An Integrated Tool for Trade-off Analysis of
Quality-of-Service Attributes:

Leo Hatvani
Miilardalen Real-Time Research Centre,
Mailardalen University
Viisterds, Sweden
leo.hatvani @mdh.se

Cristina Seceleanu
Milardalen Real-Time Research Centre,
Mailardalen University
Viisterds, Sweden
cristina.seceleanu@mdh.se

ABSTRACT

In this paper, we present a tool for performing trade-off analysis of
Quality-of-Service attributes of design solutions resulted from ar-
chitectural, behavioral, or deployment changes in service-oriented
systems. The tool allows for comparing the performance, reliabil-
ity, and maintainability of such solutions, in an attempt to compute
the optimal one with respect to the weighted sum of the considered
quality attributes. Our tool uses the Analytic Hierarchy Process for
computing these trade-offs and is integrated into the Quality Im-
pact Prediction for Evolving Service-Oriented Software IDE. Con-
sequently, architects and system analysts now have an easy to use
tool set for making trade-offs for these system qualities.

Keywords

Quality-of-Service attributes, trade-off analysis, Analytic Hierar-
chy Process

1. INTRODUCTION

In Service-Oriented Systems (SOS), an essential factor when
choosing a service out of functionally similar ones is the Quality-
of-Service (QoS) that a specific service offers. Since any non-trivial
modification made to the service architecture model inevitably in-
fluences several quality aspects, a central problem is to identify the
effect of possible changes. By performing a systematic analysis of
the possible trade-offs between QoS attributes,the risk of selecting a
design solution with negative impact on important quality attributes
can be reduced.

In this paper, we present a tool for the systematic trade-off anal-
ysis of QoS of SOS design solutions, which facilitates the compar-

'This work was supported by the European Union under the ICT
priority of the 7th Research Framework Programme in the context
of the Q-ImPrESS research project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Anton Jansen
ABB Corporate Research
Viisteras, Sweden
anton.jansen @se.abb.com

Paul Pettersson
Milardalen Real-Time Research Centre,
Milardalen University
Viisteras, Sweden
paul.pettersson@mdh.se

ison of performance, reliability, and maintainability. Our tool uses
the Analytic Hierarchy Process (AHP) [7] for computing trade-offs,
and is integrated into the Q-ImPrESS IDE, a Quality Impact Pre-
diction for Evolving Service-Oriented Software framework. The
novelty of our approach, as compared to the work of Zhu et al.
[10], is integrating AHP with different automated analysis methods
of the system’s architecture and behavior.

In our approach, a small set of design solutions is assumed (less
than 10, as the number of pair-wise comparisons in AHP method
grows exponentially with number of design solutions). The qual-
ity of a design is equated with the weighted sum over the QoS
attributes. Our tool, using the AHP method, determines the cor-
responding weight of each attribute metric. To achieve this, the
tool uses the designer’s experience and preferences. In the end,
the usage of the tool results in a recommendation of which design
solution to use in the design.

The rest of this paper is organized as follows: Section 2 presents
the generic AHP method, the next section presents the adaptation
we made to fit the method into the context of the Q-ImPreSS IDE,
Section 4 describes the usage of the tool, whereas Section 5 presents
the design decisions underlying the tool, lessons learned are cov-
ered in Section 6, and related work is presented in Section 7. Fi-
nally, the paper concludes in Section 8.

2. AHP

The Analytic Hierachy Process (AHP) [7] is a generic approach
for multi-criteria decision making. Computing architectural trade-
offs can be seen as a special case of such decision making, in which
different criteria are represented by the functional and quality re-
quirements of the system. The decision making targets the selec-
tion of the architectural solution that suits best these criteria.

The AHP method consists of 4 steps: (1) create a decision hier-
archy, (2) determine relative criteria, (3) assess alternatives, and (4)
interpret results. The first step identifies the criteria and associated
analysis results to be used in the decision making. In addition, the
alternatives to be considered should be decided upon. The second
step consists of pair-wise comparisons of the selected criteria, to
establish the importance of each criterion. In this pair-wise com-
parison, two criteria are put on a weight scale and the architect has
to indicate how much one of the criteria is preferred over the other,
using a predefined scale. In step three, the alternatives are pair-
wise compared for each criterion. For each comparison, the rele-
vant analysis results are presented alongside a weight scale similar

to the one used in the previous step. In the fourth and last step, the
architect examines the resulting scores of the alternatives with each
other. To improve understanding, we show the contribution of each
criterion to the end result.

3. AHPMETHOD WITHIN Q-IMPRESS IDE

The Q-ImPrESS IDE 2 integrates various tools for the develop-
ment of SOS. For example, it includes reverse engineering tools
like SISSy and SoMoX [3], Palladio-based[4] performance predic-
tion tools, Klaper-based[5] reliability predicton tools and KAMP-
based [8] maintainability prediction tools. In the IDE, multiple
design alternatives for SOS can be created and their quality with
respect to various QoS attributes can be predicted. Our tool inside
this IDE implements the Analytic Hierarchy Process method for
evaluating trade-offs between these quality prediction results with
the goal to reach a decision on which alternative should be pursued
in futher development.

The Q-ImPrESS IDE operates on a limited number of QoS at-
tribute metrics: Response Time/Throughput, Reliability, Utiliza-
tion, and Cost/Effort. The AHP method is implemented using the
wizard paradigm, so our tool is named “AHP Wizard”. The AHP
Wizard automatically pulls the required data from the Q-ImPrESS
IDE, and asks the user to enter only the pairwise comparisons be-
tween criteria, and pairwise evaluations of values for these criteria,
respectively. To simplify assessing the alternatives, we have made
significant customization of the AHP method for Q-ImPrESS IDE.
In this way, the tool is usable for users without AHP knowledge.
The main customization is that the AHP decision hierarchy is pre-
defined in the tool. We have found that, with a limited and constant
number of qualities, a one level decision hierarchy is the most suit-
able for the tool’s purpose. Data that is used by the user is automat-
ically pulled from the results repository of the Q-ImPrESS IDE and
aggregated into overview values. The comparisons that are integral
to AHP Wizard are realized by a series of option buttons. Each
of the option buttons is assigned to one of the following values:
(i) Extremely preferred, (ii) Very strongly preferred, (iii) Strongly
preferred, (iv) Moderately preferred, (v) Equally preferred. The op-
tions are displayed twice to make the display of comparisons more
compact, and to logically disable inputting conflicting data.

4. THE USAGE OF AHP WIZARD

To access the AHP Wizard, the user has to mark the alternative
designs that are going to be considered for the trade-off analysis. To
make this selection as easy as possible and to maintain a consistent
work-flow, we have integrated the invocation of the AHP Wizard
into the Result Viewer, which is the tool used to display the results
of the already run quality predictions. This tool and its interface
can be seen in Figure 1.

The selection is done by choosing the corresponding check boxes
placed near the design alternatives, respectively. Following, we de-
scribe the three steps in the AHP wizard that make up the adaptation
of the AHP process.

Determining Relative Criteria After the user has selected the de-
sign alternatives that are to be compared using the AHP met-
hod, he/she is presented with a window displayed in Figure
2. This dialogue asks for the user’s preferences on the QoS
attributes. There are six pair-wise comparisons that need to
be made.

2The Q-ImPrESS IDE, including the tool described in this paper,
is available at http://www.qg-impress.eu/

Assessment of Alternatives In the second step (as displayed in
Figure 3), the AHP Wizard asks for the preferences of each
comparable pair of data. It is expected that the user makes
comparisons between individual values of a certain quality
metric. For example, the user has to choose whether a re-
sponse time of 8ms is better, and how much better than the
one of 10ms. If the user needs more data on one specific
value, such data is presented via a tool-tip that is displayed
when hovering over that value.

Interpretation of Results Upon completion of the above steps, the
results are displayed, as shown in Figure 4. The trade-off
analysis results are shown as stacked bar graphs. Each bar is
separated into portions that correspond to zones of the total
score attributed to a particular QoS attribute, multiplied by
the weight of the attribute, respectively. The total height of
each bar corresponds to the score that has been computed for
that design alternative. After completing all of the wizard’s
steps, the user can choose to return and make adjustments.

When the user is satisfied with the results, the wizard will export
all of the entered data, and the analysis results, to an HTML file.
This enables further processing of the results using any spreadsheet
or word processing application. If the user wants to redo the anal-
ysis on the same alternative designs, the previously made choices,
which have already been saved, are automatically loaded, such that
they are available for further refinement. In this way, the user can
adjust only the choices that have been changed, while preserving
all the previously entered ones.

S. DESIGN DECISIONS

Our trade-off project’s main requirement was to create a tool,
within the Q-ImPrESS IDE, which should use the Analytic Hier-
archy Process to help the system designer compare various design
solutions, via the trade-off analysis between different quality pre-
diction values. To meet these requirements, we have made several
major design decisions. Firstly, we present an overview of these de-
cisions by presenting the architecture of the tool. Secondly, we de-
scribe several of these decisions in more detail, as they were made
to portray the design and development cycle of the tool. The con-
straints under which this project has been developed are: limited
number of person hours and major changes of the underlying API
during tool development.

5.1 AHP Wizard Architecture

In this subsection, we describe the architecture of the AHP Wiz-
ard, including the packages that have been used, and the link be-
tween the AHP Wizard and the rest of the Q-ImPrESS IDE. A
component and connector view of the AHP Wizard is presented
in Figure 5.

Not shown in this figure is the Eclipse Rich Client Platform,
which is the underlying framework the the Q-ImPrESS IDE uses.
Our tool is constructed using the SWT package of Eclipse RCP, to
align the tool with the rest of the IDE tool and to take advantage of
all the benefits of the Eclipse RCP.

The AHP Wizard has a fairly simple architecture of the graphical
interface. Its graphical interface is based on the Eclipse JFace pack-
age (org.eclipse.jface.wizard) wizard implementation. This pack-
age contains the implementation of the WizardPage class, which
we have extended with appropriate controls to provide the classes
that describe each of the wizard dialogues that are used during the
trade-off analysis procedure.

] Properties ﬂ"_ Problems (E Consale (ﬁ Result Wiswer &3 =0
Resulks
2y 2y H
Result . |1wq.. |s0eq.. | mean | mMedian | —— |
|Elj'h_lj1
D: Perfarmance Check Mane |
-] CPU Resaurce Utilizations
D Usage resource SE79E7 0,000 0,000 70,000 70,000 Inverk Selection |
-] Response Times
; ..[] System Call scanariod, 0,000 0,000 10,000 10,000 Run AHP |
D Reeliability 0,000 0,000 0,500 0,000 #Alkernative 1D put in the alternative id here ;I
=[] Maintainability |JsageMaodel: Exarnple System
[Costs 50,000
i [] Tirne: EFFart 10,000
[#-[¥] First change scenatia _g-xuAFhCED- W IMF24xmFa
[#-[¥] Second change scenario _hlXzBFhCEd-4wWIMF24xmFa LI

Figure 1: Result Viewer - a tool for presentation of quality prediction results.

Determine relative criteria priority

Please rate pairwise the quality criterias according to their relative level of importance,

g [

Quality Ex ¥5 ST MO EQ MO ST ¥S EX Quality
Utlization ¢ O & O O & & O T Cast
Utlization ¢ & O & O O Reliability
Utlization ¢ & O & O & O Response Time
Cosk [N S S & S & O S Reliability
Cosk [N S O S S & S S Response Time
Reliability ¢ O & O O O & OO Response Time

Legend of quality ratings:

EX Extreme

WS Very Strong

ST Strong

MO Moderate

EQ Equal

(?) < Back | Mext = | Finish I Cancel

b=

Figure 2: Pairwise rating of Quality-of-Service attributes

Besides the standard controls, we have also used the JFreeChart’
package, to enable the stacked bar graph visualization of the results,
and the Velocity Engine* to provide facilities for HTML output of
the trade-off results.

The Q-ImPrESS IDE is connected to the AHP Wizard by invoca-
tion only; this is done through the Result Viewer, that is, the tool for
viewing the QoS prediction results, which is presented in section 4.

On the other hand, the AHP Wizard is linked to the Q-ImPrESS
IDE by using the facilities of the Q-ImPrESS IDE backbone. The
backbone offers API calls that enable any part of the Q-ImPrESS
IDE to read and write results in the, so called, Result Repository,
where all of the quality prediction results reside in Result Models.
Hence, an integration between the AHP tool and various Analysis
Tools is established.

The AHP Wizard is also connected to the file system of the
Eclipse Environment, to be able to ensure the data persistency over
the currently selected choices. This persistency is done through

Shttp://www.jfree.org/jfreechart/
“http://velocity.apache.org/

a custom class developed for this purpose, and by serializing this
class with a binary file. In essence, this class acts like a simple
database.

5.2 Wizard Interface Paradigm

Considering the structure of the AHP method, one can easily no-
tice that it consists of several steps. In addition, the method requires
the user to input a large amount of data, which triggers the conclu-
sion that a single window representation is inadequate for the job.
Therefore, the wizard paradigm has proved itself to be the most
convenient way to present multiple questions spread over multiple
dialogues. We have also relied on a two-way flow of the wizard
paradigm (that is, we rely on the wizard’s possibility of returning
to previous steps).

Our favorite paradigm is similarly used in many polling applica-
tions.

5.3 Fixed AHP Tree

The first step in applying the AHP method is to create a hierarchy
tree of different parameters that are included in the trade-off process

Assess alternatives

Flease rate actual values to be compared using AHP analysis

=10l |

e Ex ¥ ST MO EQ
Original architeckure; Utilization: 70,00 [i+ i~ i~
Original architeckure) Utlization: 70,00 € € 0 &
First change scenario; Utiization: 96,00 ¢

MO 5T WS Ex Walue
i~ i~ i~ e First change scenario; Utilization: 96,00
' ' ' o Second change scenario; Utilization: 80,00
o) “ i~ i Second change scenario; Utilization: 50,00

Original architecture; Cost: 50.0; Ti Alternative evaluation: First change scenario

Original architecture; Cost: 50.0; Tir

Utilization: {_10PercentQuantile: 82,3, _90PercentQuantile: 9.4, arithmeticMean: 96.0, median: 96.5) on {coreld: 567957, fraction: 0.0)

First change scenario; Cost: 0.0;Time effort: 0.0 8 [[i ' ' & & Second change scenario; Cost: 0.0;Time effort: 0.0
original architecture; Reliabilty: 0,00 ¢ 0 & & First change scenario; Reliability: 0,00
Criginal architeckure; Relisbilty: 0,00 € & & & o & & & O Second change scenatio; Reliability: 0,78
First change scematio; Reliabiity: 0,00 ¢ € & Second change scenatio; Relisbility: 0,78
Original architeckure; Response time: 1000 € O O O & O First change scenario; Response time: 4,20
Original architecture; Response time: 10,00 € 8 [[[ol ' e e Second change scenariog Response ktime: 8,00
First change scenario; Response time: 4,20 ¢ & ¢ Second change scenario; Response time: 8,00
Legend of quality ratings:
EX Extreme
WS Yery Strong
ST Strong
MO Moderate
EQ Equal
=y
I\?Jl < Back | Mext = I Finish I Cancel

Figure 3: Pairwise rating of actual data.

(this is explained in more detail in [10]).

We have chosen to implement a fixed one-level hierarchy tree,
which cannot be changed by the user. This decision has been con-
sidered appropriate as there is always a fixed set of inputs to the
AHP method. The AHP Wizard reads out values for Response
Time / Throughput, Reliability, Utilization and Cost / Effort and,
for presentation purposes, calculates averages of inputs where mul-
tiple values are present. The individual values that produce the con-
solidated value can be accessed by hovering mouse over one of the
consolidated values. It is up to the user to interpret individual val-
ues, compare them to individual values of another alternative and
make a choice regarding which alternative is better.

We consider all QoS attributes independently of each other within
flat one level tree hierarchy. This makes sense because all of the
evaluations are made by the user so any implicit relationships within
QoS attributes can be addressed during the rating phase of the AHP
method.

This decision has drastically reduced the number of person hours
required for completing the trade-off analysis project, entailing its
feasibility.

5.4 Result Representation Using Stacked Bar
Graph

After creating a prototype application, we noticed the need for
the visual representation of the trade-off analysis results. The sim-
plest and most straightforward way to represent the ratio between
several values is either the pie chart or the bar graph. In our case, we
have also wanted to represent the data that the values result from.

The quality of a design alternative is calculated as a weighted sum
over performance, reliability and maintainability values, hence we
have chosen to represent the trade-off data via stacked bar graphs,
which show almost all the data involved in the AHP method.

5.5 Storing the results in HTML format

HTML is an open standard that can be read on almost any plat-
form. Motivated by this argument, we have searched and discov-
ered that the Velocity Engine by Apache is an appropriate tool for
generating the needed HTML, from a template. It also allows us
to easily export the image of the generated graph to a portable and
open format.

5.6 Persistence of the trade-off results

While developing the tool, we have noticed that there are many
situations when the user has to go out of the tool, make a fix in the
design alternative, rerun quality predictions, and then re-evaluate
the trade-off between the new prediction values. To simplify this
usage, we have implemented an entirely transparent system of sav-
ing the user’s choices, which are automatically loaded when the
user reopens the tool, assuming the same design alternatives are
used. Unfortunately, there exists the pitfall of the tool not recog-
nizing changes of prediction values within a design alternative. We
will address this deficit in future extensions of the tool, as to alert
the user on changes.

6. LESSONS LEARNED

Prior to developing the final version of the tool, we have devel-

Interpet results

=0l x|

AHP Analysis Results

0,40
0,35
0,30
0.25
o
E
= 020
=
018 |(Relial:-ilityJ First change scenario) = 0,175
0,10
0,05
0,00 ¢
Original archite cture First change scenario S econd change scenario
Alternative Evaluations
|- Utilization ™Cost & Reliability Response TimEJ
alternative | Total | Utilization (0,0432) | cost (0,2463) | Reliability (0,5849) | Response Time (0, 1257) |
Original architecture 10,3699 0,0273 0,0224 10,3076 0,0126
First change scenario 0,3838 0, 0046 0,1119 0,1776 0,0897
Second change scenario 0,2463 0,0112 0,1119 0,0995 0,0235

¥ Mormalize values

Export results as: | Citest. html

Braowse |

(?)

< Back [dext = I Einish I Cancel

Figure 4: Displaying results.

oped a simple prototype with full AHP method functionality, yet
weak on the usability side. However, this prototype has been very
useful in determining many of the design decisions that we have
just described, for the current, integrated version of the tool.

The tool development has been done mostly by iterative proto-
typing, which has met the time and person hour constraints of the
project.

We have heavily relied on already existing packages, and thus
were able to integrate mature and bug-proofed code, in our tool,
which has also contributed to the timely completion of the tool.

7. RELATED WORK

With respect to trade-off analysis not many generic approaches
exist, to our knowledge. Hence, we present only two other methods
besides AHP: ATAM/CBAM and QFD. A well known approach
in the architecture domain is the ATAM / CBAM approach [2].
In this approach, the ATAM uncovers the important design deci-
sions, while the Cost Benefit Analysis Method (CBAM) attaches
cost and benefits to these aforementioned decisions, thereby offer-
ing a method to rationalize which decisions (and therefore trade-
offs) to make. A more generic approach to trade-off analysis like
AHP is found in the Quality Function Deployment (QFD) approach
[6]. The idea here is to satisfy requests and expectations from cus-
tomers by translating them into design targets and major quality
assurance points. By offering a comprehensive traceability matrix,

individual decisions can be traced back to the customer priorities
that drive them. Hence, trade-offs are also made very explicit in
this approach.

There exist many different architectural analysis approaches for
all kinds of system qualities. Each quality has more or less its own
research community, making integration of different approaches for
different qualities far from trivial, as is the case for the Q-ImPrESS
IDE. There exist two flavors of architectural analysis: quantitative
analysis and qualitative analysis. In quantitative analysis, as used
in the Q-impress IDE (e.g. PCM [4], Klaper [5]), the result of the
analysis is a quantified metric, which allows for estimating how
much better a design alternative is over another one, with respect
to that metric. With qualitative analysis, such comparisons are not
possible, as it is only known that one alternative is better than an-
other, but the extend is unknown. However, typically the qualitative
approaches take considerable less effort. Hence, for such an analy-
sis, one has to make a trade-off between precision and effort.

As mentioned before, our use of AHP for trade-off decision mak-
ing in software architecture is not new. Zhu et al. [10] employed
AHP to determine the sensitivity of architectural alternatives to dif-
ferent criteria. Svahnberg and Wohlin [9] use the method to build
consensus among different stakeholders with respect to different ar-
chitectural alternatives. Al-Naeem et al. [1] demonstrate how the
method can be used to optimize architectural decision making when
having multiple architectural alternatives. Compared to these three
different studies, our approach is new in the sense that it directly in-

Analysis Tools Result Repository

(e.g. PCM,
Klapper, KAMP)

ResultViewer —

[}
c
‘ S |

AHP Wizard S Result
m Model

JFreeChart

Velocity
File System ‘
Key
o ;:
——Method Invocation— Eclipse IO~

Figure 5: Component & connector view of the AHP Wizard.

tegrates with specific analysis tools, as provided in the Q-ImPrESS
IDE, which is something not done previously, as the metrics used
before to asses an architectural alternative were estimates provided
by experts and did not come from specific analysis tools.

8. CONCLUSION

In this paper, we have presented a tool that provides support for
the AHP-based trade-off analysis of quality prediction values for
multiple design alternatives of SOS. We presented how the generic
AHP method was adapted to ease its use in the Q-ImPrESS IDE.
Furthermore, we presented the main issues faced during the tool
implementation, and their remedies. In particular, we presented a
comprehensive list of major decisions taken during the develop-
ment process, together with the lessons learned from this project.
Future work on the tool includes notifying the user when no longer
the previous used comparisons can be reused, as either the quality

criteria changed, or the set of alternatives considered changes. An-
other direction for future work we would like to investigate is how
the AHP method for trade-off analysis compares to other trade-off
methods.

9. REFERENCES

[1] T. Al-Naeem, I. Gorton, M. Babar, F. Rabhi, and

B. Benatallah. A quality-driven systematic approach for

architecting distributed software applications. In Software

Engineering, 2005. ICSE 2005. Proceedings. 27th

International Conference on, pages 244 — 253, May 2005.

L. Bass, P. Clements, and R. Kazman. Software architecture

in practice 2nd ed. Addison Wesley, 2003.

S. Becker, M. Hauck, M. Trifu, and K. Krogmann. Reverse

engineering component models for quality predictions.

Proceedings of the 14th European Conference on Software

Maintenance and Reengineering, March 2010.

[4] S. Becker, H. Koziolek, and R. Reussner. Model-based

performance prediction with the palladio component model.
In WOSP °07: Proceedings of the 6th international workshop
on Software and performance, pages 54—65, New York, NY,
USA, 2007. ACM.

[5] V. Grassi, R. Mirandola, and A. Sabetta. From design to

analysis models: a kernel language for performance and

reliability analysis of component-based systems. In WOSP

"05: Proceedings of the 5th international workshop on

Software and performance, pages 25-36, New York, NY,

USA, 2005. ACM.

S. Haag, M. K. Raja, and L. L. Schkade. Quality function

deployment usage in software development. Commun. ACM,

39(1):41-49, 1996.

T. L. Saaty. The Analytic Hierarchy Process: Planning,

Priority Setting, Resource Allocation. McGraw-Hill

International Book Co., 1980.

J. Stammel and R. Reussner. Kamp: Karlsruhe architectural

maintainability prediction. In Proceedings of the 1.

Workshop des GI-Arbeitskreises Langlebige Softwaresysteme

(L2S2): "Design for Future - Langlebige Softwaresysteme”,

pages 87-98, 2009.

M. Svahnberg and C. Wohlin. Consensus building when

comparing software architectures. In Proceedings of the 4th

International Conference on Product Focused Software

Process Improvement (PROFES 2002), volume 2559, pages

436-452. Springer, December 2002.

[10] L.Zhu, A. Aurum, I. Gorton, and D. R. Jeffery. Tradeoft and
sensitivity analysis in software architecture evaluation using
analytic hierarchy process. Software Quality Journal,
13(4):357-375, 2005.

2

—

[3

—

[6

—_

[7

—

[8

—

[9

[

