel results in simulation optimization, a method
in which RTSSim (or a similar simulator) is controlled by an optimization al-
gorithm in order to provoke as extreme behaviors as possible, with respect to
a specific property of the simulation model. Chapter 5 describes a novel ap-
proach to automated extraction of simulation models through static analysis
and Chapter 7 presents techniques for monitoring (trace recording) of embed-
ded systems, which has been used in RTSSim, and a method for generating
timing profiles for RTSSim models, using trace recording. Chapter 8 discuss
validity and validation of simulation models, and presentsmethods for com-
paring traces from recorded during simulation or real system execution.

Chapter 4

Simulation Optimization

Simulation is a promising approach to timing analysis of complex embedded
systems. As presented in Chapter 3, simulation-based analysis is applicable
to software systems of any design and scales to large, complex systems. The
downside of simulation is the confidence in the predictions;a traditional Monte
Carlo simulation corresponds to a random search and is not suitable for worst-
case timing analysis, since only a random subset of the possible scenarios are
explored. Unlike formal analysis methods, results from simulation-based tim-
ing analysis cannot be used to guarantee that a system meets its timing require-
ment. This is similar to the problems of general software testing; the method
can only be used to show the presence of errors, not to prove the absence of
errors. Nonetheless, a simulation-based analysis can identify extreme scenar-
ios, e.g., very high response-times which may violate the system requirements,
even though worst case scenarios are not identified.

This chapter presents two alternative methods forsimulation optimization
which allows for efficient identification of extreme scenarios with respect to a
specified measurable run-time property of the system, e.g.,related to timing or
resource usage, using a combination of discrete event simulation, as described
by Chapter 3, and heuristic search methods. The two approaches,MABERA
andHCRR, both use a simulator (RTSSim) as a deterministic function which
given a set of parameters defining the scenarios to explore, returns the most
extreme value observed for the run-time property in focus. In the implemen-
tations and evaluations presented in this chapter, the property in focus is the
highest response time observed for a specific task.

Both approaches use the simulation results in an iterative analysis where

69

70 Chapter 4. Simulation Optimization

the simulation parameters are gradually refined in order to provoke as extreme
results as possible. Like traditional Monte Carlo simulation, this is still a best-
effort approach, but significantly more efficient.

An evaluation is presented where the two approaches to simulation opti-
mization are compared to Monte Carlo simulation, with respect to analysis time
and the discovered response times. The results indicate that both MABERA
and HCRR are significantly more efficient in finding extreme response times
for a particular task than Monte Carlo simulation, but also that HCRR, which
uses a variant of the hill climbing approach [111], is vastlymore efficient than
MABERA, which uses a genetic algorithm [7].

The use of search algorithms for different types of test casegeneration has
also been studied for quite some time. Alander et al. [5] usedgenetic algo-
rithms to generate test cases for a software relay system used in power girds, in
order to provoke high response times of the software, executed in a simulation
environment. Nossal et al. [6] describe various extensionsof the traditional
genetic algorithm to better suit the type of problems in the real-time domain.
Samii et al. [12] present a work where they attempt to find extreme response
times for distributed systems by optimizing a set of simulation parameters for
models containing temporal attributes and communication.They use a genetic
algorithm to explore combinations of task execution times in order to maximize
end-to-end response time. Task behavior is however not considered. Their
results depend on the method developed by Racu and Ernst [11]for identify-
ing situations where decreased execution times can lead to increased response
times.

4.1 MABERA

MABERA is an abbreviation of “Metaheuristic Approach for Best Effort Resp-
onse-time Analysis”. Metaheuristics are generic solutionmethods for iterative
approximation of search/optimization problems. MABERA isa genetic algo-
rithm [7], which is the most well-known type of metaheuristics. The MABERA
algorithm is designed to use an RTSSim executable (i.e., thesimulator frame-
work and the simulation model) as a black-box function, which given a set
of simulation parameters (cf. Section 4.2) outputs the highest response-time
found during the specified simulation. The objective of the MABERA algo-
rithm is to find the set of parameters which gives the highest response time for
the task in focus. This is performed by iteratively creatingand evaluating a set
of independent candidates, ageneration, where each candidate is a simulation.

4.1 MABERA 71

The specification of a simulation, i.e., the set of parameters to RTSSim, is here
named aparameter set, formally defined in Definition 3. The evaluation of
a parameter set corresponds to running an RTSSim simulation, which gives a
simulation resultas defined by Definition 4.

The MABERA algorithm uses an indirect representation of thesimulations
to perform, usingseed schedules. A seed schedule specifies the seed values
to use for generation of pseudo-random numbers and thereby the outcomes of
all non-deterministic selections during the simulation. Thus, the combination
of a seed schedule and time instant corresponds to an exact specification of a
simulation state. Given a seed schedule and a simulation length, an RTSSim
simulation is thereby a deterministic function. The concept of seed schedule is
defined by Definition 2.

Definition 1. A seed change event is a pair〈t, s〉, wheret ands are integer
values. Thet value specifies the simulation time instant when the seed value
s should be applied. A seed value of 0 specifies that a randomly selected seed
should be used.

Definition 2. A seed schedule is a list of seed change events, sorted in ascend-
ing order with respect to thet attribute the included seed change events, in
ascending order. The first seed change event of a seed schedule is always at
time 0.

Definition 3. A parameter set is the specification of a simulation, represented
as a tuple〈T, l, S〉, whereT is the task in focus,l the simulation length andS
the seed schedule to use.

Definition 4. A simulation result is a tuple〈rt, et, pc, trt, tet, tpc, S〉, wherert,
et andpc is the highest observed response time, execution time and preemption
count, respectively, during the simulation specified by theseed scheduleS. The
propertiestrt, tet andtpc are the start times of the task instances corresponding
to rt, et andpc, respectively.

The first generation of simulations are (random) Monte Carlosimulations.
From each generation, a set of promising simulations are selected asparent
simulationsand used to create the next generation, where each simulation is
created by mutation of a (single) parent. The algorithm iterates in this manner
until a termination condition is reached.

72 Chapter 4. Simulation Optimization

Formally, MABERA can be described as a (non-deterministic)function

r = MABERA(s, p, l, tt, T)

wheres specifies the population size (the number of simulations pergener-
ation), p the number of parent to select per generation,l the length of each
individual simulation,tt the “termination threshold”, and where the resultr
is the highest response time found for the specified taskT . This may vary
between analyzes (with identical parameters) due to the random simulations
involved.

Thetermination thresholdparameter,tt, decides how many “unsuccessful”
generations that are allowed before termination, i.e., generations that failed to
discover a response-time higher than the highest response time of the previous
generations. Since the population size is constant for eachgeneration, each
parent simulation should result ins/p child simulations. The MABERA algo-
rithm is presented in detail in Section 4.1.3.

The child simulations will explore a subset of the model’s state-space, the
offspring state-space, which is reachable from the state corresponding to a spe-
cific time instant during the parent simulation: therestart time. Together with
the seed schedule of the parent simulation, the restart timespecifies the starting
state of the child simulation. The restart time is randomly selected in a specific
time interval of the parent simulation, as described in Section 4.1.2. A child
simulation reaches the specified starting state by using thesame seed schedule
as the parent simulation up until the restart time, where instead a randomly
selected seed is applied in order to explore other parts of the offspring state-
space. This is likely to contain a response time forT higher than the highest
response time forT of the parent simulation, unless the worst-case response
time ofT has already been found.

To explain the concept of offspring state-space, think of the state-space of a
Monte Carlo simulation model as a tree, where each node corresponds to a state
in the model where a non-deterministic selection is made, e.g., selecting an
execution time for anExecutestatement. An individual simulation is a specific
path through the tree, which ends at a state decided by the simulation length.
The offspring state-space, which the child simulations explore when applying
the random seed, is the sub-tree rooted in the state corresponding to the restart
time of the parent simulation.

The state-space exploration of MABERA is illustrated by Figure 4.1, sim-
plified to a 2-dimensional state-space. In practice, the state-space will have
a large number of dimensions (equal to the number of independent variables)

4.1 MABERA 73

State space

Legend
- Generation 1
- Generation 2

State space

Legend
- Generation 1
- Generation 2

Figure 4.1: MABERA – conceptual

and more than two iterations are typically made. In this example the population
size (s) is 20 and the number of selected parents (p) is 2.

The selection of parents to produce the next generation, described in Sec-
tion 4.1.1, is very important for the efficiency of MABERA. There is always a
risk of not finding the global maximum, i.e., the worst case response time, as
the algorithm might “get stuck” at a local maximum, where no child simulation
can be found that is more extreme than the parent (although higher response
times are possible in other scenarios). To reduce this risk,the MABERA al-
gorithm is designed to select several parents from each generation, at least two
are recommended. Thereby, if one parent “gets stuck” at a local maximum,
there is still a chance that the other parents find better results.

MABERA uses no recombination/crossover operation, which otherwise is
common in genetic algorithms, since the meaning of the seedsused during a
simulation depends on the simulation state when the value isused. They can
therefore not be used as independent chromosomes, which canbe recombined
with preserved semantics.

Note that the connection between a parameter set and the simulation result
is unknown in this approach since the simulator is considered a black-box. It
is thereby not possible to optimize the result by, in some way, selecting “good”
seeds for the initial generation; there is no way of assessing the potential of a
seed schedule without running a simulation.

74 Chapter 4. Simulation Optimization

MABERA was never intended as an optimal solution. It is the result of a
first investigation for assessing the potential of simulation optimization meth-
ods in the context of best-effort response-time analysis. The MABERA results
were however quite interesting and motivated a continued effort which resulted
in the HCRR approach presented in Section 4.4.

4.1.1 Selection Heuristics

The SEL function, presented in Section 4.1.3, implements the heuristic selec-
tion of parents simulations from a set of simulation results, which are used to
produce the next generation of parameter sets. The selection ranks all simula-
tion results in the current generation with respect to the three propertiesrt, et
andpc, i.e., the highest response time, execution time and preemption count,
respectively, of the task in focus. The ranking assigns eachsimulation result a
positive, non-zero integer value, which tells how many simulation results that
have higher values, for the specific property. Simulations with equal values
receive the same rank, with respect to the specific property.

The three rank values of each simulation result are multiplied in order to
obtain a total fitness score for the simulation result. The best fitness score is
1, which corresponds to a simulation result that holds the record for all three
properties. The returned set of simulation results contains a specified number
of simulation results with best (lowest) fitness scores.

The execution time and preemption count properties are included in the
selection heuristics due to their potential for impacting response time, e.g., a
task instance with very high execution time but relatively low response-time
is also interesting since a different preemption pattern may result in a higher
response time.

The method of combining the three rank values into a total fitness score is
not claimed to be optimal. It gives equal importance to the three indicators,
response time, execution time and preemption count. Moreover, the ranking
hides the absolute differences in property values between candidates with ad-
jacent ranking. Investigation of other selection heuristics is part of future work.

4.1.2 Mutation

The GEN function, presented in Section 4.1.3, is responsible for creating a
new generation of parameter sets through mutation of the selected parent sim-
ulations. Each parameter set is created through mutation ofthe seed sched-
ule of a specific parent simulation result by adding an additional seed change

4.1 MABERA 75

event in the end of the seed schedule, with a zero as seed whichspecifies that a
randomly selected seed should be applied, i.e., used to re-initialize the pseudo-
random number generator. This makes the simulation leave the path of the
parent simulation and instead explore the path associated with the new, ran-
domly selected seed for the remaining part of the simulation. The mutation
algorithm is described in Algorithm 2 in Section 4.1.3.

Parent simulation (2��gen)
SS: (0, s�), (RST�, s�)

RST� t�� t�� t��
SETI

Interval for RST	
Child simulation (3�� gen)
SS: (0, s�), (RST�, s�), (RST
, s
)RST�

SETI

Seed s� Seed s
Seed s�

Interval for RST�Seed s� Seed s
���������� ����
���������� ����t�� t��t��

Figure 4.2: Seed schedule mutation in MABERA

The time of the new seed change event, i.e., the restart time,is randomly
selected in a time interval where the lower bound is the restart time of the
parent and the upper bound is the parentsStart time of the earliest Extreme
Task Instance(or SETI), whereextremerefers to the task instances that have
the highest value of at least one of the following properties: response time,
execution time and preemption count. The seed schedule mutation, including
selection of restart time, is illustrated by Figure 4.2. In this illustration, the
bold labels (RST2 and Seed s2) corresponds to the mutation.

As specified by Algorithm 2 in Section 4.1.3, there is a special case if the
parent’s SETI is found to be earlier than its restart time. This indicates that the
mutation performed to produce the parent simulation resulted in a less extreme
scenario than observed in the parent´s parent, since task instances before the
restart time now are more extreme than those after. In this case, the restart time
of the parent is reused with a new randomly selected seed in order to that restart
time a second chance.

76 Chapter 4. Simulation Optimization

4.1.3 The MABERA Algorithm

This section presents the MABERA algorithm and the remaining definitions
on which it relies. Note that the concepts of seed change event, seed schedule,
parameter set and simulation result are defined by Definition1 to Definition 4
in Section 4.1.

Definition 5. R = SIM (P) represents a simulation according to the param-
eter setP , where the outputR is a simulation result. A seed value of zero (0)
in the seed schedule of the parameter set is an instruction toapply a randomly
selected seed value, which also replaces the zero seed in thesimulation result
seed schedule.

Definition 6. RT(R) gives the rt property of a simulation resultR, i.e., the
highest response time found for the task in focus in the specific simulation.

Definition 7. ET (R) gives the et property of a simulation resultR, i.e., the
highest execution response time found for the task in focus in the specific sim-
ulation.

Definition 8. PC (R) gives the pc property of a simulation result R, i.e., the
highest preemption count found for the task in focus in the specific simulation.

Definition 9. TRT (R) gives thetrt property of a simulation resultR, i.e., the
start time of the task instance corresponding to thert property ofR

Definition 10. TET (R) gives thetet property of a simulation resultR, i.e.,
the start time of the task instance corresponding to theet property ofR

Definition 11. TPC (R) gives thetpc property of a simulation resultR, i.e.,
the start time of the task instance corresponding to thepc property ofR

Definition 12. SS(R) gives the seed schedule used in the simulation which
produced the simulation resultR.

Definition 13. RST(R) gives the restart time used in the simulation which
produced the simulation resultR, i.e., the time of the last seed change event in
SS(R).

Definition 14. RAND(a, b) gives an integer valuex, such thata ≤ x < b,
randomly selected according to a uniform probability distribution.

Definition 15. APPEND(A, E) gives a seed schedule which is the result from
appending the seed change eventE to the end of the seed scheduleA.

4.1 MABERA 77

Algorithm 1: The parent selection procedure of MABERA
SEL(R, p)

foreach res ∈ R

er←| {q ∈ R | ET(q) ≥ ET(res)} |
rr ←| {q ∈ R | RT(q) ≥ RT(res)} |
pr←| {q ∈ R | PC(q) ≥ PC(res)} |
rankp ← er ∗ rr ∗ pr

OrderR asr1, r2, . . . according torankpi
.

return {r1, r2, . . . , rp}

Algorithm 2: The mutation procedure of MABERA
MUTATE(p,l, T)

SETI← MIN(TET(p), TRT(p), TPC(p))
if SETI< RST(p)

M← 〈0, RST(p)〉
else

M← 〈0, RAND(RST(p), SETI)〉
return 〈T, l, APPEND(SS(p), M)〉

Algorithm 3: The procedure for populating a new generation in MABERA
GEN(P, s, l, T)

G← ∅
foreach p ∈ P

for i = 1 to ⌊s/|P|⌋
G← G ∪ {MUTATE(p, l, T)}

return G

Algorithm 4: The overall MABERA algorithm
MABERA(s,p, l, tt, T)

G← ∅
tc← 0
best← 0
for i = 1 to s

G← G ∪ 〈T, l, 〈0, 0〉〉
while tc < tt

found← 0
foreach si ∈ G

sr ← SIM(si)
if RT(sr) > best

best← RT(sr)
found← 1

R← R ∪ {sr}
if found= 0

tc← tc + 1
else

tc← 0
P ← SEL(R, p)
G← GEN(P, s, l, T)

return best

78 Chapter 4. Simulation Optimization

4.2 The MABERA Parameters

The MABERA algorithm has four parameters which impact the thoroughness
and runtime of the analysis. These parameters are:

• l: The length of each individual simulation.

• p: The number of selectedparents from each generation.

• tt: Theterminationthreshold.

• s: The populationsize.

To maximize the efficiency of MABERA it is important to selectgood val-
ues for these four parameters. This section discuss how theyare related and
how they impact the performance of MABERA. Note that the MABERA pa-
rameters should not be confused with the parameter set used to define an indi-
vidual (RTSSim) simulation within MABERA.

Parameter l The simulation length,l, is the value of the simulation clock
when the simulation should terminate. Thel parameter naturally impacts the
runtime of a simulation and should therefore not be longer than necessary,
which depends on the scenario under analysis, e.g., a specific system test case.
Even though longer simulations may find higher response times, as they might
contain multiple instances of the relevant scenario, the resulting increase in
runtime can instead be used to increase the population size,s, or the termina-
tion threshold,tt, which also impacts the runtime.

Parameter p Thep parameter is the number of simulations from each gen-
eration to select as parents for the next generation (created trough mutation of
single parents). This decides how much to trust the selection heuristics. If the
heuristics could be trusted to always point out the truly most “promising” sim-
ulation result, i.e., that is closest to the true worst case scenario, the analysis
could rely on a single parent. However, since the selection heuristics is not a
perfect oracle, several parents should be selected in orderto reduce the risk of
bad heuristic decisions.

However, the important property is not the absolute number of parents, but
rather the relative amount of parents in relation to the population size, i.e.,
thep/s quota. For instance, in Figure 4.1, two simulation results are selected
(p = 2) from each generation of 20 (s = 20), which gives ap/s quota of 0.1
and 10 child simulations per selected parent.

4.2 The MABERA Parameters 79

A smallerp/s quota implies more simulations based on each selected par-
ent, i.e., a more thorough analysis of the selected cases, but also means that
fewer simulation results are selected to become parents forthe next generation,
i.e., a higher trust in the selection heuristics and an increased risk of getting
stuck in local maxima. A largerp/s quota implies a wider search, which may
converge slower, but with less risk of getting stuck in localmaxima. Since a
balancedp/s quota is important, the parameter selection process in Section 4.3
is therefore focused on the relative number of parents (p/s), not the absolute
value (p).

Parameter tt The tt parameter, i.e., the termination threshold, impacts the
number of generations analyzed and thereby the runtime of the analysis. The
tt parameter decides the number of “unsuccessful” generations (MABERA it-
erations) allowed before MABERA should terminate. An “unsuccessful” gen-
eration is a generation which did not contain any simulationwith higher re-
sponse time result than the highest result found so far, in previous generations.
The MABERA algorithm includes a termination counter (the variabletc in the
MABERA pseudo code presented in Section 4.1.3) which initially is 0. Un-
successful generations will increment the termination counter by 1, while a
successful generation resets the counter to 0. When the termination counter
reaches the termination threshold,tt, the MABERA algorithm terminates and
reports the highest observed response time in any generation.

Thus, with a highertt value, the risk that a good parent is rejected due
to “bad luck” is reduced, but the runtime is increased by the extra iterations.
A higher tt value may compensate the negative effects of a lowerp/s quota
by allowing for additional iterations, at least to some extent. It is however
important to find a balanced value fortt, as the extra runtime required for
largertt values can instead be used to increase the population size.

Parameter s The population size,s, is the number of simulations to perform
in each iteration. The larger population size, the more thorough analysis. Thus,
s should preferably be as large as possible, but since it impacts the runtime of
the analysis, which in practice is limited, it is necessary to find an upper bound
for s that gives a runtime below (but close to) the desired runtime. When
starting a large, over-night analysis, one would like to know that the analysis is
finished by the morning, but preferably not much earlier in order to best utilize
the available analysis time.

80 Chapter 4. Simulation Optimization

4.3 Selecting Parameters for MABERA

A three-step process is proposed for finding good parametersvalues for a spe-
cific simulation model. The process contains a set of experiments presented
together with examples performed on Model 1 (cf. Section 4.5.1), one of the
simulation models used in the evaluation, in Section 4.6. Note that the second
major step of this process is divided into four parts, as presented below.

Since the parameter selection process requires several time-consuming ex-
periments it should only be performed initially, when a simulation model has
first been constructed, or after major architectural changes in the modeled sys-
tem which impacts the model. One should note that the parameter values pre-
sented in this section are not necessarily optimal for othersimulation models.
Good parameter values are believed to be dependent on the characteristics of
the model under analysis, specifically, the amount and type of stochastic se-
lections in the model. Good values for the four parameters ofMABERA are
selected using the following process:

1. Select simulation length.

2. Selectp/s quota andtt value. This is divided into four parts:

(a) Specify candidate values.

(b) Determine sufficient replication count.

(c) Determine comparable parameter combinations.

(d) Compare comparable parameter combinations.

3. Select population size.

4.3.1 Step 1: Selecting Simulation Length

The value for thel parameter is decided first since it does not depend on the
other parameters but is needed in the other steps of the process. Thel parameter
is determined through a manual analysis of the model, eitherby studying the
model code or by studying traces from test simulations of themodel. The
challenge is to find the minimum simulation length which includes the scenario
of interest. For Model 1, a suitablel value was found to be 650 ms. This
length included the system’s processing of the events relevant for the scenario
under analysis, as well as a safety margin if the scenario length varies between
simulations.

4.3 Selecting Parameters for MABERA 81

4.3.2 Step 2: Selectingp/s quota and tt value

There is a dependency between thep/s quota and thett value, as a highertt
value may compensate, to some extent, for the negative effect of a higherp/s
quota, i.e., the decreased number of child simulations based on each parent.
Suitable values for these parameters can therefore not be selected individually
but need to be evaluated together, in combination. This section describes a
four-step method for finding a good combination ofp/s quota andtt value
experimentally.

Step 2.A: Specify candidates

The first step is to specify a set of candidate values forp/s and tt. Each
combination of these parameter values will be compared in the last step of
this method. A straight-forward approach is to perform a setof experimental
MABERA runs on the simulation model at hand and observe what range of
values that seem to give good result. For Model 1, thett candidates were lim-
ited to 2, 3 and 4. A value of 1 implies no tolerance, and valuesabove 4 do
not seem to improve the performance of MABERA. The best results were ob-
served withp/s quotas below0.05, i.e., at least 20 child simulation per parent,
so the values of 0.005, 0.01, 0.02 and 0.04 were selected as candidates for the
p/s quota.

Step 2.B: Determine replication count

The second step is to decide the number of data points (replications) necessary
per MABERA configuration in order to ensure the reliability of the parameter
comparisons in later steps of this process. This is important in order to avoid
that the selection of good parameter values is obscured by random variations.

Table 4.1: Test of MABERA reliability
p/s = 0.01 p/s = 0.04

Comparison 1 7 886 7 932
Comparison 2 7 889 7 940
Comparison 3 7 901 7 956

An experiment is proposed using a two-column table, illustrated by Ta-
ble 4.1, where the columns correspond to different MABERA parameter com-

82 Chapter 4. Simulation Optimization

binations. Each cell contains a statistical measure,MeanQ4, calculated over
r independent runs of MABERA, wherer is the candidate number of replica-
tions, using the parameter combination specified by the column. TheMeanQ4

measure implies the mean value of the 25 % highest results, i.e., the fourth
quartile. This is selected since a typical use of the MABERA analysis would
imply several replications and a focus on the highest resultfound. The lower
results can safely be ignored in this comparison, since theyare more likely to
contain random “noise” caused by unsuccessful MABERA runs.

In this table, each row represent an independent comparisons based on in-
dependent data sets, each containingr data points. If the differences between
columns of the same row are significantly larger than the differences between
rows of the same column, this indicates that this number of replications gives
sufficient reliability. The population size can be quite small to speed up this
experiment and thett value is not that important in this case, as it should not
impact the reliability significantly. The important parameter here is the number
of replications. It should however be constant for all columns.

This is however not a sufficient measure of reliability; it isnecessary to ver-
ify that the differences indicated byMeanQ4 correspond to statistically signif-
icant differences between the underlying data sets. If the two data sets of a row
are not significantly different, the replication count should be increased in order
to avoid inconclusive results later in the parameter selection process. An appro-
priate statistical test for this purpose is the two-sample Kolmogorov-Smirnov
test [63], hereafter the KS test. This test is non-parametric and distribution-
free, i.e., it makes no assumptions on the underlying distribution of the data,
which is necessary in this case as the response-time data is not normally dis-
tributed. The KS test should be applied on the fourth quartile of the MABERA
results, in line with the motivation behind theMeanQ4 measure.

For Model 1, 200 replications was found to give reliable results for a com-
parison of thep/s quotas of 0.01 and 0.04, as presented in Table 4.1. The
differences between the two columns (p/s quotas) are about 3 times larger
than the differences between the rows, which indicate a significant difference.
The data sets of each row were compared using the KS test and the differ-
ences between the cells of each row was found to be statistically significant at
a confidence level of 99.9 %.

Step 2.C: Comparable parameters

The third step of this method is to calculate thecost indexfor each combi-
nation of candidate values forp/s andtt, which is a relative measure of the

4.3 Selecting Parameters for MABERA 83

average runtime (i.e., cost) of a MABERA configuration. The purpose of this
cost index is to allow for a fair comparison of different parameter combina-
tions, which may have considerable differences in their average runtime. Even
if using the same population size, simulation length and termination threshold,
thep/s quota impacts the speed of the convergence. If two parametercombi-
nations produces similar results, but one is considerably faster, it is possible to
increase the population size for the faster one and thereby obtain better results.

The first activity in this step is to run MABERA analysis of each parameter
combination, replicated the number of times decided in step2, and collect the
average iteration count for each of the parameter combinations. This can be
used as a measure of the runtime, since these are directly proportional due
to the constant population size. The population size shouldbe the same in
all cases and should be a multiple of the number of parents implied by the
candidatep/s quotas.

When this experiment was performed on Model 1, the difference in aver-
age iteration count was significant. As presented in Table 4.2, the most time-
consuming combination ofp/s andtt (p/s = 0.04,tt = 4) required 88 % more
iterations (CPU time) than the least time-consuming combination (p/s = 0.005,
tt = 2).

Table 4.2: Average iteration count of MABERA in different configurations
tt = 2 tt = 3 tt = 4

p/s = 0.005 6.30 8.40 9.89
p/s = 0.010 6.64 9.16 10.18
p/s = 0.020 7.41 9.43 10.83
p/s = 0.040 7.27 10.06 11.87

The cost index of each candidate parameter combination is calculated by
dividing the average iteration count of the specific case with the highest average
iteration count of all cases, in this case 11.87. From the cost indices it is possi-
ble to calculate a comparable population size,sc, for each candidate parameter
combination. The comparable population size is calculatedfor each candidate
parameter combination in order to give equal runtimes of MABERA, which
allows for a fair comparison of the candidate parameter combination. This
is essentially a normalization with respect to runtime. Thecomparable pop-
ulation size of a parameter combination is calculated by dividing a reference
population sizewith the cost index of the parameter combination. To maintain

84 Chapter 4. Simulation Optimization

the relative number of parents it is necessary to calculate acomparable number
of parents,pc, by multiplyingsc with the desiredp/s quota. Sincepc andsc

should be integers and thus needs to be rounded, thepc/sc quota will not be
identical to the desiredp/s quota. However, by selecting the reference popula-
tion size carefully, it is possible to reduce these errors. In this case, a reference
population size of 1000 was found to give quite small errors,below 5 %. For
other, smaller, reference population sizes, errors up to 17% were observed
compared to the desiredp/s quota.

When applying this process to the runtime data of Table 4.2, i.e., on Model 1,
the following cost index results were obtained for the candidate combinations
of tt andp/s quota.

Table 4.3: Comparable MABERA parameters
tt p/s Cost index sc pc pc/sc

2 0.005 0.531 1 883 9 0.00478
2 0.01 0.560 1 787 18 0.0101
2 0.02 0.624 1 602 32 0.0199
2 0.04 0.613 1 632 65 0.0398
3 0.005 0.708 1 413 7 0.00495
3 0.01 0.772 1 295 13 0.0100
3 0.02 0.794 1 259 25 0.0199
3 0.04 0.847 1 180 47 0.0398
4 0.005 0.834 1 200 6 0.005
4 0.01 0.858 1 166 12 0.0103
4 0.02 0.912 1 096 22 0.0201
4 0.04 1 1 000 40 0.04

Step 2.D: Comparison

The part of step 2 is to execute MABERA for each candidate parameter com-
bination, using the comparable population size (sc) and the comparable num-
ber of parents (pc) and the number of replications decided in step 2.B, in this
case 200. The simulation length (l) should be decided according to step 1,
described in Section 4.3.1. The best parameter combinationis decided with
respect toMeanQ4, i.e., the mean value of the fourth quartile. If the difference
between the top candidates is small in comparison to the variance indicated by

4.3 Selecting Parameters for MABERA 85

the earlier reliability test, the KS test should be used to verify the statistical sig-
nificance of the difference. If no significant difference is found, one can either
reduce the confidence level of the KS test or perform a focusedcomparison of
the top candidates using a higher number of replications.

Results from this experiment is presented in Table 4.4, which indicates that
the best parameters for Model 1 isp/s = 0.01 andtt = 3. The difference
between this parameter combination and second best (p/s = 0.005 andtt = 2)
was statistically significant according to the KS test, at a confidence level of
75 %.

Table 4.4: MABERA results using comparable parameters
tt = 2 tt = 3 tt = 4

p/s = 0.005 8 194 8 155 8 105
p/s = 0.01 8 184 8 231 8 179
p/s = 0.02 8 156 8 172 8 192
p/s = 0.04 8 193 8 162 8 101

4.3.3 Step 3: Selecting Population Size

Once suitable values for the other parameters have been established, the last
parameters ultimately decides the runtime of MABERA. The larger population
size, the more thorough analysis. Thus,s should preferably be as large as
possible but since it impacts the runtime of the analysis, which in practice is
limited, it is necessary to find suitable population size which limits the runtime
to the runtime allowed. For instance, if starting an over-night analysis, it is
important that the analysis is finished by the morning, but preferably not much
earlier in order to best utilize the available analysis time.

If a runtime of several hours is desired, finding a suitable population size
by using a trial-and-error would be quite time consuming. A better way of
determining an appropriates value that corresponds to a desired (quite long)
runtime is through extrapolation of a reference case with a relatively small
population size. This reference case should use the parameters found suitable
in previous steps of this process.

In order to find a suitable population size for the reference case, start with
a very small population size, e.g., 100, and measure the runtime. If very short,
increase the population size, measure, and repeat until theruntime is signif-
icant but manageable, e.g., a few minutes. The desired population sizes is

86 Chapter 4. Simulation Optimization

approximated using a linear extrapolation:

s = (t/tr) ∗ sr

wheret is the a runtime desired,sr the population size of the reference case,
andtr the measured runtime of the reference case.

As mentioned, the reference case should have thep/s quota,tt andl values
identified in previous steps. Thep/s quota is especially important to maintain.
If changings without adjustingp, the changedp/s quota will cause the selected
parents to be more or less extensively analyzed, which is likely to impact the
number of iterations before termination and thereby cause anon-linear runtime
increase. This is supported by Table 4.2, where the average iteration count has
a positive correlation with thep/s quota.

4.4 Hill Climbing with Random Restarts

This approach, abbreviated HCRR, was developed to address shortcomings of
the MABERA approach and is the result of a collaborative project with re-
searchers at SICS1 specialized in optimization methods. The goal of HCRR
is the same as for MABERA, to find as high response time as possible for a
specific task by optimizing the simulator input. The HCRR method uses hill-
climbing [111], which has the advantage of being one of the simplest meta-
heuristics available. It is based on the idea of starting at arandom point and
then repeatedly taking small steps pointing “upwards”, i.e., to nearby input
combinations giving higher response times. If no nearby input combination
gives an improved result, a local maximum have been reached,possibly the
global maxima. Random restarts are used to avoid getting stuck in local max-
ima. HCRR operates on a more detailed and system-dependent set of simu-
lation parameters compared to MABERA. As demonstrated by the evaluation
presented in Section 4.6, this method typically yields substantially better re-
sults than both Monte Carlo simulation and the MABERA approach.

4.4.1 Simulator Input Representation

A major difference between MABERA and HCRR is the different representa-
tions used for simulator input. Instead of the indirect approach of MABERA,

1The Swedish Institute of Computer Science, www.sics.se.

4.4 Hill Climbing with Random Restarts 87

where the simulator input is used to initialize a pseudo-random number gener-
ator, the HCRR approach uses an explicit representation where each stochas-
tic selection during the simulation is directly decided by aseparate parameter
value. Thus, in the HCRR approach each simulation may require hundreds, or
thousands of inputs. Model 1, used in the evaluation section, requires over 600
inputs per 650 ms simulation.

The simulator is assumed to contain three types of stochastic selections: ex-
ecution time variations, arrival-time jitter (e.g., caused by external interrupts)
and environmental input stimulus (e.g., for determining non-deterministic se-
lections of task behaviors or inputs in the simulation model).

A simulation instanceis represented as a set of sequences of integers, where
each sequence is associated with either an arrival jitter ofa specific task, a spe-
cific execution time, or a specific environmental input stimulus. Each value of
one of these sequences decides a specific stochastic selection, e.g., the release
jitter of a specific task instance, or a specific selection of execution time. The
advantage of this approach is that the direct relationship between representa-
tion and model properties makes it possible to locally refinespecific aspects of
a given simulation instance.

Let Ji be a sequence of actual jitter valuesji,r experienced by instancer of
a taskTi, whereji,r are integer values in the interval[0, ub(Ji)], whereub(Ji)
is an upper bound on jitter for taski in units of the smallest measurable time
interval (clock ticks) for the target system. Furthermore,let Xk be a sequence
of values for a certain environmental input stimulus or execution time in the
simulated program, andXk

j be thejth value in Xk. It is assumed that all
stimulus and execution timesXk

j are of integer type and have upper (ub) and
lower bounds (lb), so thatlb(Xk) ≤ Xk

j ≤ ub(Xk) for all k, j. A simulation
instanceS, defining a fully deterministic simulation of the model, is therefore
a set

J1, J2, ..., Jn, X1, X2, ..., Xm

wheren is the number of tasks which have non-zero jitter and m is the num-
ber of environmental stimulus andExecutestatements. Denote byNi andMk

the number of values that are used to represent jitter sequenceJi and input se-
quenceXk. Ni andMk can be determined empirically by tracing how many
values the simulator uses for each value. In theory,Ni andMk can be un-
bounded, and for long simulations, the values forNi andMk needed may grow
to unacceptable levels. If there are not enough input valuesin the sequence, the
simulator should report a warning and reuse values, e.g., bystarting over from
the beginning of the sequence. For the evaluated models in this chapter,Ni and

88 Chapter 4. Simulation Optimization

Mk were long enough to represent all values used.

4.4.2 The HCRR Algorithm

HCRR uses a combination of a local improvement algorithm, which quickly
converges to high response times, and two diversification mechanisms allowing
the search to escape from local maxima, either by jumping back to an earlier
explored candidate or by making a full random restart. Thus,HCRR works
on a single solution candidate. In contrast, MABERA used a population of
candidates evaluated in parallel, to reduce the risk of getting stuck in local
maximas.

Algorithm 5: Hill Climbing with Random Restarts (HCRR)
HCRR(nofsims, m, l, k, nB, nR)

hrt← 0
while m > 0

curr← rnd_inst()
SIM(curr, l)
nofsims← nofsims− 1, m← m− 1
if RT (curr) > hrt

best← curr, hrt← RT (curr)
E← {best}
nonimp← 0
while nofsims> 0

if nonimp> nR
curr← rnd_inst(),E← {curr}, nonimp← 0

else if(nonimp+ 1) mod nB = 0
curr← random element inE

next← NBH(curr, ⌊k · len(curr)⌋)
SIM(next, l)
nofsims← nofsims− 1
if RT (next) > hrt

hrt← RT (next), best← next
if RT (next) > RT (curr)

curr← next,E← {next}, nonimp← 0
else

nonimp← nonimp+ 1
if RT (next) = RT (curr) then E← E ∪ {next}

return best

The HCRR algorithm is given in Algorithm 5. The simulation budget,

4.4 Hill Climbing with Random Restarts 89

i.e., the allowed number of simulations, is denotednofsims, andRT(q) is the
highest response time for the task in focus of analysis, performed usingSIM,
with respect to the simulation instanceq. Like in the MABERA algorithm,SIM
refers to running an RTSSim simulation, although the interface is different.

The simulation time instant when a simulation inputXj
i is consumed is

expressed asTMj
i andq[Xj

i] is the value ofXj
i in the simulation instanceq.

A random simulation instance is generated using the function rnd_inst().
The HCRR algorithm begins by choosing as starting point the best simu-

lation instance fromm randomly selected candidates, which are evaluated by
performing simulations usingSIM. Then, in each iteration,k·len(curr) random
values of the current simulation instancecurr consumed beforeET(curr), are
selected and modified using the neighborhood procedure NBH, shown in Fig-
ure 4.3.

In this description,ET (curr) denotes the end time of the task instance
which produced the highest response time for the task in focus in the simulation
instancecurr, and len(curr) denotes the total number of input values in the
simulation instancecurr.

NBH(inst, n)
for k = 1 to n

X
j

i = random element ininst, TMj

i < ET(inst)
V = {lb(Xi) . . . ub(Xi)} \ {inst[Xj

i]}
inst[Xj

i]← random value inV

Figure 4.3: Neighborhood procedure of HCRR

The response time for the task under analysis is measured by running a
simulation using theSIM(next) call on a neighbornext. The modifications
suggested by NBH are accepted only if they increase the response time. Mod-
ifications that have equal response time are rejected but saved for future refer-
ence, as described below.

A pure hill-climbing procedure is susceptible to getting stuck in local max-
ima, and can therefore exhibit less than satisfactory performance on many
problems. In order to improve the probability of finding a true global maxi-
mum, two different diversification mechanisms are used. First of all, the algo-
rithm jumps back to a previously encountered, randomly selected simulation
instance with an equal response time to the current instanceafter a number of
non-improving simulations, denotednB. This distributes focus over a number
of equal instances, which can help in avoiding small local maxima. The second

90 Chapter 4. Simulation Optimization

mechanism performs a full restart of HCRR from a random pointafter a num-
ber of non-improving simulations, denoted bynR. We callnB the jump-back
thresholdandnRtherandom-restart threshold.

4.5 Evaluations of MABERA and HCRR

This section present evaluations of MABERA and HCRR and a comparison
between these two methods, traditional Monte Carlo simulation and an analyt-
ical method for response-time analysis, RTA [101]. This is done using three
simulation models: two representing industrial cases and one simplified valida-
tion case, which unlike the other two models can be analyzed using RTA. The
models have similar architecture and analysis problems as two industrial real-
time applications in use at ABB [118] and Arcticus Systems [120]. Although
the simulation models contain relatively few tasks, at most11, their behavioral
complexity is significant due to, e.g., shared variables, sporadic events and dy-
namic priority changes.

Model 1 is representing a control system for industrial robots developed by
ABB Robotics, a complex embedded system which violates the assumptions
of analytical response time analysis methods through several types of intricate
task dependencies.

Model 2 is constructed from a test application used by Arcticus Systems [120],
which develops the Rubus RTOS used in many vehicular systems.

A less complex version of Model 1, labeled MV, is used for validation
purposes. Unlike the other models, MV is possible to analyzeusing RTA [101].
The purpose of this model is to investigate how close the response times found
by MABERA and HCRR are to the true worst-case response times,derived
using RTA.

The scheduling policy is preemptive priority-based scheduling for all mod-
els. Model 2 and the validation model uses strictly fixed priorities, while
Model 1 contains one task that alters between two priority levels depending
on the system state.

4.5.1 Model 1

This model is inspired by the IRC 5 control system for industrial robotics,
developed by ABB [118], and is described in detail by Appendix C. The ABB
Robotics system is quite large, containing around 3 millionlines of code and
is not analyzable using traditional analytical methods, such as RTA. Model 1 is

4.5 Evaluations of MABERA and HCRR 91

of much smaller scale but is designed to include behavioral mechanisms from
the ABB system which RTA cannot take into account:

• tasks with intricate dependencies in temporal behavior due to IPC and
shared state variables;

• the use of buffered message queues for IPC, where triggering messages
may be delayed;

• tasks that change scheduling priority or periods dynamically, in response
to system events.

The modeled system controls a set of (fictive) electric motors based on pe-
riodic sensor readings and aperiodic events. The calculations necessary for a
real control system are, however, not included in the model;the model only
describes behavior with a significant impact on the temporalbehavior of the
system, such as resource usage (e.g., CPU time), task interactions and impor-
tant state changes.

4.5.2 Model 2

This model is based on a test application from Arcticus Systems, developers
of the Rubus RTOS [120] which is used in heavy vehicles. This model uses
a pipe-and-filter architecture, where tasks trigger other tasks through trigger
ports, forming transactions. The model contains three periodic transactions
and one interrupt-driven task, in total 11 tasks. The interrupt has a small jitter,
while the other transactions are strictly periodic.

This model is less complex than Model 1 in the sense that thereexist no
shared variables or IPC via message passing which can impactthe tasks’ timing
and functional behavior. Instead, the tasks have large variations in execution
times, which makes the state space of this model very large. For this model,
the evaluation focuses on the end-to-end response time of the transaction which
contains the tasks with the lowest priority. More details ofthe model can be
found in [16].

4.5.3 The Validation Model

Simulation-based methods for response-time analysis havein common that the
result is not guaranteed to be a safe upper bound on the response time. We
therefore constructed a validation model, analyzable using RTA, with the pur-
pose to investigate how close the response times given by HCRR are to the

92 Chapter 4. Simulation Optimization

worst-case response times derived using RTA. Hence, RTA provides an up-
per bound on the worst-case response time that the simulation-based results
should approach but not exceed. The validation model is based on Model 1,
but simplified in that 1) shared state variables have been removed, 2) priority
and period is strictly static for all tasks, and 3) static loop bounds have been
added manually.

As a consequence, the validation model has considerably lower complexity,
and exhibits quite different timing properties when compared to Model 1. For
instance, the worst-case response time of the CTRL task (thetask in focus in
Model 1 and MV) is in MV only 52 % of the highest response times found for
this task in Model 1. Note that this response time is known to be the true worst
case for MV, since it could be verified using RTA.

Direct application of RTA yielded a worst-case response time of 5 982.
However, after reviewing the results of running HCRR on the model, it was
realized that a refinement was possible in order to reduce thepessimism of the
RTA. The DRIVE task was modeled as two separate tasks, which represent two
different WCETs of the DRIVE task. The higher WCET may only occur if a
rare sporadic event has just occurred, where the minimum inter-arrival time is
known and much larger than the period of the CTRL task and the DRIVE task.
Therefore, only one such case may occur during a single CTRL task instance,
while, in contrast, several normal DRIVE task instances (i.e., with the lower
WCET) may preempt a CTRL task instance. This refinement of themodel
had a major impact with respect to RTA, yielding a worst-caseresponse time
of 4 432 (refined model) instead of 5 982 (without refinement).However, it is
important to realize that such model refinements are hard to apply in practice,
for real industrial systems, as the temporal behavior of such systems are rarely
documented in detail.

Note that MV is a separate case with quite different behaviorand not com-
parable with Model 1. The RTA results from MV are only intended as a ref-
erence for MABERA and HCRR on the same model, i.e., MV, they are not
applicable to Model 1 (e.g., as approximations).

4.6 Experimental Evaluation

This section presents an evaluation of accuracy, convergence and scaling prop-
erties of HCRR, MABERA and Monte Carlo simulation using in total six dif-
ferent versions of the three models described in Section 4.5.

The goal of the analysis is to find extreme response times for aspecific

4.6 Experimental Evaluation 93

task in the model. The results are obtained from running 100 samples of each
algorithm and test case, each sample being allowed to run 10 000 simulations,
except for in the case shown in Figure 4.4. The simulation budget was con-
sidered reasonable due to the convergence of HCRR on the mostrealistic and
complex model, Model 1. The experiments were performed on a computer
equipped with a Intel Core 2 Duo CPU at 2.33 GHz, with 2 GB of RAM.

The MABERA parameters used for the evaluation was a population size
of 1 250 and12 parents in each generation, which reflects thep/s quota of
0.01 found suitable in earlier experiments on Model 1. In order to ensure that
MABERA used exactly 10 000 simulations in total, to be comparable with the
HCRR results, the original termination threshold was changed. Instead of using
a termination threshold, the termination occurs when the simulation budget of
10,000 individual simulations has been used up. The population size of 1 250
was selected since it allows for 8 generations, which is the average number of
generations per MABERA run in the initial MABERA evaluation[15].

Regarding the parameters of HCRR, the jump-back threshold (nB) should
be relatively small to spread the search over the set of equalcandidate solutions
found so far. However, the random restart threshold (nR) should be larger in
order not to erase any progress made so far, but small enough to force restart
from a local maximum as soon as possible. The fractionk of input values
changed in each iteration should provide a good balance between power (larger
fractions) and low dimensionality (smaller fractions).

To decide the HCRR parameters,k, nB andnR, three experiments were
performed using Model 1 where one parameter at a time was determined, as
described below. For each evaluated parameter combinationa measure of con-
vergence rate was calculated,C, which is the mean value over 20 sample runs,
on the highest response time found afterj simulations. Formally the conver-
gence measure is defined as:

C =

∑20
i=1

∑S
j=1 Rj

i

(20 · S)

whereS is the number of simulations andRj
i denotes the response time found

afterj simulations in sample runi. The simulation budget used in these exper-
iments was 500 fornBandk and 3 000 fornR. The parameters giving quickest
convergence (nB = 2, nR= 300, andk = 0.02) were then used for all experi-
ments. The results of the experiments are shown in Table 4.5.

To show the effects of scaling on the three algorithms, more complex mod-
els are created by instantiating several independent instances of Model 1, as

94 Chapter 4. Simulation Optimization

Table 4.5: Parameter selection for HCRR
nB = nR=∞ k = 0.02, nR=∞ k = 0.02, nB = 2
k C nB C nR C

0.01 7 796.76 100 7 931.37 1 000 8 308.11
0.02 8 010.90 50 7 902.86 300 8 312.05
0.03 7 988.83 20 7 939.70 100 8 304.17
0.04 7 976.14 10 7 972.72 50 8 254.26
0.05 7 961.80 7 7 992.25
0.07 7 944.69 5 7 944.27
0.10 7 761.59 4 8 001.89
0.15 7 645.62 3 7 919.24
0.20 7 604.48 2 8024.98
0.30 7 483.33 1 7 944.27

“subsystems”, where each subsystem is a complete model as described in Sec-
tion 4.5. The only dependency between the subsystems is thatthey share the
same CPU and therefore will interfere with respect to timing. The subsystems
are however time-separated by relative offsets of 20 000 time units in order
to even out the CPU usage, and have reassigned priorities since RTSSim as-
sumes unique task priorities. All execution times (inputs for Executecalls)
were scaled to avoid overload. Scaling factors used were1.0, 1/1.5, 1/1.8 and
1/2.2 for 1, 2, 3 and4 subsystems, respectively. The scale factors were found
experimentally, with the criteria to give an interesting, complex task-level be-
havior while avoiding overload and task input starvation.

4.6.1 Results

The response time results from Monte Carlo simulation (MC),MABERA (MAB)
and HCRR were obtained in the following manner, using a simulation budget
of 10 000 individual simulations unless otherwise stated.

MC: The traditional Monte Carlo approach, giving the highest response
time found during a specific number of simulations.

MAB: The MABERA algorithm presented in Section 4, using a population
size (s) of 1 250 and 12 parents per generation (p = 12), which gives
ap/s quota of 0.0096.

HCRR: The HCRR algorithm presented in Section 4.4.2, using parameters
nB = 2, nR= 300, andk = 0.02.

4.6 Experimental Evaluation 95

 0.2
 0.4

M
C

 0.2
 0.4

R
el

at
iv

e
fr

eq
ue

nc
y

M
A

B

 0.4
 0.8

 7200 7400 7600 7800 8000 8200 8400 8600

H
C

R
R

Response time

 7400
 7600
 7800
 8000
 8200
 8400
 8600

 0 2000 4000 6000 8000 10000M
ea

n
re

sp
on

se
 ti

m
e

Simulations

MC MAB HCRR

Figure 4.4: Final RT distributions and convergence for Model 1

Figure 4.4 shows the results obtained for Model 1 from Section 4.5.1. The
top of the figure contains the response time distributions ofthe three algo-
rithms, where the results for MABERA and MC are taken from theoriginal
evaluation of MABERA [15], produced using 200 sample runs (replications),
which in total required 16 280 000 individual simulations.

For HCRR, only 100 sample runs were used, using 10 000 individual sim-
ulations each. This gives a total of 1 000 000 simulations. This was considered
sufficient, since all 100 runs of HCRR found the highest knownresponse time,
8 474, for the CTRL task of Model 1. None of the MABERA or MC runsfound
this response time. The bottom of Figure 4.4 shows convergence (mean RT and
95 % confidence intervals) for the three algorithms, using 100 replications of
each algorithm, each using 10 000 simulations.

The highest response time found by MABERA was 8 349, and this value
was only found one single time in 200 runs, using in total 16 280 000 simula-

96 Chapter 4. Simulation Optimization

tions. However, a value of 8 324 was found in 47 % of the cases. MC only
produced two results are over 8 000, while the rest follows a seemingly gaus-
sian distribution with a median around 7 800. The highest MC outlier, 8 390, is
however higher than the MABERA results. Note that this is found only once
in over 16 million simulations, with a total run time of 24 hours. With a sig-
nificantly smaller (more typical?) simulation budget, MC would most likely
not have found any of the outliers, only results below 8 000, while MABERA
would most likely have found the 8 324 case even if using few replications (e.g.
three or four, instead of 200), since it was found in almost 50% of the runs.

HCRR is however far superior to MABERA and MC, using only about
6 % of the number of simulations used by the other methods. Every HCRR
run found the highest response time, 8 474, using only 10 000 simulations
which means that HCRR was 1 628 times faster than MABERA in this case,
since only a single HCRR replication is necessary in order tofind 8 474 while
MABERA requires 200 replications in order to find its highestresult, 8 349.
The runtime per sample run was 7 minutes in the earlier MABERAevalua-
tion [15], where each MABERA sample used on average 81 400 simulations.
This translates to 5 ms per individual simulation, including the optimization
algorithm code. Since the length of the simulated scenario was 650 ms, this
means that the simulation speed was 123 times faster than real execution in
this case. For the cases where 10 000 simulations was used perreplication,
both MABERA and HCRR required less than 3 minutes per run.

Figure 4.5 shows the obtained results for Model 2 (Section 4.5.2). In this
model, the tasks have large variations in execution times, which makes the
state space very large. We can see that HCRR yields a result approximately
5 % higher than what is obtained from the two other methods. Interestingly,
it looks like HCRR was still slowly progressing towards higher response times
at 10 000 simulations, while both MABERA and MC seems to have converged
quite early to a much lower result. MABERA seems to give lowerresults than
MC in average but finds a higher maximum value. For Model 2, allalgorithms
finished in less than one minute per sample.

In Figure 4.6, we can see the results for the validation model(MV) de-
scribed in Section 4.5.3, again using the standard parameters. In addition, we
show the RTA results. Here, HCRR could find a response time of 4432 in every
sample run, which was also confirmed by RTA to be the worst-case response
time. The difference between MABERA and MC appears to be quite small in
this case, but MABERA found the worst case in a few cases, while MC did
not.

4.6 Experimental Evaluation 97

 0.1
 0.2

M
C

 0.1
 0.2

R
el

at
iv

e
F

re
qu

en
cy

M
A

B

 0.1
 0.2

 5800 5900 6000 6100 6200 6300 6400

H
C

R
R

Response time

 5900
 6000
 6100
 6200
 6300
 6400

 0 2000 4000 6000 8000 10000M
ea

n
re

sp
on

se
 ti

m
e

Simulations

MC MAB HCRR

Figure 4.5: Final RT distributions and convergence for Model 2

Figure 4.7 shows how the different methods scale to larger systems, by il-
lustrating the convergence for Model 1 when increasing the model size to 2,
3 and 4 subsystems (model instances). As expected, since thestate space in-
creases with number of subsystems, all three algorithms converge slower when
system size is increased. HCRR is consistently the best, while MABERA and
MC give quite similar values, although MABERA gives slightly higher aver-
age results than MC in all cases, and significantly higher forthe middle case,
with three subsystems. As the number of subsystems increase, the difference
in performance between the methods decrease, although HCRRproduced on
average 4.7 to 11 % higher results than both MC and MABERA. For4 sub-
systems, none of the methods appear to have converged. However, during the
10 000 simulations, HCRR progressed more quickly to higher response times
than both MC and MABERA. Table 4.6 presents the run times (in minutes)
for a single run of the algorithms on the three models (M1-2 toM1-4), which

98 Chapter 4. Simulation Optimization

 0.2
 0.4

M
C

 0.2
 0.4

R
el

at
iv

e
F

re
qu

en
cy

M
A

B

 0.3
 0.6
 0.9

 4000 4100 4200 4300 4400 4500

H
C

R
R

Response time
RTA

 4000
 4100
 4200
 4300
 4400
 4500

 0 2000 4000 6000 8000 10000M
ea

n
re

sp
on

se
 ti

m
e

Simulations

MC MAB HCRR RTA

Figure 4.6: Final RT distributions and convergence for the validation model

shows the impact of increasing model complexity on run time,caused by longer
run times of the individual simulations.

Note that the same parameters for MABERA and HCRR were used for
all models, although these parameters were selected with respect to Model 1.
Their suitability for the other models are not known. If the best parameters
were re-evaluated for each model, better results might havebeen achieved.

The average end results are summarized in Table 4.7. The lastcolumn
also shows the average number of simulations needed for HCRRto reach the
end result of the second best method (usually MABERA), obtained in 10 000
simulations. Overall, HCRR reached the second-best result13 to 112 times
faster than the second-best method did. For all models, it took HCRR less than
800 simulations to reach the results of the other methods, which corresponds
to less than 1.5 minutes of computation time on the PC used forexperiments.

4.6 Experimental Evaluation 99

Table 4.6: Run times of Monte Carlo, MABERA and HCRR (minutes)
MC MABERA HCRR

M1-2 4 7 5
M1-3 5 10 6
M1-4 8 16 10

Table 4.7: Average end result of Monte Carlo, MABERA and HCRR
MC MABERA HCRR Passes2nd best

M1-1 7 682 8 065 8 474 224
M1-2 9 693 9 750 10 844 238
M1-3 13 555 13 789 14 672 521
M1-4 15 235 15 298 16 013 764
M2 6 031 6 002 6 299 634
MV 4 286 4 288 4 432 89

4.6.2 Average Convergence

To measure average convergence more exactly, we use the relative difference in
average response-time results over the lastd simulations. We say that a method
has for practical purposes converged (on average) when

1 − R
(k−d)

R
(k)

≤ ε

whereR
(k)

is the average response-time result at simulationk for a set of sam-
ples. Using this definition, convergence will never be detected before at leastd
simulations has been performed. In order to measure convergence for the eval-
uation presented in this paper,d obviously needs to be less than the number of
simulations (10 000) performed in each sample. We thereforeused = 1 000
for the convergence comparison. For the tolerance parameter, we chose a value
of ε = 0.001. In other words, if the average progress in 1 000 simulationsis
lower than0.1 %, we declare that the method has converged on average. It
should be pointed out that different parameters will give radically different re-
sults on convergence. Detecting true true convergence would require thatε = 0
andd is infinite (or in practice, at least very large).

Table 4.8 summarizes the convergence results obtained withthe param-
eters above, for Model 1 with 1 – 4 subsystems (M1-1 to M1-4), Model 2

100 Chapter 4. Simulation Optimization

Table 4.8: Convergence of Monte Carlo, MABERA and HCRR
MC MABERA HCRR

k R
(k)

k R
(k)

k R
(k)

M1-1 7 632 7 670 7 356 8 062 4 090 8 466
M1-2 4 806 9 660 6 518 9 728 7 093 10 830
M1-3 3 527 13 502 7 801 13 773 5 568 14 578
M1-4 3 410 15 175 5 104 15 271 6 948 15 881
M2 3 656 5 997 3 552 5 991 9 556 6 295
MV – – – – 1 661 4 432

(M2), and the validation model (MV). In general, we can see that HCRR con-
verged to significantly higher response times than MABERA and MC. For the
validation model, the only method to converge within 10 000 simulations was
HCRR. Overall, the results are mostly consistent with what can be seen in Fig-
ure 4.4 to Figure 4.6, but also classified the slow progress for HCRR on M2
in Figure 4.5 as convergence. Running the algorithm longer would either yield
slightly higher results or confirm convergence.

For M1-4, convergence of HCRR is also detected in iteration 6948 after a
slow progress between simulation 6 000 and 8 000, but as we cansee in Fig-
ure 4.7, more average progress is made after simulation 8 000. Sampling more
than 100 runs for M1-4 would most likely even out the slope after simulation
6 000. In any case, HCRR has clearly not converged after 10 000simulations,
and running the algorithm longer would likely yield even higher results.

4.7 Conclusions

The results presented in this chapter indicate that simulation optimization algo-
rithms such as MABERA and (especially) HCRR has the potential to provide
engineers with accurate extreme value predictions regarding run-time prop-
erties of embedded systems, such as task response times, also for complex
systems not conforming to classical real-time analysis models such as RTA.
Note however that the simulation-based approach implies a best-effort analysis,
which only provides a lower bound for the worst-case response time, i.e., the
highest response time found. This is not necessarily the worst-case response
time. In the evaluation performed, six different simulation models were used,
developed to represent analysis challenges of real industrial real-time systems.

4.7 Conclusions 101

The results indicate that MABERA is significantly more efficient than Monte
Carlo simulation, but HCRR was found to be 4 – 11 % more accurate than
MABERA and between 13 to 112 times quicker in reaching the endresult.
An analysis of convergence indicates that for two cases out of six, even higher
response times could be achieved by allowing HCRR more simulations.

Both HCRR and MABERA require parameters, which impact theirper-
formance. Finding suitable parameter values for MABERA is quite time-
consuming, since the MABERA parameters are not independentand therefore
has to be evaluated in combination. Suitable parameters forHCRR can be
found much faster since each parameter can be optimized independently.

MABERA seems to be more dependent on good parameters than HCRR;
while MABERA performed quite well on Model 1 (for which the parameters
had been optimized) it was only marginally better than MonteCarlo simula-
tion on the other models. This might be due to larger state space in some
cases, but MABERA is only marginally better than Monte Carloalso for the
MV model, which is less complex than Model 1. It is likely MABERA would
have performed better on MV (and the other models) if the parameters would
have been tuned. The possible parameter sensitivity is a serious drawback
of MABERA and speaks for HCRR. It would be interesting to repeat the
MABERA and HCRR runs with parameters optimized for each model, but
this is quite time-consuming work and it is quite clear that HCRR is superior
compared to MABERA and Monte Carlo simulation.

Future work includes evaluating HCRR (or an improved method) on mod-
els extracted from real industrial systems, using the modelextraction approach
presented in the coming two chapters. The models used for theevaluation in
this chapter is very small compared to such systems, which makes the effi-
ciency of the model extraction very important, i.e., the size and complexity of
the resulting models. Even though HCRR seems to be very efficient, it will not
perform as well on models which are several magnitudes larger.

If HCRR would turn out to have insufficient scalability with respect to large
industrial systems, improvements are however possible. HCRR performs a
quite simple type of optimization, without any knowledge ofthe dependencies
in the simulation model. This has shown to work well, but could possibly be
made “smarter” by logging additional information during the simulations, re-
garding the context in which each input value is used. Thereby, it would be
possible to put more focus on optimizing the input values with high likelihood
of being relevant, such as inputs used by the task in focus (e.g, to decide ex-
ecution time variations) or by other relevant tasks which preempt, block or
communicate with the task in focus.

 9600
 9800

 10000
 10200
 10400
 10600
 10800
 11000

 0 2000 4000 6000 8000 10000

M
ea

n
re

sp
on

se
 ti

m
e

Simulations, 2 subsystems

 13250
 13500
 13750
 14000
 14250
 14500
 14750

 0 2000 4000 6000 8000 10000

M
ea

n
re

sp
on

se
 ti

m
e

Simulations, 3 subsystems

 15000
 15200
 15400
 15600
 15800
 16000
 16200

 0 2000 4000 6000 8000 10000M
ea

n
re

sp
on

se
 ti

m
e

Simulations, 4 subsystems

MC MAB HCRR

Figure 4.7: Convergence for Model 1 using 2-4 subsystems

Chapter 5

A Method for Automated
Model Extraction
Patent Pending

This chapter presents a method for automated extraction of simulation mod-
els from complex embedded software systems implemented in C. The method
is intended to be realized as a software which as input takes the system source
code and execution-time measurements, and which outputs a filtered, more ab-
stract version, an RTSSim simulation model as described in Chapter 3.��������������	
 ���� 	���
 �����
��	�
��� �	�����
��	������ �������� ����� ���������������������
��	�
��� ��
�

Figure 5.1: Overview – simulation model extraction

The model extraction process contains two steps, as illustrated by Fig-
ure 5.1, where the first step identifies the source code of relevance for the
simulation model, while the second step allows for timing-accurate simula-
tion using target system execution-time measurements. This thesis focuses on
the first step, the source code “filtering”, which serves to reduce the size of the
simulation model.

103

104 Chapter 5. A Method for Automated Model Extraction

Note that the first step can theoretically be omitted, by using the full source
code as simulation model (extended with timing information). There are how-
ever several good reasons for reducing the amount of model code:

• Faster simulations and smaller model state-space, allowing better accu-
racy and confidence when using methods like MABERA or HCRR, pre-
sented in Chapter 4.

• Probably fewer uses of library functions (i.e., without source code), which
might need to be manually replicated in the simulator framework.

• Fewer instrumentation points necessary for execution-time measurements.

• Better system understanding, at least if the reduction in size is large.

The second step enables timing-accurate simulation through automatic in-
sertion ofexecutestatements, i.e., calls to an RTSSim function which advances
the simulation clock, according to execution-time information from measure-
ments. The measurements are performed between instrumentation points, in-
serted in the original code at locations derived during Step1.

The process of removing irrelevant code is commonly known asprogram
slicing, a concept first proposed by Weiser [26] which implies an analysis
which given a program and aslicing criterionidentifies the program statements
of relevance. The most common type of program slicing, backwards slicing,
identifies all statements which may impact the value of a particular symbol
(e.g., a variable) at a particular point in the program were the symbol is used.
The area of program slicing is further described in Section 2.4.1.

The existing methods and tools for program slicing are however not scal-
able enough (cf. Section 6.4) for analysis of large industrial software systems,
which may consists of millions of lines of code. Moreover, program slicing for
model extraction requires a different type of slicing criteria. A new method for
program slicing named1 Katanahas therefore been developed.

Katana identifies all statements of a program that impacts the execution of a
set of functions, themodel focus functions, which constitute the slicing criteria
and are provided as input. They are the functions which directly impact the
run-time properties in focus. They typically correspond tooperating system
services. In the context of this thesis, the model focus functions should include
all functions which impact the task scheduling, e.g., functions causing task
triggering, blocking or priority changes.

1Katana is named from the very sharp Japanese sword (another type of efficient slicer).

5.1 The Katana Approach to Program Slicing 105

Note that this approach assumes that all relevant source code is available.
In cases where “black-box” components are used, like an SQL database, they
might also perform actions of relevance to the model, e.g., spawning tasks
or locking a semaphore. In order to model black-box components, there are
approaches to modeling based on dynamic analysis techniques, i.e., based on
run-time monitoring, such as the works by Huselius et al. [56] and Jensen [49,
116]. Such methods could be used as a complement to model extraction from
source code. This is however not further explored in this thesis.

The Katana algorithm has been implemented in a prototype tool named
MXTC, an abbreviation ofModel eXtractionTool for C. MXTC is presented
in Chapter 6 together with an evaluation of MXTC on industrial code.

This chapter is organized as follows: Section 5.1 presents the Katana algo-
rithm in an informal manner using examples and illustrations, and with focused
subsections highlighting different aspects of the solution. Section 5.2 discusses
the efficiency of the proposed solution, with respect to runtime and memory
usage. Section 5.3 gives a formal definition of the core partsof the Katana al-
gorithm, and Section 5.4 presents the lower layer functionality assumed by the
formal definition. Section 5.5 relates the Katana approach to existing academic
and commercial solutions for program slicing. Finally, Section 5.7 concludes
this chapter with a discussion on current limitations and future work.

5.1 The Katana Approach to Program Slicing

The dominating approach to program slicing since the mid 1990’s is theSystem
Dependence Graphs[23], or SDG, which describe the dependencies between
a program´s statements and symbols. A SDG vertex representsa statement,
e.g., a condition, assignment or function call, while an SDGedge corresponds
to a dependency in control-flow or data-flow. The SDG approachand other
types of program slicing are presented in Section 2.4.1. In the SDG approach,
program slicing is performed by traversing the system dependence graph in a
reachability search, starting from the nodes matching the slicing condition. To
allow analysis of programs containing pointers, a separate“points-to” analysis
is also required before the program slicing, where all pointers are analyzed in
order to find all possible variables they may refer to at each reference of the
pointer. The construction of the SDG and the points-to analysis implies a very
detailed analysis of the entire program, which for large programs can take very
long time and requires vast amounts of memory, as presented in Section 5.5.

Katana does not use the SDG approach, but instead uses aSymbol Database

106 Chapter 5. A Method for Automated Model Extraction

as program model, as depicted by Figure 5.2 and Figure 5.4. The symbol
database can be regarded as an index over the source code and can be con-
structed using a lexical scan, possibly after applying a preprocessor. Since no
advanced models of the code are constructed, like CFGs or even ASTs, this is
a very fast analysis, which is done in a matter of minutes alsofor systems with
millions of lines of C code, as demonstrated by the evaluation results presented
in Chapter 6.

”Katana”
algorithm

(MXTC tool)

Scanner

Symbol DB

������ ������	
��
code.ccode.ccode.c

���
� ����	��������	 model.cmodel.cmodel.c

Figure 5.2: The context of the Katana algorithm

The symbol database contains three types of entries:symbols, references
and lexemes. A symbolcorresponds to a variable, function or user-defined
datatype. Thelexemesrepresent the analyzed source code in a tokenized man-
ner according to the syntax of the programming language, in this case C. A
lexeme contains the corresponding source code text, location (line and column
number) and references to the previous and following lexeme. Lexemes are
classified in types, such as keywords, operators, delimiters, identifiers and lit-
erals. Areferenceis an entry which connects a symbol with the code locations
(lexemes) where rge symbol is used. Reference have types, indicating the con-
text in which the symbol is used, e.g, if the symbol is assigned, used or called.

The different types of entries are connected by bidirectional links, which
connects symbols with references and references with lexemes. The structure
(or metamodel) of the symbol database assumed by Katana is presented in
Figure 5.3. Note that the presented attributes is not a complete list, but only
examples.

5.1 The Katana Approach to Program Slicing 107

Symbol
Name
Symboltype
Datatype
ID

Reference
Type
File
Line
Column

Lexeme
Text
Type

Next, Previous

1 * * 1

Figure 5.3: The structure of the symbol database representation

As depicted by the UML class diagram in Figure 5.3, each symbol may
have multiple references, but a reference always has exactly one symbol and
one lexeme. Note that a lexeme may have multiple references if they are of
different types and to the same symbol. An example is the following case:

foo = bar++;

In the above example, the lexemebar and the corresponding symbolbar
will be connected by two references, one “use” (in assignment source) and one
“modify” reference. An example of a symbol database structure is given in Fig-
ure 5.4. The structure of the symbol database is inspired by the database API
of the commercial reverse-engineering tool “Understand for C++” [138]. This
API was used as base for the Katana prototype implementation, the MXTC
tool presented in Chapter 6.

The symbol database makes it easy to look up a specific symbol and find
all locations (as lexemes) where the symbol is used in a particular way, e.g.,
assigned. Each location (statement) can then be analyzed onthe lexeme level in
order to identify other symbols of relevance, on which the first symbol depends.
These new symbols are thereafter analyzed recursively. This continues until all
relevant symbols have been analyzed. This approach has somesimilarities
with the original Weiser approach [26], which however used avery different
program model, control-flow graphs, and handles pointers and function calls
quite differently.

The target of the Katana method, in the context of model extraction, is to
find all statements which impact the execution of the model focus functions

108 Chapter 5. A Method for Automated Model Extraction

��� ��� � ��� � � ��� � �	���
��
�� � � ���������
��
��� ���� � ��� �	������� ��� � � � � ��Symbols References Lexemes

Variable ret
Parameter a
Function add

Parameter b

Function func
Parameter p ������� ����� ���� �� !��� �"��� ���� #$����!��� ����� ���� ��%&�� ����� ���� �'����!��� ����� ���� �()��� ����� ���� �'����!��� ����� ���� ��%&�� ����� ���� �'%&�� ����� ���� "*

������� �"��� ���� #+����!��� �"��� ���� #+%&�� ����� ���� "*

Figure 5.4: An example of a symbol database

(i.e., the slicing criteria). The output should contain allstatements which di-
rectly or indirectly decide when the control flow reaches a model focus func-
tion, and all statements which directly or indirectly impact the arguments used
in calls of model focus functions.

The termmodel statementis used to specify the statements found to be
relevant, i.e., that should be included in the output. Concretely, a model state-
ment is represented using the first lexeme of the statement. When a conditional
statement (i.e., a loop or selection) is recognized as a model statement, this
does not include the enclosed statements within the associates block(s), but
only the condition, block delimiters and relevant keywords.

A model symbolis a symbol in the symbol database, of types variable,
parameter or function, which is found in at least one model statement. A more
precise definition is given below.

A model functionis a function containing at least one model statement. For-
mally, model functions are however represented as model symbols of function
type. This since a function name may refer to different things depending on
the context, the function definition, the function address,or the function return
value. Katana treats function return values as a two-step assignment, where the

5.1 The Katana Approach to Program Slicing 109

function symbol is a temporary variable between the returned expression and
the use of the return value in the calling function.

There are two types of model functions,globally model-relevant(GMR)
functions andlocally model-relevant(LMR) functions. A GMR function is a
function containing side-effects of relevance for the model:

• model focus functions (specified as input),

• functions containing assignments of global variable model symbols, or

• functions calling other GMR functions.

Thus, all calls to GMR functions are relevant for the model. The other
type of model functions is locally model-relevant (LMR) function. For LMR
functions, only calls found in model statements are relevant. For instance,
consider that the variablefoo is known to be relevant and the following model
statement is found:

foo = bar(i);

The assignment depends on the return value ofbar() . If the formal param-
eter ofbar() is found relevant for the return value, only the argument of the
specific call is analyzed. Other calls (and arguments) ofbar() are ignored
in this case, but will naturally be included if found model-relevant for other
reasons.

Given the above introductions, a model statement is defined as any state-
ment matching at least one of the following rules:

• Rule A: Calls of model focus functions.

• Rule B: Calls of globally model-relevant (GMR) functions.

• Rule C: Assignments of model symbols (direct or by reference).

• Rule D: Conditions guarding the execution of model statement(s).

• Rule E: Return statements in any model function.

• Rule F: Break or continue statements where the closest encapsulating
loop is a model statement.

• Rule G: Statements obtaining or forwarding pointers to model symbol(s).

• Rule H: Declarations of model symbols or model symbol datatypes.

110 Chapter 5. A Method for Automated Model Extraction

The above definition of model statements depend on the concept of a model
symbol. Asymbolis in this context a parameter, variable, constant or function
return value, of any datatype (including pointers/arrays). A model symbolis
defined as a symbol matching any of the following rules:

• Rule I: Symbols used in a condition of a conditional model statement.

• Rule J: Symbols used in assignments or initiations of modelsymbols.

• Rule K: Symbols used in a function call argument where the correspond-
ing formal parameter is a model symbol.

• Rule L: Symbols used in return statements of functions which return
values are used in at least one model statement.

• Rule M: Pointers to a model symbol S and used in a dereferenceassign-
ment of S, or in data-flow leading to such a dereference assignment of
S.

Note that the above list is not an algorithm description, butrather a specifi-
cation of the statements and symbols that Katana should identify.

5.1.1 An Overview of the Katana Algorithm

The purpose of this section is to provide a conceptual understanding of the
algorithm, a foundation for the later descriptions of individual algorithm as-
pects. Note that a detailed description of the Katana algorithm is provided in
Section 5.6.

The first step in Katana model extraction is to identify all calls of model
focus functions (MFFs). The MFF calls constitute the initial set of model
statements and the functions in which these calls occur are globally model-
relevant (GMR) model functions. Since all callers of GMR functions also are
GMR functions, all functions and function calls in the incoming call-graph of
the model focus functions are included in the model. Thereby, all function call
paths leading to a model focus function have been captured.

The next step is to identify the variables and statements which decides
when the control-flow reaches a model focus function and withwhat argu-
ments. This is achieved using two types of program slicing, labeledSliceand
SmtSlice(Statement Slice), which are recursively dependent as illustrated by
Figure 5.5.

Slicetakes a symbol as input and returns all statements which may impact
the symbol (typically a variable) at any point.SmtSlicetakes a statement as

5.1 The Katana Approach to Program Slicing 111

Slice SmtSlice

Symbols defining
the symbol

Symbols in conditional
model statements

Model statements
(control-flow)

Model statements
(data-flow)

Every MFF
call statement

Every argument symbol
of MFF calls

Figure 5.5: A high-level view of the Katana algorithm

input and returns all statements which may impact if and whenthe statement is
executed. The analysis can start in either one, depending onthe context.Slice
is the starting point when analyzing the symbols used in arguments of MFF
calls, whileSmtSliceis applied to the MFF call statements.

Given a symbol,Sliceanalyzes all symbol references of relevant types in
order to find statements where the symbol value is updated (assigned or mod-
ified), or where pointers to the symbol are created. For each identified state-
ment, the symbols involved are analyzed recursively. If thesymbol provided
to Sliceis a formal parameter, the relevant function calls are identified and the
corresponding call arguments are analyzed recursively.

For each statement found relevant,SmtSliceidentifies all enclosing control-
flow statements (if, for, while, switch, etc.), which also are model statements.
Their conditions are analyzed in order to identify symbols,which become
model symbols. Each such symbol is analyzed recursively usingSlice.

In order to avoid analyzing the same statement or symbol multiple times,
the analyzed symbols are stored in a suitable data structure, e.g., a hash table,
which is checked before starting each Slice operation. If anidentical analysis
of the symbol has already been performed, the Slice operation is aborted.

5.1.2 Katana on Example Code

A small example is used to illustrate the Katana algorithm, model statements
and model symbols. The example program contains only two functions,main()
andcontrolTemp() , which implements a very simple temperature supervi-
sion system. The program also uses some library routines forwhich the source

112 Chapter 5. A Method for Automated Model Extraction

code is not available. In this case, they are safely ignored.The handling of
library functions is presented in Section 5.1.8

1: double controlTemp(double maxTemp)
2: {
3: double currentTemp = readTemp();
4: if (currentTemp > maxTemp)
5: {
6: alarm();
7: }
8: return currentTemp;
9: }

10:
11: void main()
12: {
13: double mTemp = 80;
14: double currTemp = 0;
15: while(1 == 1) // forever
16: {
17: currTemp = controlTemp(mTemp);
18: displayTemp(currTemp);
19: delay (500);
20: }
21: }

In the above example, the functionalarm() is a model focus function. By
applying the earlier definitions of model symbol and model statement together
with the informal algorithm description presented in the previous section, the
following model statements are found:

1. Line 6: Due to Rule A, the call of the model focus functionalarm() is a model
statement. Thereby,controlTemp() is a globally model-relevant (GMR)
function, since it calls a model focus function.

2. Line 8: The return statement is a model statement according to Rule E.

3. Line 17: SincecontrolTemp() is a GMR function, this call is a model state-
ment according to Rule B, andmain() is thereby a GMR function.

4. Line 15: The while-loop is a model statement since the loopencloses the previ-
ously found model statement at line 17.

5. Line 4: The if-statement is relevant according to Rule D, since it encloses the
previously found model statement at line 6.

6. Line 4: When analyzing the if-statement condition,currentTemp andmaxTemp
are found and thereby become model symbols due to Rule G.

5.1 The Katana Approach to Program Slicing 113

7. Line 3: When searching for assignments of the new model symbols from the
condition at line 4, this assignment ofcurrentTemp is found which thereby
becomes a model statement according to Rule C.

8. Line 3: When analyzing the source of the assignment, the functionreadTemp()
is found and therefore a model symbol according to Rule J. Specifically, this
symbol is a locally model-relevant (LMR) function.

9. Line 17: The model symbolmaxTemp, found at line 4, is found to be a formal
parameter ofcontrolTemp() . In the call at line 17, the corresponding argu-
ment expression is therefore relevant. This is found to contain mTemp, which
thereby becomes a model symbol due to Rule K.

10. Line 13: When analyzing the new model symbolmTemp, the assignment at line
13 is found to be a model statement due to Rule C.

Note that thereadTemp() function found at line 3 is a library function
for which no source code is available, and since no argument is used, no fur-
ther dataflow analysis is performed in that case. Functions assumed to be li-
brary functions (i.e., if they have declarations but no definition), must have
corresponding implementations in the targeted simulator framework.

In this example, almost all statements are found to be relevant and thereby
included in the output. This does however not reflect the typical performance
of the model extraction on real programs, of non-trivial size. In the experiments
on industrial code, presented in Chapter 6, the output size is between 3 – 59 %
of the input program size.

5.1.3 Producing the Simulation Model

The recursive search of the symbol database identify model statements, which
are represented by a reference to their first lexeme. In orderto produce a com-
pilable simulation model, the model statements (i.e., the lexemes representing
them) are sorted based on their source file, line and column number. For each
source file where model statements have been found, its modelstatements are
written, lexeme by lexeme, to an output (simulation model) source file. Since
also declarations of relevant variables, functions, and datatypes are model state-
ments, the issue of declaring the model symbols (in the rightorder) is solved
automatically. The file structure for the resulting simulation model source code
thus reflect the file structure of original source code.

A last analysis step is however necessary before outputtingthe lexemes
of the model statements. Model statements may include irrelevant symbols,
which does not impact the behavior of the model but which may cause compile
errors if not handled correctly. For instance, in the previous section presenting

114 Chapter 5. A Method for Automated Model Extraction

the Katana example, the variablecurrTemp , declared at line 14, is not rele-
vant for the model, since its value is never used in any model statement, but it
is assigned in the model statement at line 17. In order to produce compilable
simulation models, there cannot be references to variableswhich are not in-
cluded in the model, since they would not be declared. Therefore, each lexeme
of identifier type in every model statement needs to be checked if referencing
an irrelevant symbol, i.e., a symbol which is not a model symbol. There are
two alternative solutions for handling irrelevant symbol references: (1) trans-
form the statement in order to remove any references of irrelevant symbols
or (2) include irrelevant symbols as “dummy” symbols which declarations are
model statements. Note that this issue has not yet been addressed in the MXTC
tool (cf. Chapter 6). This is one of the main remaining issuesbefore working
simulation models can be produced by the MXTC tool.

5.1.4 Control Flow Sensitivity

Katana is not fully control-flow sensitive and may thereforeproduce simula-
tion models which contain some irrelevant statements. Katana assumes that
all assignments of a relevant variable are relevant, independent of where in
the code they occur. Moreover, Katana assumes that every return statement in
model functions are relevant since a conditional return statement may prevent
later model statements in the local function from being executed. This is an
over-approximation, since some of these statements might actually not impact
the relevant statements. For instance, consider the following example, where a
local variable is used for two different, unrelated purposes. Similar cases have
been encountered several times when studying industrial code.

1: void func(int p)
2: {
3: int status;
4: status = foo(p);
5: if (status < 0)
6: {
7: query = 1;
8: }
9: status = bar(p);

10: if (status < 0)
11: ...

The assignment of the variablequery , at line 7, is beforehand known to be
relevant and is the starting point of the example. The condition at line 5 is

5.1 The Katana Approach to Program Slicing 115

also relevant, since it guards the statement at line 7 (Rule D). This makes the
variablestatus relevant, since it is used in the condition at line 5. Since
Katana considers all assignments of a model symbol as relevant (Rule C), the
assignment ofstatus at line 9 will also be included, which implies that the
functionbar() is also included, without being actually relevant. The return
statements ofbar() may in turn include many other irrelevant statements.

Note however that Katana does not completely disregard control-flow, since
it identifies all conditional statements which guard identified model statements.
This is however a quite simple analysis, performed on demand, by searching
backwards in the lexeme list. Katana does not construct any control-flow graph
or similar for this purpose.

5.1.5 Handling of Function Calls

A problem in early approaches to program slicing, such as theinterprocedural
solution by Weiser [25], was the handling of function calls,i.e., to correctly
follow dataflow through function call parameters and returnvalues. According
to Horwitz et al. [23], the “chief difficulty in interprocedural slicing is correctly
accounting for the calling context of a called procedure”. For instance, if the
return value of a functionfoo is used in a relevant assignment or condition, it
naturally makes the specific call offoo relevant, but this does not mean that all
calls of foo are automatically relevant. Therefore, when analyzing a formal
parameter in order to identify the relevant call arguments,it is important to
include the relevant calls only.

Katana solves the context sensitivity problem in the following way. As
previously introduced, Katana classifies model functions either as LMR (lo-
cally model-relevant) or GMR (globally model-relevant). ALMR function is
a function which is not a GMR function, but found model-relevant since its re-
turn value is used in a model statement, or since the functiontakes a pointer to
a model symbol as argument, used to modify the model symbol inthe current
function or in any callee, direct or indirect.

A GMR function is a function which calls a model focus function, or which
assigns/modifies a global variable, or which calls another GMR function. Thus,
the GMR functions correspond to the combined incoming call graph of (1) the
model focus functions and (2) the functions assigning model-relevant global
variables. The identification of GMR functions caused by model focus func-
tions is the first step of Katana and is performed through a recursive upstream
call-graph search, i.e., from callee to caller, starting inthe model focus func-
tions. Every function found in this search is a GMR function and the func-

116 Chapter 5. A Method for Automated Model Extraction

tion calls followed are thereby model statements. The base condition is when
a function is already marked GMR, or when no callers exists (i.e., the entry
function). In this way, additional attempts to mark a function as GMR will not
cause recursion, but only a single lookup on GMR status.

The main purpose of the LMR/GMR classification is when analyzing for-
mal parameters. When a formal parameter is recognized as a model symbol,
the analysis should naturally follow the dataflow upstream in order to analyze
the corresponding call arguments, which implicitly assignthe formal parame-
ter. If the formal parameter belongs to a GMR function, all calls are relevant by
definition. However, for LMR functions, only the call where the LMR function
was encountered is considered relevant and thereby explored.

Note that a LMR function can change status to GMR, if it assigns a global
variable which later is recognized as a model symbol, or if a callee later be-
comes GMR. In that case, the relevant formal parameters of the function needs
to be analyzed again, in order to include all calls of the function. The calls
already analyzed under LMR assumptions can be excluded fromthis analysis.

If an encountered LMR function already has been analyzed in aprevious
model statement, noSliceoperation is performed on the function. This is de-
tected using theanalysis cache(cf. Section 5.2) and if this is the case, the
dataflow analysis jumps directly to the function call arguments corresponding
to those formal parameters already recognized as model symbols.

Recursive calls are handled correctly by Katana. The calls are recognized
as model statements if relevant, but the functions are processed at most once,
due to the analysis cache (cf. Section 5.2). Recursion is notreally a problem
in Katana — since no value analysis is used, there is no need for separating
different instances of local variables during recursion.

5.1.6 Data structures

Katana allows for analysis of individual members of data structures through
the use ofsymbol expressionsandsymbol reference filters.

A symbol expression is constructed from a symbol reference and represents
an expression consisting of one or several identifier lexemes. The first identi-
fier is labeled theprimary symbol. This is followed by a list of data-structure
field identifiers, if any, reduced into a minimal form as laterdescribed in this
section. A symbol expression is represented by a list ofsymbol specifiers, each
consisting of the symbol’s datatype name (with any typedefsresolved) and the
symbol name.

5.1 The Katana Approach to Program Slicing 117

A symbol expression may represent a function call with respect to its re-
turn value, using the function name as the primary symbol. When theSlice
function detects that the primary symbol is a function, it continues the recur-
sive analysis with all symbols used in return statements of the function. Func-
tion arguments are considered as separate symbol expressions compared to the
statement where the function is called (and the return valueused). Arguments
symbols are therefore not included in function symbol expressions. Any array
index expressions also constitute separate symbol expressions.

A symbol expression is constructed from a symbol reference through a scan
for identifiers, on the lexeme level. The scan starts at the lexeme corresponding
to a reference of the primary symbol, and adds all encountered identifiers to the
symbol expression until a disallowed lexeme is found, such as a semicolon or
a comma. If a left bracket (of an index expression) or a left parenthesis (of
a function-call argument list) is found, the scan jumps to the matching right
parenthesis/bracket. The scan may find “odd” right parenthesis, where the cor-
responding left parentheses is before the lexeme where the scan started, e.g.,
due to type casting. Such right parenthesis are accepted without action.

Thus, a symbol expression corresponds to a list of adjacent identifier lex-
emes which only may be separated by (any valid combination of) the following
lexemes:

• member operators, e.g,foo.bar ” or foo->bar

• function call argument blocks, e.g.,foo(arg1, arg2)->bar

• index blocks, e.g.,foo[i][j]->bar

• right parentheses, e.g.,((MyType *)foo)->bar

Note that the expressions within call argument blocks or index blocks are not
ignored completely by Katana, but they become separate symbol expressions.
Code examples with corresponding symbol expressions follow below.

Source code example Symbol expressions
int foo = bar; (foo),(bar)
int * foo = & bar->f2; (foo),(bar,f2)
foo[i] = func(j) (foo),(i),(func),(j)
foo->bar[func(arg)].val (foo,bar,val),(func),(arg)
func(arg)->val (func,val),(arg)

All examples contain at least two symbol expressions, whichin the right
column are delimited using parentheses. Note that the symbol type information
is omitted from the field specifiers in this example.

118 Chapter 5. A Method for Automated Model Extraction

Linked data structures, such as graphs or linked lists, may cause problems
since they allow for multiple ways of referring to the same data structure field,
through the same primary symbol. For instance, in a linked list there is no
point in separating betweenp->next andp->next->next . There is nat-
urally a semantic difference between the expressions, but Katana only iden-
tifies potential dependencies between symbols and cannot separate the linked
lists nodes, since the possible values of variables (e.g., link pointers) are not
known. Katana therefore abstracts from repeated (or cyclic) link references.
This is achieved by reducing symbol expressions into a minimal form, by “fold-
ing” (i.e., removing) any duplicated field specifiers while preserving their rel-
ative order. Thereby, bothp->a->a andp->a->a->a will be folded and
treated likep->a . An expression on a cyclic linked data structure will pre-
serve the first unique identifers, but fold any repeated sequences. This means
that p->a->b->a->b is folded intop->a->b , assuming thata andb are
link pointers, i.e., of the same datatype asp. This way, the number of possible
symbol expressions for any given symbol is finite and limitedby the defined
datatypes.

A symbol reference filterdetermines if a particular symbol expression is of
relevance for the current dataflow analysis (Sliceoperation). Only symbol ref-
erences where the referenced symbol expression matches thecurrent filter are
considered relevant and thereby analyzed further. The mainmotivation behind
the filter system is to separate between relevant and irrelevant data structure
fields. The filter is a list of identifiers, in the same manner assymbol expres-
sions. Filters are constructed in the same way as symbol expressions; symbol
reference filters do not include function call arguments or array index expres-
sions, and expressions containing repeated use of link pointers are folded into a
minimal form. Thereby, the folding is applied symmetrically, to both the sym-
bol reference filters and the symbol expressions, which makes the matching
correct.

A particular symbol expressionSEmatches a symbol reference filterF if
SEis identical to, or a prefix ofF, i.e., if every field specifier inSEexists inF
at the same location.

Thus, a filter(foo, bar)will accept the expressionsfoo andfoo->bar ,
but not longer expressions likefoo->bar->val . The prefix rule is moti-
vated since a primary symbol of pointer type defines the context (address) of
any following field symbols. For instance, for the filter(foo, bar)also assign-
ments offoo are relevant since the value offoo is used in relevant assign-
ments offoo->bar . Another reason why a data-structure pointer likefoo
is relevant by itself is that all aliases must be analyzed in order to find other

5.1 The Katana Approach to Program Slicing 119

pointer assignments of relevant fields, in this casebar .
It is however possible to specify a less strict symbol reference filter by

using the codeANY. The reason for this is the analysis of arguments to model
focus functions. If a data structure pointer is passed as argument to a a model
focus function, e.g.,ipc_send(msg) , then all fields of the data structure are
relevant for the model. (The possibility to relax this assumption is discussed
in Section 5.7). For filters ending withANY, symbol expressions containing
the specified identifiers plus any additional field specifiersare also considered
relevant. Thereby, given a filter(foo, bar, ANY), then the expressionsfoo and
foo->bar will match the filter, as well as other symbol expressions beginning
with the primary symbolfoo , followed by bar as the first field reference.
Note thatANY is only allowed in the end, as the last field specifier of a filter.

The symbol reference filter for newly discovered model symbols are con-
structed by “projecting” the current filter with respect to the source and target
symbol expressions of the dataflow dependency2 at hand. The projection is
a transformation where symbol specifiers are added and/or removed from the
current filter, in order to produce a filter for the new primarysymbol about to
be analyzed.

The projection of symbol reference filters is performed whenSlicecalls
itself recursively in order to explore a symbol which has been found to impact
the model symbol under analysis. An interesting property isthat the projection
is symmetrical, it is performed in the same way independent if the analyzed
dataflow dependency is “upstream” (from target to source) or“downstream”
(from source to target). In both cases, the projection is a transformation of the
filter string, which can be described as a function

NF = getNewFilter (CSE ,CF ,NSE)

which returns the new symbol reference filter,NF, given:

• CSE: The current symbol expression, i.e, a reference of the currently
analyzed model symbol.

• CF: The current filter (symbol reference filter), i.e., whichCSEmatched.

• NSE:The new symbol expression to use when analyzing the new model
symbol (i.e, through a recursive call ofSlice).

2Examples of dataflow dependencies are assignment statements and function calls, i.e., the
dependency between a function call argument and the corresponding formal parameter.

120 Chapter 5. A Method for Automated Model Extraction

Note that “current” and “new” have different meanings depending on whether
the dataflow dependency is analyzed “upstream” or “downstream”. In the up-
stream case (from dataflow target to dataflow source), “current” refers to the
dataflow target, while “new” refers to a dataflow source. In downstream anal-
ysis, i.e., when following forwarded pointers, the meaningof “current” and
“new” is swapped. The new filter is calculated in the following way:

1. If there is a new field specifier inNSE, i.e., which does not exist inCF,
thenNF equalsNSE. This is the case when a new dataflow analysis be-
gins and the filter is empty.

2. If all field specifiers inNSEdo exist inCF (i.e., not counting the primary
symbol) or ifNSEonly contains a single identifier (the primary symbol),
the new filter NF depends onCF andCSEin the following way:

(a) Construct the first part ofNF by adding each identifier inNSEto
NF, unless a symbol specifier of the same datatype already exists
in NF. The relative order of the identifiers must be preserved.

(b) ExtractUF, the unused (and rightmost) part ofCF, from CF by
removing all identifiers fromCF which occur inCSE. This should
remove at least the primary symbol, i.e., the first identifierof CSE.
If CSEequalsCF, i.e., a complete match, thenUF will be empty,
as there are no unused parts.

(c) Append each identifier inUF (if any) to the end ofNF, unless a
symbol specifier of the same datatype already exists inNF. The
relative order of the identifiers must be preserved.

The projection of symbol reference filters (getNewFilter) is illustrated us-
ing a code example, presented below. The analysis begins with the call of the
model focus function “alarm”. The relevant statements are thereafter identified
according to the Katana algorithm, formally defined in Section 5.3.

The first symbol expression (step 1) is found in the if-statement condition.
Sinces is the first model symbol of a new data-flow analysis, there is no previ-
ous filter, so the new filter (NF) to use when analyzing the reference to the new
symbolswill equalNSE, i.e., the symbol expression found in the condition.

In step 2, the only reference ofs is analyzed and found relevant, since it
matches the filter from step 1, i.e., “s, sn, pos”. The source expression in the
assignment,s1, becomes a model symbol with the filter “s1, pos”, asposwas
not used byCSE, i.e., “s1, sn”.

5.1 The Katana Approach to Program Slicing 121

The model symbols1 leads to the inclusion of three model statements, in
steps 3, 4, and 5, but only in the statement of step 5 a new modelsymbol is
found: the formal parameterfp in the functionupdate.

typedef struct{
short pos;
short * adr;

} SENSOR;

typedef struct{
SENSOR* sn;

} SYSTEM;
Step CSE CF NSE NF

SENSOR s1 = {0, 0x0210}; 3 s1 s1, pos n/a n/a

void update(SENSOR * fp)
{

fp->pos = bar(fp->adr); 6 fp, pos fp, pos bar bar
}

void foo()
{

SYSTEM s;
s1.pos = 0; 4 s1, pos s1, pos n/a n/a
s.sn = & s1; 2 s, sn s, sn, pos s1 s1, pos
update(&s1); 5 s1 s1, pos fp fp, pos
if (s.sn->pos == 0) 1 n/a n/a s, sn, pos s, sn, pos

alarm(); MFF call
}

The statement at step 5 is relevant since a pointer to a model symbol (s1) is
passed as argument (Rule G). The formal parameter receives the filter “fp, pos”,
which means that the assignment at step 6 matches the filter and thereby is a
model statement. At this point we end this example (which otherwise would
have continued with the symbols used in the return statement(s) in thebar()
function).

Unions is a potential problem for this approach, i.e., overlayed data struc-
tures, where the same memory address may be accessible usingmultiple sym-
bols (i.e., union members). Since Katana is a symbolic method, i.e., unaware of
the actual memory layout, unions are treated like normal data structures. This
is a valid simplification in most cases, for well structured code, but it is possi-
ble to construct examples where Katana would miss relevant statements due to
unstructured use of (conflicting) union expressions. This is however bad pro-
gramming style and is believed to be unlikely in industrial software systems.
Solving the union issue requires that each data structure member is translated to
a memory address offset, which requires a memory model specifying the size
of primitive datatypes as well as padding/alignment policies of the compiler.
This is not addressed in this thesis, but could be a future extension.

122 Chapter 5. A Method for Automated Model Extraction

5.1.7 Pointers, Arrays and Function Pointers

The pointer analysis is a major difference between Katana and previous ap-
proaches for program slicing. The traditional approach is to resolve pointers
before performing program slicing, i.e., a points-to analysis which finds the
variables which each pointer may refer to. In Katana, pointers are handled
much like any other variable in the sense that no separate pre-analysis is per-
formed, they are instead analyzed on demand. During the evaluation of Katana,
each model symbol is searched for assignments of any type (direct or pointer
dereference), as well as locations where the address of the model symbol is
obtained using the address-of operator (i.e.,ptr = &foo;). Thereby, the
definition of relevant pointers are captured, as well as all dereference assign-
ments through these pointers (i.e.,* ptr = bar;). As defined by Rule M,
such pointers become model symbols they are used in a relevant dereference
assignment, or if they are part in a dataflow leading to such anassignment.

In studies of industrial code, it has been observed that manyfunctions takes
as parameter a pointer to a large data structure, but only modify a small sub-
set of the fields. The additional condition in Rule M, i.e., that the forwarded
pointer must actually be used in a relevant dereference assignment, is an op-
timization in order to reduce the number of falsely included, irrelevant state-
ments. Otherwise, if considering every case of pointer forwarding from model
symbols as relevant, many unnecessary function calls wouldtherefore be in-
cluded, where the called functions does not contain any model statements. This
might not sound like a big problem, since the model versions of these functions
would be empty. However, if the calls are guarded by conditional statements,
all symbols found in those conditions would falsely be considered relevant and
thereby cause other irrelevant statements to be included.

For each case of pointer forwarding detected, Rule M impliesthat Katana
inspects the local analysis result, i.e., the local recursive branch, originating
in the forwarded pointer and current filter. If no model statements have been
found (i.e., due to at least one relevant dereference assignment), the pointer
forwarding statement is deemed irrelevant.

The Katana approach to handling pointers is not waterproof,since it is
symbolic and unaware of the run-time memory layout (as discussed earlier,
regarding unions). It is therefore possible to construct examples where Katana
will fail to identify relevant pointer dereference assignments. Katana requires
that there exist some statement which “connects” the model symbol and the
pointer, i.e., by assigning the address of the symbol to the pointer. If a pointer
is defined without using the model symbol it will not be detected. For instance,

5.1 The Katana Approach to Program Slicing 123

consider the following case:

1: int a = 0, b = 0;
2: int * ptr = & a;
3: ptr++;
4: * ptr = 1;

If b is a model symbol, the assignment at line 4 is actually relevant since the
pointerptr , which originally pointed ata, is incremented at line 3 and after
that points at the following memory address, whereb resides. This cannot be
detected by Katana since there is no obvious connection between the symbols
a andb; the dependency is only due to the adjacent memory addresses. This
is however not a unique limitation of Katana, but a problem for all tools do-
ing symbolic pointer analysis. For instance, the commercial tools CodeSurfer
[123] and Imagix 4D [135] cannot detect such dependencies either. These tools
are compared against Katana in Chapter 6.

A pragmatic solution to the above exemplified problem, i.e.,when pointers
are modified using arithmetics, is to simply detect such statements and report
them as warnings. Since pointer arithmetics is hardly good programming style
and hopefully not very common, it is reasonable to suggest that such code, if
found, is refactored in order to make it analyzable and more generally main-
tainable.

Arrays are treated differently than data structures, even though both are
used to structure data. The difference is that array expressions typically involve
index variables. Since Katana is not aware of the possible values of symbols,
it is not possible to separate between different array elements when a variable
is used in an index expression. Katana therefore treats all references of an
array as equal references to a single variable. There is however one exception:
two array expressions can be separated if the index expressions in both cases
are single constant only. In such cases, the names of the index constants are
treated like data-structure field names. This is most likelyan unusual way to
use arrays, but was observed in industrial code during the evaluation and this
exception was therefore implemented in the MXTC tool.

Function pointers can be resolved in two ways. In order to findany func-
tion pointer calls of already known model functions, e.g., GMR functions, the
solution is straight-forward and similar to how normal pointers are handled in
Katana. Whenever a model function is detected, for any reason, all statements
are identified where the address of the model function is assigned to a func-
tion pointer. The forwarding of the function pointer is thenexplored (i.e., all
aliases of the pointer) with the purpose of finding function pointer calls, which

124 Chapter 5. A Method for Automated Model Extraction

are added to the callers list of the model function. The second case is when a
function pointer call is found in a potentially model-relevant statement, i.e., an
LMR function pointer call. In this case, the called functionpointer might not
be previously known, and must in that case be backtracked in order to find all
possible functions to which the function pointer may refer.This is a bit similar
to general pointer analysis, but unlike traditional pointer analysis, this is not a
whole-program analysis which resolves every pointer in theprogram. This is a
limited analysis of specific function pointers which have been encountered in
relevant statements.

Note that the proposed solution for handling function pointers is however
not yet implemented in the MXTC prototype. In the MXTC evaluation pre-
sented in Chapter 6, the source code was modified in order to replace all func-
tion pointer calls with equivalent static function calls.

5.1.8 Library Routines

Library routines, for which the source code is not available, can be ignored by
Katana if they are reentrant, i.e., without side-effects. Examples include most
math library functions, e.g.,abs() , sqrt() andcos() . When calls to reen-
trant library functions are found in a model-relevant statement, Katana will skip
the function body and instead directly explore the arguments of the function.
This assumes that identical library functions are available in the target simula-
tion environment. Calls to non-reentrant library functions like “memcpy” and
“sprintf”, which write to memory specified via an input pointer, are relevant
when a pointer to a model symbol is used as argument. In such cases, all call
arguments become model symbols and are analyzed accordingly. Functions
which have other “hidden” side-effects (e.g., “malloc”) should be specified
as model focus functions if their side-effects are relevantfor the model. The
Katana input should include lists of reentrant and non-reentrant API functions.
If a function call is found to an undefined function which is not in this list, it is
reported as an error.

5.2 Algorithm Efficiency

Since a particular symbol may be used at many locations in thesource code, it
is crucial for efficiency to avoid repeating already performed analysis jobs, i.e.,
Sliceoperations with specific parameters. This is achieved usingan analysis
cache, a hash table where the parameters of each started analysis job are stored

5.2 Algorithm Efficiency 125

at the very beginning of the analysis job, before any recursive calls are made.
Before a new analysis job is started, the analysis cache is checked in order

to determine if the job has been performed already, or at least been started
in another branch of the recursion. In that case, the specificanalysis job is
redundant and will therefore not be started.

The lookup in the analysis cache naturally require some computational
time, both for constructing the key based on the parameters and for search-
ing for the key in the analysis cache hash table. But the important thing is that
the recursion is stopped, so that repeated redundant analyses are avoided.

Since the analysis cache is implemented using a hash table, in the theoret-
ical worst case, a lookup may correspond to a linear search, where the match
is not found until all entries have been checked. This is however extremely
pessimistic; in the average case a hash lookup is quite fast,much faster than
repeating the analysis of an expression every time it occurs.

Since each symbol reference is analyzed at most once and since these re-
cursive analysis jobs represent the core operation of the Katana algorithm, the
runtime of Katana is typically linear to the output (slice) size. The memory
usage of Katana mainly depends on:

• the size of the symbol database, which typically is dominated by, and
directly proportional to the program size, specifically thenumber of lex-
emes, symbols and symbol references,

• the recursion stack size, bounded by the number of symbols,and

• the analysis cache size, also bounded by the number of symbols.

Thereby, the memory usage is typically linear to the programsize, since
only identifier lexemes have symbol references, and usuallyonly one each.
The theoretical worst-case complexity is however harder toreason about. The
number of analysis jobs is in worst case equal to the number ofunique symbol
expressions in the code, which is a measure of program size, but we do not
know how the runtime of an individual analysis job depends onthe program
size, since the lookup operations on the symbol database areonly defined on
a high level, leaving much to the implementation. The algorithmic complexity
these, on which the algorithm relies on, is therefore unknown. In the prototype
implementation of Katana, this depends on the API of the Understand tool for
which the source code is not available for study.

126 Chapter 5. A Method for Automated Model Extraction

5.3 The Katana Algorithm

Formally, the Katana algorithm can be described as a function, Katana, which
takes as input a set of model focus functions, and returns a set containing the
relevant statements (i.e., the program slice). This main function depends on a
set of functions with recursive dependencies, as depicted by Figure 5.6.

Katana

FunctionSlice

Slice

SmtSlice
DDSlice

ParamSlice

ReturnSlice

DownStrSmts

AsnSlice

CondSlice

Figure 5.6: The Katana algorithm illustrated

Figure 5.6 illustrates the relations between the Katana functions. In this
graph, nodes correspond to the functions presented later inthis section, and
edges to call-by relations, i.e., the propagation and accumulation of analysis
results. The edge fromFunctionSliceto Katanameans thatFunctionSlicere-
turn results toKatana, and thereby implies thatKatanacalls FunctionSlice.
Note that this description does not include all aspects of Katana. In order to
simplify the conceptual understanding several details have been omitted, for
instance the analysis cache, the handling of symbol reference filters and details
regarding detection and considerations of LMR and GMR functions. These as-
pects have however been extensively described previously in this chapter. This
section mainly focuses on the recursive exploration of the program dependen-
cies, through the symbol database representation.

5.3 The Katana Algorithm 127

In the following function definitions, the following datatypes are used:
Symbol, StatementandBoolean. Braces are used to indicate sets of items with a
specific datatype (i.e.,{Datatype}). The following notation is used to specify
the datatypes of function parameters and result:

Name : Datatype
1

Param1, . . . , DatatypeN ParamN → Datatype

First presented is the functionsOnEachandOnEach2, commonly used in
the later algorithm description. These are not visible in the illustration (Fig-
ure 5.6) in order to make the algorithm illustration more readable. However,
most edges in the illustration correspond to an OnEach operation. In the below
definitions,Item represents any datatype.̥1 and̥2 represent any function
which return a set of statements and which takes one or two parameters, re-
spectively.

OnEach : Function ̥1, {Item} S → {Item}
OnEach applies a function̥ to every element in the setS, and returns the
union of the function results.

OnEach(̥, S) =
⋃

x∈S

̥(x)

OnEach2 : Function ̥, {Item} S, Item a → {Item}
OnEach2 allows for functions with two parameters (̥), where the second,a,
is common for all items inS.

OnEach2(̥, S, a) =
⋃

x∈S

̥(x, a)

Several other supporting functions are used in the below function defini-
tions. These are presented informally in Section 5.4 and correspond to low
level analyses using the symbol database functionality, typically lookups of
references and various analyses performed on lexeme-level.

128 Chapter 5. A Method for Automated Model Extraction

Katana

Katana: {Symbol} MFFs→ {Statement}

The main function of the Katana algorithm, which returns allmodel statements
of relevance, with respect to a set of model focus functions represented as
Symbols.

Katana(MFFs) = OnEach(FunctionSlice, MFFs)

FunctionSlice

FunctionSlice: Symbol Sym→ {Statement}

Returns all statements of relevance for the execution of a model focus func-
tion, represented as a Symbol. This include all statements involved in deciding
when the function is called and all statements which impact the values of the
arguments.

FunctionSlice(Sym) =

OnEach(Slice, AllCallArgs(Sym)) ∪

OnEach(SmtSlice, AllCallers(Sym))

Slice

Slice: Symbol Sym→ {Statement}

Returns all statements of relevance for the specified symbol, i.e., the backwards
slice. Since the slicing is not control-flow sensitive, the result includes all
statements which may impact the symbol at any point in the program.

Slice(Sym) =

DDSlice(Sym) if ¬IsFunc(Sym)∧

¬IsParam(Sym)

DDSlice(Sym) ∪ OnEach2(ParamSlice,

CallerSmts(DefFunc(Sym)), Sym) if IsParam(Sym)

DDSlice(Sym) ∪

OnEach(ReturnSlice, ReturnSmts(Sym)) if IsFunc(Sym)

5.3 The Katana Algorithm 129

DDSlice

DDSlice: Symbol Sym→ {Statement}

Returns all statements of relevance for direct or downstream assignments of
the specified Symbol. A downstream assignment is an assignment through a
pointer dereference, where the specific pointer has been assigned the address
of the specific symbol, either directly using the “address-of” operator, or indi-
rectly, from another pointer variable.

DDSlice(Sym) =

OnEach(AsnSlice, AsnSmts(Sym)) ∪

OnEach(DownStrSmts, PtrUseSmts(Sym))

ParamSlice

ParamSlice: Statement Smt, Symbol Sym→ {Statement}

Returns all statements of relevance for the execution of thespecified function
call (Smt) as well as statements of relevance for the function argument match-
ing the specified formal parameter, Sym.

ParamSlice(Smt, Sym) = SmtSlice(Smt) ∪ Slice(ArgOfParam(Smt, Sym))

SmtSlice

SmtSlice: Statement Smt→ {Statement}

Returns a set of statements containing the input statement (Smt) and all other
statements of relevance for the execution of Smt, i.e., all guarding conditions
and all statements of relevance for these conditions.

SmtSlice(Smt) = {Smt} ∪ OnEach(CondSlice, CondSmts(Smt))

130 Chapter 5. A Method for Automated Model Extraction

CondSlice

CondSlice: Statement Smt→ {Statement}

Given a statement, CondSlice gives a set of statements, which for a condi-
tion statement includes all statements of relevance for thecondition. For other
statements (without conditions), the set only contains theinput statement.

CondSlice(Smt) =
{

{Smt} ∪ OnEach(Slice, Symbols(Smt)) if | CondSmts(Smt) |> 0

{Smt} if | CondSmts(Smt) |= 0

AsnSlice

AsnSlice : Statement Smt, Symbol Sym → {Statement}

Returns all statements of relevance for a specific assignment statement (Smt).
They are:

1. All local control-flow statements (conditions) who directly impact when
the control-flow reaches the specific statement. This corresponds to the
use of SmtSlice on Smt.

2. All statements of relevance for the source parts of the assignment, ex-
cluding arguments to function calls. Call arguments are analyzed later,
when formal parameters of the called function have been found relevant
with respect to the function return value.

3. If the Symbol is a global variable, all calls of the scope function and all
statements controlling these calls are also included, since they are GMR
functions. Otherwise, relevant function calls might be excluded, when
they do not have parameters.

AsnSlice(Smt, Sym) =

SmtSlice(Smt) ∪

OnEach(Slice, Symbols(Smt)) ∪

OnEach(SmtSlice, AllCallers(Smt)), if IsGlobal(Sym)

SmtSlice(Smt) ∪

OnEach(Slice, Symbols(Smt)), if ¬IsGlobal(Sym)

5.3 The Katana Algorithm 131

DownStrSmts

DownStrSmts: Statement Smt, Symbol Sym→ {Statement}

Returns all statements of relevance due to dereference assignments of pointers
“forwarded” from the symbol Sym, i.e., when the address of Sym (or an ad-
dress stored in Sym) is used in an assignment, function call or function return.
The result is an empty set if the “forwarded” pointer is not used in any relevant
dereference assignments.

1. If Smt is an assignment, where the address of Sym is obtained and as-
signed to a pointer variable, then Sym is analyzed recursively.

2. If Smt contains a function call where Sym is part of a call argument,
where the corresponding formal parameter is of pointer type, then Sym
is analyzed recursively.

3. If Smt is a return statement where Sym is returned and the function is
of pointer datatype, then all calls of the function, i.e., all uses of the
function return value, are analyzed recursively.

DownStrSmts(Smt, Sym) =

OnEach(Slice, AsnTargets(Smt, Sym)), if ¬IsCallArg(Smt, Sym)∨

¬IsReturned(Smt, Sym)

OnEach(Slice, AsnTargets(Smt, Sym)) ∪

Slice(ParamOfArg(Smt, Sym)), if IsCallArg(Smt, Sym)

OnEach(Slice, AsnTargets(Smt, Sym)) ∪

Slice(ContextFunc(Smt)), if IsReturned(Smt, Sym)

ReturnSlice

ReturnSlice: Statement Smt→ {Statement}

Returns all statements of relevance for the specified returnstatement.

ReturnSlice(Smt) = SmtSlice(Smt) ∪ OnEach(Slice, Symbols(Smt))

132 Chapter 5. A Method for Automated Model Extraction

AllCallers

AllCallers : Symbol F→ {Statement}

Returns the function call statements corresponding to the callers graph of the
specified function, i.e., all direct and indirect “incoming” function calls.

AllCallers(F) = CallerSmts(F) ∪ OnEach(AllCallers, CallerSmts(F))

5.4 Supporting Functions

The following supporting functions are assumed by the definition of the Katana
algorithm in Section 5.3. They correspond to low level analyses using the
symbol database functionality, typically lookups of references and analyses on
lexeme level.

• AsnSmts: Symbol → {Statement}

All statements where the specified model symbol is assigned.

• IsGlobal : Symbol → Boolean

True if the symbol is a global variable, else false.

• Symbols: Statement → {Symbol}

All symbols in the specified statement, excluding function call argu-
ments.

• PtrUseSmts: Symbol → {Statement}

All statements where a pointer to the specified symbol is created.

• AsnTargets: (Statement, Symbol) → {Symbol}

All symbols assigned from the specified symbol in the specified state-
ment. In most cases there is only one target symbol, but theremay be
multiple symbols for statements likea = b = c;

• ParamOfArg: (Statement, Symbol) → Symbol

Gives the formal parameter symbol corresponding to the specified func-
tion call argument symbol in the specified function call statement.

• ArgOfParam: (Statement, Symbol) → Symbol

Gives the call argument in a specified call statement corresponding to the
specified formal parameter symbol.

5.4 Supporting Functions 133

• AllCallArgs : Symbol → {Symbol}

Gives all arguments (symbols) used in any call of a particular function,
specified as a Symbol.

• ContextFunc: Statement → Symbol

The function where the specified statement is located.

• DefFunc: Symbol → Symbol

The function in which the provided Symbol is declared.

• IsCallArg : (Statement, Symbol) → Boolean

True if the specified Symbol is an argument in a function call in the
specified statement, else false.

• IsReturned: (Statement, Symbol) → Boolean

True if the specified Symbol is referenced in the specified return state-
ment, else false.

• IsParam: Symbol → Boolean

True if the specified Symbol is a formal parameter of a function, else
false.

• IsFunc: Symbol → Boolean

True if the specified Symbol is a function call, else false.

• CondSmts: Statement → {Statement}

Gives the statements of direct relevance for theexecutionof the specified
statement, in the local function. This includes:

1. all conditions of enclosing selections and loops,

2. all break and continue statements of enclosing loops, and

3. all return statements.

• CallerSmts: Symbol → {Statement}

Returns a list of statements corresponding to all direct calls of a specified
function (the Symbol).

• ReturnSmts: Symbol → {Statement}

Returns a list of statements corresponding to all return statements in a
specified function (the Symbol).

134 Chapter 5. A Method for Automated Model Extraction

5.5 Katana Compared to Related Work

Sandberg et al. [27] propose a program slicing method calledSimpleSlice
which like Katana does not depend on a pre-calculated dependency graph such
as an SDG. SimpleSlice starts from a set of variables and performs a fix-point
iteration over all assignments in the code. Any statement which possibly may
affect the specified variables are added to the output set. The purpose of Sim-
pleSlice is to allow for faster WCET analysis by computing a slice for all vari-
ables used in control-flow conditions of the program. Any statements not in
that slice cannot impact the program control-flow and can thereby be excluded
from the flow analysis step of static WCET analysis, in order to reduce the
computation time.

Like most existing slicing methods which support pointers,SimpleSlice as-
sumes that a points-to analysis has been performed and produced a points-to
set for each pointer, containing the variables possibly pointed to by the specific
pointer. This is a major difference compared to Katana. SimpleSlice and SDG-
based methods resolve pointers beforehand, in a separate “points-to” analysis,
e.g., using the Steensgard approach [73]. In contrast, Katana does not keep
track of what symbols a particular pointer may refer to. Katana simply in-
cludes all statements which forward the address of already identified model
symbols and where the pointer forwarding may reach a relevant pointer deref-
erence modification (e.g., assignments like* ptr = x; or some library func-
tion calls likememset(ptr, ...);).

Enabling support for function pointers however requires a simple form of
points-to analysis, as discussed in Section 5.1.7. The function pointer extension
of Katana is however not applied on the whole source code likethe Steensgard
method, but only on relevant statements and pointer variables, which forwards
addresses of newly identified model functions. The analysisis similar to the
analysis of normal (data) pointers, but instead of searching for dereference as-
signments, the analysis searches for function calls through the function pointer,
in order to add the call to the caller list of the model function.

Unlike Katana, SimpleSlice treats data structures as single variables. Thus,
if SimpleSlice find a particular field of a data structure relevant, it will include
any statement assigning any field of that data structure. Moreover, the Sim-
pleSlice approach is only presented for intraprocedural slicing, i.e., within the
scope of a single function, even though it is claimed that it can be extended for
interprocedural slicing using standard methods.

Another example of a slicing tool which does not use the SDG approach is
the research prototypeSprite[69, 70, 68]. In Sprite, the control-flow of each

5.5 Katana Compared to Related Work 135

function is only represented in an intraprocedural manner and a separate call-
graph is used for representing interprocedural control flow. The data-flow anal-
ysis is performed using the control-flow graph (CFG) representation. Like Sim-
pleSlice, the Sprite tool is flow-insensitive and uses the Steensgard algorithm
[73] for pointer analysis. An interesting aspect of this tool is that it computes all
program representations on demand, to the extent it is possible; the CFGs and
points-to information is calculated on the first slice computation, while control-
dependencies and data-flow information are calculated on demand during the
slicing. This is also the approach of Katana, but Katana is even more “on de-
mand” than Sprite, only the symbol database is pre-calculated. Katana does
not use the CFG representation but instead performs its (limited) control-flow
analysis on the lexeme level.

Compared to traditional SDG approaches, which typically are flow-sensitive,
both SimpleSlice and Katana areflow-insensitive, meaning that they do not take
control-flow (fully) into account. Katana, for instance, assumes that all assign-
ments of a relevant symbol are relevant, even though some assignments may be
“killed” by later assignments of the same symbol. In contrast, aflow-sensitive
approach uses an exact model of control-flow and can thereby remove more
statements due to the control flow constraints. Katana can beextended to allow
for flow-sensitive slicing using the same conceptual approach, but it has not
been investigated how that would impact the efficiency of thealgorithm or the
accuracy of the result. This is planned for future work.

The author is aware of two commercial tools with support for program
slicing or dataflow analysis: Grammatech CodeSurfer [123] and Imagix 4D
[135]. CodeSurfer explicitly supports program slicing, using a variant of the
SDG approach proposed by Reps et al. [21]. The CodeSurfer tool is a spin-
off from the Wisconsin program slicing group, headed by Horwitz and Reps,
who originally proposed the SDG-based approach to program slicing. At their
website [121] they state that CodeSurfer is limited to a maximum of 200.000
lines of code.

Imagix 4D is not claimed to do program slicing, but has a feature called
“Calculation Tree” which identifies the statements which are involved in the
dataflow which define a specific variable. This is very similarto program slic-
ing. The difference is that Imagix 4D does not produce a full executable slice,
since it does not perform analysis of relevant conditions for the identified state-
ments. It is not known what method that is used in Imagix 4D, asit has not been
published, from what the author could find. It seems to be a trade secret of the
Imagix Corporation. It however seems likely that also this tool uses the SDG
or similar approach. The SDG approach has dominated the research focus in

136 Chapter 5. A Method for Automated Model Extraction

program slicing since the early 1990’s and Imagix 4D seems tohave similar
scalability problems as CodeSurfer, which is known to use the SDG represen-
tation. Using the Calculation Tree analysis of Imagix 4D requires many hours
of analysis for larger code-bases, as presented in Chapter 6. During this time,
the tool probably generates some type of model of the whole program, since
this step is very time consuming but only necessary once for each project, and
once this is completed there is no significant delay when using the Calculation
Tree feature.

A big difference between Katana and other slicing approaches is the use
of a symbol database as program representation, instead of more advanced
representations, such as the CFG, PDG or SDG. The Katana approach avoids
computationally costly analyses of the whole program, suchas constructing
an SDG. In Katana, only statements which are known to be (or most likely)
relevant are analyzed in detail, while the others are ignored. The only whole-
program analysis is the initial generation of the symbol database, but this is
very fast, as indicated by the performance evaluation presented in Chapter 6.

5.6 Limitations of Katana

This section presents the conceptual limitations of the Katana algorithm, which
is not the same as the current status and implementation limitations of the
MXTC prototype implementation, presented in Section 6.1. The main con-
ceptual limitation of Katana is that it is unaware of the realmemory addresses
of symbols and functions, which makes it impossible to resolve pointers as-
signed direct explicit addresses, i.e., from literal expressions, or pointers which
are modified using arithmetics. For the same reason, statements which modify
relevant data trough accidental buffer overflow or “rouge pointers” are not de-
tected. Typecasting between different datastructures cannot be followed with
maintained accuracy; all fields of the new data structure areconsidered as rel-
evant in this case. Unions are treated like normal data structures (struct), and
unstructured, mixed use of union overlays, where differentidentifiers refer to
the same data, will not be handled correctly.

These limitations are however not unique for Katana but alsopresent for
tools using more detailed but less scalable analysis methods, for instance the
commercial tools Imagix 4D [135] and CodeSurfer [123]. However, cases of
pointer arithmetics, problematic typecasting and unstructured union usage can
at least be detected by a tool implementing Katana. Such statements are often
“shortcuts” which could have been implemented in a more structured (and an-

5.7 Possible Extensions of Katana 137

alyzable) manner. It is therefore fair to assume that the user could modify such
statements in order to make the code analyzable and to improve its general
maintainability.

Katana is not fully control-flow sensitive, but this is not a conceptual lim-
itation of the algorithm. It does not limit the applicability and it is possible to
extend Katana to support at least intraprocedural control-flow analysis without
conceptual changes of the algorithm. This change only impacts the implemen-
tation of AsnSmts andPtrUseSmts , which are “supporting functions” of
Katana, as presented in Section 5.4.

5.7 Possible Extensions of Katana

This section presents possible future improvements of the Katana algorithm
on a conceptual level. Note that these extensions do not reflect the current
implementation status of the MXTC prototype. The status of the MXTC tool
and remaining issues can however be found in Chapter 6.

Flow-Sensitivity: The Katana approach (and the MXTC prototype) is in
the described version flow-insensitive, meaning that all assignments of a rele-
vant variable are considered relevant. This is an over-approximation, since not
all assignments may reach the relevant statement where the specific symbol
is used. During studies of industrial code, several cases have been observed
where a single local variable is used for several purposes, e.g., to store re-
turn values from different, possibly completely independent functions. In such
cases, a control-flow sensitive approach would give a more accurate result
(smaller output models). Even though the control-flow analysis will require
extra analysis in order to exclude some statements, this mayactually reduce
runtime when the reduction in output size is large, as the runtime of MXTC is
mainly dependent on output size, not the total program size.

Task Dependency Analysis:In many embedded systems, tasks commu-
nicate using various methods forinterprocess communication, or IPC, typi-
cally message queues. An IPC message is typically a data structure, containing
several fields. Normally, a set of “standard” fields are always available, such
sender ID and message code, i.e., how to interpret the rest ofthe message. Cur-
rently, Katana does not treat IPC functions differently than other model focus
functions, so all arguments of IPC operations are considered relevant, includ-
ing all parts of sent IPC messages. However, it is not certainthat all fields
are actually used by the receiving task, especially in the code resulting from
the model extraction. An interesting optimization would beto, instead of as-

138 Chapter 5. A Method for Automated Model Extraction

suming that all fields of outgoing IPC messages are relevant,identify the fields
in outgoing IPC messages actually used by the receiving tasks in the resulting
simulation model. This way, unused message fields can be excluded from the
analysis, which most likely leads to reduced model size.

Manual Abstractions: An interesting extension is to provide support for
manually specifiedmodeling abstractions, which may reduce the output size
significantly. An obvious type of abstraction would be to replace a condition
with a constant, or a probabilistic expression, in order to exclude the condition
variables from the model and thereby possibly all statements which impact
those variables. However, in order to benefit from such abstractions,all refer-
ences to a specific variable must be removed. It is important that the modeling
abstractions are valid with respect to the purpose of the model, but typically
one could exclude error-checking conditions if the model isfor average case
performance analysis. Based on seven years of research during which several
industrial software systems have been studied with simulation model extrac-
tion in mind, it is the author’s belief that a small amount of carefully selected
modeling abstractions in many cases can reduce the model size significantly.
The modeling abstractions can be stored as code annotations(comments) ad-
jacent to the condition in focus. Thereby, the modeling abstractions remain in
the code for automated reuse during future model extractions.

Supporting C++: Another possible extension is to support C++. Katana
is currently limited to C. An extension to full C++ support, or other object
oriented languages, is probably possible but most likely hard. C++ is often
claimed to be a nightmare for reverse engineering tools due to language fea-
tures like templates, virtual functions, operator overloading, multiple inheri-
tance and exceptions. However, in many embedded systems, only small parts
are written in C++ and these parts often only use basic features of the C++
language. A realistic extension of Katana in this directionwould be to support
a limited subset of C++, e.g., Embedded C++ [128]. This couldbe sufficient
for many systems.

Chapter 6

A Model Extraction Tool and
Evaluations

This chapter presents an implementation of the Katana algorithm presented in
Chapter 5. The tool is namedMXTC – Model eXtractionTool for C. This
chapter presents this implementation and three evaluations performed using
industrial code:

• A performance evaluation of “Understand for C++”, a commercial tool
used for constructing thesymbol database, i.e., the program representa-
tion used, as discussed in Chapter 5.

• An evaluation of MXTC for simulation model extraction, performed us-
ing two 3rd party software systems, where one is a subsystem in ABBs
highly complex control system for industrial robots.

• A comparison between MXTC and two commercial program analysis
tools, CodeSurfer and Imagix 4D, with respect to general program slic-
ing, specifically the scalability and accuracy of the tools.

As introduced in Section 2.4.1, program slicing is a type of program analy-
sis which identifies all program statements of relevance fora particular slicing
criterion, typically a particular variable at a particularpoint in the program.
Program slicing is a key analysis in this approach to automated simulation
model extraction and is realized using a novel approach withbetter scalability
compared to existing approaches.

139

140 Chapter 6. A Model Extraction Tool and Evaluations

6.1 MXTC – Model Extraction Tool for C

MXTC is a research prototype tool with at least two uses: simulation model
extraction and general program slicing, e.g., for program comprehension pur-
poses. The tool is designed for analysis of ANSI C programs only, C++ is not
yet supported. The common GCC compiler implements several extensions of
ANSI C, of which some may cause problems for MXTC in its current imple-
mentation, such as nested functions and loop statements inside expressions.

When used for model extraction, its original purpose, the tool takes as input
a list of model focus functions, as presented in Chapter 5. Being a prototype,
MXTC does not yet output executable model code; the current version outputs
a log file, which lists the statements and symbols of relevance for the model,
i.e., themodel statementsandmodel symbols1. The MXTC tool is however
intended to produce a set of code files containing a simulation model for the
RTSSim simulation framework, presented in Chapter 3. The simulation model
is a filtered version of the original code, with additionalExecutestatements
added to model the tasks’ consumption of CPU time.

When used for program comprehension, the tool takes as inputa single
symbol reference, i.e., a symbol name and a program point where a speci-
fied symbol (e.g., a variable or function) is used. The program point is used
to uniquely identify the symbol in the symbol database. The analysis is not
control-flow sensitive, so any reference of a specific symbolgives the same re-
sult: all statements possibly affecting the value of the symbol, at any location.

The MXTC tool can produce graphical output, an image showinga depen-
dency graph over the identified model statements and symbolsvariables. This
was initially a feature intended to facilitate debugging ofMXTC, but has been
found to be interesting for general program comprehension.An example of
the dependency graph output is provided in Figure 6.1. The graph image is
generated automatically using the DOT tool [126], based on atext file (in the
DOT input format) produced by the Katana analysis.

In the generated visualization, there are two main node types. Statement
nodes (blue) representing model statements and symbol nodes (red) represent-
ing model symbols, except for function return values. Note that this illustra-
tion does not show the statement execution order, only data dependencies and
control-flow dependencies with respect to conditions. Diamond-shaped state-
ment nodes (i.e, blue) represent conditional statements, i.e., loops and selec-
tions. Hexagon-shaped symbol nodes (i.e., red) representsformal parameters

1As introduced in Chapter 5, a model symbol refers to a variable, parameter, constant or func-
tion discovered in a model statement, i.e., a statement found to be relevant for the model.

6.1 MXTC – Model Extraction Tool for C 141

of functions, while ellipse-shaped symbol nodes representfunction return val-
ues. There are two main types of edges. Blue edges represent control-flow de-
pendencies between conditional statements and enclosed (guarded) statements,
while red edges correspond to data-flow dependencies. A special case is dot-
ted red edges, which represent dependencies between symbols and conditional
statements where they are used. The# in the statement nodes indicates the line
number where the statement starts. There are many opportunities for improv-
ing the graphical output of MXTC since the visualization currently produced
is a result of only a minor development effort.

Figure 6.1: An example of the graphical output of MXTC

142 Chapter 6. A Model Extraction Tool and Evaluations

MXTC is a Perl implementation relying on the Perl API of the tool “Under-
stand for C++” [138]. The Understand tool is a commercial reverse engineering
tool which parses source code and constructs a database, what the author calls
asymbol database, an index over the source code describing allsymbolsin the
code, such as functions, variables and parameters, and where they are declared,
assigned and used. The symbol database also contains the source code in to-
kenized form (lexemes). The symbol database constitutes the program model
on which the Katana algorithm is based, as described in Chapter 5.

The Understand tool was selected as a base for MXTC since it has shown
to be very fast in processing large amounts of source code andsince it is pro-
vides both C and Perl APIs with good documentation and many examples. The
choice of Perl was mainly since the Perl API has better documentation; the
author was initially not aware of the C API. Perl is however not a bad choice,
it a widely used and mature script programming language, forwhich there are
many code examples and free libraries available. Perl has native support for
regular expressions and hash tables, which has been valuable when implement-
ing MXTC. While being a scripting language, Perl is claimed to be quite fast
since the interpreter uses Just-In-Time (JIT) compilation. However, in a bench-
mark [143] comparing C++, Perl, Python and PHP, C++ is about 8times faster
than Perl. In another set of benchmarks [144], the C++ implementations were
64 – 120 faster than the corresponding Perl implementations. These bench-
marks were however trivial programs containing a single operation, executed
in a loop. However, it seems likely that porting MXTC from Perl to C/C++
would reduce runtimes significantly.

The development of the Katana algorithm and the MXTC tool hasrequired
a substantial effort, even though the author did this alone.The development
started in January 2008 and lasted until October 2009, when the evaluation and
documentation phase started. Well over one person-year wasput into this de-
velopment during this time — quite a lot for an academic research prototype.
MXTC consists of around 9 000 lines of Perl code, not countingthe Under-
stand API. The relatively long development time was partially since the overall
algorithm was fundamentally changed two times during the process. This since
it was hard to identify all requirements of the solution and take them into ac-
count during the high level algorithm design. Problems wereinstead realized
later during implementation which caused major re-designs. It took three at-
tempts before a suitable algorithm design was found. Another problem was
that the Katana algorithm turned out to be quite hard to implement and verify,

6.1 MXTC – Model Extraction Tool for C 143

since most analyzes are made on demand, in a single2 pass analysis. This is
however also believed to be the key to scalability.

As mentioned, MXTC does not yet output simulation models; itonly lists
the relevant statements. In order to reach a state where the tool can output
compilable RTSSim simulation models, the following issuesremain:

1. A solution for handling references of irrelevant symbolsin otherwise
relevant model statements, as discussed in Section 5.1.3. This is the
main issue preventing output of compilable simulation models.

2. Identifying and reporting all occurrences of pointer arithmetics, i.e., mod-
ifications of pointers using arithmetics, as discussed in Section 5.1.7.
MXTC/Katana is not aware of the memory layout, so any such pointer
manipulations of relevance would be missed, which is a modelvalidity
threat.

3. Resolving function pointers, using the method proposed in Section 5.1.7.
This is important for the model validity, since function calls through
function pointers otherwise would be missed.

4. Allowing for timing accurate simulation. From the perspective of MXTC,
this requires:

(a) Identification and enumeration oftime synchronization points(TSPs),
i.e., points in the simulation model where the simulation clock
should be updated with respect to run-time measurements. These
corresponds to calls of model focus functions and all kinds of task
inputs and outputs, e.g, IPC and use of global variables shared be-
tween tasks.

(b) Adding Executecalls in the model code at the TSP locations, in
order to models the consumption of CPU time as presented Chap-
ter 3. In the envisioned solution, this data is sampled from atiming
profile, constructed from recordings as presented in Section 7.5.

The MXTC tool is currently limited to preprocessed code, which requires
that the code is preprocessed before constructing the symbol database using the
Understand tool. In this activity, which is the first step performed by C compil-
ers, all preprocessor directives are resolved, such as macros, and each source
file is merged with the included header files. The limitation to preprocessed

2If not counting preprocessing and symbol database construction.

144 Chapter 6. A Model Extraction Tool and Evaluations

code is necessary since complex macros, e.g., containing several statements,
otherwise may cause serious problems for MXTC since the analysis is per-
formed on source-code level. Most compilers can output preprocessed code,
including GCC and Microsoft Visual C++, and typically quitequickly. This is
therefore not a problem if all header files are available.

6.2 An Evaluation of “Understand for C++”

The Understand tool was selected as a base for the MXTC tool since it is
claimed (and was also found to be) capable of processing large amounts of
source code in little time. In order to investigate the scalability of the sym-
bol database approach used by MXTC/Katana, a performance evaluation has
been performed of Understand, focusing on the time to construct the symbol
database from source code. The specific version of the Understand tool was
version 1.4, build 449. The results are presented in Table 6.1.

Table 6.1: Measured parsing times of “Understand for C++”
Name LOC ExSmt Functions Files Runtime (s)
ABB-1 1 083 604 448 963 9 728 1 699 118
ABB-2 183 492 81 203 3 116 416 16
ABB-3 136 537 83 118 3 125 89 14
ECU 41 320 18 515 1 169 324 5
RTSSim 3 802 1 572 152 58 2

The computer used for this experiment was a Dell Latitude E6400 laptop
from 2009, equipped with an Intel P8400 CPU (2.26 GHz), 4 GB ofRAM,
a Western Digital WD1600 hard drive and used Microsoft Windows XP SP3.
The first three cases correspond to different subsystems of the IRC 5 control
system for industrial robots, developed by ABB Robotics [118]. The ECU case
is the whole source code for a vehicular control unit, provided by an anony-
mous company. The RTSSim case is the simulator framework presented in
Chapter 3. TheLOCmetric, Lines Of Code, is the number of source code lines
containing actual code, i.e., excluding comments and emptylines. The metric
ExSmtis the number of executable statements, which also excludestype- and
variable declarations.

6.2 An Evaluation of “Understand for C++” 145� � ������� � 	��
�� � ��	���� �
�	
��
�

�

�

�

 �

 �

 �

 �

Lines of Code

An
aly

sis
tim

e (
s)

� ��� ��� �������� � ��� ��� �!�"� �# $�% ��� �&''(�� �� �)� ��� �&''(�� ��� #�� ��� �&''(�$ *� * � * # * � *
Figure 6.2: Parsing times of “Understand for C++”, observedand extrapolated

Figure 6.2 shows a plot of the data from Table 6.1 with a regression curve
generated using Microsoft Excel, with the equation3 ∗ 10−11 ∗x2 +8 ∗ 10−5 ∗
x + 1.8954. A second degree polynomial function was found to produced the
best fit. TheR2 value is an indication of how well the curve fits the data; the
scale is from 0 – 1 where 1 corresponds to a perfect fit. The reportedR2 of
0.9998 indicates that the curve fits the data very well. However, only five data
points were used. Since three data points is the minimum number for defining
a second degree polynomial, there are only two additional “control points”,
which is a bit low. A few more would strengthen the validity ofthis analysis.

Assuming that this equation is correct, the runtime is essentially linear for
small- and medium-sized systems (note that the diagram scale is not linear
but logarithmic). There is a quadratic term but its coefficient is very small,
which makes its impact negligible for smaller amounts of code. For instance,
at 100 000 lines of code (100 KLOC) thex2 term is only accountable for about
3 % of the predicted runtime, 10.2 seconds. Thex2 contribution does not reach
50 % of the total until at around 2.67 MLOC.

The predicted runtime at 10 MLOC is 3 802 seconds, i.e., about63 minutes.
This is probably most acceptable for large industrial systems, since this is typi-
cally much less than the build time for a system of this size (often many hours)

146 Chapter 6. A Model Extraction Tool and Evaluations

and it is only necessary once per system version. Moreover, the Understand
tool allows for incremental update. This means that once a complete symbol
database has been constructed, the following updates only have to analyze the
modified source files. This reduces the analysis time considerably.

The author believes that performance of the Understand toolcomes from
its light-weight program representation; it does not seem to generate abstract
syntax trees (ASTs) or control-flow graphs (CFGs) during theanalysis, but
instead operates directly on the lexeme level, i.e., tokenized source code. This
is not known for sure, but seems likely since the performanceis significantly
higher compared to tools using heavy-weight program models(cf. Section 6.4),
and since the Understand API provides a lexeme library, but no corresponding
AST or CFG functionality.

6.3 An Evaluation of Model Extraction

This section presents an evaluation of the proposed approach for automated
simulation model extraction, Katana, and of the MXTC tool implementing this
algorithm, on two 3rd party, multi-threaded software systems: a proprietary in-
dustrial system (ABB IRC 5) and an open-source web server (Mongoose). The
large ABB system has however not been studied in whole, only aquite small
subsystem. The evaluation focuses on the model extraction runtime and the
size of the resulting model. The amount of code is relativelysmall compared
to the typical systems targeted by this work, but cases are real applications of
non-trivial size and complexity.

The results of this evaluation indicate that the MXTC tool, and the Katana
approach in general, scales to much larger programs than theones used in
this study, since the runtimes are short and, more importantly, mainly depend
on the number of statements of relevance for the simulation model, i.e., the
number of model statements, rather than the total size of thetasks. The only
explicit dependency between runtime and total program sizeis for the very first
step, the generation of the symbol database using the Understand tool. This is
however a lightweight analysis which has been shown to be very fast also for
millions of lines of code, as presented in Section 6.2.

6.3.1 Case 1 - SAF - A Subsystem of ABB IRC 5

IRC 5 is an advanced control system for industrial robots, developed by ABB [118].
It is a very large and complex software system, containing about 3 million

6.3 An Evaluation of Model Extraction 147

lines of code, mainly in C, and 50 – 100 tasks depending on configuration. It
is structured in about 10 subsystems, roughly corresponding to subject areas,
e.g., motion control, fieldbus communication, welding techniques, user inter-
face, etc.

The MXTC tool has been applied on the safety subsystem,SAF, which is
responsible for monitoring a large set of signals related tosafety and system
integrity. Some signals come from physical safety devices,such as light/laser
sensors which detect if a human (or other obstacle) enters the working area.
In such cases, the robot must stop immediately. Other signals are related to
the physical state of the computer, such as CPU temperature and available disk
space. If an unexpected signal value (or combination of) is observed, a suitable
action is taken, which usually means to stop the robot and logthe error.

The choice of the SAF subsystem for this evaluation was suggested by ABB
personnel since it was considered relatively independent and not as business
sensitive than other parts, e.g., motion control. SAF is probably the smallest
subsystem in IRC 5 and contains, in the version studied, in total 6 061 lines
of code or 3 994 executable statements. This includes conditions, assignments,
function calls, etc., but not declarations or initializations. This code is dis-
tributed over 6 tasks and 196 functions. In contrast, there are several tasks in
the ABB system where each task contain thousands of functions and hundreds
of KLOC. Although small, the SAF code is however rather complex. The
amount of conditional statements is almost twice as high in SAF as in other
subsystems studied.

Four SAF tasks out of the six are used in the evaluation. Two tasks are
excluded since they only contained about 50 lines of code each, too little to be
representative cases. The model focus functions specified as input to MXTC
included all functions for IPC communication (in theIPC class), the semaphore
operations, andtaskDelay, in total 9 functions.

6.3.2 Case 2 - MG - The Mongoose Web Server

Mongoose [119] is an open-source3 web server and is included to broaden the
scope of this evaluation with a rather different system. Mongoose is a multi-
threaded application developed in C. It is a complete solution of manageable
but non-trivial size, 2 410 lines of code distributed over 107 functions and three
threads. It contains a large amount of conditional statements, 323 in total,
corresponding to 24.9 % of its 1 297 executable statements.

3Mongoose is released under the liberal MIT license.

148 Chapter 6. A Model Extraction Tool and Evaluations

For this case MXTC is configured for another type of model extraction,
focused on dynamic memory usage which implies three model focus functions,
malloc, callocandfree, i.e., the standard functions for allocating and releasing
heap memory.

6.3.3 Results

This section presents results from applying MXTC on the two described cases.
Figures are presented per task/thread as well as in total, for all tasks of the
specific system. The author is not allowed to reveal the task names in the SAF
case. The SAF tasks are therefore labeled SAF-T1 ... SAF-Tn,and SAF-ALL
refers to the whole SAF code. For symmetry, the Mongoose (MG)tasks are
labeled in the same manner. The results are presented in Table 6.2.

Table 6.2: Results from MXTC on Case 1 (SAF) and Case 2 (MG)
Task/Case LOC FI SI CI FO SO CO RT
MG-ALL 2 410 107 1 297 323 77 604 179 26
MG-T1 1 969 85 1 010 246 62 531 166 23.2
MG-T2 705 31 379 71 15 97 27 6.6
MG-T3 223 15 142 36 2 13 4 1.8
SAF-ALL 6 061 196 3 994 1 003 137 1 967 643 186.2
SAF-T1 3 592 131 2 479 629 81 1 137 402 109.1
SAF-T2 2 710 64 1 666 477 52 990 343 123.6
SAF-T3 880 23 479 138 13 145 49 6.9
SAF-T4 550 15 290 80 2 9 3 2.1

The columns of Table 6.2 have quite cryptic labels in order tomake them
short enough. Their meanings are:

• LOC - Lines Of Code: a measure of program size excluding onlycomments and
empty lines.

• FI - Function In: the number of functions in the input code.
• SI - Statements In: the number of executable statements in the input code. This

excludes comments, empty lines and declarations.
• CI - Conditions In: the number of conditional statements, i.e., selections and

loops, in the input code.
• FO - Functions Out: the number of model functions, i.e., functions found rele-

vant, which are included in the output.
• SO - Statements Out: the number of model statements, i.e., statements found rel-

evant, which are included in the output. Like for SI, only executable statements
are counted.

6.3 An Evaluation of Model Extraction 149

• CO - Conditions Out: the number of conditions in the output,i.e., conditional
model statements.

• RT - Runtime: the time required by MXTC to finish, in seconds.

Regarding the number of statements (LOC, SI and SO), note that some
functions are used by more than one task, so the total number of statements is
often smaller than the sum of the task sizes.

Diagrams of the Table 6.2 data are presented next in order to facilitate inter-
pretation of the results. Figure 6.3 shows the number of executable statements
in total (SI), for each task and case, as well as the number of model statements
identified by MXTC (SO). Figure 6.4 shows the number of model statements
(SO) in relation to the total number of executable statements (SI), per task and
in total. In most cases, the identified model statements (SO)correspond to
between 26 – 59 % of the input code (SI), but in two cases the fractions are
much smaller, 3 % and 9 %. These cases correspond to the smallest tasks in
the study, with only 290 and 142 executable statements, respectively. The rea-
son why these tasks are so heavily abstracted is that they have quite simple
behavior and contain only few calls of the specified model focus functions.

Figure 6.5 presents the runtimes of MXTC on the different tasks and in
total. Figure 6.6 shows another view of the runtimes, plotted together with the
total size of the analyzed tasks (SI) and the resulting modelsize (SO), with a
linear scaling applied on the runtimes in order to fit them into the same scale.
From this visualization (i.e., Figure 6.6) it seem likely the runtime is mainly
dependent on the resulting model size (SO) rather than on thetotal size of the
tasks (SI). The scale factors, 10 for SAF and 20 for MG, were chosen to line
up the runtime data points next to the model size (SO) data points, in order to
graphically compare their relation, since the hypothesis is that they are strongly
dependent.

One can argue that by using another scale factor it would be possible to fit
the runtime data to the total size (SI) data instead, since there seem to exist a
correlation between these as well. In order to objectively investigate the cor-
relation between the data sets SI, SO and Runtime, MicrosoftExcel was used
to calculate correlation factors (i.e., a value between 0 – 1, where 0 means no
correlation and 1 means total correlation). The reported correlation factor for
model size (SO) and runtime is in this case 0.979, while the correlation factor
between total size (SI) and runtime is only 0.913. Thus, there is a correlation
also in the latter case, but it is weaker, meaning that the runtime is primarily
dependent on SO, i.e., the number of model-relevant statements in the code.
This is very important for the scalability of the approach.

150 Chapter 6. A Model Extraction Tool and Evaluations

���� ���� ���� ��� ���
���� ���� ��� ��� �	
		�			�
		�			�
					
		�			�
		

������� ������ ������ ����� ������
� ���� ��� ���� ���

���� ����
��� ������ ��� �� ��	�		�		�		�		�			��		��		

� ���� � ��� � ��� � ��
� ���� ��� ���� ���

Figure 6.3: Total size (Statements In) and model size (Statements Out)

6.3 An Evaluation of Model Extraction 151

���� ���� ���� ����	
			
�		
�		
		
�		
�		
�		
�		
�		
�	�
		

������ ����� ����� ����

���� ���� ���� ���� ����	
			
�		
�		
		
�		
�		
�		
�		
�		
�	�
		

������� ������ ������ ����� ������

S
mt

sO
ut

/ #
 Sm

ts
In

S
mt

sO
ut

/ #
 Sm

ts
In

Figure 6.4: Relative model size (Statements Out/Statements In)

152 Chapter 6. A Model Extraction Tool and Evaluations

�� ����
��� ���������

	�	�
�
����� ���� ���	 ���

����� ����� �����
��� ����	�������

����	����������	��

������ ����� ����	 ����
 �����

Ru
n-t

im
e(

s)
Ru

n-t
im

e(
s)

Figure 6.5: Runtimes of MXTC, for individual tasks and in total (seconds)

6.3 An Evaluation of Model Extraction 153

������������������������������������
���	�

 ���	�� ���	�� ���	�� ���	��

� ��� ��� ��� ������	��� � �� ���

�������������������������
��	�

 ��	�� ��	�� ��	��

��� ����� ������	��� � �� ���
Figure 6.6: Runtimes (scaled), total size (SI) and model size (SO)

154 Chapter 6. A Model Extraction Tool and Evaluations

���� ���� ���� �������� ���� ���� ����
	
			
	�	
�		
��	
		
�	
�		
��

������ ����� ���� �����
� ������� �� � � ��� ��� ������� � � � � ��� � �

���� ���� ���� ���� �������� ���� ���� ���� ����
	
			
	�	
�		
��	
		
�	
�		
��	
!	

��"���� ��"��� ��"�� ��"��� ��"��!
� ������� �� � � ��� ��� ������� � � � � ��� � �

Figure 6.7: The amounts of conditional statements

6.3 An Evaluation of Model Extraction 155

Figure 6.7 shows the amount of conditional statements in theinput code
(CI/SI) and in the identified model statements (CO/SO). Observe the general
increase in condition density caused by the model extraction. Conditional state-
ments are more likely be model-relevant than statements in general, since any
model statement enclosed by a conditional statement will cause the conditional
statement to be relevant as well. Both the SAF and MG cases contain a large
amount of conditions, the percentage is 25 – 29 % for SAF and 19– 25 %
for MG (i.e., 100*CI/SI). As a comparison, a large subset of the motion con-
trol (MOC) subsystem was studied, containing 84 156 executable statements
in 3 829 C functions. This code would have been very interesting as a larger
test case for the MXTC tool, but this was not possible since itwas not avail-
able in full. The condition density was however found to be 14– 17 % for the
MOC code, i.e., about half the SAF condition density. The major difference in
condition density could mean that MXTC would perform betteron MOC than
on SAF, in the sense that the resulting simulation models would be (relatively)
smaller. This since fewer conditional statements in total probably mean fewer
model-relevant conditions, which probably means fewer model symbols found
due to such conditions. With fewer model symbols, fewer statements should
be of relevance for the model.

The possibility for a correlation between condition density and relative
model size was studied on the SAF code, in order to see if the condition den-
sity could be used to as a predictor of model size. No such correlation could
however be found, maybe because the variance in condition ratios (25 – 29 %)
was not large enough in comparison to the “noise” caused by their individual
differences, which may be large.

The relative model size does however not depend directly on the number
of conditions, but rather on what variables used in the model-relevant condi-
tions. If a model condition only refers to already included variables it does not
increase the model size at all. However, in a worst case scenario, a single con-
dition could depend on every variable and statement of the program. Related
to this is a study by Harman et al. [17], which reported that largedependence
clusters, i.e., sets of interdependent statements, are very common.Harman et
al. analyzed the source code for 45 open source programs, including common
programs such as cvs, gcc, sendmail and ftpd, and they reportthat most of the
studied programs contain large dependence clusters.

156 Chapter 6. A Model Extraction Tool and Evaluations

6.4 Katana Slicing vs. Commercial Tools

Program slicing is a general program analysis method with many uses. The
author is aware of two commercial program comprehension tools with support
for program slicing or data-flow analysis: Grammatech CodeSurfer [123] and
Imagix 4D [135]. This section presents an evaluation of these tools on indus-
trial code and a comparison with MXTC, with respect to scalability, accuracy,
and type of analysis provided.

6.4.1 CodeSurfer

CodeSurfer, from Grammatech, Inc. [123], is a spin-off fromthe Wiscon-
sin program slicing group, headed by Horwitz and Reps who, together with
Binkley, originally proposed the approach to program slicing [23] based on the
System Dependence Graph, orSDG, as discussed in Section 2.4.1. This is a
very detailed program model, which can be time-consuming toconstruct for
larger amounts of code. They patented the SDG representation in 1992 [22].
CodeSurfer is based on an improved version [21] on the original SDG slicing
method. The website [121] of the research group headed by Horwitz and Reps
states that CodeSurfer is limited to maximum 200 000 lines ofcode. Complex
industrial systems may however contain millions of lines ofcode, and it is un-
clear if this is a practical limitation, in order to get a reasonable runtime, or an
absolute maximum assuming no practical restrictions on runtime.

CodeSurfer can be configured in many different ways in order to trade ac-
curacy for scalability. There are five level of accuracy, orbuild presets: “super-
lite”, “lite”, “medium”, “high”, and “highest”. Interprocedural program slicing
is only supported if using build presets “high” (CS-High) or“highest” (CS-
Highest). The exact meaning of the CodeSurfer build presetsis explained in
detail by the CodeSurfer documentation and from this it can be concluded that
CS-High is actually less accurate than MXTC in some aspects,but more accu-
rate in others:

• CS-High is more accurate than MXTC with respect to intraprocedural
control-flow, since MXTC is not fully control-flow sensitive. CS-High
can exclude irrelevant assignments of relevant variables,e.g., assign-
ments which are “killed” by later assignments of the variable before the
impact reaches the relevant code location. MXTC assumes that all as-
signments of a relevant variable are relevant.

• MXTC is more accurate than CS-High with respect to interprocedural

6.4 Katana Slicing vs. Commercial Tools 157

data-flow, since it is “context-sensitive” with respect to function calls.
This means that MXTC separates between irrelevant and relevant call-
sites when analyzing formal parameters.

• MXTC is more accurate than CS-High with respect to data structures
since it allows for analysis of individual fields. In contrast, CS-High
treats all fields of a data structure as if they where a single variable.

Which tool that is more accurate, CS-High or MXTC, thus depends on the
source code analyzed. CS-Highest however employs very accurate methods
which should make it more accurate in all aspects compared toMXTC. How-
ever, as presented later in this section, the scalability ofCodeSurfer has been
found to be severely restricted and not suitable for analysis of large industrial
systems, at least if using build presets “High” or “Highest”, which are required
for program slicing.

The CodeSurfer documentation claims:“With build presets high and above,
400 KLOC should usually be possible, given enough time and disk space.”. As
previously mentioned, the research group behind CodeSurfer states at their
website [121] that 200 KLOC is the upper limit. This figure mayhowever
be a few years old. Moreover, there are different ways of measuring lines of
code (LOC). The LOC figures reported by the thesis author is from the “Un-
derstand for C++”, specifically its “Lines Code” metric, which includes declar-
ative statements and executable statements, but not comments or blank lines.
The author has however not found any information regarding how the 200/400
KLOC limits for CodeSurfer has been measured. CodeSurfer does not have
a similar metric from what the author could find, but instead reports program
size measured in “program points”, which is more exact but not directly com-
parable to lines of code. A statement may correspond to several program points
and the number of program points may vary drastically between statements.

The scalability of CodeSurfer (version “2.1p1”) has been investigated using
industrial code from ABB’s control system for industrial robots, IRC 5. The
whole system contains some 3 million lines of code, but this study was limited
to a subsystem containing 183 KLOC, which in Section 6.2 is labeled ABB-2.

CodeSurfer crashed repeatedly when trying to analyze this code using build
preset “highest” (CS-Highest). It reported an error message stating that it failed
to allocate memory. When using the less accurate build preset “High” (CS-
High) it did not crash, but the analysis did not finish in reasonable time. After
about 92 hours it was terminated and the log file indicated that it was still on one
of the first analysis steps, labeled“Computing call graph and modified globals
(CG)” , which had executed for about 90 hours before it was aborted.When

158 Chapter 6. A Model Extraction Tool and Evaluations

analyzing smaller cases, several more time-consuming steps followed this one,
so even if this step would have been finished in just a few hoursmore, the
whole analysis would probably take much longer, probably several additional
days, or even weeks. Up until the point where it was aborted, CodeSurfer had
stored 2.8 GB of intermediate data and used 900 MB or RAM.

In comparison, the tool used for constructing the symbol database for MXTC,
“Understand for C++”, processed the 183 KLOC code (ABB-2) inabout 16
seconds, as presented in Section 6.2. MXTC could then successfully be used
for performing backwards slicing. As an example, a slice on arandomly se-
lected variable in the ABB-2 identified 24 statements in 1.7 seconds. The state-
ments were distributed over three functions. In another example, the runtime
was only three minutes for calculating a large slice consisting of about 2 000
statements in about 140 functions.

CodeSurfer however worked fine on a smaller test case, the RTSSim sim-
ulation framework presented in Chapter 3, which contains 3 830 LOC. This
allowed for a comparison between CodeSurfer and MXTC. The comparison
was made by querying a commonly used global variable in RTSSim, the sim-
ulation clock,clk, which was expected to produce a large slice. The results are
summarized in Table 6.3. In this table, “Parse Time” refers to the time required
in order to construct the program model from the source code,i.e., an SDG for
CodeSurfer and a symbol database for MXTC (using Understand). “Slicing
Time” refers to the time required for calculating the backwards slice for the
global variableclk in RTSSim, based on the respective program model.

Table 6.3: MXTC/Understand compared to CodeSurfer

Parse Time (s) Slicing Time (s)
MXTC/Understand 2 51.6
CS-High 158 < 1
CS-Highest 160 < 1

As previously presented in Section 6.2, the Understand toolrequires only
about 2 seconds for creating a symbol database over this code. The slice com-
puted by MXTC contained 568 executable statements, i.e., about 37 % of the
1 586 executable statements of RTSSim. The runtime for MXTC was 51.6 sec-
onds and its peak RAM usage was 18.7 MB. The runtime for CS-High was
158 seconds, during which it stored 312 MB of intermediate data. Its peak
RAM usage was about 240 MB, almost 13 times more than for MXTC.The

6.4 Katana Slicing vs. Commercial Tools 159

runtime of CS-Highest was 160 seconds, only slightly higherthan the run-
time of CS-High. Note however, after CodeSurfer has constructed its program
model, backwards slicing and other types of program analyzes is performed
very quickly, without noticeable delay. This is not the casefor MXTC, which
performs most calculation on demand, given a specific query.

The slice produced using CS-Highest contained 8 253 out of 37144 pro-
gram points, i.e., 22.2 % of the analyzed program. When usingCS-High the
slice is considerably larger, 11 770 program points, corresponding to 31.7 % of
the program. Note that CodeSurfer and MXTC present the results in different
ways, program points vs. statements, so this figure is not directly comparable.

The slice size ratios should however give an indication of accuracy and
it seems as CS-High is more accurate (31.7 %) than MXTC (37 %) in this
case, although the validity of this comparison is questionable. MXTC was
however about three times faster than CodeSurfer in either configuration; the
total analysis time of MXTC/Understand (parse + slice time)is only 33.5 –
33.9 % of the parse time of CodeSurfer in this case.

6.4.2 Imagix 4D

Imagix 4D, from the Imagix Corporation [135], is a similar type of tool as
CodeSurfer, but no information is available regarding the analysis algorithm
used by Imagix 4D; it seems to be a secret of the Imagix Corporation. It is
however likely that also this tool uses the SDG approach, or asimilar depen-
dency graph model. This since Imagix 4D has similar scalability problems as
CodeSurfer, many hours for larger amounts of code, and sincethe SDG ap-
proach seems to have been the de-facto solution for program slicing since the
mid 1990’s.

The company behind Imagix 4D, Imagix Corporation, does not present any
figures regarding scalability; an evaluation therefore been performed using the
ABB-2 case, like for CodeSurfer. As previously mentioned, this is a subsys-
tem from ABB’s control system for industrial robots, IRC 5, consisting of 416
source files containing in total 183 492 lines of code, not counting whitespace
or comments, and 3 116 functions.

The comparison was made with respect to randomly selected variables
from different parts of the ABB code. The “Calculation Tree”feature of Imagix
4D (version 6.6.1) was used to find the relevant dataflow dependencies. Unlike
MXTC and CodeSurfer, Imagix 4D does not produce full executable slices; it
identifies the directly relevant dataflow but does not analyze conditions guard-
ing relevant statements. In order to allow for a fair comparison, the MXTC tool

160 Chapter 6. A Model Extraction Tool and Evaluations

was configured to perform the same kind of analysis as Imagix 4D by ignoring
conditions and thereby any statements on which they depend.

The Imagix 4D tool gave a warning regarding the size of the project; in-
dicating that the analysis could take several hours. It required almost 7 hours,
and the peak memory usage was 1.5 GB. The analysis time shouldbe similar
for any other variable since the main cause of the long runtime is (probably) the
construction of a detailed whole-program model, i.e., an SDG or similar. Like
for CodeSurfer, once this program model has been constructed, analyzes are
very quick. However, the many hours required for constructing the program
model is obviously a serious scalability problem.

When using MXTC on this variable, the runtime was only 2 seconds. If
also including the 16 seconds required for constructing thesymbol database,
as presented in Section 6.2, MXTC is about 1 400 times faster than Imagix 4D
in this case. This experiment was repeated on all four selected variables and
the runtime was around two seconds in all cases. The peak RAM usage of
MXTC was 33 MB, i.e., about 45 times less than for Imagix 4D. The identified
slices were quite small, around 10 statements, since only the direct dataflow
was included. This is typically only a small subset of the total slice obtained
when taking conditions into account. Both MXTC and Imagix 4Dgave sim-
ilar results with respect to the number of identified statements, but a detailed
comparison was however never made.

6.5 Conclusions 161

6.5 Conclusions

This chapter has demonstrated that the MXTC tool, based on the Katana al-
gorithm, works on real industrial code and scales to large software systems.
Even though the cases used in this evaluation are relativelysmall, they are real
systems of non-trivial size and complexity. The runtimes ofMXTC are short,
just over 3 minutes in total for four tasks containing in total 6 000 lines of code,
and, more importantly, mainly depends on the number of statements found to
be of relevance for the simulation model, i.e., the number ofmodel statements,
rather than the total program size of the tasks. If extrapolating these numbers,
the MXTC prototype would process a 1.2 MLOC system in 10 hours. This is of
course longer than desired, but the tool is still a prototypeand is implemented
in Perl, a scripting language. According to benchmark comparisons [143, 144]
between C++ and Perl, C++ has been observed to be 8 – 120 times faster Perl.
If a C++ version of MXTC could be made 10 times faster than today, it would
be able to process the whole ABB IRC 5 code in about 3 hours, assuming the
previous extrapolation.

The amount of model statements can be quite small, in one caseas little as
3 % of task code, but is most cases in the range 25 – 50 %. For the task with
largest relative model size 59 % of the executable statements were identified
as model statements. However, the relative model size can most likely be re-
duced significantly by taking intraprocedural control-flowfully into account.
The current solution, which is not fully control-flow sensitive, may in some
situations include irrelevant statements, which in turn may have dependencies
to other irrelevant symbols and statements, which thereby are included as well.

For general program slicing, the MXTC tool has shown to outperform
the commercial tools CodeSurfer and Imagix 4D with respect to scalability.
MXTC could successfully operate on a 183 KLOC code base, requiring only
16 seconds for constructing the program model (the symbol database, using
Understand), and 1.7 seconds for identifying a program slice consisting of 24
statements in three functions. In practice, the runtime of MXTC seems to scale
linearly with the number of statements found relevant. For instance, an analy-
sis identifying about 2 000 statements, distributed over 142 functions, required
only 3 minutes. In contrast, CodeSurfer could did not terminate in 92 hours
when attempting to process the 183 KLOC code-base. Imagix 4D, which pro-
vides a less detailed analysis, was able to analyze this codein about 7 hours.
MXTC was 1 400 times faster than Imagix 4D in this case, and used 45 times
less memory.

On a smaller example which CodeSurfer could handle (the RTSSim code,

162 Chapter 6. A Model Extraction Tool and Evaluations

3 800 LOC) MXTC was found to be three times faster and used 13 times less
memory. As expected, CodeSurfer was however more accurate than MXTC,
even though an exact comparison is not possible since different size metrics are
used by the tools. Using the most accurate configuration, CodeSurfer found
22.2 % of all program points to be relevant for a particular variable and if
using the more scalable but less accurate configuration (build preset “High”),
CodeSurfer found 31.7 % of the program points relevant for the same case. In
comparison, MXTC found 37 % of the executable statements to be relevant
for this variable. This probably corresponds to more than 22.2 % or 31.7 %
of theprogram points, even though these measures of program size (program
points vs. executable statements) are not directly comparable as an executable
statement may contain several program points.

This chapter has also demonstrated that the program representation used by
MXTC/Katana, the symbol database, can be constructed within minutes also
for large software systems, containing millions of lines ofcode. The Under-
stand tool, which MXTC uses for constructing the symbol database, has proved
itself able to process 183 KLOC in 16 seconds and 1 084 KLOC of Ccode in
just under 2 minutes. The predicted time for analyzing a verylarge code-base
of 10 MLOC is 63 minutes. Thus, constructing the symbol database is not a
threshold which limits the scalability of the approach, unlike tools using the
heavy-weight SDG program model.

Chapter 7

Uses and Experiences of
Software Trace Recording

This chapter discuss recording of event traces during execution of embedded
software systems, ortrace recordingfor short, with a primary focus on task
scheduling. The chapter has three main purposes:

1. to explain the role of trace recording in the context of theenvisioned
analysis framework,

2. to present techniques for trace recording, including own, specific solu-
tions and more general methods, and

3. to present experiences from five industry collaboration projects performed
where software trace recorders have been developed for different indus-
trial software systems and evaluated with respect to CPU andRAM over-
head.

This chapter is mainly motivated by research questionQ3, presented in
Section 1.3. Since trace recording is a key component of the envisioned anal-
ysis framework, presented in Section 1.2, the general applicability of trace
recording is naturally of high importance. This has two aspects, implemen-
tation feasibility on common real-time operating systems,and the overhead
with respect to CPU and RAM usage. The scientific contributions of this chap-
ter are mainly the presented experiences from industrial collaboration projects,
with respect to the two aspects of trace recording applicability.

163

164 Chapter 7. Uses and Experiences of Software Trace Recording

The chapter also presents an approach for recording oftiming profilesfor
the RTSSim simulation framework. This section shows how a full implementa-
tion of the envisioned analysis framework could use trace recording in order to
populate the simulation models with timing data recorded from the real system.

7.1 Uses of Trace Recording

The approach of this thesis requires trace recording for several purposes. Trace
recording is necessary in order to do execution-time measurements under real-
istic circumstances, since the systems in focus typically are multitasking and
use preemptive scheduling. In order to measure execution-time, it is neces-
sary to monitor the context-switching and only account for the CPU time ac-
tually consumed by the specific task. Trace recording is alsonecessary during
simulations, in order to record a detailed simulation tracefor later analysis
and comparison. Moreover, the three analyses presented in Section 1.2 (im-
pact analysis, model validation and regression analysis) all requires methods
for comparing trace recordings. This naturally assumes that such traces can
be recorded in the first place, either from a real system or from a simulation.
Trace comparison is discussed further in Chapter 8.

Another aspect of trace recording istrace visualization, which can be used
for comparison of traces and for inspecting details in simulations or real sys-
tem traces. A trace visualization tool has been developed inthis research, the
Tracealyzer, which originally targeted the simulation framework. However, it
can also be used to study traced recorded from real systems and this use of
the Tracealyzer has served as a “low hanging fruit” for industry collaboration,
since industrial developers often can have immediate use ofthis tool for de-
bugging, performance optimization and general system understanding.

7.2 Trace Recording Fundamentals

This work focuses on software-based recording, where code instrumentation is
inserted at suitable code locations in order to log the desired information. This
typically implies adding function calls to a software recorder module, which is
integrated in the base platform of the system. There are however also hardware
solutions [109] and hybrid solutions [136], using both hardware support and
software probes. The added code instrumentation for registering events are
often referred to assoftware probes. Thus,eventsrefer to the instances of

7.2 Trace Recording Fundamentals 165

recorded data, whileprobesrefers to the code responsible for recording the
events.

In the context of this thesis, the events in focus of recording are primarily
scheduling events where the operating system scheduler switches the currently
running task, i.e., thetask-switchevent, but also other types of event may be
stored, such as calls of operating system services (e.g., semaphores or IPC
operations) and application-specific “user events”. In this work task-switches
are considered as instantaneous actions and only a single time-stamp is stored
for each task-switch event. The context-switch time (from the OS) is thereby
accounted to the execution time of the tasks.

It is possible to detect scheduling events on most real-timeoperating sys-
tems, either by registering callbacks (hooks) on system events like task-switches,
task creation and termination, or by modifying the kernel source code. The
callback approach is possible on at least VxWorks (from WindRiver) and OSE
(from ENEA). Operating systems with available kernel source code, e.g., Linux
and RTXC Quadros1, can be modified to call the trace recorder module on
relevant events. Åsberg et al. [1] has shown that for Linux (2.6 kernel), the
only kernel modification required is to remove the “const” keyword from a
specific function pointer declaration. It is however possible to realize Linux
trace recording without kernel modifications, if using a custom scheduler like
RESCH [2].

Software trace recorders typically operate by storing relevant events in a
circular RAM buffer, as binary data in fixed-size records. Inthis manner, the
recorder always holds the most recent history. In all implementations presented
in this paper, a single ring-buffer is used for storing all types of events. An al-
ternative strategy is to store events of different types in different buffers, to be
able to use different sized events for better memory efficiency. Such a solution
however becomes more complex and thereby less robust, and the extra logic re-
quired, and buffer dimensioning problems, may cancel out the benefits of this
solution. Storing different types of events in the same ringbuffer requires that
the events have a common location for storing anevent code, typically the first
byte, which indicates how the data should be interpreted. Bystoring all types
of events in the same buffer, the relative order of the eventsis maintained au-
tomatically and it is thereby possible to use relative time-stamps, as discussed
later.

Each task-switch event corresponds to exactly oneexecution fragment, i.e.,
the interval of uninterrupted execution until the next task-switch event. For

1www.quadros.com

166 Chapter 7. Uses and Experiences of Software Trace Recording

each execution fragment, the following information needs to be registered:

• What task that executes, i.e., a task ID.

• When the execution fragment started, i.e., a time-stamp.

• Why the task-switch occurred, i.e., the scheduling statusof the task after
the execution fragment has ended.

The rest of this section will discuss these three aspects (what, when and
why) of task-switch event recording and finally also recording of other types
events, such as calls of operating system services. This provides a foundation
for the following descriptions of the five industry collaboration projects where
trace recorders have been developed for different industrial software systems.

7.2.1 Task Identity (the “What”)

The most obvious and fundamental piece of information in a task trace is the
task identity of each execution fragment. Most operating systems use 32-bit
IDs for tasks, even though many embedded system only containa handful of
tasks, at most a few hundred. It is therefore often a good ideato introduce
a short task ID,STID, using 8 bits or 16 bits only in order to make the task-
switch events less memory consuming. Saving 2 or 3 bytes per event might not
sound like a big deal, but the recorder solutions described in this chapter only
require 4 – 8 bytes per event in total, so the reduction is significant. With an
8-bit STID it is possible to handle up to 256 unique tasks, which is sufficient
for many systems. In other cases a 16-bit STID would surely beenough, as it
allows for over 65,000 unique tasks.

The STIDs needs to be allocated on the creation of tasks and quickly re-
trieved when storing task-switch events. This can be achieved by storing the
task’s STID in its task control block (TCB), either by modifying the kernel
(possible in Linux and RTXC Quadros [137]) or by using an unused “spare”
field of the TCB data structure, which are available in VxWorks [132]. In OSE
[134] there is a “user area” of each process which can be used for this purpose.

Complex embedded systems with event-triggered behavior, such as tele-
com systems, often create and terminate tasks dynamically.In this context, it
is important to recycle the STIDs, otherwise the recorder will sooner or later
run out of STIDs. This means that the termination of tasks must be registered
in order to mark the particular STID as no longer in use. An STID may how-
ever not be reused for newly created tasks as long as there arereferences to a

7.2 Trace Recording Fundamentals 167

particular STID in the event ring buffer, unless the newly created task is iden-
tical to the last task referred by the STID. Otherwise, this would change the
meaning of the older task-switch events and make the trace incorrect.

7.2.2 Time-stamping (the “When”)

For timing analysis purposes each execution fragment must have a time-stamp,
typically stored as an integer value. Since the trace contains the complete se-
quence of execution fragments, a single time-stamp is sufficient per fragment,
either when it started or when it ended, it does not matter as long as it is consis-
tent. From here on, it is assumed that time-stamps refer to the start of execution
fragments. This implies that the operating system overhead, i.e., the execution
time of the context-switch code, is accounted to the task execution times.

Obtaining a time-stamp is normally a trivial operation, butstandard li-
braries typically only allow for getting clock readings with a resolution of
maximum 1 or even 10 milliseconds, depending on the tick rateof the OS.
This is too coarse-grained for embedded systems timing analysis, since many
tasks, and especially interrupt routines, often have execution times measured in
microseconds. Fortunately, embedded systems usually havehardware features
for getting more accurate time-stamps, such as real-time clocks (RTC). In other
cases, if the CPU frequency is constant, it is possible to usea CPU instruction
counter register.

In order to reduce the memory usage when storing the events, agood
method is to encode the time-stamps in a relative manner, i.e., to only store
the time passed since the previously stored event, i.e., thedurations of the ex-
ecution fragments. If the absolute time of the last stored event is kept, it is
possible to recreate absolute time-stamps during off-lineanalysis. This allows
for correlating the trace recording with other time-stamped logs created by the
system, which can be important for troubleshooting purposes.

The relative time-stamp encoding allows for using fewer bits for storing
time-stamps, typically between 8 – 16 bits per event. A problem however oc-
curs in cases where the duration of an execution fragment exceeds the capacity
of the time-stamp field, i.e., 255 or 65535 time units. Handling the overflow is-
sue for relative time-stamps introduces a tradeoff betweenmemory usage and
recorder-induced jitter (i.e., predictability). The mostreliable but least effi-
cient solution is to use enough bits for this purpose so that the overflow does
not occur. A more efficient solution is to reduce the number oftime-stamp bits
to better fit the typical fragment duration, and instead introduce an alternative
handling of the few cases where the number of time-stamp bitsare insufficient.

168 Chapter 7. Uses and Experiences of Software Trace Recording

In this case, an extra “XTS” event (eXtended Time-Stamp) is inserted before
the original event, carrying the time-stamp using enough (32) bits. This how-
ever introduces a control branch in the task switch probe, which might cause
timing jitter in the recorder overhead and thereby additional timing jitter in
the system as a whole, which can be bad for testability and predictability. We
however believe that this jitter is negligible compared to other sources of jit-
ter, such as execution time variations. The XTS approach is used in all five
recorder implementations presented in this chapter.

Note that the higher resolution used for storing time-stamps (e.g., nanosec-
onds instead of microseconds), the higher RAM usage. This isdue to either
the need for a wider time-stamp field (more bits) or more frequent XTS events.
However, if using a too low time-stamp resolution (e.g., milliseconds), some
execution fragments may get a zero duration and thus becomes“invisible” in
off-line visualization and analysis, e.g., with respect toCPU usage contribu-
tion.

7.2.3 Task-switch Cause (the “Why”)

In preemptive fixed-priority scheduling [98, 99] a task-switch may occur for
several reasons: the running task might have been blocked bya locked re-
source, it might have suspended itself, terminated, or a task of higher priority
might have preempted the task. This information is necessary to record in or-
der to allow grouping of execution fragments into taskinstances, also known
as taskjobs. A task instance corresponds to one logical execution of thetask,
i.e., the processing of one work-package. The end of an instance is referred to
as theinstance finish, and corresponds to the termination of the task, i.e., exit
from main function, or for non-terminating tasks when the task has performed
one iteration of the main loop and enters a blocked or waitingstate awaiting
the next task activation, i.e., the start of the next instance.

From a trace perspective, a task instance corresponds to oneor several con-
secutive execution fragments of the same task, possibly interleaved by execu-
tion fragments of other tasks, where the last fragment is ended by the instance
finish, and where any previous fragments of the same instanceis ended by
preemption or blocking. The concepts of instances and execution fragments
are illustrated by Figure 7.1, using an example with three tasks, where taskH
has the most significant priority and taskL the least significant priority. Each
execution fragment is labeledTi,f , whereT is the task name,i the instance
number andf the execution fragment number within the instance. The upper
row indicates the task-switch cause: preemption (P) or termination (T).

7.2 Trace Recording Fundamentals 169

Time

L��� M���
L��� L���M��� M���H��������	
����� �����	
 	����� 	����� 	

Task L

Task M

Task H

Instance L�Instance M� Instance M�Instance H1

P T P P T T T

Figure 7.1: Execution fragments and task instances

What counts as an instance finish for non-terminating tasks is system spe-
cific and depends on the software architecture. For non-terminating tasks there
are two options for detecting instance finish: using the scheduling status or us-
ing code instrumentation. If a certain scheduling status can be unambiguously
associated with the inactive state of a task, a task-switch due to this scheduling
status can be regarded as the instance finish. The next execution fragment of
this task is thereby the start of the next instance. This approach is however dif-
ficult if the task may be blocked for other reasons (other semaphore or message
queues), since the scheduling status at best tells the type of resource causing
the blocking, but not the identity of the specific resource.

A pragmatic solution is to add code instrumentation in the task main loop,
immediately before the operating system call corresponding to the instance
finish. A problem with code instrumentation in the application code is that the
application developer needs to be aware of the recorder, maintain the instru-
mentation points properly and also adding new instrumentation when adding
new tasks to the system.

7.2.4 Recording Operating System Services and User Events

Apart from recording the task scheduling trace, there may beother events of
importance for recording, such as calls of certain operating system services and
application-specific “user events”.

Operating systems calls can easily be recorded if the systemhas an OS
isolation layer, which contain wrappers for operating system features, or if the
kernel source code is available for modifications, like for Linux and RTXC

170 Chapter 7. Uses and Experiences of Software Trace Recording

Quadros [137]. For potentially blocking OS services, like attempting to lock a
semaphore, it is a good idea to use two probes, an “entry” probe immediately
before entering the OS service and and “exit” probe directlyafter the return.
An off-line analysis or visualization tool can thereby identify the beginning and
corresponding end of any operating system blocking.

It is possible to detect blocking from the recorder’s event trace, either off-
line or during run-time, by checking if any task-switch event exists between the
entry and exit probes. The chance of a task-switch occurringfor other reasons
than blocking between the entry and exit probes of a OS service is very small.
This risk can however be eliminated completely by a control in the recorder‘s
task-switch event handling routine: if the last stored event is an entry event for
a particular OS service and the task scheduling status also indicates “blocked”,
it is for sure a blocking call of the specific OS service. If thetask scheduling
status however is “ready”, it was actually a preemption which happened to
occur between the entry and exit probes.

One can argue that a simple solution of preventing such unlikely preemp-
tions, and thereby make the task-switch control described above unnecessary,
is to disable interrupts before storing the entry event and enable them after stor-
ing the exit event. This would however increase the interrupt latency and the
OS kernel may enable interrupts during the processing of theparticular service,
so preemptions might still be possible before the exit probehas been stored.

User eventscorrespond to explicitly logged information from the applica-
tion code, which is stored usinguser probes, typically inserted by the applica-
tion developer. This can be used in order to log events or dataof importance
for, e.g., troubleshooting purposes. It can however also beused for fine grained
execution-time measurements (between any two points in theprogram code)
and for monitoring application-specific limited resources.

A concept ofprobe channelshas been used to avoid enable logging of
named events. A probe channel connects a string name to a numeric handle
during system initiation. The numeric handles, orprobe channel IDsis then
used to label the later stored user events. A similar technique can be used for
storing names for particular probe values, so that the name can be displayed
instead of a numeric value in off-line visualization and analysis tools. This is
be valuable when monitoring e.g., state variables, which always hold the value
of a named constant, since the state names are typically morefamiliar to the
developer than the corresponding numeric codes, which may change during the
system evolution.

7.3 The Tracealyzer 171

7.3 The Tracealyzer

Tracealyzer is a visualization tool with analysis capabilities for various timing
and resource usage properties. It is mentioned at several locations in this thesis
as it can be used for studying the output of the RTSSim simulator, as presented
in Chapter 3, and for model validation purposes, as presented in Chapter 8.

The main view of the tool displays a task trace using an novel visualization
technique. Other trace visualization tools, such as the Wind River WindView,
uses a trace visualization technique similar to a logic analyzer or Gantt-style
charts, where the status of every task is displayed at all times, with one row
or column per task. Such visualizations become hard to comprehend when
zooming out to overview a longer scenario and the user may need to scroll in
two dimensions.

In contrast, the visualization used by the Tracealyzer focuses on the task
preemption nesting and only shows the currently active tasks, as depicted by
Figure 7.2. This makes the trace easier to overview, especially long and com-
plex scenarios with many tasks involved. The tool also provides a CPU load
view over the entire trace. The two views are synchronized; the time window
display in the main window is indicated in the CPU load overview and by click-
ing in the CPU load overview the trace view displays the corresponding time
window. The tool has advanced features for searching, with several filters, and
can also generate a report with detailed timing statistics for each task. The tool
also allows for exporting timing data regarding tasks and other events to text
format. More information about the tool is available atwww.percepio.se
where a demo version can be downloaded.

The Tracealyzer was originally developed as a means for verifying the
trace recorder developed for the robotics control system ofABB system, as
described in Section 7.4.1. The tool was however soon found valuable by ABB
developers, for troubleshooting and performance analysis, due to the possibili-
ties for visualizing and analyzing recordings of the systemin operation. Even
though the ABB developers had access to a commercial trace tool, WindView,
from the operating system developer Wind River, they decided already in 2005
to integrate the newly developed Tracealyzer recorder in the base software plat-
form and to have it active by default, also in the production version. This means
that it is actively monitoring all industrial robots delivered by ABB since 2005,
several thousand per year. The Tracealyzer is today used systematically at
ABB Robotics; at least 30 developers have used it at some point, and many use
it frequently.

The second generation Tracealyzer (i.e., version 2.0) is since 2009 in com-

172 Chapter 7. Uses and Experiences of Software Trace Recording

mercialization by Percepio AB, in collaboration with Quadros Systems, Inc.
who develops the real-time operating system RTXC Quadros. Aspecial ver-
sion for RTXC Quadros will be released in September 2010 under the name
RTXCview, which becomes the official tracing tool for the RTXC Quadros
platform. For more information about RTXCview, seewww.quadros.com .
Note that the first generation Tracealyzer, i.e., up until version 1.31, is still
freely available for non-commercial use, and for existing commercial users ac-
cording to prior agreements.

Figure 7.2: The Tracealyzer/RTXCview

7.4 Five Industrial Trace Recorder Projects

Another purpose of this chapter is to document experiences from five indus-
try collaboration projects where trace recording solutions have been developed
for industrial software systems and from these experiencesattempt to summa-
rize a list of observations or recommendations. The five projects have been
performed in collaboration with respective companies and,in the end, at least

7.4 Five Industrial Trace Recorder Projects 173

Figure 7.3: The Tracealyzer/RTXCview, CPU load view

evaluated by system developers. Three of the projects have lead to industrial
deployment of the results, in one case as the official tracingtool for a commer-
cial real-time operating system.

The purpose of these projects have varied slightly, but all have included
trace recording and visualization using the Tracealyzer, described in Section 7.3.
The research motivation for these projects have been to verify the applicability
of trace recording techniques on different embedded systems platforms, since
trace recording is a key enabler for the timing analysis in focus of this work.

7.4.1 The RBT Project

ABB develops a control system for industrial robots, IRC 5. This is a large
and complex embedded software system, consisting of around3 million lines
code. The operating system used is VxWorks, and the hardwareplatform is an
Intel-based Industry PC. At the time of the evaluation, thissystem used an Intel
Pentium III CPU and had 256 MB of RAM. It moreover has a flash-based hard
drive, a network connection and an onboard FTP server.

Since VxWorks has features for registering callbacks on task-switch, task
creation and task deletion, these events could be captured without kernel mod-
ifications. The task-switch callback function receives pointers to the task con-

174 Chapter 7. Uses and Experiences of Software Trace Recording

trol blocks (TCBs) of both the previously executing task andfor the task that is
about to start. The developed recorder uses 8-bit STIDs, stored in an available
“spare” field in the TCB by the task create callback routine. The task names
are stored at creation time in a list of tasks, indexed by the STID.

All types of events are stored in a single ring buffer, using afixed event
size of 6 bytes. This required the use of bit-wise encoding inorder to fit the
desired information into the 48 bits available. The two firstbytes are used
to store two pieces of information in an asymmetric manner, where 2 bits are
used for the event code and 14 bits for a relative time-stamp,obtained from an
instruction counter of the Intel CPU used by this system. Since the time-stamp
resolution used in this recorder is 1µs, this solution allows for a execution
fragment duration up to214 µs (16.4 ms). This is typically more than enough
for this system; there are usually several task-switch events every millisecond.
However, in some system modes, such as during system startup, the task-switch
rate is much lower and the 14 bits may then be insufficient. As aprecaution, an
additional “XTS” event (eXtended Time-Stamp) is stored if the relative time-
stamp does not fit in 14 bits. The XTS event stores the relativetime-stamp
using 32 bits and overrides the time-stamp field of the associated (following)
event.

Recording inter-process communication events was considered important
and this was accomplished by adding code instrumentation inthe OS isola-
tion layer. Semaphore operations are however not instrumented; they are very
frequent in this system and it was feared that monitoring these would cause a
major additional recording overhead. The event rate of the ABB system when
recording task scheduling and IPC operations was found to bearound 10 KHz.
A ring buffer capacity of 100 000 events (600 000 bytes) therefore gives a trace
history of around 10 seconds. The runtime of a recorder probewas found to be
on average 0.8µs, which at the typical event-rate of 10 KHz translates into a
CPU overhead of 0.8 %.

As mentioned, ABB Robotics personnel decided after this project to inte-
grate the recorder in their control system IRC 5 and to keep itactive by default,
also in the production version. The Tracealyzer is today used systematically
at ABB Robotics for troubleshooting and for performance measurements. The
recorder is triggered by the central error handling system,so whenever a se-
rious problem occur a trace file is automatically stored to the system’s hard
drive. A trace file is in this case only about 600 KB and can therefore easily be
sent by e-mail for quick analysis, e.g., if a customer experiences a problem.

7.4 Five Industrial Trace Recorder Projects 175

7.4.2 The ECU project

The system in focus of this project was the software of an ECU,i.e., a computer
node in a vehicular distributed system developed by Bombardier Transporta-
tion2. Since also this system used VxWorks a similar recorder design could be
used as in the RBT project. The company developers were mainly interested
in the CPU usage per task, as well as for interrupt routines, during long-term
operation of the vehicle. The hardware platform was a Motorola3 PowerPC
603 running at 80 MHz.

In initial experiments using the Tracealyzer tool, the mainproblem was
the endianness; the Motorola CPU uses big endian encoding, while the Trace-
alyzer expected little-endian encoding. In the first experiments in using the
Tracealyzer for this system, the solution was a recorder design where all data
is stored in little-endian format during run-time, by assigning each byte explic-
itly. This is far from optimal with respect to the CPU overhead of the recording
and should be avoided. The latest version of the Tracealyzerassumes that the
recorder writes the data to a binary file in native format and therefore detects
the endianness, and converts if necessary, while reading the trace file. The endi-
anness is detected by using a predefined 32-bit value, where the four bytes have
different values, which is written to a predefined file location by the recorder,
typically in the very beginning. An off-line analysis tool can then find the
endianness from the order of these values.

Unlike the RBT project, this project included recording of interrupt rou-
tines. The operating system VxWorks does not have any callback functionality
or similar for interrupts, but the interrupt controller of the CPU allowed for this.
Interrupt routines could thereby be recorded as high-priority tasks, by adding
task-switch events to the main ring buffer in the same way as for normal tasks.

An interesting requirement from Bombardier was that the recorded infor-
mation should survive a sudden restart of the system and be available for post-
mortem analysis. This was accomplished by using a hardware feature of the
ECU; the event buffer was stored in Non-Volatile RAM (NVRAM). During
the startup of the system, the recorder recovers any trace data stored in the
NVRAM and writes it to a file, thereby allowing for post-mortem analysis.
The ECU was equipped with 4 MB of NVRAM which is plenty since the com-
pany only needed a 2.5 second trace history. Since it was onlydesired to log
task-switch events in this project, i.e., no IPC events likein the RBT case, it
was possible to reduce the event size from six to four bytes per event.

2www.bombardier.com
3Now Freescale

176 Chapter 7. Uses and Experiences of Software Trace Recording

A recorder and a company-specific analysis tool was developed in a Mas-
ter’s thesis at Bombardier [97], but the Tracealyzer was notused after the initial
tests leading to the thesis project. One of the students was however employed
by the company after the thesis project.

7.4.3 The WLD Project

This system is also an ECU-like computer, although not in thevehicular do-
main and the company is anonymous in this case. The computer system in
focus is a node in a distributed system, with the overall purpose of automated
welding for production of heavy industrial products. The computer in focus
controls an electrical motor and is connected to a set of similar computer nodes
over a field bus. The CPU used was an Infineon XC167, a 16-bit CPUrunning
at only 20 MHz. The operating system used was RTXC Quadros.

Since the kernel source code of RTXC Quadros is available forcustomers,
the recorder could be integrated in a custom version of the kernel. It was how-
ever not trivial to find the right location where to add the kernel instrumen-
tation, especially for the task-switch events, since partsof the context-switch
handling is written in assembly language. Time-stamps wereobtained from
the real-time clock (RTC) feature of the Infineon XC167 CPU and stored in a
relative manner in the same way as in the previous cases.

There was no need for using short task IDs (STIDs) for reducing mem-
ory usage, since RTXC Quadros already uses 8-bit task handles. However,
dynamic creation of tasks required an indirect approach, involving a lookup
table, as the task handles of the operating system are reused. The lookup table
contains a mapping between the RTXC task ID and the index of the task in
an recorder-internal list of tasks, which is included in thegenerated trace file.
The recorder task list contains the name and other information for up to 256
tasks. On task creation, the list is searched in order to find amatching task, so
repeated dynamic creations of a single task only generates asingle entry. How-
ever, there was no “garbage collection” in the recorder tasklist, so tasks which
are no longer in the trace history still occupy an entry. Thisissue is however
solved in the latest recorder implementation, described inSection 7.4.5. In-
terrupt routines were recorded by adding two probes in everyinterrupt service
routine (ISR). Task-switch events are stored in the beginning and in the end of
the ISR, using the interrupt code to look up a “faked” task entry, specified in
a static table containing all interrupts. Nested interrupts are supported using a
special purpose stack, holding the identity of the preempted ISRs, as well as
the currently executing task.

7.4 Five Industrial Trace Recorder Projects 177

The CPU overhead of the recording was measured and found higher than
in previous cases, although still acceptable. The event rate was found to be
around 500 Hz, i.e., about ten times less than in the ABB system, but the slow,
low-end CPU (16-bit, 20 MHz) caused relatively high probe execution times,
around 60µs. This is 75 times longer than the probe execution times in the
ABB system (0.8µs). With a 500 Hz event rate, this translates into a CPU
overhead of 3 %, which is significant, but probably not a serious issue com-
pared to the potential benefits of trace recording. However,this recorder was
not optimized for CPU usage; it was rather a first prototype onthis platform.
Several optimizations/fixes are possible in order to reducethe CPU usage of
this recorder solution, as discussed in Section 7.4.6.

In a first evaluation by developers at the company, the welding system
recorder was used together with the Tracealyzer tool in order to pinpoint the
cause of a transient error which they previously had not beenable to find. By
studying a recorded trace in the Tracealyzer tool they couldfind that the error
was caused by a wrongly placed “interrupt disable” instruction, which allowed
for interrupts occurring during a critical section where interrupts should have
been disabled. The company did however not integrate the developed recorder
solution on a permanent basis, but has used the solution later for similar pur-
poses. On those occasions, they have created a custom build using the instru-
mented RTXC Quadros kernel. This can lead to probe effect [89] problems,
i.e., that the activation (or deactivation) of recording changes the system be-
havior.

7.4.4 The TEL Project

This project was performed together with an anonymous company in the tele-
com industry, which develops products based on the operating system OSE
from ENEA. The particular system studied used a high-end PowerPC CPU,
running at 1 GHz and with 256 MB of RAM. This project had the goal of
providing means for exact CPU load measurements. Previously they had used
a tool which sampled the currently executing task at randomly selected times
and in that way got an approximate picture of the CPU usage of the various
tasks. This was however considered too inaccurate. A Master’s thesis project
was initiated in 2008 in order to develop a recorder for this system [96].

A recorder for the Tracealyzer tool was developed and evaluated using stan-
dard performance tests of the system. The recorder used the “kernel hooks”
feature of OSE, which is similar to the callback features in VxWorks, and 16-
bit STIDs for tasks (processesin OSE terminology), stored in the “user area”

178 Chapter 7. Uses and Experiences of Software Trace Recording

of the process. The main problem was that OSE did not allow direct access to
the kernel memory, for reading the process control block. Itwas thereby not
possible to get the scheduling status of the tasks, which is necessary in order
to identify task instances. A workaround was implemented, the Tracealyzer
was modified for this case, so that priorities were used instead of status. This
assumes that the priorities are static since the recorder cannot read them at the
task-switch events, only at task creation. The resulting recorder was evaluated
in the company lab using their normal test-cases for load testing. The CPU
overhead of the recorder was found to be 1.1 % at an event rate of 18 KHz
and a CPU load of 30 %. This result has to be considered as most acceptable,
especially since the recorder was not optimized for CPU usage.

The company did however not use the resulting recorder sinceit was not
mature enough for industrial deployment, which requires a very robust solu-
tion, and since there was no obvious receiver at the company who could take
over the recorder development and verification.

7.4.5 The RTOS Project

In 2009 the thesis author was contacted by a representative of Quadros Sys-
tems, Inc. who expressed interest in a collaboration aimingat developing a
new trace tool for their operating system. This resulted in the development of
the second generation Tracealyzer, along with a special version for Quadros
Systems namedRTXCview. This project also included the development of a
whole new recorder design, in close collaboration with the chief engineer at
Quadros Systems.

This recorder has little in common with the previous four versions. A ma-
jor difference is that this recorder is designed for loggingof generic operating
system services without any hard-coded information in the recorder design.
The recorder contains no assumptions on the operating system services that
should be logged, this is configured through kernel instrumentation and using
a configuration file of the Tracealyzer/RTXCview. All information needed by
the off-line tool is stored in a single block of data which is statically initialized
during compile-time. This eliminates the need for calling arecorder initializa-
tion routine at system startup, which was necessary in the previous versions.
This design reduces the startup time of the system and makes it easy to retrieve
the trace recording, e.g., if the system has stopped on a breakpoint using a de-
bugger. This recorder does not use any bit-wise manipulations, which should
reduce its CPU usage significantly. To achieve this, a largerevent size was
necessary, using eight bytes per event instead of four or sixbytes.

7.4 Five Industrial Trace Recorder Projects 179

In this design, there is no explicit task-list, as in other earlier recorders, but
instead there is a generic symbol table which contains the names of tasks, user
events, semaphores, and other named objects. A string addedto this symbol
table returns a 16-bit reference, the byte index of the string in the symbol table.
If an identical string already exists in the symbol table, a reference to the exist-
ing string is returned instead of creating a new entry. This is therefore memory
efficient and solves the issue of repeatedly created dynamictasks. The symbol
table lookup is fast since all symbol names which share a 6-bit checksum are
connected in a linked list, as depicted by Figure 7.4. This however requires two
extra bytes per symbol name, for storing the index of the nextsymbol with the
same checksum, and an array holding 64 16-bit values, the linked-list heads.
If a longer checksum (i.e., more checksum bits) is used, the look-up time is
reduced, but the amount of memory required for the array of linked-list heads
doubles for every extra checksum bit. For systems with plenty of memory, an
8-bit checksum should however not be any problems, since it only requires 512
bytes.� �� � � � � � �� � � � � �	� 	�
� � 	� ����� ����� ���� �����

���� �� ��������� � !��� " #��$� �% ���� &'(() �����*+ ,���� ����- .!�.� $�" / � ,0�1 22� 2 3 4 5 6 7 8 9 2� 2423 2625 27�: ;<=>��; ?@AB@>=CDEF
G =HDI JBKI �L: ;E; ?@AB@>=CDHF
G =HDI JBKI MN: ;<=>��; ?@AB@>=CDEF
G =HDI JBKI ��/ O 74P
Figure 7.4: The symbol table

On task-switch events, the 8-bit RTXC task handles are stored without
bothering about possible later reuse of the handle, which then might change
the meaning of the currently stored handles. This is insteadresolved off-line.
The names of the currently active tasks are stored in a “dynamic object” ta-
ble which is updated on task creation. When a task is terminated (“closed” in
Quadros terminology), the name from the dynamic object table is stored in the
symbol table and the resulting reference is stored, together with the RTXC task
handle, in a special “close” event, which informs the off-line analysis tool that
this mapping was valid up until this point. The off-line analysis can then find
the correct task names of each execution fragment by readingthe event trace
backwards, starting at the trace end, and for each close event update the current
mapping between RTXC task handle and name.

180 Chapter 7. Uses and Experiences of Software Trace Recording

The described approach for handling reuse of dynamic task handles is
used for all types of dynamically created kernel objects in RTXC Quadros,
i.e., tasks, semaphores, mailboxes, alarms, etc. Time-stamps are stored in
a relative manner, using 8, 16 or 32 bits per event, dependingon the num-
ber of bytes available for each event type. Like in the other projects, XTS
events are inserted when the normal time-stamp field is insufficient. The time
unit of the time-stamps does not have to be microseconds as the time-stamp
clock rate is specified in the recorder and provided to the off-line analysis tool,
which converts into microseconds. It is thereby possible touse the hardware-
provided resolution directly without run-time conversioninto microseconds.
Another time-related aspect is that absolute time-stamps are maintained also if
the recording is stopped abruptly, e.g., due to a crash or breakpoint. The ab-
solute time of the last stored event is kept updated in the recorder’s main data
structure and is thereby available for the off-line analysis. From this informa-
tion and the relative time-stamps of the earlier events it ispossible to recreate
the absolute time-stamps of all events in the trace.

A prototype of this recorder has been implemented and delivered to Quadros
Systems, who at the moment (Spring 2010) are working on integration of the
recorder in their kernel. There are no big problems to solve;it is mainly a ques-
tion of the limited development resources of Quadros Systems. No evaluation
regarding the CPU overhead of this recorder has yet been performed. Devel-
oping and verifying a trace recorder for an operating systemis much harder
than for a specific embedded system, since an operating system recorder has to
work for all hardware platforms supported by the operating system.

7.4.6 Summary of Recording Overhead Results

This section summarizes the measured recording overhead imposed by the
recorders in the four cases where such measurements have been made, i.e.,
all cases except for the RTOS case (Section 7.4.5). The results are presented
in Table 7.1. In all cases except RBT, each event requires 4 bytes. In the RBT
case, 6 bytes per event is used.

Table 7.1: Measured recording overheads in four industrialcases

Case OS CPU F (MHz) ET (µs) ER (KHz) CPU OH (%) RAM OH (KB/s)
RBT VW P. III 533 0.8 10.0 0.8 60.0
ECU VW PPC 603 80 2.0 0.8 0.2 3.1
WLD RTXC XC167 20 60.0 0.5 3.0 2.0
TEL OSE PPC 750 1000 0.6 18.0 1.1 72.0

7.4 Five Industrial Trace Recorder Projects 181

The four right column of Table 7.1 have the following meanings.

• ET – average probe execution time

• ER – average event rate

• CPU OH – percentage of CPU used by recorder (overhead)

• RAM OH – number of event buffer bytes used per second

Note the relatively long probe execution time in the WLD case: 60µs. The
second longest probe execution time (for the ECU case) was 30times shorter
although the clock frequency was only four times higher. This is probably due
to the difference in CPU type, the CPU in the WLD case is a 16-bit micro-
controller, while more powerful 32-bit CPUs were used in theother cases.

The four evaluated recorders were optimized for low RAM usage, on the
expense of higher CPU usage. It therefore possible to reducethe CPU overhead
significantly by instead optimizing for CPU overhead, e.g.,by increasing event
size in order to avoid bit-wise encoding. Other possible optimizations are to
move as much functionality as possible off-line (e.g., time-stamp conversion)
and by using “inline” functions and macros instead of C functions. The lat-
est recorder design, presented in Section 7.4.5, includes these improvements
and should thereby give significantly lower CPU overhead, although not yet
confirmed by experiments.

7.4.7 Measuring Probe Execution Time

Estimating the CPU overhead requires that the typical execution time of a sin-
gle probe can be accurately measured. This is performed by executing two
probes in direct sequence, and taking the difference in time-stamps. The sec-
ond probe may execute faster than the first, due to caching andother hardware
features, but the execution-time obtained would mainly correspond to the first
probe, assuming that the time-stamp is obtained in the very beginning of the
probe.

For the ABB case and the telecom case, the probe execution time was found
to be shorter than 1µs, the measurements gave a (truncated) difference of 0µs.
In such case, the time-stamp resolution has to be increased,e.g., by a factor
10. In the new design, developed for RTXC Quadros, this is easily accom-
plished since the time-stamp resolution is configurable. Inearlier versions of
the Tracealyzer tool, this was hard-coded and assumed to be 1µs.

182 Chapter 7. Uses and Experiences of Software Trace Recording

Another tested solution for measuring probe execution timewas to measure
over a sequence of adjacent probes and dividing the total execution time by
the number of probes. Such a result will however be optimistic. Only the
first probe executes under realistic conditions, while the following probes may
execute faster due to caches and other hardware optimizations.

7.4.8 Lessons Learned

The five described projects have identified several issues and considerations re-
lated to trace recording, primarily with a technical focus but also a few “softer”
organizational questions, related to technology transferprojects in general. The
experiences have been condensed into a list of recommendations, considera-
tions and general reflections.

An important consideration is choosing an appropriate level of detail for
the trace recording, e.g., should the recording include events such as interrupts
or semaphore operations? This is ultimately a trade-off between the value of
the information, with respect to the purpose of the recording, compared to
the consequences of the associated recording overhead, such as a reduction
in system performance, or increased unit cost if compensating the overhead
with better but more expensive hardware. Including too little information may
however also lead to increased costs, if quality assurance becomes harder and
more time consuming due to the missing information. Such costs are however
very hard to measure, since there is no “control case” to compare with.

A related consideration is the trade-off between CPU usage and memory
usage implied by using more advanced storage techniques, such a bit-wise en-
coding or data compression, which are more memory efficient but also more
CPU demanding. It is however the author’s belief that such techniques should
generally be avoided in order to reduce the CPU overhead. Theonly exception
would be low-end embedded systems with very limited RAM and where a long
trace history is more important that system performance.

Another consideration is whether the recorder should be integrated in the
system on a permanent basis, or only activated when necessary. A permanent
integration means that the CPU and memory overhead of the trace recording
becomes permanent, and thus may degrade the system performance for its cus-
tomers. The author however recommends this approach for most systems, for
several reasons:

• The risk for probe effects is eliminated, since the recording becomes an
integrated, and tested part of the system.

7.4 Five Industrial Trace Recorder Projects 183

• A trace is always available for diagnostic purposes, e.g.,if the system
fails in post-release use, and can simply be e-mailed by a user or service
engineer to the development office.

• The automatic availability of a trace lowers the thresholdfor developers
to begin using the trace recorder. If additional configuration is required
for activating the recorder, the recorder might seldom be used.

• The recording cost, in terms of CPU and memory usage, is typically
small, in many cases not noticeable, and therefore well motivated by the
benefits.

An exception to this recommendation would be systems which are highly fo-
cused on average performance and where the unit cost is a major issue, such as
low-end multimedia devices.

A good strategy is to store the information in a single staticdata structure,
which is initiated in compile-time. By storing all events ina single buffer with
fixed-size entries, the relative order of events is maintained. More advanced so-
lutions, using multiple buffers and/or variable-sized events, may reduce mem-
ory usage, but leads to higher recorder complexity, higher risk of errors and
higher CPU overhead.

The feasibility of using a custom trace recorder, i.e., not developed by the
operating system vendor, mainly depends on the possibilityfor capturing task-
switch events. This is possible on all real-time operating systems studied, either
using built-in event callbacks, available in VxWorks and OSE, or by modifying
the kernel, which is possible for open source platforms suchas Linux, and also
for proprietary platforms where the source code is providedfor customers, such
as RTXC Quadros.

The CPU overhead of trace recording can be expected to be below 1 % in
average on high-end systems, and below 5 % in average on low-end systems,
such as 16-bit micro controllers. The memory usage of the recorder can be
expected to be between 4 – 8 bytes per event, depending on the recorder design,
and the frequency of task-switch events seems to be in the range of range 5 – 20
KHz for high-end systems, and below 1000 Hz for low-end systems. Thereby,
the memory required can be as low as 4 KB per second of event history, plus
some 5 KB for additional meta-information, e.g., a symbol table. A five second
event history would in this case require 25 KB, in total, and a1 MB buffer gives
over 4 minutes trace history. For a high-end system with a task-switch event
rate of 20 KHz, e.g., the telecom system described in Section7.4.4, the required
amount of memory is 80 – 160 KB per second of event history, depending

184 Chapter 7. Uses and Experiences of Software Trace Recording

on event size, which allows for 12 – 25 seconds of trace history if 1 MB is
allocated for the purpose.

A recommendation is to design trace recorders as simple and robust as pos-
sible and instead place the “intelligence” in the off-line tool. For instance, time-
stamps should not be converted during run-time, bit-wise encoding should be
avoided, and complex startup initialization routines should be replaced by static
initialization. A simplistic recorder design is also important if the recorder is
to be maintained by the target system development organization, which may
have limited time or interest in understanding a complex recorder design.

Don´t expect developers (i.e., the trace recorder users) toimmediately re-
alize the possibilities of all recorder features. They typically have little time
available for pro-active, quality-oriented work, such as adding custom monitor-
ing of application data (“user probes”) in order to facilitate future diagnostics.
In larger organizations, such activities often have to be performed as explicit
“quality” projects, approved and budgeted for by management.

If developing a trace recorder for another organization, asan external expert
in the area, make sure there is an explicit receiver of the solution, typically a
developer or lower level manager, which have competence, interest and time
available for taking over the responsibility for the developed solution. This was
the main success factor in the projects which led to industrial use.

7.5 Recording of Simulation Timing Profiles

The RTSSim simulation framework presented in Chapter 3 requires timing
data, execution times and inter-arrival times, which accurately describe the
modeled system. In the current implementation this is however not explicit;
the timing data is provided manually in the model code. The plan is however
to keep all such data in a separate data file, loaded by RTSSim,which contains
different data-sets to which the RTSSim model refer. This data file is referred
to as atiming profile. The context of the timing profile in the overall analysis
framework is presented in Figure 7.5. The timing profile may also contain task
response time data, for use in model validation and impact analysis.

A straight-forward approach to constructing such timing profiles for ex-
isting systems is trace recording with additional code instrumentation for de-
tailed execution time measurements between relevant program points. Typical
execution-time information is thereby obtained from real executions, under re-
alistic conditions. This data can also be complemented withWCET analysis
results, in order to provide safe upper bounds.

7.5 Recording of Simulation Timing Profiles 185

Simulation
Model Extraction

Code
Instrumentation

Run-time
Profiling

Simulation
(RTSSim)

������������	
��
	��� ��� ��
Timing profile (data)

Simulation model (code)

Figure 7.5: The context of the timing profile

This section presents a solution for this purpose, an component of the over-
all vision presented in Section 1.2. This solution has not yet been implemented,
but a detailed design is here presented which is planned for implementation in
future work.

In an automated analysis, the application code is instrumented with soft-
ware probes, which when executed records a time-stamp and a numerical probe
identifier associated to the code location. Two types of suchprobes are pro-
posed:execution-time probes(ETPs) andinput event probes(IEPs). The IEPs
are discussed in Section 7.5.2.

7.5.1 Recording Execution Times

The recording of execution time data for the timing profile requires that an ETP
is inserted at each point in the program where accurate time is of relevance
in the simulation model, i.e., at thetime synchronization points, or TSPs (as
discussed in Section 6.1). The TSPs should include the program points corre-
sponding to task inputs and outputs, including IPC and global variables shared
between tasks, and calls of model focus functions. These points are identified
by the model extraction tool, e.g., the MXTC tool presented in Chapter 6.

The sequence of ETP events resulting from executing the instrumented
software can be viewed as a directed graph, named “Instrumentation Point
Graph” by Betts and Bernat [9]. The ETPs corresponds to nodesin this graph
and a graph edge represent all code paths which directly connects two consec-
utive ETPs, i.e., without other ETPs in between. In this workwe refer to such
edges asprobe graph edges, or PGEs.

The approach is illustrated by Figure 7.6 using an example program, a sim-
ple task containing two ETPs with IDs 1 and 2. The illustration also shows a

186 Chapter 7. Uses and Experiences of Software Trace Recording

Recorded trace

200 TaskA BEGIN
300 TS TaskA -> TaskB
…
310 TS TaskB -> TaskA
340 ETP 1 (PGE B,1: 130)
440 ETP 2 (PGE 1,2: 100)
450 ETP 1 (PGE 2,1: 10)
500 ETP 1 (PGE 1,1: 50)
510 TS TaskA -> TaskC
…
520 TS TaskC -> TaskA
565 ETP 1 (PGE 1,1: 45)
665 TaskA END (PGE 1,E: 100)

Instrumented code

TaskA(){
init();
while(alive){

msg = input();
ETP(1);
switch (msg){

case A:
res = a();
output(res);
ETP(2);
break;

case B:
b();
break,

}
}
cleanup();

}

Testcases

Figure 7.6: An instrumented program and resulting events

corresponding example trace4 where the first column is the absolute time of the
events, the second column is the type of event5. The annotations on the ETP
events refer to the resulting PGE execution times. As an example,PGE B, 1:
130means that an execution time of 130 time units has been observed between
the task beginning (the B event) and ETP 1. In this example, itis assumed that
task begin events (B) and task end event (E) are detected without using explicit
probes, but instead derived from the task-switch events.

The execution-time data of the timing profile corresponds toa set of PGE
data sets, each representing the execution times for a specific PGE, i.e., the
CPU time used between the ETP events corresponding to the PGE. The PGE
data points are calculated by first taking the time-stamp difference between the
two ETPs corresponding to the PGE and then subtracting the CPU time used
by other tasks during this period.

Figure 7.7 shows the possible PGE edges, as a graph, annotated with the
PGE execution times observed. Note that “PGE 2, E”, i.e., from ETP 2 to
the task end, has not been executed and execution time data istherefore not
available in this case. This highlights a central issue of this approach, and with
testing in general: getting sufficient test case coverage. The ability to assess
the coverage is discussed in Section 7.5.6.

4In textual rather than binary form, for illustration purposes.
5TS stands for a task-switch event

7.5 Recording of Simulation Timing Profiles 187

Begin

ETP 1

ETP 2

End

PGE B,1
130

PGE 1,1
45, 50

PGE 1,2
100

PGE 1,E
100

PGE 2,E
n/a

PGE 2,1
10

Figure 7.7: The probe graph of the example in Figure 7.6

7.5.2 Recording System Inputs

The inter-arrival time data describe the typical timing between input events,
such as messages received from a TCP/IP socket or the triggering of an inter-
rupt service routine by an external signal. Such events are often not periodic
but occur in a seemingly random pattern.

Assuming that input event probes (IEPs) can be inserted at the code loca-
tions corresponding to the arrival of such events, e.g., interrupt service rou-
tines, recording such events is only a matter of logginginput eventscontaining
an IEP identity and a time-stamp. This can be implemented as auser event for
a trace recorder, as discussed in Section 7.2.4. The set of inter-arrival times for
each input event probe can then be extracted from the sequence (trace) of input
events. Since this is independent of the task scheduling, itis only a matter of
measuring the distance in time between IEP events with the same identity.

If an input event provides data of relevance for the simulation model, e.g.,
a command code, there are two strategies, either modeling the inter-arrival
time data and the input data separately, or together. The first option is easiest
and the resulting model will be smaller storage-wise, but will have a larger
search space, which may include infeasible behaviors. In the latter case, both
inter-arrival time data and input data is modeled as a directed graph, where
the nodes corresponds to specific input values and the edges corresponding to
observed input data sequences. Each edge is associated witha set of inter-
arrival time observations. This is the same technique as theone proposed for
execution time, but with one graph per IEP probe, observed data values as

188 Chapter 7. Uses and Experiences of Software Trace Recording

nodes (instead of probe IDs) and inter-arrival times in the data-sets (instead
of execution times). This solution however assumes that thepossible input
values are relatively few, e.g., command codes or states. Ifan input has a large
amount of possible values, e.g., a 16-bit sensor reading, this representation is
not suitable. In such cases, it may be possible to use a model which predicts
sensor readings by using a model of the physical, continuoussystem. Another
solution is to use separate, independent models of input data and inter-arrival
times.

7.5.3 Modeling Recorded Timing Data

The measured data, i.e., execution times, inter-arrival times and response times,
will vary from time to time due to differences in software andhardware state
between the executions and are therefore modeled using probability distribu-
tions. A simple, straight-forward approach is to use a uniform distribution
between the lowest and highest observation (watermark) fora specific PGE ex-
ecution time. This is suitable when using simulation optimization methods, as
presented in Chapter 4. In this case, the focus is to find a scenario as extreme as
possible with respect to the specified property, e.g., task response times. This is
essentially a search problem, where the main concern regarding PGE execution
times is the feasible intervals. A question in this regard isif to add a “margin”,
since the watermarks probably does not represent the best-case and worst-case
execution times. This is highly related to the RapiTime product of Rapita Sys-
tems, Ltd. [136], which predicts the worst-case execution time based on this
type of measurements. This is however outside the scope of this thesis.

For performance analysis, i.e., of typical timing, uniformdistributions are
however not suitable since they do not preserve the mean values or shapes of
the real execution-time distributions. In this case it is instead recommended
to use empirical distributions, in which every observed PGEexecution is rep-
resented as a individual data-point. During simulation, execution times for a
specific PGE are selected by random (sampled) from the PGE data-set, using
a uniform probability distribution. Thereby, each PGE execution time will be
chosen with the same probability as observed in the measurements. The down-
side is that this requires a lot of memory and only the observed execution times
will be used. In some cases, not every value in a specific PGE interval might
be observed, even though very similar values have been recorded, both smaller
and larger. Larger “gaps” should be taken into account, since such are most
likely caused by control-flow conditions. However, small “gaps”, a single or a
few individual missing values, should be regarded as missing data points, i.e.,

7.5 Recording of Simulation Timing Profiles 189

values which most likely are possible. It is desired to include also such values
in the timing profile.

An interesting solution is to mix the two methods: starting with the em-
pirical distribution, group (stratify) nearby data pointsinto intervals (stratas),
where the mean value of the strata bounds is as close as possible to the mean
value of the included data points. Thus, the data points of each strata should be
fairly evenly distributed within the strata interval. Eachstrata is given a prob-
ability corresponding to the number of data points within the group divided by
the total amount of data points. This gives a PGE data set consisting of stratas,
where each strata has an upper bound, a lower bound and a probability. When
using such a timing model in RTSSim, the simulator first select what strata to
sample from, based on their respective probabilities, and then select a value
from the selected strata interval, using a uniform probability distribution. Note
that the stratas (their intervals) may overlap without restrictions.

7.5.4 Using Timing Profiles in Simulation

The timing profile, a data file, is loaded by the simulator before starting sim-
ulation. It contains a set of data-sets of different types (execution-time, inter-
arrival time or response-time), with identities. In this solution, theExecute
function takes as parameter a ETP identifier. This is assigned by model extrac-
tion tool when the time synchronization point (TSP) is identified. Note that the
TSP exists in the real system source code as well as in the model code, in the
former as an execution time probe (ETP) and in the latter as anExecutecall,
both using the same identifier as argument.

The ETP ID is used to calculate a PGE ID, in the beginning of theExecute
function, by merging the ETP ID with the recent history of ETPs, theETP
history. In Figure 7.7, a ETP history of 1 is used, which is the minimum, but
a longer history can be kept using a fixed-size ring-buffer. The ETP history is
updated in the end of theExecutefunction, where the current ETP ID is added
to the ETP history.

Note that the PGE data-sets refers to the execution-time betweentwoETPs
independent of ETP history length, but if using a longer history, of two (2) or
more, there may be multiple data-sets for a PGE, depending onthe execution
path leading to the first ETP. A longer history reduces the risk of the simula-
tion exploring infeasible scenarios, i.e., selecting a sequence of PGE execution
times which cannot occur in practice, e.g., due to hardware-related dependen-
cies between different code segments, such as cache conflicts. However, it also
requires a larger amount of measurements in order to get complete coverage,

190 Chapter 7. Uses and Experiences of Software Trace Recording

since the number of PGE data-sets grows with the history length. In a future
simulation tool, the ETP history could be a parameter for theuser to decide.

7.5.5 Systematic Data Collection

The instrumented software system needs to be exposed to large amounts of
testing in order to collect a sufficient amount of data on eachPGE, especially
if using a longer ETP history (as discussed in Section 7.5.4). Large scale data
collection for simulation timing profiles can be achieved byintegrating the ETP
and IEP instrumentation into the system on a permanent basisand relying on
the existing system testing process to stimulate the systemsufficiently. If a
trace recorder exists in the system, and if the ETPs can be added automatically,
e.g., by the model extraction tool, this is only a matter of updating the test
case specifications with instructions to collect, label (system version and build
configuration, etc.) and store the trace recording after a set of tests have been
performed. This way, large amounts of trace data becomes available at very
little extra effort, and the risk of a probe effect [89], i.e., that the activation
(or deactivation) of recording changes the system behavior, is eliminated since
the release version is identical to the analyzed system. This solution would
however imply an additional performance overhead, which, depending on the
amount of ETPs and IEPs, might be significantly larger than the overheads in
the case studies presented earlier. An evaluation of this approach with respect
to recording overhead is planned for future work.

A possible extension of this approach is to perform the extraction of PGE
data periodically during run-time, e.g., by using a low-priority task which reg-
ularly analyze the last recorded events and perhaps even keeps a complete tim-
ing profile updated, i.e., describing the whole execution since system startup.
In this way, the RAM buffer can be much smaller, compared to ifdoing the
analysis off-line. However, this means keeping the timing profile in target sys-
tem RAM, which imposes requirements on its size. Therefore,it might not be
wise to store every observation separately, since the system may be running for
days, weeks, or even months continuously when in post-release use. A more
memory efficient solution is required, where the observations are grouped into
intervals, as discussed in Section 7.5.3.

The low priority of the profiling task means that it will not affect system
performance, but also a risk of losing data. If higher priority tasks delay the
profiling task for a long time, and during this time create many probe events,
there is a risk that unprocessed probe events are overwritten in circular event
buffer. This risk can be reduced by increasing the rate of theprofiling task

7.5 Recording of Simulation Timing Profiles 191

and/or increasing the event buffer size. However, in the worst case, a data loss
does not invalidate the result, it only implies a temporary loss of data and the
profiling can resume once the profiling task is allowed to execute.

Another possibility for the profiling is to use a hardware recorder, like the
RTBx product from Rapita Systems, Ltd. [136], as presented in Section 2.5.
The hardware support minimizes the CPU overhead of the analyzed system, as
it only need to output the probe identifier on a digital I/O port, typically a matter
of 1 – 2 instructions, while the time-stamping and data storage is performed by
the recorder hardware (a separate computer). The downside of this approach
is that it requires quite large and expensive hardware, which can be hard to use
for post-release data collection since the equipment is generally too expensive
(and large) to be included in products.

7.5.6 Coverage

The coverage of the timing profile, with respect to PGE execution times, can be
determined in at least two ways. The safest approach is to compute all possible
PGEs through static analysis of the source code and compare with the PGEs in
the timing profile. The computational complexity of calculating the CFG can
however be a scalability problem for analysis of complex embedded systems,
especially since the calculation must be performed with a global scope, i.e., as
an interprocedural analysis. Another approach is to rely onthe simulation of
the model for assessing the coverage. If the simulation requests a PGE which
does not exist in the timing profile, an error is produced to highlight this issue.
This approach is easier, but depends on the coverage of the simulations.

If PGEs are found to be missing, additional test-cases must be added in
order to include the code path(s) corresponding to the PGE. Furthermore, if
PGEs are found to have too few data points this must be addressed, especially
if the PGEs represent a larger block of code, containing manypaths. This thesis
does however not elaborate on the necessary number of data-points per PGE,
nor the process of selecting test-cases for maximum test-case PGE coverage.

The probabilistic modeling of execution time is associatedto a risk of pro-
ducing simulation results which are not feasible in practice, e.g., if there are
hidden dependencies between different PGE due to hardware state. For in-
stance, say that we have two PGEs, PGE 1 and PGE 2, which alwaysexecute
in sequence. There is one task with higher priority which maypreempt either
in PGE 1 or PGE 2, but never in both during the same task instance, e.g., due
to the task periods. The preempting task impacts the cache and causes a cache-
miss when the preempted task resumes, which increases the execution time

192 Chapter 7. Uses and Experiences of Software Trace Recording

significantly. Such cases correspond to the highest observed execution times
for both PGE 1 and PGE 2. The simulation may however select themaximum
values from both PGEs in the same instance and thereby produce an execu-
tion time which is not feasible in practice. Solving this issue however requires
a more detailed timing profile which takes the previously selected execution
times into account. This would quickly increase the size of the timing profile,
which thereby requires more measurements for construction.

7.6 Conclusions

This chapter has presented uses, experiences and techniques for trace record-
ing in the context of embedded systems in general, and in the context of the
overall analysis framework presented in Section 1.2, wheretrace recording is a
necessary and important component.

A central use of trace recording in the envisioned analysis framework is to
collect timing data for the simulation models. For this purpose, this chapter
has presented an approach for recording, modeling and integration of timing
profilesin simulation frameworks like RTSSim.

Visualization, analysis and comparison of traces from simulations or real
system recordings is necessary during impact analysis, model validation and
regression analysis. Note that trace comparison is discussed in Chapter 8. Out-
side the scope of simulation-based analysis, trace visualization is of direct rel-
evance for industry, e.g., for troubleshooting, optimization and overall system
understanding. A trace visualization tool, the Tracealyzer, has been developed
during this work. This is today used in all ABB robots and the second version
of this tool is commercialization together with Quadros Systems, Inc., under
the name RTXCview.

Since trace recording is a key component of the envisioned analysis frame-
work, the general applicability of trace recording is naturally of high impor-
tance and is targeted by research questionQ3, presented in Section 1.3. This
has two aspects, implementation feasibility on common real-time operating
systems, and the overhead with respect to CPU and RAM usage. This has been
investigated in five industry collaboration projects wheretrace recorders have
been implemented.

Evaluations of overhead has been performed in four cases, representing
the domains of industrial robotics, vehicular systems, telecom systems, and
automated welding systems. The system used three differentoperating systems
and four different CPUs, ranging from a 20 MHz, 16-bit micro controller to a

7.6 Conclusions 193

1 GHz, 32-bit CPU. The CPU overhead from the trace recorders implemented
on these systems was found to be between 0.2 – 1.1 % for 32-bit CPUs and
3 % for the 16-bit MCU. The RAM buffer usage was found to be 2 – 72KB
per second of trace history, depending on event rate (0.5 – 18KHz) and event
size (4 – 8 bytes). All three evaluated operating systems allow for third-party
trace recorders, in two cases through callbacks/hooks and in one case since the
kernel source-code was available and thereby could be modified.

No evaluation of overheads has yet been performed in the fifthand most
recent recorder project, which is still ongoing. In this project, a generic trace
recorder has been implemented and integrated in the commercial real-time op-
erating system RTXC Quadros [137]. This is included in orderto present the
latest recorder design, based on the author’s experiences of the four earlier
projects combined with the expertise of the RTOS developersat Quadros Sys-
tems, Inc. [137].

Recorder implementation was possible on all five cases, although the op-
erating system OSE, from ENEA AB [134], caused some problemsdue to
security mechanisms preventing direct access to kernel data. While context-
switches (task-switches) could be logged with respect to task identity and times-
tamp (the “what” and “when”), it was not possible to log the “why”, i.e., the
status of the suspended task (ready, blocked or terminated). This is needed
for correct trace visualization. A workaround was found, which however as-
sumes static process priorities in order to guarantee correct display. Note that
this problem does not concern recording of timing profiles, which is straight-
forward in all five cases.

These results confirm the feasibility of trace recording in the context of the
overall approach, presented in Section 1.2. The answer to research question
Q3 is thereby “yes” — custom trace recording is generally feasible, with low
overhead. Note that the presented overhead figures do not include the instru-
mentation necessary for recording of timing profiles, i.e.,ETPs and IEPs as
proposed in Section 7.5. Adding such probes would increase overhead a lot,
since the ETPs may be frequent. The evaluated recorders havehowever not
been optimized for CPU overhead, so it is likely that the higher event rate can
be somewhat compensated by shorter probe execution times. Moreover, the ad-
ditional profiling (ETPs and IEPs) would also give improved troubleshooting
support and thereby at least partially motivate the additional overhead, since
these events could be presented visually, in the Tracealyzer or similar tool,
which would help pinpointing errors and performance bottlenecks.

Chapter 8

Model Validity, Validation
and Trace Comparison

This chapter discusses the issue of model validity and thereafter presents a
five step process for validation of simulation models, through comparison of
simulation traces with traces from the modeled system. The first four steps
of this process is actually a general method for trace comparison, which can
be used for impact analysis and regression analysis as well.These uses are
described on a conceptual level in Section 1.2. A literaturestudy on model
validation is presented in Section 2.6.

Since a model is, by definition, an abstraction of the modeledsystem, a
model cannot be expected to exactly predict the behavior of acomplex system
in all situations. In context of the simulation analysis framework presented
in this thesis, the abstractions correspond to the probabilistic execution time
modeling (Section 7.5) and use of explicit, manual modelingabstractions, as
discussed in Section 5.7. However, if all details of the modeled system soft-
ware and hardware was to be taken into account, e.g., in orderto model the
execution times in an exact manner, the result would be a verydetailed simula-
tor like Virtutech Simics [124], which would be several magnitudes slower and
therefore not suitable for this approach.

A valid model does not have to be “perfect”, as discussed, butshould give
predictions that are “good enough”, with respect to accuracy and confidence. A
major problem is, how accurate and confident does a result need to be, in order
to be good enough, i.e., valid? This question cannot be answer for the general
case. The validity of a model is investigated in an activity known asmodel

195

196 Chapter 8. Model Validity, Validation and Trace Comparison

validation. Schlesinger et al. [41] defines model validation as the “substantia-
tion that a computerized model within its domain of applicability possesses a
satisfactory range of accuracy consistent with the intended application of the
model”. This definition relies on that the following has been defined:

• The domain of applicability specifies the system that is described by
the model. For a model of the temporal behavior of a complex embedded
system, this includes versions and setup of software, as well as hardware.

• The required accuracy is dependent on the properties of interest and
the intended use of the model predictions.

• The intended application of the modelconsidered is, as discussed in
Chapter 1, impact analysis with respect to run-time properties, during
software maintenance.

Thus, a model cannot be shown valid in general, only for a specific use, in
a specific context. The required accuracy (and confidence) depends to a large
extent on the purpose of the analysis model. For instance, ifthe model is used
for studying the response times of software functions without hard real-time
requirements but with requirements on user-perceived performance, i.e., typ-
ical response times, it may be sufficient with a 20 % margin of error in the
predictions, since the consequences of a minor prediction error regarding user-
perceived performance is not critical and since it is easy toverify this after
implementation. However, if the model is used to predict properties critical
for correct system operation, such as extreme-values in response time, a much
higher accuracy is required since the consequences of not detecting such an
error might be a system failure and, moreover, since the extreme-case scenar-
ios found through simulations might be hard to reproduce andtest on the real
system.

This chapter proposes a five-step process for validation of simulations mod-
els for task-level timing analysis of embedded software systems, which also
can be used for impact analysis and regression analysis. Themodel valida-
tion process utilizes the trace recording techniques and the Tracealyzer tool,
presented in Chapter 7, and the simulation framework RTSSim, presented in
Chapter 3. Section 8.1 provides a discussion of the potential threats against
the validity of a model. Section 8.2 presents the proposed validation process,
consisting of five tests of the model. Section 8.3 discuss theselection of com-
parison properties, a necessary and crucial step in this process. Section 8.4
gives an introduction to the two-sample Kolmogorov-Smirnoff test, a statisti-
cal test which is useful in several steps of this process. Section 8.5 discusses

8.1 Validity Threats 197

model robustness and presents the fifth and final test in the validation process,
the sensitivity analysis, which is a test of model robustness. Finally, Section
8.6 concludes the chapter.

8.1 Validity Threats

The need for model validation emerges from the risk of makingdecisions based
on a model that contains errors or lacks information about important details of
the system’s behavior. The proposed analysis framework consists of several
activities and tools and errors could be introduced in any ofthem. There are at
least five potential error sources:

• Manual modeling abstractions,

• Execution-time modeling,

• Model extraction configuration,

• The probe effect, and

• Side-effects of black-box software.

Manual Modeling Abstractions The envisioned solution for automated model
extraction includes support for manually specifiedmodeling abstractions, where
selected condition expressions are replaced with constants, or modeled in a
probabilistic manner. It is believed a small amount of carefully selected mod-
eling abstractions in many cases can reduce the model size significantly and
thereby shorten the time required per simulation. It is however important that
manually specified abstractions are valid with respect to the purpose of the
model. For instance, if the purpose of the model is typical performance, con-
ditions for error checking can probably be removed from the model, but if the
purpose is extreme value analysis such abstractions might not be valid.

Execution-time Modeling When recording execution time data for the tim-
ing profile, as discussed in Section 7.5, it is important to get sufficient coverage.
Insufficient coverage can however be detected during the simulation. A more
serious problems is if there are hidden dependencies in the execution-time data,
e.g., due to hardware state, which may cause the simulator togenerate scenar-
ios which are not feasible in practice, as discussed in Section 7.5.

198 Chapter 8. Model Validity, Validation and Trace Comparison

Model Extraction Configuration The presented method for automated model
extraction requires as input the set ofmodel focus functions, i.e., the API func-
tions of relevance for the run-time properties in focus of the model. It is im-
portant that this list is complete, since the model will otherwise fail to include
relevant behavior, but including too many (irrelevant) model focus functions
will make the simulation model larger and more complex than necessary, so
it is important to select the model focus functions carefully. Another input of
importance is to specify the right source code directories and preprocessor di-
rectives. In a large system, this is not always obvious as thebuild environment
is complex and often heterogenous. Some files might be generated in compile-
time. There are commercial tools which solve this by monitoring the build
process in order to record what files and preprocessor directives that are used.
This method is used by both CodeSurfer [123] and Coverity [142].

The Probe Effect If the code instrumentation used for constructing the tim-
ing profile is not permanent but added on demand, the behaviorof the modeled
system might not be the same as the behavior of the productionversion. The
impact of adding or removing code instrumentation is commonly referred to as
the probe effect [89]. In this thesis it is assumed that the probe effect can be
avoided by allowing the probes to remain in the system. However, this might
not be possible for some systems due to the cost of these probes, i.e., the ad-
ditional CPU and memory usage. Another solution to avoid theprobe effect is
to use specialized hardware monitors that non-intrusivelyobserve the system
without affecting the temporal behavior of the system [109]. This is however
not always an option, since custom hardware is required.

Side-Effects of Black-box Software Large software systems often contain
third party software, e.g., databases, drivers, libraries, etc., for which the source
code is not available. The approach to automated model extraction presented
this thesis generally requires that the source code is available, but provides a
mechanism for allowing black-box library functions. It is however assumed
that most code is available, and that any such black-box library functions only
perform simple operations with no side-effects of relevance for the simulation
model.

However, larger black-box software components, like an SQLdatabase, are
likely to have such side-effects, e.g., spawning tasks or locking a semaphore.
In order to model black-box software with such behaviors there are approaches
based on dynamic analysis (trace recording), such as the works by Huselius [100]

8.2 A Process for Trace Comparison 199

and Jensen [49, 116]. A literature study on modeling methodsusing dynamic
analysis is presented in Section 2.5. Such methods could be used as a comple-
ment to model extraction from source code.

8.2 A Process for Trace Comparison

Model validation is in the context of this thesis a matter of comparing sim-
ulation results with real world observations of modeled system, i.e., a matter
of trace comparison. The termtrace data setis used as a common label for
all information contained in (or derived from) a trace recording. Comparison
of trace data sets is necessary in all three scenarios in the vision presented in
Section 1.2, i.e., model validation, impact analysis and regression analysis. In
all cases, the issue in focus is whether or not there are significant differences
between two trace data sets with respect to relevant aspectscompared. The
three uses for trace comparison are illustrated by Figure 8.1.

System S1

System S2

Model M1

Model M2

Change(s) implemented

Model extraction

Change(s) prototyped

Recorded Trace 2

Recorded Trace 1

Simulation Trace 1

Simulation Trace 2

Comparison = Impact Analysis

Comparison = Model Validation

Comparison = Regression Analysis

Execution

Execution

Simulation

Simulation

Figure 8.1: The uses for trace data comparison

This section presents a five-step process for finding differences between
trace data sets. The process is presented in perspective of model validation, but
the first four steps can also be used for impact analysis or regression analysis.
The fifth step, sensitivity analysis, is however only for model validation.

The five steps are increasingly harder test of similarity between two trace
data sets, one from Monte Carlo simulation of the model and one from moni-

200 Chapter 8. Model Validity, Validation and Trace Comparison

toring during real system operation. Each test either failsthe model (i.e., not
valid), or allows the model to pass to the next test in the comparison process.
The reason for starting with less accurate tests is that theyare faster than the
more accurate tests, but are still likely to detect any majorerrors in the model.
The more accurate but time-consuming tests are only appliedwhen the model
has passed the previous, less accurate tests. Some of the tests have been pre-
viously proposed in research literature, by e.g., Law and McComas [60] and
Sargent [62], but not in the context of validating simulation models of embed-
ded software systems.

It is important to remember that this process cannot prove the validity of
a model. This is not possible, in the same way as it is not possible to prove
the absence of software errors using testing; there is usually an astronomic
number of possible scenarios, too many to allow for a systematic, exhaustive
comparison of each one. Model validation is therefore a matter of attempting
to show that the model is incorrect, i.e., that there are significant differences
between two trace data sets. The more tests performed that fail to show that
the model is incorrect, the more confidence in the model.

Next follows an overview of the comparison process. Note that the first
half of the process uses subjective methods, based on visualizations, while the
later tests are based on statistical methods. Steps 1 – 4 are presented in detail
in sections 8.2.1 – 8.2.4, respectively, while Step 5 is presented separately in
Section 8.5.

1. Subjective Trace ComparisonTask execution trace are visualized and
compared subjectively, e.g., using the Tracealyzer tool presented in Sec-
tion 7.3. The purpose of this first test is to quickly determine if there are
major, obvious differences.

2. Subjective Property ComparisonSpecific properties of the trace data
sets are selected (thecomparison properties), visualized and compared
subjectively. This test is more detailed than the trace visualization test,
but still subjective.

3. Variability Analysis Several trace data sets from the same source are
compared in order to study the amount of variability in the comparison
properties. If trace data sets from the same origin show large variations,
larger trace data sets are necessary. The variability should be investigated
by using statistical methods; the two-sample Kolmogorov-Smirnoff test
is suggested.

8.2 A Process for Trace Comparison 201

4. Statistical Property Comparison In this test, statistical methods are
applied in order to determine the similarity between the trace data sets,
with respect to the selected comparison properties. Like inthe variability
analysis, the two-sample Kolmogorov-Smirnoff test is recommended for
statistical comparison.

5. Sensitivity AnalysisThis test is rather time consuming and is only rec-
ommended for initial model validation, and for verificationof the overall
simulation framework. This test checks if the simulation model isrobust
with respect to typical changes, meaning that the predictions from the
model should correspond to the actual outcome when implementing the
change in the real system. Model robustness and sensitivityanalysis is
discussed in a Section 8.5.

Before the validation process can be initiated it is important to select at least
one system environment on which the tests in the model validation process
can be based, thevalidation environment(s). An environment specifies at least
what test-cases that are used to stimulate the system (i.e.,generate input), the
hardware platform used (what timing profile to use for the simulations) and the
software configuration.

Preferably, more than one validation environment should beused to better
compare the system and the model, since a model that is valid in one environ-
ment may not be valid in other environments. Unfortunately,since the effort
of performing the test is proportional to the number of validation environments
used, only a limited amount of validation environments can be used in order to
keep the required effort on a realistic level. It is therefore important to select
the validation environments with care.

The validation environments should stimulate the model in many different
ways in order to compare as much as possible of the model behavior with the
corresponding behavior of the real system. Since only a limited number of
validation environments can be used they should differ as much as possible
from each other in order to compare the model with the real system in a variety
of situations. At least one validation environment should correspond to extreme
cases scenarios with respect to system stimuli, but it is also important to use
validation environments corresponding to the normal use ofthe system.

The selected validation environments are used in all steps of the process.
Each test is performed once for each validation environment, and if a test fails
for any of the validation environments, the model validation is terminated in
order to investigate the cause of the discrepancy.

202 Chapter 8. Model Validity, Validation and Trace Comparison

8.2.1 Step 1: Subjective Trace Comparison

In the first step in the process, traces are visualized using asuitable tool (e.g.,
the Tracealyzer, presented in Section 7.3), and subjectively compared. The
purpose of this test is to quickly spot any major differencesonly.

When comparing the traces, it is important to note that the traces are sam-
ples of a very large set of possible behaviors due to seemingly random vari-
ations in execution-times and input event timing. Even though the validation
environment has been specified, the model is still an abstraction of the real
system, modeled in a probabilistic manner with respect to execution times and
input events. Hence, an exact match cannot be expected. However, it should
be possible to identify patterns in the task execution depicted by the two traces.
If the execution pattern of a task that has been predicted by the model differs
considerably from the observation, the model will fail the test.

An example is depicted in Figure 8.2, where two execution traces are com-
pared side-by-side, one from an analysis of the model (on theright) and the
other recorded on the corresponding real system. In the realsystem, the task
Drive always preempts theCtrl task, but in the model this is not the case. As
depicted by Figure 8.2, theDrive task has a matching inter-arrival time (pe-
riodicity) and execution time, but it has a different offsetwith respect to the
Ctrl task and the preemption pattern is therefore different. This is an example
of a pattern which may also be used as a comparison property inthe property
visualization test, discussed in Section 8.2.2.

8.2.2 Step 2: Subjective Property Comparison

In the second test, specific properties of the real system behavior and the cor-
responding model simulation are visualized and compared subjectively. This
test has been discussed by Sargent [62], where it was referred to as theoper-
ational graphicstest. This test is stronger than the trace comparison (Step 1),
as it apart from a set of validation environments also requires selecting a set of
concrete properties to compare, thecomparison properties.

The selection of comparison properties is a very important part of the val-
idation process, since the comparison properties are used in all later steps of
the process. For each validation environment, all comparison properties are to
be visualized and compared. Suitable properties to comparein this test are re-
sponse time distributions (an example is depicted in Figure8.3), and utilization
of logical resources over time (Figure 8.4). Such properties are sensitive to a
large set of possible differences between the model and the real system. The

8.2 A Process for Trace Comparison 203

Figure 8.2: Trace comparison using the Tracealyzer tool

204 Chapter 8. Model Validity, Validation and Trace Comparison

selection of comparison properties is discussed in Section8.3.

The comparison properties may, e.g., be presented in a scatter-plot, with
the X-axis as a time-line and the Y-axis showing the corresponding value, i.e.,
response-time of task instance or the utilization of a specific resource. Since
execution traces should already be available from the previous step, the main
effort of this test is the actual comparisons of property visualizations. The
amount of comparisons required may be significant since it isthe product of
the number of environments and the number of properties to compare. If 5 en-
vironments are used for the model validation and 20 properties are to be com-
pared, each data set will generate 100 visualizations to be compared. However,
even if each comparison takes on average 1 minute, this takesless than 2 hours
for a single person to perform.

Task A - Response Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

6500000 7000000 7500000 8000000 8500000 9000000

Instance Start Time (µs)

R
es

po
ns

e
T

im
e

(µ
s)

Figure 8.3: Visualization of the usage of a task response time

It is important to understand that the purpose of this test isto look for major
differences only. In most cases there will be small differences even if the model
is of good quality. However, to determine if these differences are small enough
is done in a more systematic and objective way later in the validation process.
Property visualization is a fairly quick method of identifying the significant
errors in specific properties, at an early stage in the validation process prior to
more time-consuming tests.

8.2 A Process for Trace Comparison 205

Queue A

0

1

2

3

4

5

6

7

8

9

0,4 0,45 0,5 0,55 0,6

Time (s)

U
til

iz
at

io
n

Figure 8.4: Visualization of the usage of a logical resource

8.2.3 Step 3: Variability Analysis

The third step in the validation process, the variability analysis, is important
since seemingly random variations in execution time and input event timing
will cause trace data sets from the same source to show variations between
replications of the data sets. The output from Monte Carlo simulation will
show variations due to the use of probabilistic modeling, while real system
measurements will show variations due to variations in hardware state, such
as cache memories, or due to variations in the timing of external input events.
If the amount of variability in the analysis results is large, this implies that
the predictions are based on an inadequate number of observations (simulation
or real system recordings) and might therefore not be representative for the
system behavior in general. The simulation results are not incorrect in the
sense that the behavior predicted by the model may occur in the real system,
but the results are of low confidence. This applies mainly to prediction of
average-case behavior, using Monte Carlo simulation.

However, small variations between data sets from the same source are ex-
pected, and normal. Comparing data sets therefore requiresa method where
smaller variations can be tolerated, while larger (statically significant) differ-

206 Chapter 8. Model Validity, Validation and Trace Comparison

ences are clearly identified. There are several establishedstatistical methods
for this purpose, i.e., to for determining if there are significant differences be-
tween two sets of data. The two-sample Kolmogorov-Smirnofftest (cf. Sec-
tion 8.4 is recommended for this purpose, since it is non-parametric and makes
no assumptions on the underlying distribution of the data. Another method is
the one proposed by Huselius [100], a former department colleague of the au-
thor. Huselius dismissed the KS test for this purpose under the assumption that
one of the data-sets compared needs to be modeled as a mathematical distribu-
tion. This is however not true for the two-sample KS test, which is discussed
in Section 8.4.

8.2.4 Step 4: Statistical Property Comparison

In Step 2 of this process, comparison properties were selected, visualized and
compared in a subjective manner, which can quickly show obvious differences.
However, in order to test the model validity in more detailed, accurate and
objective way, a statistical comparison is necessary.

However, it does not makes sense to compare the trace data sets directly. As
an example consider Figure 8.5, which depicts the predictedand real response
times of a task. Each data point represents the response timeof a task instance.
The data-points are plotted in chronological order according to the start times
of the task instances.

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

10 2 3 4

Instance start time (s)

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

10 2 3 4

Instance start time (s)

Simulation Real System Recording

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

10 2 3 4

Instance start time (s)

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

10 2 3 4

Instance start time (s)

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

10 2 3 4

Instance start time (s)

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

10 2 3 4

Instance start time (s)

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

0.1

0.2

0.3

0.10.1

0.20.2

0.30.3

0.4

0.5

0.6

0.40.4

0.50.5

0.60.6

0.7

0.8

0.9

0.70.7

0.80.8

0.90.9

1.01.0

1.11.1

0.0

10 2 3 4

Instance start time (s)
10 2 3 4

Instance start time (s)

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

10 2 3 4

Instance start time (s)

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

10 2 3 4

Instance start time (s)

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

T
as

k
re

sp
on

se
tim

e
(m

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0

0.1

0.2

0.3

0.10.1

0.20.2

0.30.3

0.4

0.5

0.6

0.40.4

0.50.5

0.60.6

0.7

0.8

0.9

0.70.7

0.80.8

0.90.9

1.01.0

1.11.1

0.0

10 2 3 4

Instance start time (s)
10 2 3 4

Instance start time (s)

Simulation Real System Recording

Figure 8.5: Response-time distribution – simulation vs. real system

The temporal behavior predicted by the model clearly resembles the response-
time distribution from the real system measurements. Distinct classes of re-
sponse times can be identified in the observed and the predicted behavior and
these match very well. However, it is not possible to comparethese two data
sets instance by instance, since thexth instance of taskT in a simulation trace

8.3 Selecting Comparison Properties 207

will probably not match thexth instance of taskT in a real system trace, even if
the traces were synchronized, due to the probabilistic execution time modeling.

Obviously, an exact match of the execution traces is a too strict criterion of
equivalence for probabilistic models. Instead, the execution traces have to be
compared on a higher level of abstraction. Like in the variability analysis (Step
3), the comparison properties should here be compared usingthe KS test (cf.
Section 8.4), but instead of comparing data sets from the same source (i.e., two
simulation results or two real system recordings), the datasets are in this case
of different origin.

The result of this step shows if there are any significant differences between
the two compared data sets with respect to the comparison properties. This is
conceptually similar to a comparison of two physical objects from photographs
taken from different perspectives; a photo of a cylinder-shaped object may ap-
pear very similar to a photo of a spherical object in a certainperspective, but not
in others. It is therefore important to include a sufficient amount of comparison
properties (perspectives), in order to detect any differences that exist.

8.3 Selecting Comparison Properties

Statistical property comparison naturally requires a selection of the properties
to compare. If a sufficient number of comparison properties have been used
and the comparison has been made with low tolerance, any model that passes
this test should be highly accurate.

In the same way as when defining test cases for normal softwaretesting,
it is crucial to select the right test cases. As many comparison properties (test
cases) as possible should be used, but at the same time it is only possible to use
a limited amount for practical reasons.

The comparison properties typically include explicit system requirements
and other system properties of high interest, but may also include system prop-
erties that are of less interest for the actual used of the model in order to
increase the coverage of the comparison. Such extra properties are labeled
supporting properties. They are affected by many aspects of the system and
characterize the temporal behavior. Typical supporting properties are statistics
on task inter-arrival times and utilization of logical resources, such as message
queues.

As mentioned, as many relevant system properties as practically possible
should be included in the set of comparison properties. However, the use of
irrelevant comparison properties may result in the rejection of a valid model.

208 Chapter 8. Model Validity, Validation and Trace Comparison

Sargent [62] denotes this aType I error, or themodel builder’s risk. The op-
posite situation, i.e., an erroneous model is accepted as valid, may occur if too
few relevant comparison properties are used or if the model has not been suffi-
ciently analyzed in order to detect the erroneous behavior.Sargent [62] denotes
this aType II error, or themodel user’s risk.

Even if a large set of system properties are used for a comparison there is
a risk of accepting an invalid model, if they represent too few types of system
properties, For instance, consider a case where only response-time properties
are used as comparison properties. This would not detect if the inter-arrival
time of a task is (slightly) different, but would have if the comparison proper-
ties included preemption patterns. Thus, the selected system properties should
not only be relevant, but also represent a variety of aspectsof the temporal be-
havior. Three general types of run-time properties have been identified as suit-
able for comparison of the temporal behavior of complex embedded systems:
response-time properties,pattern properties, and resource utilization properties.

Response-time properties The response time of tasks can be used as a com-
parison property, since it is dependant on not only the execution time of the
task, but it also depends on the temporal behavior of other tasks. The response
time may be interesting in terms of worst case, since it mightbe a requirement
(a deadline), but also the distribution of response times can be used as a sup-
porting property, as it contains a significant amount of information about the
temporal behavior of the system.

Pattern properties It is often possible to identify patterns in the scheduling
of tasks and in the occurrence of different internal events.An example is how
often a certain task, Task A, is preempted by another specifictask, Task B. The
occurrence of a certain pattern in the execution time of a task is also a pattern
property that can be used for comparison.

Resource utilization properties Properties in this category include those re-
lated to logical resources, such as the minimum or maximum utilization of
message queues, how long a task waits for a message, or how often a task
writes or reads messages from the buffer. Another example ofsuch a property
is the probability of a certain message buffer being empty (or full).

8.4 The Two-Sample Kolmogorov-Smirnoff Test 209

8.4 The Two-Sample Kolmogorov-Smirnoff Test

The two-sample Kolmogorov-Smirnoff test [38], or KS test, is recommended
for the statistical comparison of trace data in the model validation process pro-
posed. A good overview of this test can be found at the U.S. NIST web-
site [125]. The KS test is non-parametric and makes no assumptions on the
underlying distribution of the data, which is important since response-times
and execution-times are often not normal distributed but rather has a complex,
multi-modal probability density distributions, as illustrated by Figure 8.5.

The KS test assumes that the data is of continuous nature. Even though
time is discrete in RTSSim simulations, since modeled by an integer counter,
the underlying concept of time is continuous and the execution- and response
times are typically measured in hundreds or thousands of time-units. Such
distributions can be regarded as continuous.

The KS test is based on the cumulative distribution functionof the data set,
which gives the ratio of data elements smaller than the specified element. For
a uniform distribution, the cumulative distribution function is a linear function
from (0, 0) to (1, 1), while for a data set containing only identical values, the
cumulative distribution function will be a step function, i.e., the function value
is zero (0) before the value and one (1) afterwards. These arethe two extremes,
but most cumulative distribution are somewhere in between,like in the example
illustration provided in Figure 8.6, where the same data setis presented using a
histogram (the left diagram) and the cumulative distribution function (the right
diagram). The presented data distribution is clustered into intervals of 100 time
units.

The KS-test is an hypothesis test, where the null-hypothesis is that the
two data sets are identical. The KS test is performed by calculating a statis-
tic measure which describes the maximum difference betweenthe cumulative
distribution functions of the two data sets, as illustratedby Figure 8.7. The
null-hypothesis is rejected (i.e., a significant difference is present) if

√

n1 ∗ n2

n1 + n2
∗ D > Kα

wheren1 andn2 is the number of elements in the two data sets. TheD statistic
is, as illustrated by Figure 8.7, the maximum distance between the cumulative
distribution functions. This is calculated by

D = sup|Fn(x) − Fn′(x)|

210 Chapter 8. Model Validity, Validation and Trace Comparison

0

0,2

0,4

0,6

0,8

1

7400 7500 7600 7700 7800 7900 8000 8100

C
um

ul
at

iv
e

re
la

tiv
e

fr
eq

ue
nc

y

Response time

0

0,1

0,2

0,3

0,4

7400 7500 7600 7700 7800 7900 8000 8100

R
el

at
iv

e
fr

eq
ue

nc
y

Response time

Figure 8.6: Probability density (left) and cumulative (right) distribution (clus-
tered data)

Figure 8.7: The Kolmogorov-Smirnoff statistic (D)

8.5 Model Robustness and Sensitivity Analysis 211

whereFn(x) is the cumulative distribution function for data set withn ele-
ments andsup denotes the supernum of the resulting set, in practice the largest
difference between the two cumulative distribution functions.Kα is given by
the Kolmogorov distribution (K), such that

Pr(K ≤ Kα) = 1 − α

whereα is the desired level of significance (typically 0.95).

8.5 Model Robustness and Sensitivity Analysis

A simulation model isrobustwith respect to a certain type of changes if such
changes, when applied to the simulation model, impacts the simulation result
in the same way as the corresponding change impacts the modeled system.
This section presents a method for determining the robustness of a behavior
model of a complex embedded system. This activity is referred to assensitivity
analysis. This is the fifth and final step in the proposed process for model
validation.

To demonstrate the importance of model robustness, consider a system con-
taining a binary semaphore protecting a shared resource. A timeout occurs if
a task has been waiting for the semaphore for a certain predefined time. If the
timeout occurs, the task is activated and executes longer than normal due to
error handling. In all previous versions of the system, thistimeout has never
occurred. If the timeout is left out when modeling the system(e.g., due to a
manually specified modeling abstraction, or due a bug in the model extraction
tool) the model will still seem accurate since the timeout never occurs. How-
ever, if a change to the system (e.g., a new feature) causes the timeout to occur
in some situation, the simulation model will no longer be valid since it does
not include this mechanism.

This approach to sensitivity analysis is influenced bysystem identification,
a technique used in the domain of control theory [110]. By measuring and ob-
serving the input-output relationship between signals in the process, a model
can be determined in terms of a transfer function. Validating models based
upon the system identification approach is somewhat relatedto testing. Typi-
cally, output signals are predicted by using the model whichare then compared
with the output signals of the physical process. Hence, the model is regarded
as correct if the analysis and the physical processes generate approximately the
same output, when fed with the same input.

212 Chapter 8. Model Validity, Validation and Trace Comparison

Testing the model with different input signals and comparing the prediction
with the signals produced by the actual system is acceptablegiven that the pro-
cess is continuous in its nature, since it is possible to interpolate the behavior
between the tested signals. However, computers are not continuous systems,
they are discrete systems where the behavior may change dramatically as a
result of small changes. A model of a software system can therefore quickly
become invalid as the system evolves, if the model is not robust with respect to
typical changes.

The robustness of a model can be assessed through asensitivity analysis.
The basic idea is to perform impact analysis with respect to common types
of changes and verify that they impact the behavior predicted by the model in
the same way as they impact the behavior of the system. First aset ofchange
scenarioshas to be selected. The change scenarios should be representative
for the probable changes that the system may undergo. Typical examples of
change scenarios are:

• to introduce a new task,

• to change priority or rate of an existing task,

• to modify existing functionality of a task and thereby change its execu-
tion time distribution,

• to add new dependencies between existing tasks, e.g., through new uses
of semaphores or interprocess communication.

The selection of change scenarios requires experienced engineers that can
describe typical types of changes to the system. It is also valuable to study the
documentation of previous changes to the system, i.e., change logs, in order to
identify different types of common changes.

Given that a set ofN changes scenarios have been defined, the next step is
to construct a set ofN systems variants{S1, ..., SN} and a set of correspond-
ing models{M1, ..., MN} by applying the change scenarios on the original
versions of the system and model.

Note that applying the change scenarios to the system does not require real
implementations of new features, i.e., functional improvements of the system.
The sole purpose of the necessary changes is to reflect the impact on the tempo-
ral behavior caused by the change scenarios, for instance byadding an empty
loop that increases the execution time of a specific task. These changes are
therefore easy to implement. The model variants are constructed in a similar
way, by applying the N change scenarios to the original model.

8.5 Model Robustness and Sensitivity Analysis 213

Each model variant is then compared to its corresponding system variant
using the first four steps of the comparison process presented in this chapter. If
no discrepancies can be found, the model is considered robust with respect to
the change scenarios. As an example, consider a sensitivityanalysis consisting
of a single validation environment and a single change scenario: an overall
increase in the execution time of task Y by 100µs. The increase in execution
time is implemented in the real system by, e.g., an empty looptuned to execute
for 100µs. A corresponding model is changed by adding an execute-statement
to the task, specifying 100µs additional execution-time consumption.

The next step is to perform recordings of the modified system version in the
selected validation environment and an analysis of the modified model using
the appropriate environment model. The recording of the real system is com-
pared to the analysis output with respect to the comparison properties, which,
in this case, should include at a minimum the average response times of task
Y. If the model is robust with respect to this change scenariothere should not
be any statistically significant differences in this comparison, assuming that
the model was sufficiently accurate prior to the sensitivityanalysis. The gen-
eral sensitivity analysis process is illustrated by Figure8.8. This process is
performed for each validation environment.

Comparison
M1 - S1

System SN

Comparison
M2 - S2

System S2

Comparison
MN - SN

System S1

+

Change
Scenario 1

Change
Scenario 2

Change
Scenario N

System S0

+

+

Model MN

Model M2

Model M1

+

Model M0 +

+

… …Comparison
M1 - S1

System SN

Comparison
M2 - S2

System S2

Comparison
MN - SN

System S1

+

Change
Scenario 1

Change
Scenario 2

Change
Scenario N

System S0

+

+

Model MN

Model M2

Model M1

+

Model M0 +

+

… …

Figure 8.8: The sensitivity analysis

214 Chapter 8. Model Validity, Validation and Trace Comparison

A sensitivity analysis can be regarded as an impact analysis, where the
expected result is known from recordings of the prototype implementations.
Since change scenarios are rather abstract descriptions ofchanges, they are
representative for a large set of concrete changes of the specified type. For in-
stance, the change scenario “increase the execution time of task X with 100µs
in all executions”is representative for a large set of changes to internal com-
putations in the task which results in a similar increase in average execution
time. It is therefore not necessary to perform the sensitivity analysis every time
the model is updated. It is sufficient if a sensitivity analysis is performed on
the initial model of system, after major changes of the system architecture or
simulator framework, or if new change scenarios are identified.

A sensitivity analysis typically represents a significant effort. If e is the
number of validation environments,c is the number of change scenarios, and
p is the number of concrete comparison properties, the numberof numerical
comparisons required in a sensitivity analysis ise×c×p. The time consuming
part of this analysis is to run the real-system measurementsin order to obtain
reference data sets for comparison. Complex embedded systems often takes
considerable time to compile and start up. A full build may require hours, and
even the smallest change, a single module, often gives a 20 minute cycle time
for building, rebooting, running the test and finally collecting the data. Since
e×c recordings are necessary, this can take a considerable amount of time. For
instance, if three validation environments and five change scenarios have been
defined, recording the execution traces takes at least 5 working hours.

8.6 Conclusions 215

8.6 Conclusions

This has proposed a process for comparison of trace data sets, from simulations
or real system measurements, which can be used for model validation, but also
for impact analysis and regression analysis. The proposed approach consists of
a five-step process of increasingly demanding tests of tracedata set similarity.
The first four tests are can be used both for model validation and for impact
analysis. The fifth test, the sensitivity analysis, is however strictly a test for use
in model validation. Since this test is quite time consuming, it is not realistic
(or necessary) to perform after every change of the model. Itis sufficient if
a sensitivity analysis is performed on the initial model of system, after major
changes of the system architecture or simulator framework,or if new change
scenarios are identified.

Some of these tests have been previously proposed in research literature,
but in other contexts. Even though there are other methods available for model
validation, these five methods should be suitable for validation of RTSSim sim-
ulation models. Evaluation of these methods for model validation however re-
quires simulation models describing real (and sufficientlycomplex) software
systems. However, since the MXTC tool is not yet able to generate such mod-
els, as discussed in Chapter 6, this evaluation has not yet been possible.

Chapter 9

Conclusions and Future
Work

This thesis has proposed a framework for simulation-based timing analysis tar-
geting complex embedded software systems. The motivation behind this work
is large industrial systems with requirements on timing and/or performance,
but where timing analysis has not been taken into account in the system design
and evolution. As a result, these systems violate the assumptions of analytical
methods for response time analysis. Using formal analysis methods such as
model checking is typically not an option in the context of large industrial sys-
tems, since such methods does not scale sufficiently and often require expertise
in formal modeling.

Simulation can be applied on virtually any system since the method does
not impose any assumptions, at least not on a conceptual level. The RTSSim
simulator framework is however limited to analysis of systems using a tradi-
tional single-core CPU. Simulation does not require manualmodeling, since
the simulation model can be generated automatically from the source code.
Simulation can be used to study virtually any property of therun-time behav-
ior. The drawback of simulation is the lower confidence compared to model
checking or analytical methods for response time analysis;it is a best-effort
analysis and can only show the presence of errors, not prove their absence.
This is however still very valuable for industrial systems which today have in-
sufficient means for timing analysis, i.e., systems where analytical or formal
analysis methods are difficult to apply. On such systems, developers typically
rely on system-level testing for finding timing problems. This is inefficient

217

218 Chapter 9. Conclusions and Future Work

since timing problems often only manifests in rare situations, dependant on
event timing, which are difficult to identify and reproduce.Introducing the
proposed analysis framework for such systems can improve quality assurance
by enabling predictions of potential timing errors in earlyphases. This analy-
sis support can help system designers avoid choosing unsuitable designs which
otherwise might cause major additional costs and project delays.

This thesis has presented scientific contributions in threeareas related to
the proposed analysis framework:

• The simulation framework RTSSim and two techniques for simulation
optimization: MABERA and HCRR.

• Automated extraction of simulation models based on a new approach to
program slicing, which unlike existing methods scales to large software
systems.

• Efficient trace recording techniques for embedded systems, for use in
impact analysis, model validation and task profiling duringmodel ex-
traction.

These contributions include methods, implementations as well as evalu-
ations of key components of the envisioned analysis framework. Additional
framework components have also been presented in this thesis, but not claimed
as scientific contributions: the trace visualization tool Tracealyzer, and a not
yet evaluated process for comparison of trace data, proposed for use in impact
analysis and model validation.

The Tracealyzer tool served as a “low hanging fruit” for industry collabora-
tion, which allowed the author to perform five industry collaboration projects
where trace recording was developed for different platforms. Three of these
projects lead to industrial use of the Tracealyzer. In one case, at ABB Robotics,
the recorder was integrated in their system permanently. Every ABB robot de-
livered since 2005 is monitored by a Tracealyzer recorder, at all times. This
approach eliminates the “probe effect” issue and the availability of the trace
facilitates troubleshooting greatly. The Tracealyzer is today a product of Per-
cepio AB.

The two approaches to simulation optimization were evaluated on simula-
tion models describing fictive but realistic systems, with similar analysis chal-
lenges as observed in industrial systems studied. The HCRR method gave
promising results. It found 4 – 11 % higher response times than the previously
proposed MABERA method (which in turn found higher results than Monte

219

Carlo simulation) and reached the final result 13 – 112 times faster than the
time required for the MABERA results.

The scalability of HCRR on real models of industrial systemsis however
yet unknown, since the automated model extraction is still not fully operational.
However, unlike model checking, simulation does not require an exhaustive
search of the model state space and is therefore always applicable, although
more complex models (with larger state space) gives less likelihood of finding
extreme cases close to (or equal to) the worst case scenario.It is however
not fair to compare this approach with formal verification methods, which can
prove properties of a model. This approach should rather be regarded as a
specialized type of testing, for problems related to timingand resource usage.

Future work in this area includes a simulator supporting multi-core proces-
sors and distributed systems, “smarter” heuristics for simulation optimization
(as discussed in Section 4.7), as well as an evaluation of theapproach to exe-
cution time modeling presented in Section 7.5.

The solution for automated model extraction has been evaluated on indus-
trial code from ABB Robotics, with respect to model size and analysis runtime.
The industrial code used is rather small, only 6 000 lines of code, but it is real
industrial code of high complexity. The model extraction results were satisfy-
ing, although improvements are possible. The size of the resulting simulation
models (the number of model-relevant executable statements) ranged from 3
– 59 % of the total amount of executable statements but the total runtime was
only 3 minutes. It is believed possible to shorten the runtime significantly, per-
haps with a factor 10, by porting the model extraction tool from Perl to C/C++.
The resulting simulation models are relatively large. In the best case observed,
the model extraction removed 97 % of the executable statements. However,
even if these number were true for the system as a whole, 3 % of the original
code is still an overwhelming amount of code for large industrial systems. For
the ABB Robotics system, this corresponds to about 90 000 lines of code. In
early work, we believed that the simulation models could serve as architecture
documentation, but a simulation model of that size has little value as documen-
tation or for program comprehension purposes. This type of model extraction
is therefore mainly useful as a means for speeding up the simulations by re-
ducing their size. However, as presented in Chapter 5, threepossibilities have
been found for reducing the model size further: (1) enablingcontrol-flow sen-
sitive model extraction, (2) eliminating unused task outputs, and (3) allowing
for manual modeling abstractions. Implementing and evaluating these are im-
portant parts of future work.

220 Chapter 9. Conclusions and Future Work

Chapter 1 presented three research questions, which have been answered
by the five formal contributions of this thesis:

• Q1: Can simulation models be extracted automatically from C source
code, with sufficient efficiency and accuracy for scaling to complex em-
bedded systems?
Answer: Yes, using the Katana approach (contributionC1), which ac-
cording to an evaluation on industrial code (contributionC2) is high scal-
able and sufficiently accurate.

• Q2: Is simulation optimization an efficient approach for predicting ex-
treme cases in the temporal behavior of complex embedded systems,
compared to existing methods for timing analysis?
Answer: Yes. Two methods for this purpose, MABERA and HCRR,
has been developed, evaluated and found to be significantly more effi-
cient than traditional Monte Carlo simulation (contributionsC3 andC4).
HCRR however found 4 – 11 % higher response times and reached the
end result 13 to 112 times faster than MABERA. When comparingto
traditional analytical methods (on simple system models, analyzable us-
ing such methods), HCRR found the theoretical worst case response time
for a particular task every time, MABERA found it sometimes,while it
was never found using Monte Carlo simulation.

• Q3: Is software trace recording generally applicable on commoncom-
mercial operating systems for embedded systems, for platform users (prod-
uct developers), with respect to implementation feasibility, and run-time
overhead?
Answer: Yes. This is based on experiences from five industry collab-
oration projects where such such monitoring support were developed
(contributionC5). CPU and memory overhead is very small on 32-
bit computer systems, negligible in practice, and acceptably low also
for resource constrained 16-bit computer systems. Implementation was
straight-forward in four out of five cases, and a sufficient functionality
could be achieved also in the last case.

221

To enable real use of the proposed analysis framework, a few framework
components are however missing. The below “to do” list assumes a strict focus
on impact analysis; the other two types of analysis proposedin Section 1.2 (ex-
plorative analysis and regression analysis) require additional results and have
not yet been investigated.

• Three minor issues remain in the source code model extraction, as pre-
sented in Section 6.1.

– Supporting function pointers.

– Detecting unsupported pointer arithmetics.

– Handling references to irrelevant symbols in model statements.

• The approach to execution time modeling, presented in Section 7.5, would
need to be implemented.

• The proposed approach to model validation (Section 8.3) needs to be
evaluated on reference cases before it can be used to verify the models
produced using automated model extraction.

When these issues have been solved, the next step is a larger industrial eval-
uation of the integrated framework, evaluating simulationoptimization meth-
ods on models from automated model extraction on industrialsystems. This
allows for verifying the simulation predictions with respect to traces recorded
from the real system after the change has been applied.

Taking this a step further, an interesting but very demanding study would
be to perform an “impact analysis of impact analysis”, i.e.,to study the impact
of using this analysis framework on maintenance costs and software quality.
This requires that the proposed analysis framework can be deployed for sys-
tematic industrial use; an empirical study on the economic impact of using the
approach would then be possible, after some time, by studying the number of
errors of the targeted types (timing-related errors) whichhave been discovered
in late testing or post-release compared to before using theanalysis framework.
This study is however far from a trivial, to say the least, since it is real-world
research with many influencing factors.

Finally, note that the Katana method presented in Chapter 5 is subject for a
U.S. patent application – patent pending.

Appendix A

The Katana Algorithm

This appendix only serves to provide a more compact presentation of the Katana
algorithm, presented in Section 5.3. The algorithm description relies on a set
of supporting functions, presented in Section 5.4.

Formally, the Katana algorithm can be described as a function, Katana,
which takes as input a set of model focus functions, and returns a set containing
the relevant statements (i.e., the program slice). This main function depends
on a set of functions with recursive dependencies, as depicted by Figure A.1.

Figure A.1 illustrates the relations between the Katana functions. In this
graph, nodes correspond to the functions presented later inthis section, and
edges to call-by relations, i.e., the propagation and accumulation of analysis
results. The edge fromFunctionSliceto Katanameans thatFunctionSlicere-
turn results toKatana, and thereby implies thatKatanacalls FunctionSlice.
Note that this description does not include all aspects of Katana. In order to
simplify the conceptual understanding several details have been omitted, for
instance the analysis cache, the handling of symbol reference filters and details
regarding detection and considerations of LMR and GMR functions. These
aspects are however described in Chapter 5.

Especially note the functionsOnEachandOnEach2, which are commonly
used in the later algorithm description. These are not visible in the illustra-
tion (Figure A.1) in order to make the algorithm illustration more readable.
However, most edges in the illustration correspond to an OnEach operation.

223

224 Appendix A. The Katana Algorithm

Katana

FunctionSlice

Slice

SmtSlice
DDSlice

ParamSlice

ReturnSlice

DownStrSmts

AsnSlice

CondSlice

Figure A.1: The Katana algorithm illustrated

Katana(MFFs) = OnEach(FunctionSlice, MFFs)

FunctionSlice(Sym) =

OnEach(Slice, AllCallArgs(Sym)) ∪

OnEach(SmtSlice, AllCallers(Sym))

Slice(Sym) =

DDSlice(Sym) if ¬IsFunc(Sym)∧

¬IsParam(Sym)

DDSlice(Sym) ∪ OnEach2(ParamSlice,

CallerSmts(DefFunc(Sym)), Sym) if IsParam(Sym)

DDSlice(Sym) ∪

OnEach(ReturnSlice, ReturnSmts(Sym)) if IsFunc(Sym)

225

DDSlice(Sym) =

OnEach(AsnSlice, AsnSmts(Sym)) ∪

OnEach(DownStrSmts, PtrUseSmts(Sym))

ParamSlice(Smt, Sym) = SmtSlice(Smt) ∪ Slice(ArgOfParam(Smt, Sym))

SmtSlice(Smt) = {Smt} ∪ OnEach(CondSlice, CondSmts(Smt))

CondSlice(Smt) =
{

{Smt} ∪ OnEach(Slice, Symbols(Smt)) if | CondSmts(Smt) |> 0

{Smt} if | CondSmts(Smt) |= 0

AsnSlice(Smt, Sym) =

SmtSlice(Smt) ∪

OnEach(Slice, Symbols(Smt)) ∪

OnEach(SmtSlice, AllCallers(Smt)), if IsGlobal(Sym)

SmtSlice(Smt) ∪

OnEach(Slice, Symbols(Smt)), if ¬IsGlobal(Sym)

DownStrSmts(Smt, Sym) =

OnEach(Slice, AsnTargets(Smt, Sym)), if ¬IsCallArg(Smt, Sym)∨

¬IsReturned(Smt, Sym)

OnEach(Slice, AsnTargets(Smt, Sym)) ∪

Slice(ParamOfArg(Smt, Sym)), if IsCallArg(Smt, Sym)

OnEach(Slice, AsnTargets(Smt, Sym)) ∪

Slice(ContextFunc(Smt)), if IsReturned(Smt, Sym)

226 Appendix A. The Katana Algorithm

ReturnSlice(Smt) = SmtSlice(Smt) ∪ OnEach(Slice, Symbols(Smt))

AllCallers(F) = CallerSmts(F) ∪ OnEach(AllCallers, CallerSmts(F))

OnEach(̥, S) =
⋃

x∈S

̥(x)

OnEach2(̥, S, a) =
⋃

x∈S

̥(x, a)

Appendix B

The RTSSim API

The RTSSim simulation framework, presented in Chapter 3, provides a “sand-
box” environment with the core services and run-time mechanisms of most
common real-time operating systems. It does not target any particular oper-
ating system, but the design is somewhat influenced by Wind River VxWorks
[132], used at ABB Robotics, although the APIs and provided services are not
identical.

The simulation framework expects the simulation model to contain a func-
tion namedmodel_init, where tasks, mailboxes and semaphores are expected
to be created. This function is called by RTSSim before the simulation starts.
Tasks, mailboxes and semaphores may also be created dynamically, during the
simulation, by calling the corresponding API functions from the task models.
When creating tasks dynamically, the offset should be set toa point in the fu-
ture, i.e., a value larger thanclk.

The API of RTSSim contains the following functions:

• CreateTask(name, priority, period, offset, jitter, func)
Creates a task with the specified task attributes and entry function. The
scheduling attributes are described in greater depth in Section 3.2.4.

• CreateMailbox(name, size)
Creates a mailbox, for communication between tasks. The messages are
stored in a fixed size FIFO buffer, and the size parameter specifies the
maximum number of buffered messages. The return value is a pointer to
the created mailbox object.

227

228 Appendix B. The RTSSim API

• CreateSemaphore(name)
Creates a binary semaphore, i.e., a mutex, which initially is unlocked.
The return value is a pointer to the created semaphore object.

• CreateUEChannel(name)
Creates a named user-event channel, i.e., a label for a particular type of
user events. The return value is a user-event channel identifier.

• SendMessage(mailbox, msg, timeout)
Attempts to send a message to the specified mailbox. If the mailbox is
full, the SendMessage operation will block the task until the operation
can complete or until the specified timeout expires. The return value is 0
on success, otherwise negative.

• RecvMessage(mailbox, buf, timeout)
Reads the oldest message from a mailbox, or if the mailbox is empty,
blocks the calling task until a message exists or a timeout occurs. If a
message was successfully received, it is written to the specified buffer.
The return value is 0 on success, otherwise negative.

• SemWait(semaphore, timeout)
Attempts to lock the specified semaphore. If it already is locked, the
calling task is blocked until the semaphore successfully locked by the
calling task, or until a timeout occurs. The return value is 0on success,
otherwise negative.

• SemPost(semaphore)
Releases the specified semaphore, if locked. No return value.

• Delay(duration)
Suspends the calling task for the specified duration. No return value.

• Execute(duration)
Consumes the specified amount of CPU time. No return value.

• UserEvent(UEChannel)
Stores a time-stamped user event on specified user event channel. No
return value.

• UserEvent16(UEChannel, value)
Stores a time-stamped user event on specified user event channel, carry-
ing a 16-bit value. No return value.

229

• UserEvent32(UEChannel, value)
Stores a time-stamped user event on specified user event channel, car-
rying a 32-bit value. This probe is more costly to use compared to the
16-bit version, as it require two entries in the trace event buffer. No
return value.

The timeout semantics is the same for all functions with a timeout parame-
ter: -1 specifies no timeout, 0 specifies immediate timeout (without blocking) if
the resource is not immediately available, and a positive non-zero value speci-
fies a finite timeout duration, causing a timeout event to occur atclk+timeout,
where clk is the current time at the call of the service. At theoccurrence of a
timeout event, RTSSim wakes up the blocked task by changing its status to
“ready” and thereafter invoking the scheduler. Observe that this does not mean
that the task will begin executing at this point; it depends on the scheduler. On
successful completion of the service, the return value is 0.The return value on
timeout is -1.

Appendix C

An Example RTSSim Model

This section gives an example of a fairly complex RTSSim model. The pre-
sented model has been used in the evaluation of the simulation optimization
methods presented in Chapter 4; it was there labeled “Model 1". This model
is hand made and describes a fictive system, with similar analysis challenges
as ABB’s control system for industrial robots. The tasks of this model vio-
late several assumptions of the traditional methods for analytical response-time
analysis. The tasks in the model may:

• trigger the execution of other tasks through communication using mes-
sage queues,

• be triggered both by timers and events, or a combination of both,

• have different temporal behaviors depending on the contents of received
messages and the value of shared state variables,

• be blocked on sending and receiving of messages, and

• change the scheduling priority of tasks as a response to certain events.

The modeled fictive system controls a set of electric motors based on pe-
riodic sensor readings and aperiodic events. The calculations necessary for a
real control system is not included in this model, the model mainly describes
execution time, communication and other behavior that impact the temporal
behavior. The model contains four periodic tasks:

An overview of the model is given in Figure C.1, where colors are used to
indicate priority (red indicates top priority, yellow medium priority and green

231

232 Appendix C. An Example RTSSim Model

Task Priority Period
PLAN_TASK 50 40 000 or 10 000
CTRL_TASK 40 or 20 10 000 or 20 000
IO_TASK 30 5 000
DRIVE_TASK 10 2 000

lowest priority. The illustration also shows the message queues (named XXQ)
which the tasks use to communicate. The queue DDQ (in red) is critical in the
application and is not allowed to become empty.

PLAN_TASK is responsible for high level planning of how to move the
physical object connected to the motors. It periodically sends coordinates to
CTRL_TASK through the queue CDQ (CTRL Data Queue). CTRL_TASK
calculates control references for the motors with respect to input from CDQ
and from IO_TASK, through the queue IOQ (I/O event Queue). The result-
ing motor control references from CTRL_TASK are sent to DRIVE_TASK,
through DDQ (Drive Data Queue), which controls the motors. The purpose
of IO_TASK is to collect buffered I/O events from the system’s environment
(from a low level buffer) and send this information to CTRL_TASK. Depend-
ing on the physical state of the controlled system, different numbers of I/O mes-
sages are received from the environment (e.g., sensors). The number of incom-
ing messages for IO_TASK is modeled using the integer variable nofEvents,
which is increased by the environment task IO_ENVTASK, by 0,1 or 2, every
1 000 time units. IO_TASK, which has a period of 5 000, decreases this vari-
able by 1 for each message that is sent to IOQ. The increments of nofEvents in
IO_ENVTASK is a simulator input (i.e., determined by a random number).

As indicated by the table, both CTRL_TASK and PLAN_TASK may change
priority and periodicity in response to specific events in the model. The pe-
riod of CTRL_TASK is normally 20 000 time units, but when a movement
is approaching the target, the period is decreased to 10 000 in order to im-
prove control performance. The priority of CTRL_TASK is boosted if the
input queue for DRIVE_TASK (DDQ) has decreased below a certain thresh-
old, since this queue must never become empty. PLAN_TASK uses a shorter
periodicity when idle, in order to faster detect a start event.

There are three types of events from the system environment:START,
STOP and GETSTATUS. These events are sent to PLAN_TASK through the
queue PCQ (PLAN Command Queue), which processes them accordingly;
some are forwarded to CTRL_TASK and DRIVE_TASK, through their com-

233

mand queues CCQ and DCQ. The START event will cause the systemto
change state into active, which means that it powers up and controls the mo-
tors. The STOP event causes the system to power down the motors and go to
idle state. The GETSTATUS event causes all tasks to send a status message
to the user interface (an environment task). These events impact the execution
time of the tasks. The events are generated by the environment tasks GETSTA-
TUS_ENVTASK, START_ENVTASK and STOP_ENVTASK.

CCQ

CDQ

DCQ

DDQ

SSQ GSQ

nofEvents += incr;

IOQ

PCQ

Environment Tasks

PLAN
TASK

CTRL
TASK

DRIVE
TASK

IO
TASK

Figure C.1: Tasks and IPC in the example model

This model cannot be analyzed using traditional methods such as RTA,
but an extreme scenario regarding the response time of CTRL_TASK has been
identified using a simulation optimization method, HCRR. CTRL_TASK is the
most complex task in the model and the case found is believed to be the worst
case response time. The response time of CTRL_TASK is in the average case
around 3 200, but can in a specific scenario be as long as 8 474 time units. The
scenario depends on the following conditions:

234 Appendix C. An Example RTSSim Model

• The number of messages in IOQ is 32 when the critical instance of
CTRL_TASK begins to execute. This is very high, in fact the largest
IOQ size observed in any experiment on this model.

• An instance of IO_TASK preempts the critical CTRL_TASK instance
and refills IOQ with 10 messages during the CTRL_TASK’s IOQ read
loop, increasing the iterations of this loop from 32 to 42.

• A rare sporadic event (GETSTATUS) had just occurred, whichresults in
messages for the following instance of CTRL_TASK and DRIVE_TASK,
which increase their execution times.

• As a result of the long execution time of the critical instance of CTRL_TASK
(6 224), it is preempted by five instances of DRIVE_TASK, of which one
with an unusually long execution time due to a preceding GETSTATUS
event, and two instances of IO_TASK.

The number of messages in IOQ has a major impact on the execution time
of CTRL_TASK. The number of messages in IOQ is increased whenIO_TASK
executes, every 5 000 time units, and depends on the global variable nofEvents.
Maximum 12 messages are sent to IOQ at each instance of IO_TASK. The
nofEvents variable is in turn increased by an environment task, IO_ENVTASK,
which executes every 1 000 time units and increases nofEventby 0, 1 or 2 (ac-
cording to simulator input data or random selection, depending on simulation
mode). Reaching an IOQ size of 32 required an intricate sequence of input
data, i.e. selections of the nofEvent increase, by 0, 1 or 2. It may seem natural
that the worst case would occur if always increasing by the maximum num-
ber of events, i.e. 2. This gives a high response time as well,8 324, but 150
less than the maximum found, 8 474, since the IOQ size only reach a maxi-
umum of 30 in this case, compared to 32 in the 8 474 case. The reason for
this is in the relative timing between previous instances ofCTRL_TASK and
IO_TASK: In the worst-case scenario identified, i.e., the 8 474 case, the in-
stance of CTRL_TASK preceding the critical instance had only 3 messages in
IOQ to consume, which allowed it to finish the read loop beforeIO_TASK re-
filled it, which implied that these messages were instead processed by the next
(the critical) CTRL_TASK instance. In the 8 324 case, i.e., where nofEvents
is always increased by 2, the previous CTRL_TASK instance had more mes-
sages in IOQ to consume, compared to in the 8 474 case, which took longer
time and caused the IO_TASK to preempt and refill IOQ during the read-loop.
Thereby, in the 8 324 case also these messages were consumed by this previous

235

task instance, which caused the lower IOQ size (30) for the following, critical
instance of CTRL_TASK, compared to the 8 474 case (32).

The large IOQ size the 8 474 case was partly caused by DRIVE_TASK;
it increased the priority of CTRL_TASK momentarily, as the number of mes-
sages in DDQ has dropped below a specified threshold. This is amechanism to
prevent buffer-underrun situations on DDQ (it may not become empty) and im-
plies that instances of IO_TASK are delayed, which changes the relative timing
between IOQ’s producer (IO_TASK) and consumer (CTRL_TASK).

Next follows the simulation model in detail. Note that declarations of
global variables and#include directives have been omitted.

#define FOREVER -1

#define CDQSIZE 13

#define PLANSTATE_IDLE 0
#define PLANSTATE_BEGIN 1
#define PLANSTATE_WORKING 2

#define MSG_START 1
#define MSG_STOP 2

#define MSG_GETSTS 4
#define MSG_FLC 5
#define MSG_LAST 6
#define MSG_MOVING 7
#define MSG_NOTMOVING 8
#define MSG_STS_PLAN 9
#define MSG_STS_CTRL 10
#define MSG_STS_DRIVE 11

#define MSG_SLC 12
#define MSG_SLCD 13

#define cPLANstart 300
#define cPLANstop 300
#define cPLANgetsts 100
#define cPLANdecode 10
#define cPLANflc 2000
#define cPlanLast 100
#define cIOEvent 23
#define cCTRLdecode 18
#define cCTRLslc 398
#define cCTRLslcd 198
#define cCTRLgetsts 96
#define cCTRLioevent 48
#define cCTRLlast 18
#define cDRIVEdecode 18
#define cDRIVEslc 298
#define cDRIVEslcd 198
#define cDRIVEgetsts 98

#define MINDDQSIZE 5

236 Appendix C. An Example RTSSim Model

void PLAN_TASK(TCB * tcb)
{

int nFLCs, cmd, status;

do // process all requests in PCQ
{

status = RecvMessage(PCQ, &cmd, 0);
Execute(cPLANdecode);
if (status == 0)
{

switch(cmd)
{

case MSG_START:
remainingFLC = 130;
UserProbe16(probe_remaining_FLC, remainingFLC);
planstate = PLANSTATE_BEGIN;
UserProbe16(probe_plan_task_state, planstate);
Execute(cPLANstart);
break;

case MSG_STOP:
planstate = PLANSTATE_IDLE;
UserProbe16(probe_plan_task_state, planstate);
Execute(cPLANstop);
break;

case MSG_GETSTS:
Execute(cPLANgetsts);
SendMessage(GSQ, MSG_STS_PLAN, FOREVER);
SendMessage(CCQ, MSG_GETSTS, FOREVER);
break;

default:
sim_fail_int("Warning, got message: %d\n", cmd);

}
}

}while (cmd != -1); // until no more messages

// Execute periodic behavior, depending on state
switch (planstate)
{

case PLANSTATE_BEGIN:
planstate = PLANSTATE_WORKING;
UserProbe16(probe_plan_task_state, planstate);
closeToTarget = 0;

if (remainingFLC < CDQSIZE)
{

nFLCs = remainingFLC;
}else{

nFLCs = CDQSIZE;
}
while (nFLCs > 0)
{

Execute(cPLANflc);
SendMessage(CDQ, MSG_FLC, FOREVER);
nFLCs--;
remainingFLC--;

}
tcb->period = 40000;
break;

237

case PLANSTATE_WORKING:
if (remainingFLC < 4)
{

nFLCs = remainingFLC;
}else{

nFLCs = 4;
}
while (nFLCs > 0)
{

Execute(cPLANflc);
SendMessage(CDQ, MSG_FLC, FOREVER);
nFLCs--;
remainingFLC--;

}
tcb->period = 40000;
break;

case PLANSTATE_IDLE:
tcb->period = 10000;
break;

}
UserProbe16(probe_remaining_FLC, remainingFLC);

if (((remainingFLC <= 0) &&
(planstate != PLANSTATE_IDLE)) ||
((remainingFLC > 0) &&
(planstate == PLANSTATE_IDLE)))

{
Execute(cPlanLast);
planstate = PLANSTATE_IDLE;
closeToTarget = 1;
remainingFLC = 0;
SendMessage(CDQ, MSG_LAST, FOREVER);
UserProbe16(probe_plan_task_state, planstate);

}
}

void CTRL_TASK(TCB * tcb)
{

int msg, ioevent, status, i, nSLC = -1;

msg = RecvMessage(CCQ, &msg, 0);
Execute(cCTRLdecode);

if (msg > -1)
{

if (msg == MSG_GETSTS)
{

SendMessage(GSQ, MSG_STS_CTRL, FOREVER);
Execute(cCTRLgetsts);
SendMessage(DCQ, MSG_GETSTS, FOREVER);

}else{
sim_fail_int("CTRL_TASK got message: %d\n", msg);

}
}

238 Appendix C. An Example RTSSim Model

// read all pending messages in IO queue
i = 0;
do{

if (RecvMessage(IOQ, &ioevent, 0) == 0)
{

i++;
Execute(cCTRLioevent);

}
}while (status == 0);
if (closeToTarget == 0)
{

nSLC = 10;
tcb->period = 20000;

}else{
nSLC = 5;
tcb->period = 10000;

}

// Process any FLC message from PLAN_TASK (maximum 1)
if (RecvMessage(CDQ, &msg, 0) == 0)
{

switch(msg)
{

case MSG_FLC:
if (idle == 1)
{

idle = 0;
UserProbe16(probe_ctrl_idle, idle);

}
while (nSLC-- > 0)
{

// generate SLC data to DRIVE
Execute(cCTRLslc);
SendMessage(DDQ, MSG_SLC, FOREVER);

}
break;

case MSG_LAST:
idle = 1;
closeToTarget = 0;
Execute(cCTRLlast);
UserProbe16(probe_ctrl_idle, idle);
break;

default:
sim_fail_int("CTRL_TASK got message %d\n", msg);
break;

}
}
else // if no message
{

if (idle == 0)
{

// if expecting message
sim_fail("CTRL_TASK starvation!\n");

}
}

239

// if idle, generate default data (slcd)
if (idle == 1)
{

while (nSLC-- > 0)
{

Execute(cCTRLslcd);
SendMessage(DDQ, MSG_SLCD, FOREVER);

}
}

}

void DRIVE_TASK(TCB * tcb)
{

int msg;
if (RecvMessage(DDQ, &msg, 0) != 0)
{

sim_fail("DRIVE_TASK starvation!\n");
}

Execute(cDRIVEdecode);

if (DDQ->current_size < MINDDQSIZE)
{

// boost priority of CTRL_TASK, above IO_TASK
ctrl_task_tcb->prio = 20;

}
else
{

// normal priority of CTRL_TASK
ctrl_task_tcb->prio = 40;

}
UserProbe16(probe_ctrl_prio, ctrl_task->prio);

// process data message from CTRL_TASK
switch(msg)
{

case MSG_SLC:
Execute(cDRIVEslc);
if (isMoving == 0)
{

isMoving = 1;
UserProbe16(probe_drive_ismoving, ismoving);
SendMessage(SSQ, MSG_MOVING, FOREVER);

}
break;

case MSG_SLCD:
Execute(cDRIVEslcd);
if (ismoving == 1)
{

ismoving = 0;
UserProbe16(probe_drive_ismoving, ismoving);
SendMessage(SSQ, MSG_NOTMOVING, FOREVER);

}
break;

default:
sim_fail_int("Warning, got message: %d\n", msg);

240 Appendix C. An Example RTSSim Model

break;
}
// check for a getstatus request
if (RecvMessage(DCQ, &msg, 0) == 0)
{

switch(msg)
{

case MSG_GETSTS:
Execute(cDRIVEgetsts);
SendMessage(GSQ, MSG_STS_DRIVE, FOREVER);
break;

default:
sim_fail_int("Warning, got message %d\n", msg);
break;

}
}

}

void IO_TASK(TCB * tcb)
{

int status;
int eventsToProcess = 0;
if (nofEvents > 12)
{

// limit to 12, process remaining IO events later
eventsToProcess = 12;

}
else
{

// normal case, process all IO events (<= 12)
eventsToProcess = nofEvents;

}
while(eventsToProcess-- > 0)
{

Execute(cIOEvent);
nofEvents--;

// The value (42) of IOQ messages is not used...
if (SendMessage(IOQ, 42, 0) != 0)
{

printf("IOQ overflow! clk: %d\n", clk);
}

}
}

void IO_ENVTASK(TCB * tcb)
{

nofEvents += (int)(getRandomValue() % 3);
}

241

void GETSTATUS_ENVTASK(TCB* tcb)
{

int reply;
SendMessage(PCQ, MSG_GETSTS, FOREVER);
RecvMessage(GSQ, &reply, FOREVER);
if (reply != MSG_STS_PLAN)
{

printf("Warning, got unexpected message %d\n",reply);
}

RecvMessage(GSQ, &reply, FOREVER);
if (reply != MSG_STS_CTRL)
{

printf("Warning, got unexpected message %d\n",reply);
}

RecvMessage(GSQ, &reply, FOREVER);
if (reply != MSG_STS_DRIVE)
{

printf("Warning, unexpected message %d\n",reply);
}

}

void START_ENVTASK(TCB* tcb)
{

int reply;
SendMessage(PCQ, MSG_START, FOREVER);
RecvMessage(SSQ, &reply, FOREVER);
if (reply != MSG_MOVING)
{

printf("Warning, unexpected message %d\n",reply);
}
// create the STOP task dynamically as a one-shot task
createTask("STOP_ENVTASK",

0, // priority (highest)
-1, // period (-1 means one-shot)
clk + 100000, // earliest start time of task
100000, // max additional delay (jitter)
STOP_ENVTASK);

}

void STOP_ENVTASK(TCB* tcb)
{

int reply;
SendMessage(PCQ, MSG_STOP, FOREVER);
RecvMessage(SSQ, &reply, FOREVER);
if (reply != MSG_NOTMOVING)
{

printf("Warning, got unexpected message %d\n",reply);
}

}

242 Appendix C. An Example RTSSim Model

void model_init()
{

PCQ = CreateMailbox("PLAN_CMD", 3);
CCQ = CreateMailbox("CTRL_CMD", 6);
CDQ = CreateMailbox("CTRL_DATA", CDQSIZE);
DDQ = CreateMailbox("DRIVE_DATA", 9);
DCQ = CreateMailbox("DRIVE_CMD", 6);
SSQ = CreateMailbox("START_STOP_STATUS", 6);
IOQ = CreateMailbox("IO_DATA", 40);

// Create normal application tasks
CreateTask("PLAN_TASK",

50,// priority (lowest)
40000,// period (can change to 10000)
0, // offset
0,// max jitter
PLAN_TASK // task entry function

);

// Keep the tcb handle for use in DRIVE_TASK
ctrl_task_tcb = CreateTask("CTRL_TASK",

40,// priority (can change to 20)
10000,// period (can change to 20000)
0, // offset
0,// max jitter
CTRL_TASK // task entry function

);

CreateTask("IO_TASK",
30, // priority
5000, // period
500, // offset
0, // max jitter
IO_TASK // task entry function

);

CreateTask("DRIVE_TASK",
10, // priority
2000, // period
12001, // offset
0, // max jitter
DRIVE_TASK // task entry function

);

// Create the "invisible" environment tasks
CreateTask("IO_ENVTASK",

0,// priority (highest)
2000,// period
0,// offset
0,// max jitter
IO_ENVTASK // task entry function

);

CreateTask("START_ENVTASK",
0,// priority (highest)
-1, // period (one-shot)
0,// offset

243

100000,// max jitter
START_ENVTASK

);

CreateTask("GETSTATUS_ENVTASK",
0,// priority (highest)
90000,// period
20000,// offset
20000,// max jitter
GETSTATUS_ENVTASK // task entry function

);

// Register probe channels for Tracealyzer output
probe_remaining_FLC = CreateUEChannel("REMAINING_FLC");
probe_plan_task_state = CreateUEChannel("PLAN_STATE") ;
probe_ctrl_idle = CreateUEChannel("CTRL_IS_IDLE");
probe_drive_ismoving = CreateUEChannel("DRIVE_ISMOVIN G");
probe_ctrl_prio = CreateUEChannel("CTRL_PRIORITY_BOOS T");

// Clear all global state variables
closeToTarget = 0;
remainingFLC = 0;
planstate = PLANSTATE_IDLE;
idle = 1;
nofEvents = 0;
isMoving = 0;

}

Bibliography

[1] Mikael Åsberg, Thomas Nolte, Clara M. Otero Perez, and Shinpei Kato.
Execution Time Monitoring in Linux. InProceedings of the Work-In-
Progress session of 14th IEEE International Conference on Emerging
Techonologies and Factory, September 2009.

[2] Mikael Åsberg, Johan Kraft, Thomas Nolte, and Shinpei Kato. A load-
able task execution recorder for Linux. InProceedings of the 1st Inter-
national Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems, July 2010.

[3] J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg, and L. Källberg.
Alf - a language for wcet flow analysis. In Niklas Holsti, editor,9th Intl.
Workshop on Worst-Case Execution Time (WCET) Analysis, Dagstuhl,
Germany, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany.

[4] The Economic Impacts of Inadequate Infrastructure for Software Test-
ing, Planning Report 02-3, Prepared by RTI for the U.S. National Insti-
tute of Standards and Technology, 2002.

[5] J.T. Alander, T. Mantere, G. Moghadampour, and J. Matila. Searching
Protection Relay Response Time Extremes Using Genetic Algorithm —
Software Quality by Optimization. InProceedings of the International
Conference on Advances in Power System Control, Operation and Man-
agement (APSCOM-97), volume 1, pages 95–99, 1997.

[6] R. Nossal and T. M. Galla. Solving NP-Complete Problems in Real-
Time System Design by Multichromosome Genetic Algorithms.In Pro-
ceedings of the SIGPLAN 1997 Workshop on Languages, Compilers,
and Tools for Real-Time Sys., pages 68–76, 1997.

247

248 Bibliography

[7] D. E. Goldberg.Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley Professional, Jan. 1989.

[8] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A Brief Survey of
Program Slicing.SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[9] A. Betts and G. Bernat. Tree-Based WCET Analysis on Instrumen-
tation Point Graphs. InProceedings of the Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC’06), pages 558–565, Washington, DC, USA, 2006.
IEEE Computer Society.

[10] B. A. Wichmann and I. D. Hill. Algorithm AS 183: An Efficient and
Portable Pseudo-Random Number Generator.Journal of the Royal Sta-
tistical Society. Series C (Applied Statistics), 31(2):188–190, 1982.

[11] R. Racu and R. Ernst. Scheduling Anomaly Detection and Optimisation
for Distributed Systems with Preemptive Task-Sets. InProceedings of
the IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS’06), pages 325–334. IEEE, Apr. 2006.

[12] S. Samii, S. Rafiliu, P. Eles, and Z. Peng. A Simulation Methodol-
ogy for Worst-Case Response Time Estimation of DistributedReal-Time
Systems. InProceedings of Design, Automation, and Test in Europe
(DATE’08), pages 556–561, 2008.

[13] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, andW. Yi. Times:
A tool for schedulability analysis and code generation of real-time sys-
tems. InFORMATS, pages 60–72, 2003.

[14] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte. Simulation-Based
Timing Analysis of Complex Real-Time Systems. InProceedings of the
15th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA’09), pages 321–328, August
2009.

[15] J. Kraft, Y. Lu, C. Norström, and A. Wall. A Metaheuristic Approach for
Best Effort Timing Analysis targeting Complex Legacy Real-Time Sys-
tems. InProceedings of the IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’08), Apr. 2008.

249

[16] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte. Best-Effort
Simulation-Based Timing Analysis using Hill-Climbing with Random
Restarts. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-
236/2009-1-SE, Mälardalen University, June 2009.

[17] M. Harman, D. Binkley, K. B. Gallagher, N. Gold, and J. Krinke. De-
pendence clusters in source code.ACM Transactions on Programming
Languages and Systems, 32, 2009.

[18] F. Tip. A Survey of Program Slicing Techniques.Journal of Program-
ming Languages, 3:121–189, 1995.

[19] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gener-
ator. ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.

[20] M. Weiser. Program slices: formal, psychological, andpractical in-
vestigations of an automatic program abstraction method, PhD thesis.
Technical report, University of Michigan, Ann Arbor, 1979.

[21] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up Slicing. In
Proceedings of the Third ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 11–20. ACM Press, 1994.

[22] T. Reps, S. Horwitz, and D. Binkley. U.S. Patent Number 5,161,216,
Interprocedural slicing of computer programs using dependence graphs.
Technical report, 1992.

[23] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using de-
pendence graphs. InProceedings of the ACM SIGPLAN 1988 confer-
ence on Programming Language design and Implementation (PLDI’88),
pages 35–46, New York, NY, USA, 1988. ACM.

[24] H. K. N. Leung and H. K. Reghbati. Comments on program slicing.
IEEE Transactions on Software Engineering, 13(12):1370–1371, 1987.

[25] M. Weiser. Program slicing.IEEE Trans. Software Eng., 10(4):352–357,
1984.

[26] M. Weiser. Program Slicing. InProceedings of the International Confer-
ence on Software Engineering (ICSE’81), pages 439–449. IEEE Press,
1981.

250 Bibliography

[27] C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper.Faster wcet
flow analysis by program slicing. InACM SIGPLAN Conference on
Languages, Compilers and Tools for Embedded Systems (LCTES’06).
ACM, June 2006.

[28] A. Marburger and B. Westfechtel. Tools for understanding the behavior
of telecommunication systems. InProceedings of the 25th International
Conference on Software Engineering (ICSE’03), pages 430–441, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[29] M. Harman, M. Munro, D. Binkley, S. Danicic, M. Aoudi, and L. Ouar-
bya. Syntax-directed amorphous slicing.Journal of Automated Software
Engineering, 11(1):27–61, 2004.

[30] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned program slicing.
Information and Software Technology special issue on Program Slicing,
40(11-12):595–607, 1998.

[31] S. Danicic, C. Fox, M. Harman, and R. Hierons. ConSIT: A Condi-
tioned Program Slicer. InIEEE International Conference on Software
Maintenance (ICSM’00, pages 216–226. IEEE Computer Society Press,
2000.

[32] M. Harman, D. Binkley, and S. Danicic. Amorphous Program Slicing.
In Software Focus, pages 70–79. IEEE Computer Society Press, 1997.

[33] B. Korel and J. Laski. Dynamic Program Slicing.Information Process-
ing Letters, 29(3):155–163, 1988.

[34] T. Systä and K. Koskimies. Extracting State Diagrams from Legacy
Systems. InProceedings of the ECOOP Workshops on Object-Oriented
Technology (ECOOP’97), pages 272–273, London, UK, 1998. Springer-
Verlag.

[35] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in
a software development environment.SIGPLAN Not., 19(5):177–184,
1984.

[36] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization.ACM Trans. Program. Lang. Syst.,
9(3):319–349, 1987.

251

[37] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. ISBN: 0-7923-9994-3.
Kluwer Academic Publisher, 1997.

[38] I. M. Chakravarti, J. Roy, and R. G. Laha.Handbook of methods of
applied statistics. Wiley, New York, 1967.

[39] G. Bernat, A. Colin, and S. Petters. pWCET: a Tool for Probabilistic
Worst Case Execution Time Analysis of Real-Time Systems. Technical
Report YCS353, University of York, Department of Computer Science,
United Kingdom, 2003.

[40] G. Bernat, A. Colin, and S. Petters. WCET Analysis of Probabilis-
tic Hard Real-Time Systems. InProceedings of the 23rd IEEE Inter-
national Real-Time Systems Symposium (RTSS’02), Austin, TX, USA,
2002.

[41] S. Schlesinger, R. E. Crosbie, R. E. Gagne, G. S. Innis, C. S. Lalwani,
and J. Loch. Terminology for Model Credibility.Simulation, 32(3):103–
104, 1979.

[42] E. J. Chikofsky and J. H. Cross II. Reverse Engineering and Design
Recovery: A Taxonomy.IEEE Software, 7(1):13–17, 1990.

[43] M. G. J. van den Brand, P. Klint, and C. Verhoef. Reverse Engineering
and System Renovation: an Annotated Bibliography.SIGSOFT Soft-
ware Engineering Notes, 22(1):57–68, 1997.

[44] B. Bellay and H. Gall. A Comparison of Four Reverse Engineering
Tools. InProceedings of the 4th Working Conference on Reverse En-
gineering (WCRE’97), Washington, DC, USA, 1997. IEEE Computer
Society.

[45] R. Kollman, P. Selonen, E. Stroulia, T. Systä, and A. Zundorf. A Study
on the Current State of the Art in Tool-Supported UML-Based Static
Reverse Engineering. InProceedings of the 9th Working Conference
on Reverse Engineering (WCRE’02), page 22, Washington, DC, USA,
2002. IEEE Computer Society.

[46] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman.DiscoTect:
A System for Discovering Architectures from Running Systems. InPro-
ceedings of the 26th International Conference on Software Engineering

252 Bibliography

(ICSE’04), pages 470–479, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[47] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. Revealer: A Lexical
Pattern Matcher for Architecture Recovery. InProceedings of the 9th
Working Conference on Reverse Engineering (WCRE’02), pages 170–
178, 2002.

[48] R. I. Bull, A. Trevors, A. Malton, and M. W. Godfrey. Semantic grep:
Regular expressions + relational abstraction. InProceedings of the 9th
Working Conference on Reverse Engineering (WCRE’02), 2002.

[49] P. K. Jensen. Automated Modeling of Real-Time Implementation. Tech-
nical Report BRICS RS-98-51, University of Aalborg, December 1998.

[50] L. Abeni. Server Mechanisms for Multimedia Applications. Technical
Report RETIS TR98-01, Scuola Superiore S. Anna, Pisa, Italy, 1998.

[51] T. Ball and S. K. Rajamani. Automatically validating temporal safety
properties of interfaces. InProceedings of the 8th international SPIN
workshop on Model checking of software (SPIN’01), pages 103–122,
New York, NY, USA, 2001. Springer-Verlag New York, Inc.

[52] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verifica-
tion with BLAST. In Proceedings of the 10th International Workshop
on Model Checking of Software (SPIN’03), LNCS 2648, 2003.

[53] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.Păs̆areanu,
Robby, and H. Zheng. Bandera: Extracting Finite-State Models from
Java Source Code. InProceedings of the 22nd International Conference
on Software Engineering (ICSE’00), pages 439–448, 2000.

[54] S. Chandra, P. Godefroid, and C. Palm. Software model checking in
practice: an industrial case study. InProceedings of the 24th Interna-
tional Conference on Software Engineering (ICSE’02), pages 431–441,
New York, NY, USA, 2002. ACM Press.

[55] G. J. Holzmann and M. H. Smith. A practical method for verifying
event-driven software. InProceedings of the 21st international confer-
ence on Software engineering (ICSE’99), pages 597–607, Los Alamitos,
CA, USA, 1999. IEEE Computer Society Press.

253

[56] J. G. Huselius and J. Andersson. Model Synthesis for Real-Time Sys-
tems. InProceedings of the 9th European Conference on Software Main-
tenance and Reengineering (CSMR’05), pages 52–60, 2005.

[57] C. Norström, A. Wall, and W. Yi. Timed automata as task models for
event-driven systems. InProceedings of RTCSA’99. IEEE Computer
Society, December 1999.

[58] J. Andersson, J. G. Huselius, C. Norström, and A. Wall. Extracting
simulation models from complex embedded real-time systems. In Pro-
ceedings of the 2006 International Conference on Software Engineering
Advances, ICSEA’06. IEEE, October 2006.

[59] G. J. Holzmann. Logic Verification of ANSI-C Code with SPIN. In
Proceedings of the 7th International SPIN Workshop on SPIN Model
Checking and Software Verification, pages 131–147, London, UK, 2000.
Springer-Verlag.

[60] A. M. Law and M. G. McComas. How to Build Valid and Credible
Simulation Models. InProceedings of the 2001 Winter Simulation Con-
ference. Averill M. Law and Associates, Inc., P.O. Box 40996, Tucson,
AZ 85717, USA., 2001.

[61] O. Balci. Guidelines for Successful Simulation Studies. InProceedings
of the 1990 Winter Simulation Conference. Department of Computer
Science, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 2061-0106, USA., 1990.

[62] R. G. Sargent. Validation and Verification of Simulation Models. In
Proceedings of the 1999 Winter Simulation Conference. Department
of Electrical Engineering and Computer Science, College ofEngineer-
ing and Computer Science, Syracuse University, Syracuse, NY 13244,
USA., 1999.

[63] A. M. Law and W. D. Kelton.Simulation, Modeling and Analysis. ISBN:
0-07-116537-1. McGraw-Hill, 1993.

[64] J. G. Huselius, J. Andersson, H. Hansson, and S. Punnekkat. Automatic
generation and validation of models of legacy software. InProceedings
of the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 342–349, August
2006.

254 Bibliography

[65] S. Danicic and M. Harman. Espresso: a slicer generator.In SAC’00:
Proceedings of the 2000 ACM symposium on Applied computing, pages
831–839. ACM, 2000.

[66] T. Reps and G. Rosay. Precise interprocedural chopping. In SIG-
SOFT’95: Proceedings of the 3rd ACM SIGSOFT symposium on Foun-
dations of software engineering, pages 41–52. ACM, 1995.

[67] D. Jackson and E. J. Rollins. A new model of program dependences
for reverse engineering. InSIGSOFT’94: Proceedings of the 2nd ACM
SIGSOFT symposium on Foundations of software engineering, pages 2–
10, New York, NY, USA, 1994. ACM.

[68] M. J. Sifalakis. Finding Dependencies Using Program Slicing, MSc
thesis report, University of Edinburgh, 2001.

[69] L. Bent, D. Atkinson, and W. Griswold. A Qualitative Study of Two
Whole-Program Slicers for C, UCSD Technical Report CS2000-0643.

[70] D. C. Atkinson and W. G. Griswold. Effective Whole-Program Analysis
in the Presence of Pointers. InProceedings of the 6th ACM SIGSOFT
international symposium on Foundations of Software Engineering (FSE
’98), pages 46–55, New York, NY, USA, 1998. ACM.

[71] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching-time temporal logic. InLogic of Pro-
grams, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[72] A. Pnueli. The temporal logic of programs. InProceedings of the 18th
Annual IEEE Symposium on Foundations of Computer Science, 1977.

[73] B. Steensgaard. Points-to analysis in almost linear time. InProceed-
ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principlesof
Programming Languages, pages 32–41, 1996.

[74] J. Katoen. Concepts, algorithms and tools for model checking, lecture
notes of the course mechanised validation of parallel systems, friedrich-
alexander university at erlangen-nurnberg, 1998.

[75] G. J. Holzmann. The Model Checker SPIN.IEEE Trans. Softw. Eng.,
23(5):279–295, 1997.

255

[76] G.J. Holzmann.The SPIN MODEL CHECKER – Primer and Reference
Manual. ISBN: 0-321-22862-6. Pearson Education, Addison-Wesley,
Inc, 2003.

[77] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal
– a tool suite for automatic verification of real-time systems. In Pro-
ceedings of the 4th DIMACS Workshop on Verification and Control of
Hybrid Systems, 1995.

[78] A. David and W. Yi. Modelling and analysis of a commercial field bus
protocol. InProceedings of 12th Euromicro Conference on Real-Time
Systems, pages 165–172. IEEE Computer Society Press, 2000.

[79] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. InPro-
ceedings of the 4th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems (SFM-RT’04),
LNCS 3185, 2004.

[80] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, andS. Yovine.
Kronos: A Model-Checking Tool for Real-Time Systems. In A. J. Hu
and M. Y. Vardi, editors,Proceedings of the 10th International Confer-
ence on Computer Aided Verification, Vancouver, Canada, volume 1427,
pages 546–550. Springer-Verlag, 1998.

[81] C. Daws and S. Yovine. Two examples of verification of multirate
timed automata with kronos. InProceedings of the 16th IEEE Real-
Time Systems Symposium (RTSS’95), page 66, Washington, DC, USA,
1995. IEEE Computer Society.

[82] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Com-
puter Science, 126(2):183–235, 1994.

[83] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-
time. Information and Computation, 104(1):2–34, 1993.

[84] A Strategic Research Agenda for the Swedish Software Intensive Indus-
try, Swedsoft, January 2010.

[85] Mjukvara dold jätteindustri inom svensk it, Computer Sweden, March
30th, 2010.

[86] L. O. Andersen.Program Analysis and Specialization for the C Pro-
gramming Language. PhD thesis, 1994.

256 Bibliography

[87] E. A Emerson and J. Y. Halpern. Sometimes and Not Never Revisited:
on Branching Versus Linear Time. Technical report, University of Texas
at Austin, Austin, TX, USA, 1984.

[88] D. Decotigny and I. Puaut. Artisst: An extensible and modular simula-
tion tool for real-time systems. InProceedings of the fifth IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Comput-
ing, Washington D.C., 2001.

[89] W. Schutz. On the Testability of Distributed Real-TimeSystems. In
Proceedings of the 10th Symposium on Reliable Distributed Systems,
Pisa, Italy. Institut f. Techn. Informatik, Technical University of Vienna,
A-1040, Austria, 1991.

[90] A. Wall. Architectural Modeling and Analysis of Complex Real-Time
Systems. PhD thesis, Mälardalen University, Sweden, 2003.

[91] J. Andersson, A. Wall, and C. Norström. Decreasing Maintenance Costs
by Introducing Formal Analysis of Real-Time Behavior in Industrial
Settings. InProceedings of the First International Symposium on Lever-
aging Applications of Formal Methods (ISoLA’04), 2004.

[92] A. Wall, J. Andersson, and C. Norström. Probabilistic Simulation-
based Analysis of Complex Real-time Systems. InProceedings of the
6th IEEE International Symposium on Object-oriented Real-time dis-
tributed Computing. Department of Computer Science and Engineering,
Mälardalen University, P.O. Box 883, S-721 23 Västerås, Sweden, 2003.

[93] A. Wall, J. Andersson, J. Neander, C. Norström, and M. Lembke. In-
troducing Temporal Analyzability Late in the Lifecycle of Complex
Real-Time Systems. InProceedings of the 9th International Confer-
ence on Real-Time and Embedded Computing Systems and Applica-
tions (RTCSA’03). Department of Computer Science and Engineering,
Mälardalen University, P.O. Box 883, S-721 23 Västerås, Sweden, 2003.

[94] J. Andersson and J. Neander. Timing Analysis of a Robot Controller.
Master’s thesis, Mälardalen University, Västerås, Sweden, 2002.

[95] J. Andersson. Modeling The Temporal Behavior of Complex Embedded
Systems – A Reverse Engineering Approach, Licentiate thesis. Techni-
cal report, 2005.

257

[96] M. I. Mughal and R. Javed. Recording of Scheduling and Communica-
tion Events on Telecom Systems. Master’s thesis, Mälardalen Univer-
sity, Västerås, Sweden, 2008.

[97] M. Johansson and M. Saegebrecht. Lastmätning av CPU i realtidsoper-
ativsystem. Master’s thesis, Mälardalen University, Västerås, Sweden,
2007.

[98] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A.J. Wellings.
Fixed priority pre-emptive scheduling: An historical perspective.Real-
Time Systems Journal, 8(2/3):173–198, 1995.

[99] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multipro-
gramming in hard-real-time environment.Journal of the Association
for Computing Machinery, 20(1):46–61, 1973.

[100] Joel Huselius.Reverse Engineering of Legacy Real-Time Systems: An
Automated Approach Based on Execution-Time Recording. PhD thesis,
Mälardalen University, June 2007.

[101] M. Joseph and P. K. Pandya. Finding Response Times in a Real-Time
System.The Computer Journal, 29(5):390–395, 1986.

[102] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings.
STRESS: A Simulator for Hard Real-Time Systems.Software-Practice
and Experience, 24(6):543–564, June 1994.

[103] M.F. Storch and J.W.-S. Liu. DRTSS: A Simulation Framework for
Complex Real-Time Systems. InProceedings of the 2nd IEEE Real-
Time Technology and Applications Symposium (RTAS’96). Dept. of
Computer Science, Illinois Univ., Urbana, IL, USA, 1996.

[104] M. Spuri and G. Buttazzo. Efficient Aperiodic Service under Earliest
Deadline Scheduling. InProceedings of the 15th IEEE Real-Time Sys-
tem Symposium (RTSS’94), pages 2–21, 1994.

[105] C. E. McDowell and D. P. Helmbold. Debugging Concurrent Programs.
ACM Comput. Surv., 21(4):593–622, 1989.

[106] G. Mustapic, A. Wall, C. Norström, I. Crnkovic, K. Sandström,
J. Fröberg, and J. Andersson. Real World Influences on Software
Architecture – Interviews with Industrial Experts. In IEEE, editor,

258 Bibliography

Proceedings of IEEE Working Conferance on Software Architectures
(WICSA’04), Oslo, Norway. IEEE, 6 2004.

[107] M M. Lehman, J F. Ramil, P D. Wernick, D E. Perry, and W M. Turski.
Metrics and laws of software evolution - the nineties view. In METRICS
’97: Proceedings of the 4th International Symposium on Software Met-
rics, page 20, Washington, DC, USA, 1997. IEEE Computer Society.

[108] J. Andersson, A. Wall, and C. Norström. Validating Timing Models of
Complex Real-Time Systems. InProceedings of the Fourth Conference
on Software Engineering and Research Practice in Sweden (SERPS’04),
2004.

[109] M. El Shobaki. On-Chip Monitoring of Single- and Multiprocessor
Hardware Real-Time Operating Systems. InProceedings of the 8th In-
ternational Conference on Real-Time Computing Systems andApplica-
tions. IEEE, March 2002.

[110] R. Johansson.System Modeling Identification. ISBN: 0-13-482308-7.
Prentice-Hall, 1993.

[111] S. Russell and P. Norvig.Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.

[112] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbi-
trary deadlines. InProceedings of the 11th IEEE Real-Time Systems
Symposium (RTSS’90), pages 201–212, December 1990.

[113] K. Tindell. An Extendible Approach for Analysing Fixed Priority Hard
Real-Time Tasks. Technical Report YCS189, Dept. of Computer Sci-
ence, University of York, United Kingdom, 1992.

[114] N. C. Audsley, A. Burns, M. Richardson, and K. Tindell.Applying New
Scheduling Theory to Static Priority Pre-emptive Scheduling. Software
Engineering Journal, pages 284–292, 1993.

[115] K. Tindell and J. Clark. Holistic Schedulability Analysis for Distributed
Hard Real-Time Systems.Microprocessing and Microprogramming –
Euromicro Journal (Special Issue on Parallel Embedded Real-Time Sys-
tems), 40:117–134, 1994.

[116] P. K. Jensen.Reliable Real-Time Applications. And How to Use Tests to
Model and Understand. PhD thesis, Aalborg University, February 2001.

Web References

[117] ON-THE-FLY, LTL MODEL CHECKING with SPIN, spin website,
http://spinroot.org.

[118] The ABB Group.http://www.abb.com/ .

[119] Mongoose website at Google Code.http://code.google.com/
p/mongoose .

[120] Arcticus Systems AB.http://www.arcticus-systems.com .

[121] Wisconsin Program-Slicing Project.http://www.cs.wisc.edu/
wpis/html .

[122] TimesTool.http://www.timestool.com .

[123] GrammaTech, Inc.http://www.grammatech.com .

[124] Virtutech Simic.http://www.virtutech.com .

[125] U.S. National Institute of Standards and Technology (NIST) e-
Handbook of Statistical Methods, Section 1.3.5.16: Kolmogorov-
Smirnov Goodness-of-Fit. http://www.itl.nist.gov/
div898/handbook .

[126] Graphviz.http://www.graphviz.org .

[127] Embedded Systems by the Numbers, J. Turley.http://www.
embedded.com/1999/9905/9905turley.htm .

[128] Embedded C++.http://www.caravan.net/ec2plus .

[129] UppAal. http://www.uppaal.com .

259

260 Bibliography

[130] ComFoRT Reasoning Framework.http://www.sei.cmu.edu/
predictability/tools/comfort .

[131] Kronos Home Page. http://www-verimag.imag.fr/
TEMPORISE/kronos .

[132] Wind River, Inc.http://www.windriver.com .

[133] The SMV System. http://www-2.cs.cmu.edu/
~modelcheck/smv.html .

[134] ENEA AB. http://www.enea.com .

[135] Imagix Corporation.http://www.imagix.com .

[136] Rapita Systems, Ltd.http://www.rapitasystems.com .

[137] Quadros Systems, Inc.http://www.quadros.com .

[138] Scientific Toolworks, Inc.http://www.scitools.com .

[139] AbsInt Angewandte Informatik GmbH.http://www.absint.de .

[140] SWEET WCET project Website.http://www.mrtc.mdh.se/
projects/wcet .

[141] Bound-T time and stack analyser.http://www.tidorum.fi/
bound-t .

[142] Coverity, Inc.http://www.coverity.com/ .

[143] C++ vs. Perl vs. Python vs. PHP performance bench-
mark. http://blog.famzah.net/2010/07/01/
cpp-vs-python-vs-perl-vs-php-performance-benchmark/ .

[144] Python vs. Perl. vs. C++. http://tenser.typepad.com/
tenser_said_the_tensor/2006/08/python_vs_perl_
.html/ .

All web references were verified on the 19th of May, 2010.

