
A Systematic Review of Studies of Open Source Software Evolution

Hongyu Pei Breivold

Industrial Software Systems

ABB Corporate Research
721 23 Västerås, Sweden

hongyu.pei-breivold@se.abb.com

Muhammad Aufeef Chauhan

Mälardalen University

721 78 Västerås, Sweden
aufeef@gmail.com

Muhammad Ali Babar

IT University of Copenhagen,

Denmark
malibaba@itu.dk

Abstract

Software evolution relates to how software systems evolve

over time. With the emergence of the open source paradigm,

researchers are provided with a wealth of data for open

source software evolution analysis. In this paper, we present

a systematic review of open source software (OSS)

evolution. The objective of this review is to obtain an

overview of the existing studies in open source software

evolution, with the intention of achieving an understanding

of how software evolvability (i.e., a software system’s ability

to easily accommodate changes) is addressed during

development and evolution of open source software. The

primary studies for this review were identified based on a

pre-defined search strategy and a multi-step selection

process. Based on their research topics, we have identified

four main categories of themes: software trends and

patterns, evolution process support, evolvability

characteristics addressed in OSS evolution, and examining

OSS at software architecture level. A comprehensive

overview and synthesis of these categories and related

studies is presented as well.

Keywords: systematic review, open source

software, software evolution, evolvability

1. Introduction

Software evolution reflects “a process of progressive

change in the attributes of the evolving entity or that of one

or more of its constituent elements” [35]. Specifically,
software evolution relates to how software systems evolves
over time [58]. Software evolution is characterized by
inevitable changes in software and increasing complexities,
which may lead to huge costs if software cannot easily
accommodate changes. Hence, One of the principle
challenges in software evolution is the ability of software to
evolve over time to meet the changing requirements of
stakeholders [39]. In this context, software evolvability is an
attribute that “bears on the ability of a system to

accommodate changes in its requirements throughout the

system’s lifespan with the least possible cost while

maintaining architectural integrity” [47].
With the emergence of the Open Source Software (OSS)

paradigm, researchers have access to the code bases of a
large number of evolving software systems along with their
release histories and change logs. There have been a large
number of studies published on OSS characteristics and
evolution patterns by examining sequences of code versions
or releases using statistical analysis. Meanwhile, the easily
accessible data about different aspects of OSS projects also
provides researchers with immense number of opportunities
to validate the prior studies of proprietary software
evolution [32] and to study how evolvability has been
addressed in OSS evolution.

The main objective of this research is to systematically
select and review published literature in order to build and
present a holistic overview of the existing studies on OSS
evolution; moreover, a secondary objective is to analyze the
literature to find out how software evolvability is addressed
during development and evolution of OSS. We are also
interested in extracting information on the metrics that
researchers use for measuring OSS evolution from different
perspectives such as growth patterns, complexity patterns,
processes and evolution effort estimation. The detailed
research questions include:

• What are the main research themes that are covered in
the scientific literature regarding open source software
evolution, and analysis and achievement of
evolvability-related quality attributes?

• What are the metrics that are used for OSS evolution
measurement and analysis, and what are the limitations
in using these metrics, if any?

In the rest of the paper, Section 2 describes the research
method used. Section 3 presents and discusses the findings
from this review. Section 4 discusses validity threats of the
review and Section 5 concludes the paper.

2. Research methodology

This research was undertaken as a systematic review [29]
which is a process of assessing and interpreting all available
research related to a particular research topic. The process

consists of several stages: (i) development of a review
protocol; (ii) identification of inclusion and exclusion
criteria; (iii) searching relevant papers; and (iv) data
extraction and synthesis. These stages are detailed in the
following subsections.
Review Protocol was designed based on the Systematic
Literature Review (SLR) guidelines [29]. The protocol
specifies the background for the review, research questions,
search strategy, study selection criteria, data extraction and
synthesis of the extracted data. The protocol was developed
mainly by one author and reviewed by the other two authors
to reduce bias.
Inclusion and exclusion criteria mainly focused on
including full papers in English from peer-reviewed
journals, conferences, workshops and book chapters
published until the end of 2009. We exclude studies that do
not cover evolution of OSS, prefaces, articles in the
controversial corner of journals, editorials, and summaries
of tutorials, panels and poster sessions.
Search strategy was designed to search in a selected set of
electronic databases: ACM Digital Library, Compendex,
IEEE Xplore, ScienceDirect – Elsevier, SpringerLink,
Wiley InterScience and ISI Web of Science. The search
terms used for constructing search strings were:

"open source software" OR "libre software" OR "free
software" OR "FOSS" OR "F/OSS" OR "F/OSSD" OR
"FOSSD" OR "FLOSS" OR "F/LOSS" OR "OSSD".

The selection of studies was performed through a multi-
step process:

• Searches in the databases to identify relevant studies by
using the search terms;

• Exclude studies based on the exclusion criteria;

• Exclude irrelevant studies based on titles and abstracts;

• Obtain primary studies based on full text read.

TABLE I. DATA EXTRACTION FOR EACH STUDY

Extracted Data Description

Study identity Unique identity for the study

Bibliographic
references

Author, year of publication, title
and source of publication

Type of study Book, journal paper, conference
paper, workshop paper

Focus of the study Main topic area and aspect of
open source software being
investigated

Research method
used for data
collection

Included technique for the design
of the study, e.g. case study,
survey, experiment, interview to
obtain data, observation

Data analysis Qualitative or quantitative
analysis of data

Metrics used The metrics used in data
collection for analysis

Constraints and
limitations

Identified constraints and
limitations in each study

The searches in electronic databases were performed in
two stages. At the first stage, the papers published until the
end of 2008 were searched and then a separate
complimentary search was performed for 2009 publications.
After merging the search results and removing duplicates
there were 11,439 papers published until 2008 and 1,921
papers published in 2009. After scanning all the papers by
titles and abstracts, 134 papers were selected. In the final
stage full paper text was scanned and we selected 41 papers
for this review. The paper selection process involved at least
two researchers to decide whether to include or exclude a
paper. A paper was excluded if both researchers considered
it irrelevant. Any disagreement was resolved through
discussions and involvement of the third researcher.
Data extraction and synthesis were carried out by reading
each of the 41 papers thoroughly and extracting relevant
data, which were managed through bibliographical
management tool EndNote and Spreadsheets. The data
extraction was driven by a form show in Table I. For the
data synthesis, we inspected the extracted data for
similarities in terms of the focus of the studies in order to
define how results could be compared. The results of the
synthesis will be described in the subsequent sections.

3. Results

We present that the findings from our SLR on OSS

evolution. First we provide some demographic information
about the studies, which were included in our SLR. Then we
present and discuss the findings from analyzing the data
extracted from the reviewed studies in order to answer the
research questions which motivated this SLR.

3.1 Overview of the included studies

It has been mentioned that we performed searches in
multiple electronic databases. We found that the largest
numbers of selected papers (22 papers) were published on
OSS evolution from IEEE. The second largest numbers of
papers, 9 papers, were published by ACM; while four
selected papers were published by John Wiley & Sons in its
Journal of Software Maintenance and Evolution. Trend of
publications over years shows a positive growth except for
year 2008. Only three papers on OSS evolution were
published in that year. In year 2009, eleven papers were
published showing that a good number of researchers are
addressing OSS evolution.

Our review has found that the evolution trends and
patterns is the most focused research area with 23 papers
published on this topic. There were ten papers on the role of
process support in evolution. However, there are quiet few
numbers of papers addressing the characteristics of
evolvability and architecture, with five and three papers
respectively.

We also observed that there were not many researchers
who have long term interest in OSS evolution research.
There were only three authors Adrea Capiluppi, Gregorio
Robles and Israel Herraiz who have more than or equal to
three papers on any aspect of OSS evolution.

3.2 Categories of the reviewed studies

As described in the research methodology section, during

the data synthesis phase, we examined the papers based on
their similarities in terms of research topics and contents in
order to categorize the included studies of OSS evolution.
Besides classifying the included studies, we also examined
the metrics used for assessing OSS evolution as well as the
analysis methodology for collected data in each study. After
examining the research topics, data analysis and findings
addressed in each study, we identified four main categories
of themes, one of which is further refined into sub-
categories to group primary studies that share similar
characteristics in terms of specific research focus, research
concepts and contexts. The categories and sub-categories
are:

• OSS evolution trends and patterns
o Software growth
o Software maintenance and evolution

economics
o Prediction of software evolution

• OSS evolution process support

• Evolvability characteristics

• Examining OSS evolution at software architecture
level

These themes and their corresponding sub-categories
will be further detailed in the following subsections. For
each category of theme, we describe the category and
related studies along with the metrics that are used to
quantitatively or qualitatively analyze the OSS evolution.
Finally an analysis of the studies is discussed with main
findings summarized.

3.3 OSS Evolution Trends and Patterns

This category includes studies that focus on
investigating OSS evolution trends and patterns. Based on
their focus, the studies were further classified into three sub-
categories: (i) software growth; (ii) software maintenance
and evolution economics; and (iii) prediction of software
evolution.
Software growth: The studies in this sub-category mainly
focus on software growth and changes using a variety of
metrics as shown in Table II.
Software growth modeling can be of interest for developing
models to predict software evolution, maintainability and
other characteristics [30]. Moreover, many OSS studies
focus on utilizing the OSS evolution data to verify
Lehman’s laws of software evolution [33]; their findings

either conform or diverge from the growth behavior of
proprietary software. It is essential that the measures of
software growth can actually represent and quantify the
notion of software growth in order to obtain a reasonable
comparison among the results from different studies.
However, we noticed that there have been conflicting
interpretations of some important operational definitions
with respect to the metrics used for measuring software
growth patterns. Some examples of the operational
definitions that exhibit varying interpretations include
system growth, system change, and size, which are discussed
below.

TABLE II. SOFTWARE GROWTH METRICS

Study Metrics

[1] Number of packages, number of classes, total
lines of code, number of statements

[2] Types of extracted changes: addition of source
code modules in successive versions of software;
deletion; and modification

[11] Initial size, current size, modules (folders),
modules (files), average module size, days
through versions, versions, version rate, delta size

[17] Source file, source folder, source tree, size, RSN
(release sequence number), level number, depth
of a folder tree, width of a level, width of a folder
tree, files added, modified or deleted

[23]
[43]

Lines of code (LOC) in source files as a function
of the time in days

[24] Lines of source code, the number of packages, the
changed and unchanged packages

[28] LOC (lines of code), number of directories, total
size in Kbytes, average and median LOC for
header and source files, number of modules (files)
for each subsystem and for the system as a whole

[30] Number of LOC added to a file, including all
types of LOC, e.g. also commentaries

[41] Overall project growth in functions over time,
overall project growth in LOC over time

[46] Lines of source code, the number and size of
packages

[49] Lines of code (LOC), executable LOC, lines of
code per comment ratio, functions added over
each release, number of functions

[50] Size in number of source code files, number of
files handled (added, modified, deleted) between
two subsequent releases, average complexity

[52] Rate of growth with respect to release sequence
number

[54] Module, bugs, bug fixing and requirement
implementation

[56] Source code metrics, e.g., lines of code, number
of modules, number of definitions

System growth: is measured by using the metric of
percentage growth over time. There exist diverse
interpretations of rate of growth. For instance, one
assumption in some empirical studies [48, 49] on software
evolution, as also suggested by Lehman [32], is to analyze
and plot growth data with respect to the release sequence
number (RSN). Another interpretation of rate of growth is
reflected in [23], which the authors plotted growth rates
against calendar dates rather than release numbers. Further,
they suggest that plotting according to release numbers
would have led to dips in the function curves because
development and stable releases follow different behaviors.
This interpretation of rate of growth is further confirmed in
[52], which shows that due to the new temporal variables
introduced by OSS, the rate of growth of OSS should be
computed with respect to temporal variables such as the
release date. It was also validated that different conclusions
can be drawn when software evolution data are analyzed
with respect to the release date rather than RSN. Therefore,
diverse interpretations of rate of growth can pose a threat in
properly interpreting the OSS evolutionary behaviors.
System change: Separating the characterizations of system
growth and system change is a challenge [32]. A variety of
change metrics can be used. For example, Xie and
colleagues [56] used changes to program elements (such as
types, global variables, function signatures and bodies) to
characterize system change. Cumulative numbers of
addition and deletion types of changes to these program
elements are plotted. They reported that the majority of
changes are made to functions.

It is also possible to count all the different files that have
been added, modified and deleted between two subsequent
releases in order to measure system changes [50]. In this
case, the conventions used for measuring changes can lead
to different results in interpreting the OSS evolutionary
behaviors, e.g. whether or not taking into consideration of
the changes in comment lines or minor changes in a single
source line.
Size: Lehman suggests using the number of modules to
quantify program size as he argues that this metric is more
consistent than considering source lines of code [32].
However, there are different interpretations of a module. For
instance, Simmons et al consider modules only at the file
level [49]; while Capiluppi [11] studies both at file level
and directory level, and discovers different OSS
evolutionary behaviors depending on whether they consider
directories or files as modules.

Instead of using modules as Lehman suggested, LOC
(lines of code) is often used for measuring the size of OSS.
For instance, Conley and Sproull [23] used number of
uncommented lines of code because as they claim using
number of source files would have meant losing some of the
full story of the evolution of the system, especially at the
subsystem level due to the variation in file sizes. Conly and
Sproull also assume that the total number of uncommented
LOC grows roughly at the same rate as the number of

source files [23]. However, this assumption is not fully
validated in a broader scope as it was only verified in some
of the largest packages in Debian GNU/Linux [27].

Moreover, the definition of LOC varies as different
studies interpret LOC differently, depending on the tools
and available data sources used [40]. Koch ’s definition of
LOC considers all types of files, including comments and
documentation [30]. Some other studies [23, 43] counts
LOC in two ways: including blank lines and comments in
source files (e.g., in .c and .h files) or ignoring blank lines
and comments. This kind of counting applies only to source
files and ignore other source artifacts such as configuration
files, make-files and documentation.

Even the term ‘source file’ is defined in different ways.
For example, [50] considers only files with extension .c as
source files. Therefore, for systems involving a variety of
source file extensions, different assumptions regarding file
extensions and their belonging to the source code or not
could lead to different values in size, which would affect the
analysis results of different aspects of evolutionary
behaviors [45].

Software maintenance and evolution economics: The
uncertainties in software evolution arise from, to a certain
extent, understanding how OSS would have evolved in
terms of costs. Moreover, software evolvability concerns
both business and technical perspectives as the choice of
maintenance decisions from technical perspective needs to
be balanced with economic valuation to mitigate risks.
Therefore, another perspective in understanding OSS
evolution trends is to analyze how software has evolved in
terms of development and maintenance costs. Capra et al
[19] analyzes the quality degradation effect, i.e., entropy of
OSS by measuring the evolution of maintenance costs over
time. The metric used in this study is function points. One
assumption in this paper is that the maintenance costs are
proportional to the time elapsed between the releases of two
subsequent versions. The other study proposes an empirical
model to measure evolutionary reuse and development cost
which is an indicator of the effect of maintenance decisions
made by OSS developers. The metric used is source lines of
code (SLOC) [18].

Prediction of software evolution: The OSS history data
over time can be utilized to predict its evolution. It has been
mentioned that modeling software growth is essential for
developing software evolution prediction models. Although
there are many studies of monitoring OSS growth,
comparatively fewer studies actually utilize the historical
evolution data for the purpose of predicting its evolution.
We find only three papers in this area. Herraiz et al describe
using data from source code management repository to
compute size of the software over time [26]. This
information is used to estimate future evolution of the
project. SLOC is used for counting program text that is not a
comment or blank line regardless of the number of

statements or fragments of statements on the line. All lines
that contain program headers, declarations, and executable
and non-executable statements are excluded. Therefore, the
results may vary if other sorts of files are considered.

Ye uses source code changes to indirectly predict the
maintenance effort of OSS [57]. The metrics used include
lag time between starting a maintenance task and closing the
task, source code change at module level (number of
modules added, deleted and modified), and source code
change at line level (number of source LOC added, deleted
and modified) in one maintenance task. Some threats in this
study are that all module-level changes are treated in the
same manner irrespective of the amount of changes as well
as the effort for line-level changes.

Another way to predict OSS evolution has been studied
in [42], which describes using data from monthly defect
reports to build up time series model that can be used to
predict the pattern of OSS evolution defects.

3.4 Evolution Process Support

This category includes studies that focus on OSS

evolution support from various perspectives of software
development process:
Feedback-driven quality assessment: An approach that is
based on remote and continuous analysis of OSS evolution
is proposed in [10]. This approach utilizes available data
sources such as CVS versioning system repository,
commitment log files and exchanged mails in order to
provide services that mitigate software degradation and
risks. The principle services include growth, complexity and
quality control mechanism, feedback-driven communication
service, and OSS evolution dashboard service.
Commenting practice: To understand the processes and
practices of open source software development, Arafat and
Riehle [3] treat the amount of comments in a given source
code body as an indicator of its maintainability. They focus
on one particular code metric, i.e., the comment density.
According to them “commenting” practice is an integrated
activity in OSS development and that successful OSS
projects follow consistently this practice.
Exogenous factors: Capiluppi and Beecher [12]
investigated whether or not an OSS system’s structural
decay can be influenced by the repository in which it is
retained. Based on a comparative analysis of two
repositories, they concluded that the repositories in which
OSS are retained act as exogenous factors, which can be a
differentiating factor in OSS evolvability. Beecher et al [7]
extended that work by involving a greater number of
repositories and strengthening the results with the
formulation of different types of OSS repository along with
a transition framework among the various types.

Robles et al [44] describe the problems that can be found
when retrieving and preparing for OSS data analysis and
present the tools that support data retrieval for OSS
evolution analysis: source code, source code management

systems, mailing lists, and bug tracking systems. In
accordance with this study, Bachmann and Bernstein [5]
address the quality of data sources and provides insights
into the influencing factors to the quality and characteristics
of software process data gathered from bug tracking
database and version control system log files. These studies
reflect that the analysis of the evolution and history of an
open source software and the prediction of its future rely on
the quality of data sources and corresponding process data.
Maintenance process evaluation: Koponen presents an
evaluation framework for OSS maintenance process [31].
The framework includes attributes for evaluating activity,
efficiency and traceability of defect management and
maintenance processes.
Evolution model: The traditional staged model [8]
represents the software lifecycle as a sequence of stages.
Instead of using the model that was built mainly by
observing traditional software development, Capiluppi et al
[14] revise the staged model for its applicability to OSS
evolution.
Configuration management: Asklund and Bendix [4]
examine the configuration management process and
analyzes how process, tool support, and people aspects of
configuration management influences the OSS evolution.

3.5 Evolvability Characteristics

This category includes studies that focus on

characteristics that can be considered important for software
evolvability.

As indicated in [25], the evolution of open source
projects is governed by a sort of determinism, i.e., the
current state of the project is determined time ago. Their
results also show that at least 80% of the sampled projects
are short-term correlated. However, a long-term perspective
to explicitly address evolvability for the entire software
lifecycle is required since the inability to effectively and
reliably evolve software systems means loss of business
opportunities [9].

Another OSS evolvability characteristic is code
understandability which is identified in [15]. This study
views understandability as a key aspect for maintainability,
and takes into account only code structure measures (such as
code size, number of macro-modules and micro-modules,
size of modules, and average size of modules) for
calculating code indistinctness as an indicator of code
understandability. Besides determinism and
understandability, complexity and modularity are the other
two OSS evolvability characteristics that are frequently
described in the reviewed studies of OSS evolution.

 Complexity

Complexity is a software characteristic that affects

evolvability. Table III shows that a variety of metrics have
been used to characterize OSS evolution from software

complexity perspective. According to Table III, McCabe’s
cyclomatic complexity [36] is the most often used metric. It
measures the number of independent paths in the control
flow graph. The rationale for using this metric is that the
number of control flow paths is correlated to how well-
structured the functions are in the program. Another metric
is Halstead complexity which measures a program module’s
complexity directly from source code, with focus on
computational complexity. These two complexity measures
have different emphasis and therefore can be
complementarily used. For instance, Simmons et al [49]’s
study found that the McCabe and Halstead complexity
metrics yielded contradictory results, which suggest that
while the structure complexity decline with successive
releases, the complexity of calculation logic increases.

TABLE III. COMPLEXITY METRICS

Study Metrics

[1]
[13]
[21]

McCabe’s cyclomatic complexity

[16] System size and the evolving structure of the
software

[17] McCabe’s cyclomatic complexity for structural
complexity, Halstead Volume for textual
complexity

[41] Overall project complexity, average complexity
of all functions, average complexity of functions
added

[49] Overall release complexity and average function
complexity using McCabe and Halstead
complexity measure

[56] McCabe’s cyclomatic complexity, common
coupling and average number of function calls per
function

Besides McCabe and Halstead indexes, there are other

additional indicators of complexity, both at system and
component level, as well as function level:

• Calls per function indicate the complexity of functions.
It is computed by averaging the number of calls per
function for all functions [56].

• Coupling, representing the number of inter-module
references.

• Interface complexity, measuring the sum of input
arguments to, and return states from, a function [51].
The number of arguments and state returns has impact
on software changeability.

• Complexity of some systems may also be found in their
data structures rather than in source code [41].

However, we did not find any research papers that explicitly
study complexity in terms of coupling, interface complexity
and data structure complexity.

Modularity

Modularity is a concept by which a piece of software is

grouped into a number of distinct and logically cohesive
subunits, presenting services to the outside world through a
well-defined interface [6]. Table IV shows that a number of
metrics have been used to characterize OSS evolution from
modularity perspective. It is also obvious from Table IV that
the metrics for modularity are used at different levels. For
instance, Liu and Iyer [34], and Simmons et al [49] studied
modularity at the class/file level that provides information
regarding software functionality. However, Conley and
Sproull [21] argue that studying modularity at that level
does not capture interface information, i.e., whether classes
or files communicate via interfaces, which are used to
achieve component independence in modular software.
Accordingly, they argue that the package at the module or
component level is more appropriate for assessment of
software modularity than using classes or files.

TABLE IV. MODULARITY METRICS

Study Metrics

[21] Total number of lines of code, number of concrete
and abstract classes, afferent and efferent
coupling

[24] Dependencies between packages

[34] Measured at class/file level

[41] Correlation between functions added and
functions modified

[49] (Only measured at file level): number of classes,
number of files for each release, directory
structure and content

Excessive inter-module dependencies have long been

recognized as an indicator of poor software design [37] and
can diminish the ability to reason about software
components in isolation. It becomes also difficult to assess
and manage change impacts. Therefore, apart from studying
the dependencies between packages [24], inter-module
dependency can also be used for achieving modularity, and
examining the following kinds of dependencies:

• Class reference: If class A refers to class B, e.g. as in an
argument in a method, then A depends on B.

• Invokes: If a function in class A calls a function or a
constructor of class B, then A depends on B.

• Inherits: If class A is a subclass of class B, then A
depends on B.

• Data member reference: If a function in class A makes
reference to a data member of class B, then A depends
on B.

However, we did not find any paper that explicitly studies
OSS evolution by using the inter-module dependency.

3.6 Examining OSS Evolution at Software

Architecture Level

This category includes studies that focus on examining

OSS evolution at software architecture level. According to
[38], there is a lack of research that investigates the relation
between software architecture and OSS, and discusses in
details how software architecture is treated in OSS. Godfrey
and Tu [23] came up with the similar observations from
another perspective, i.e., planned evolution and preventive
maintenance may suffer OSS development, which
encourages active participation but not necessarily careful
reflection and reorganization. The scarcity of studies on
architectural level evolution of OSS confirms the above-
mentioned observations.

Based on a case study, Nakagawa et al [38] found that
software architecture is directly related to OSS quality, and
that the knowledge and experience in architecture must be
considered in OSS projects. This study also proposes
architecture refactoring in order to repair architectures,
aiming at improving mainly maintainability, functionality
and usability of OSS. A similar approach is described in
[53], which explains the process of forward and reverse
architectural repair to avoid architectural drift.

There are not many measures proposed for the
architectural level evolution. Some variants of the number
of calls into and number of calls from a component are used
in [12], which addresses the structural characteristics of
OSS with respect to the organization of the software’s
constituent components. This study selects functions as the
basic unit for analysis, and three attributes are considered as
proxies of static architectural structure, i.e., fan-in, fan-out
and instability.

4. Validity Issues

The following types of validity issues need to be

considered when interpreting the results from this review.
Conclusion validity [55] refers to the statistically

significant relationship between the treatment and the
outcome. One possible threat to conclusion validity is bias
in data extraction. This was addressed through defining a
data extraction form to ensure consistent extraction of
relevant data to answering the research questions. The
findings and implications are based on the extracted data.

Internal validity [55] concerns the connection between
the observed behavior and the proposed explanation for the
behavior, i.e. it is about ensuring that the actual conclusions
are true. It is a concern for causal or explanatory studies.
One possible threat to internal validity is the selection bias.
We addressed this threat during the selection step of the
review, i.e. the studies included in this review were
identified through a thorough selection process which
comprises of multiple stages. In the first stage, the first two
authors independently selected and reviewed relevant papers

from the complete set of papers retrieved on basis of the
search strings. Then the selected papers were aggregated.
After first set of selected papers was selected, the third
author performed random check to validate if it was the
right selection of papers.

Construct validity [55] relates to the collected data and
how well the data represent the investigated phenomenon,
i.e. it is about ensuring that the construction of the study
actually relates to the research problem and the chosen
sources of information are relevant. The studies identified
from the systematic review were accumulated from multiple
literature databases covering relevant journals, proceedings
and book chapters. One possible threat to construct validity
is bias in the selection of publications. This is addressed
through specifying a research protocol that defines the
research questions and objectives of the study, inclusion and
exclusion criteria, search strings that we intend to use, the
search strategy and strategy for data extraction. The research
protocol and the identified publications have been reviewed
by several researchers to minimize the risk of exclusion of
relevant studies. Besides, additional reference checking of
the identified studies was conducted to guarantee a
representative set of studies for the review.

5. Conclusions

This systematic review has identified 41 primary studies

of open source software evolution. Based on the research
topics of those studies, we have classified them into four
main categories of themes: software trends and patterns,
evolution process support, evolvability characteristics, and
examining OSS at software architecture level. The first
category is further refined into three sub-categories:
software growth, software maintenance and evolution
economics, and prediction of software evolution. A
comprehensive overview of these categories, corresponding
sub-categories and related studies is discussed. The main
findings from this systematic review are:

• Regarding the category of software trends and patterns,
most papers focus on using different metrics to analyze
OSS evolution over time. Few papers have looked into
the economic perspective, e.g., maintenance effort, and
few papers utilize the historical evolution data for
prediction of OSS evolution and development. In this
category, researchers have used various metrics at
varying levels of granularities, e.g., class level, file
level, and module level to measure OSS evolution.
However, this review has also shown that there are
diverse interpretations of the same terms, e.g., module,
lines of code, rate of growth. This may cause
conflicting conclusions that may be drawn from OSS
evolution patterns, especially if the studies attempt to
make comparisons on the differentiating results though
based on using different sets of metrics for measuring.

• Regarding the category of evolution process support,
different aspects that appear to have impact on the OSS

evolution process are covered; these aspect include
commenting practice, OSS evolution and maintenance
evaluation model, structures and quality characteristics
of resources such as repositories, mails, bug tracking
systems, as well as tools that support data retrieval for
evolution analysis.

• Regarding the category of evolvability characteristics,
determinism, understandability, modularity and
complexity are addressed in the included studies.
However, there are more evolvability characteristics
that are not covered such as changeability, extensibility,
testability, and modifiability. This might also explain
the findings in the analysis of OSS evolution trends
category that focuses on the evolution history instead of
predicting the OSS evolution, because when there is a
lack of analysis on OSS evolvability characteristics, it
also becomes harder to predict its evolution.

• Regarding the category of examining OSS evolution at
software architecture level, we have found that although
an increasing amount of attention is being paid to the
architecture of software systems due to its recognized
role in fulfilling the quality requirements of a system
[20], only few papers address OSS evolution at
architectural level. Software evolution can be examined
at different levels such as architectural level, detailed
design and source code level. We have noticed from the
review that most papers address OSS evolution at
source code level. However, software architectures are
inevitably subject to evolution. They expose the
dimensions along which a system is expected to evolve
[22] and provide basis for software evolution [37].
Therefore, it is of major importance to put more focus
on managing OSS evolution and assessing OSS
evolvability at the software architecture level besides
the code-level evolution.

ACKNOWLEDGMENT

We would like to acknowledge Klaas-Jan Stol -for sharing
the repository of papers on OSS for the reported review.
Hongyu Pei Breivold acknowledges the Swedish KK-
foundation (KKS) through the SAVE-IT project. Aufeef
Chauhan would like to acknowledge Prof. Ivica Crnkovic
for his supervision. Aufeef also acknowledges the EURECA
project (www.mrtc.mdh.se/eureca) funded by the Erasmus
Mundus External Coorporation Window (EMECW) of the
European Commission for providing resources to conduct a
part of his study at Mälardalen University, Sweden.

References

[1] Al-Ajlan, A.: ‘The Evolution of Open Source Software

Using Eclipse Metrics’, International Conference on New

Trends in Information and Service Science, IEEE Computer

Society, pp. 211-218, 2009.

[2] Ali, S., and Maqbool, O.: ‘Monitoring software

evolution using multiple types of changes’, International

Conference on Emerging Technologies, pp. 410-415, 2009.

[3] Arafat, O., and Riehle, D.: ‘The commenting practice of

open source’, Conference on Object Oriented Programming

Systems Languages and Applications, ACM, pp. 857-864,

2009.

[4] Asklund, U., and Bendix, L.: ‘A study of configuration

management in open source software projects’, IEE

Proceedings-Software, 149, (1), pp. 40-46, 2002.

[5] Bachmann, A., and Bernstein, A.: ‘Software process

data quality and characteristics: a historical view on open

and closed source projects’, Proceedings of the Joint

International ERCIM Workshops on Principles of Software

Evolution (IWPSE) and Software Evolution (Evol)

Workshops, ACM, pp. 119-128, 2009.

[6] Baldwin, C.Y., and Clark, K.B.: ‘Design rules: The

power of modularity’, The MIT Press, 2000.

[7] Beecher, K., Capiluppi, A., and Boldyreff, C.:

‘Identifying exogenous drivers and evolutionary stages in

FLOSS projects’, Journal of Systems and Software, 82, (5),

pp. 739-750, 2009.

[8] Bennett, and Rajlich: ‘Software maintenance and

evolution: a roadmap’. Proceedings of the Conference on

The Future of Software Engineering, Limerick, Ireland,

2000.

[9] Bennett, K.H., and Rajlich, V.T.: ‘Software

maintenance and evolution: a roadmap’, The Future of

Software Engineering, ACM New York, pp. 73-87, 2000.

[10] Bouktif, S., Antoniol, G., and Merlo, E.: ‘A feedback

based quality assessment to support open source software

evolution: the grass case study’, International Conference

on Software Maintenance, pp. 155-165, 2006.

[11] Capiluppi, A.: ‘Models for the evolution of OS

projects’, International Conference on Software

Maintenance, pp. 65-74, 2003.

[12] Capiluppi, A., and Beecher, K.: ‘Structural Complexity

and Decay in FLOSS Systems: An Inter-Repository Study’,

13th European Conference on Software Maintenance and

Reengineering (CSMR), 2009.

[13] Capiluppi, A., Faria, A.E., and Ramil, J.F.: ‘Exploring

the relationship between cumulative change and complexity

in an open source system’, European Conference on

Software Maintenance and Reengineering (CSMR), 2005.

[14] Capiluppi, A., González-Barahona, J.M., Herraiz, I.,

and Robles, G.: ‘Adapting the staged model for software

evolution to free/libre/open source software’, Ninth

International Workshop on Principles of Software

Evolution, ACM, 2007.

[15] Capiluppi, A., Morisio, M., and Lago, P.: ‘Evolution of

understandability in oss projects’, Eighth Euromicro

Working Conference on Software Maintenance and

Reengineering, pp. 58-66, 2004.

[16] Capiluppi, A., Morisio, M., and Ramil, J.F.: ‘Structural

evolution of an open source system: a case study’,

Proceedings of the 12th IEEE International Workshop on

Program Comprehension, 2004.

[17] Capiluppi, A., Ramil, J.F., and e Informatica, D.A.:

‘Studying the evolution of open source systems at different

levels of granularity: Two case studies’, Proceedings of the

7th International Workshop on Principles of Software

Evolution, pp. 113-118, 2004.

[18] Capra, E.: ‘Mining open source web repositories to

measure the cost of evolutionary reuse’, International

Conference on Digital Information Management, pp. 496-

503, 2006.

[19] Capra, E., Francalanci, C., and Merlo, F.: ‘The

economics of open source software: an empirical analysis of

maintenance costs’, International Conference on Software

Maintenance, pp. 395-404, 2007.

[20] Clements, P., Kazman, R., and Klein, M.: ‘Evaluating

Software Architectures: Methods and Case Studies’,

Addison-Wesley, 2002.

[21] Conley, C.A., and Sproull, L.: ‘Easier Said than Done:

An Empirical Investigation of Software Design and Quality

in Open Source Software Development’, 42nd Hawaii

International Conference on System Sciences, 2009.

[22] Garlan, D.: ‘Software architecture: a roadmap’, in

Editor (Ed.)^(Eds.): ‘Book Software architecture: a

roadmap’, The Future of Software Engineering, ACM Press

New York, pp. 91-101, 2000.

[23] Godfrey, M.W., and Tu, Q.: ‘Evolution in open source

software: A case study’, International Conference on

Software Maintenance, pp. 131-142, 2000.

[24] Gonzalez-Barahona, J.M., Robles, G., Michlmayr, M.,

Amor, J.J., and German, D.M.: ‘Macro-level software

evolution: a case study of a large software compilation’,

Empirical Software Engineering, 14, (3), pp. 262-285, 2009.

[25] Herraiz, I., Gonzalez-Barahona, J.M., and Robles, G.:

‘Determinism and evolution’, International Working

Conference on Mining Software Repositories, ACM, pp. 1-

10, 2008.

[26] Herraiz, I., Gonzalez-Barahona, J.M., Robles, G., and

German, D.M.: ‘On the prediction of the evolution of libre

software projects’, International Conference on Software

Maintenance, pp. 405-414, 2007.

[27] Herraiz, I., Robles, G., Gonzalez-Barahona, J.M.,

Capiluppi, A., and Ramil, J.F.: ‘Comparison between

SLOCs and number of files as size metrics for software

evolution analysis’, Conference on Software Maintenance

and Reengineering, 2006.

[28] Izurieta, C., and Bieman, J.: ‘The evolution of freebsd

and linux’, Proceedings of the IEEE/ACM International

Symposium on Empirical Software Engineering, 2006.

[29] Kitchenham, B., and Charters, S.: ‘Guidelines for

performing systematic literature reviews in software

engineering’, Evidence Based Software Engineering, 2007.

[30] Koch, S.: ‘Evolution of open source software systems–a

large-scale investigation’, Journal of Software Maintenance

and Evolution: Research and Practice, 2007.

[31] Koponen, T.: ‘Evaluation Framework for Open Source

Software Maintenance’, International Conference on

Software Engineering Advances, pp. 52-52, 2006.

[32] Lehman, M.M., Perry, D.E., and Ramil, J.F.: ‘On

evidence supporting the FEAST hypothesis and the laws

ofsoftware evolution’, the 5th International Symposium on

Software Metrics, pp. 84-88, 1998.

[33] Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E.,

and Turski, W.M.: ‘Metrics and laws of software evolution-

the nineties view’, International Symposium on Software

Metrics, 1997.

[34] Liu, X., and Iyer, B.: ‘Design architecture, developer

networks, and performance of Open Source Software

projects’, Approaches to Information System Development,

2007.

[35] Madhavji, N.H., Fernandez-Ramil, J., and Perry, D.:

‘Software Evolution and Feedback: Theory and Practice’,

John Wiley & Sons, 2006.

[36] McCabe, T.J.: ‘A complexity measure’, IEEE

Transactions on Software Engineering, pp. 308-320, 1976.

[37] Medvidovic, N., Taylor, R.N., and Rosenblum, D.S.:

‘An Architecture-Based Approach to Software Evolution’,

International Workshop on the Principles of Software

Evolution, 1998.

[38] Nakagawa, E.Y., de Sousa, E.P.M., de Brito Murata,

K., de Faria Andery, G., and Morelli, L.B.: ‘Software

Architecture Relevance in Open Source Software Evolution:

A Case Study’, 32nd International Computer Software and

Applications Conference, IEEE, pp. 1234-1239, 2008.

[39] Nehaniv, C.L., and Wernick, P.: ‘Introduction to

Software Evolvability 2007’, 3rd International IEEE

Workshop on Software Evolvability, 2007.

[40] Park, R.E.: ‘Software Size Measurement: A Framework

for Counting Source Statements. Software Engineering

Institute’, Carnegie Mellon University, 1992.

[41] Paulson, J.W., Succi, G., and Eberlein, A.: ‘An

empirical study of open-source and closed-source software

products’, IEEE Transactions on Software Engineering, 30,

(4), pp. 246-256, 2004.

[42] Raja, U., Hale, D.P., and Hale, J.E.: ‘Modeling software

evolution defects: a time series approach’, Journal of

Software Maintenance and Evolution: Research and

Practice, 21, (1), pp. 49-71, 2008.

[43] Robles, G., Amor, J.J., Gonzalez-Barahona, J.M., and

Herraiz, I.: ‘Evolution and growth in large libre software

projects’, 8th International Workshop on Principles of

Software Evolution, pp. 165-174, 2005.

[44] Robles, G., González-Barahona, J.M., Izquierdo-

Cortazar, D., and Herraiz, I.: ‘Tools for the study of the

usual data sources found in libre software projects’,

International Journal of Open Source Software and

Processes, 1, (1), pp. 24–45, 2009.

[45] Robles, G., Gonzalez-Barahona, J.M., and Merelo, J.J.:

‘Beyond source code: The importance of other artifacts in

software development (a case study)’, The Journal of

Systems & Software, 79, (9), pp. 1233-1248, 2006.

[46] Robles, G., Gonzalez-Barahona, J.M., Michlmayr, M.,

and Amor, J.J.: ‘Mining large software compilations over

time: another perspective of software evolution’,

International Workshop on Mining Software Repositories,

ACM, 2006.

[47] Rowe, D., Leaney, J., and Lowe, D.: ‘Defining systems

evolvability-a taxonomy of change’, International

Conference and Workshop: Engineering of Computer-Based

Systems, pp. 541-545, 1994.

[48] Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z., and

Offutt, A.J.: ‘Maintainability of the Linux kernel’, IEE

Proceedings-Software, 149, (1), pp. 18-23, 2002.

[49] Simmons, M.M., Vercellone-Smith, P., and Laplante,

P.A.: ‘Understanding Open Source Software through

Software Archaeology: The Case of Nethack’, 30th Annual

IEEE/NASA Software Engineering Workshop, pp. 47-58,

2006.

[50] Smith, N., Capiluppi, A., and Ramil, J.F.: ‘A study of

open source software evolution data using qualitative

simulation’, Software Process Improvement and Practice,

10, (3), pp. 287-300, 2005.

[51] Suh, S.D., and Neamtiu, I.: ‘Studying Software

Evolution for Taming Software Complexity’, 21st Australian

Software Engineering Conference, 2010.

[52] Thomas, L.G., Schach, S.R., Heller, G.Z., and Offutt,

J.: ‘Impact of release intervals on empirical research into

software evolution, with application to the maintainability

of Linux’, Software, IET, 3, (1), pp. 58-66, 2009.

[53] Tran, J.B., Godfrey, M.W., Lee, E.H.S., and Holt, R.C.:

‘Architectural repair of open source software’, 8th

International Workshop on Program Comprehension, pp.

48-59, 2000.

[54] Wang, Y., Guo, D., and Shi, H.: ‘Measuring the

evolution of open source software systems with their

communities’, ACM SIGSOFT Software Engineering

Notes, 32, (6), pp. 7, 2007.

[55] Wohlin, C., Höst, M., Runeson, P., Ohlsson, M.C.,

Regnell, B., and Wesslén, A.: ‘Experimentation in software

engineering: an introduction’, Kluwer Academic Pub, 2000.

[56] Xie, G., Chen, J., and Neamtiu, I.: ‘Towards a better

understanding of software evolution: An empirical study on

open source software’, International Conference on

Software Maintenance, 2009.

[57] Yu, L.: ‘Indirectly predicting the maintenance effort of

open-source software’, Journal of Software Maintenance

and Evolution: Research and Practice, 18, (5), pp. 311-332,

2006.

[58] Yu, L., Ramaswamy, S., and Bush, J.: ‘Symbiosis and

Software Evolvability’, IT Professional, 10, (4), pp. 56-62,

2008.

