

Proceedings
Work-in-Progress Session

of the 16th IEEE International Conference on

Embedded and Real-Time Computing Systems and
Applications (RTCSA’10)

August 23-25, 2010
Macau SAR, P.R.C.

Edited by Thomas Nolte

© Copyright 2010 by the authors

ii

iii

Message from the WiP Chair

Dear Colleagues,

Welcome to Macau and to the Work-in-Progress (WiP) Session of the 16th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA’10). I am pleased to present
9 excellent WiP papers that describe innovative research contributions from the broad field of real-time
and embedded systems and applications. The 9 accepted papers were selected from 14 submissions. These
proceedings are also published as a Technical Report from Mälardalen Real-Time Research Centre
(MRTC), Västerås, Sweden (available at www.mrtc.mdh.se).

The preliminary purpose of the WiP Session is to provide researchers with an opportunity to discuss their
evolving ideas and gather feedback from the real-time and embedded systems and applications community
at large. The presentation session is limited in duration, and can only provide a brief overview of each
WiP paper. I hope however that members of the audience will find ideas presented particularly interesting
and want to participate in longer discussions with the authors during the poster session that follows.

I would like to thank the WiP Program Committee members, listed below, for their hard work in
reviewing the papers.

Moris Behnam MRTC/Mälardalen University, Sweden
Marko Bertogna Scuola Superiore Sant’Anna, Pisa, Italy
Liliana Cucu INRIA Nancy Grand Est, France
Arvind Easwaran CISTER/IPP Hurray, Research Group ISEP/IPP, Porto, Portugal
Insik Shin KAIST, Korea

Special thanks also goes to Eduardo Tovar, Robert I. Davis and Tei-Wei Kuo for their support and
assistance.

Thomas Nolte
Work-in-Progress Chair
16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA’10)

http://www.mrtc.mdh.se/�

iv

v

Table of Contents

Towards Adapting Non-Standard System Execution Traces for Validating Enterprise 1
Distributed Real-time and Embedded System Quality-of-Service Properties
T. Manjula Peiris and James H. Hill

Calculating an upper bound on the finishing time of a group of threads executing 5
on a GPU: A preliminary case study
Gurulingesh Raravi and Björn Andersson

Reusable and Partial WCET analysis 9
Johan Fredriksson

Using a Markovian model for branch prediction related WCET 13
Stephane Louise and Amira Dkhil

Divisible Load Scheduling of Real-time Task on Heterogeneous Clusters with Worker 17
Selection Strategy
Suriayati Chuprat and Zuraini Ismail

Temperature-Aware Online Real-Time Scheduling for Multiple Feasible Intervals 21
Bo Liu, Fang Liu, Jian Lin, Albert Cheng and Stefan Andrei

A Study of Dynamic Navigation with WAVE/DSRC in VANET Environment 25
Shu-Ping Lu, Kuan-Ming Li and Cheng-Yi Hsieh

Development of Mesovirtualization for the ARM Architecture 29
Akihiro Suzuki and Shuichi Oikawa

Handling Lock-Holder Preemption in Real-Time Virtualization Layer for Multicore 33
Processors
Hitoshi Mitake, Yuki Kinebuchi, Alexandre Courbot and Tatsuo Nakajima

vi

Towards Adapting Non-Standard System Execution
Traces for Validating Enterprise DRE System QoS

Properties
T. Manjula Peiris and James H. Hill

Dept. of Computer and Information Science
Indiana University-Purdue University Indianapolis

Indianapolis, IN USA
Email: {tmpeiris, hillj}@cs.iupui.edu

Abstract—System execution traces are useful artifacts for
validating enterprise distributed real-time and embedded (DRE)
system quality-of-service (QoS) properties, such as end-to-end re-
sponse time, throughput, scalability, and reliability. With proper
planning during development phase of the software lifecycle, it
is possible to ensure such traces contain the required properties
to simply their analysis for QoS validation. In some case,
however, it is hard to ensure system execution traces contain
the necessary properties, such as with externally developed DRE
system components. Consequently, this makes it hard to analyze
such system execution traces for validation of QoS properties.

This work-in-progress paper provides two contributions for
analyzing system execution traces for enterprise DRE system
QoS validation. First, this presents a methodology called SETAF
for adapting non-standard system execution traces for analysis of
QoS properties. Secondly, this paper presents preliminary results
from applying SETAF to externally developed applications and
analyzing its QoS properties. Initial results show that is possible
to analyze non-standard system execution traces for validate QoS
properties without modifying the applications existing source
code.

Keywords-QoS validation, non-standard system execution
traces, adaptation, patterns, dataflow

I. INTRODUCTION

Current trends and challenges. System execution
traces [3], [7], [8], i.e., a collection of log messages, are useful
artifacts for analyzing soft real-time enterprise distributed real-
time and embedded (DRE) quality-of-service (QoS) properties,
such as scalability, throughput, and end-to-end response time.
A benefit of using system execution traces for QoS validation
is that they provide a comprehensive view of the system’s
behavior and state throughout its execution lifetime as opposed
to a single snapshot of the system at a given point in time,
such as a global snapshot [10] that can be hard to analyze such
concerns throughout an enterprise DRE system’s execution
lifetime. Likewise, they provide DRE system developers and
testers with a rich set of data for analyzing data trends
associated with a QoS given property, i.e., how a given QoS
property changes with respect to time, such as viewing how
latency changed over the system’s execution lifetime or points
in the execution lifetime where end-to-end response time
missed its deadline.

The UNITE [5], [6] tool describes a methodology for vali-
dating QoS properties using system execution traces. UNITE
applies relational database theory [1] and dataflow models [2],
[9] to analyze different QoS properties. UNITE uses these
techniques because most system execution traces describe
different but related events which happen in different points
in time with some keywords. For example, a system execution
trace may contain messages that dictate the sending/receiving
of an event along with a timestamp for each occurrence of the
message. By searching for the send/receive message keywords
and using a dataflow model to show their relation, it is
possible to mine the system execution trace for such messages
and analyze event latency within a enterprise DRE system.
More importantly, such analysis can take place irrespective of
system complexity, composition, and implementation because
the dataflow model is at a higher level-of-abstraction than the
concrete system and system execution traces are platform-,
technology-, and language-independent artifacts.

Although it is possible to validate QoS properties via
system execution traces, the system execution traces must
contain several properties, such as identifiable keywords (as
described above). Moreover, the dataflow model, which is
used to analyze the system execution trace, must also contain
several properties, such as identifiable log message formats,
i.e., a regular expression that represents similar log messages,
and unique relations between different log formats. If planned
early enough in the software lifecycle, it is possible to ensure
such properties exist in both the dataflow model and system
execution trace. Unfortunately, it is not possible to always
ensure system execution traces from enterprise DRE systems
contain the required for analysis and QoS validation, such as
with externally developed software components and systems.
It is therefore critical to develop methodologies that will en-
able non-standard system execution traces (and their dataflow
model) to undergo analysis and QoS validation.

Solution approach → Adapt system execution traces
using patterns. The adapter software design pattern [4] is a
pattern that enables one object to adapt to the expected inter-
face that another object expects. More importantly, this pattern
does not require modification of the two original objects. In
the context of analyzing non-standard system execution traces

Work-in-Progress (RTCSA 2010) 1 Macau SAR, P.R.C.

to validate enterprise DRE system QoS properties, the adapter
pattern can be used to adapt the dataflow model and system
execution trace to contain the required properties for QoS
validation. The main challenge, however, is determining how
either the system execution trace and dataflow model must
be adapted so that either contains the necessary properties to
support analysis and QoS validation.

This work in progress paper therefore presents the ini-
tial work on System Execution Trace Adaptation Framework
(SETAF), which is framework used to adapt system execution
traces and dataflow models so they contain the required prop-
erties for analysis and QoS validation. DRE system developers
and testers use SETAF by first analyzing the system execution
trace to identify the pattern for adapting their system execution
trace. They then specify the adaptation pattern as a high-
level adaptation specification. UNITE then uses SETAF and
adaptation specification to inject the required properties at
run-time into the analysis of the system execution trace. This
process ensures the system execution trace analysis is valid.
Initial results for applying SETAF to an open-source software
project show that SETAF is able to adapt non-standard system
execution traces without requiring modification to the original
source code that generates the system execution trace.

Paper organization. The remainder of this paper is or-
ganized as follows: Section II provides a brief overview of
UNITE; Section III presents the initial design and method-
ology of SETAF; Section IV presents the preliminary results
for applying SETAF to an open-source project; and Section V
presents concluding remarks and future research directions.

II. BRIEF OVERVIEW OF UNITE
UNITE is a methodology and tool for analyzing system

execution traces and validating QoS properties. DRE system
developers and tester use UNITE by first generating a system
execution trace what consists of a set of log messages. For
example, Listing 1 illustrates a portion of a system execution
trace generated by a enterprise DRE system.
a c t i v a t i n g Sen so r . . .
. . .
Se ns o r s e n t message A. 1 a t 2345
Conf ig r e c e i v e d message A. 1 a t 2347
. . .
Se ns o r s e n t message A. 2 a t 2376
Se ns o r s e n t message A. 2 a t 2379
Conf ig r e c e i v e d message A. 2 a t 2378
. . .
S h u t t i n g down sys tem . . .

Listing 1. Portion of an example system execution trace.

As shown in Listing 1, the send and receive messages can
be used to calculate event latency. To perform such analysis
using UNITE, DRE system developers and testers identify
what log messages they want to extract using a log format.
This log format captures both the static and variable portions
of the log messages. More importantly, the variables identify
what portion of the log message to extract for usage in QoS
validation. For example, Listing 2 highlights the log formats
for the send and receive messages in Listing 1, respectively.

LF1 : S en so r s e n t message {STRING t y p e } .
{INT msgid} a t {INT s e n t }

LF2 : Conf ig r e c e i v e d message {STRING t y p e } .
{INT msgid} a t {INT r e c v }

R e l a t i o n :
LF1 . t y p e = LF2 . t y p e
LF1 . msgid = LF2 . msgid

Listing 2. Dataflow model for analyzing system execution trace.

After defining the log formats for extracting metrics of
interest from a system execution trace, DRE system devel-
opers and testers then define a dataflow model that captures
the relationship between the different log formats. This is
necessary because enables reconstruction of execution flows
in the system (1) irrespective of system complexity and
composition and (2) without a need for a global clock to ensure
causality [10] because the relations between the log formats
preserve causality.

AVG(LF2 . r e c v − LF1 . s e n t)

Listing 3. Expression for analyzing event latency using UNITE.

Finally, DRE system developers and testers define an ex-
pression that validates a given QoS property based on the
variables in the log format. For example, Listing 3 highlights
the expression evaluating average event latency. UNITE then
uses the dataflow models and expression to mine the system
execution trace and evaluate the provided expression. Like-
wise, if the aggregation function (i.e., AVG) is removed from
the expression, then UNITE will present the data trend for the
QoS property undergoing analysis.

III. THE DESIGN AND FUNCTIONALITY OF SETAF

This section describes the current design and functionality
of SETAF. This section also uses concrete examples to illus-
trate concepts realized in SETAF.

A. Challenges Associated with Analyzing Non-standard Sys-
tem Execution Traces

Section II provided a brief overview of UNITE and its
technique for analyzing system execution traces to validate
enterprise DRE system QoS properties. In order to ensure such
validation can occur, however, it is necessary that the values in
each relation is unique. For example, as shown in Listing 1,
the relation between the event ids is always unique. If the
relations between log formats is not unique, then there is high
probability that the analysis will yield incorrect results.

S t a r t e d do ing t a s k A a t 12 .00
F i n i s h e d do ing t a s k A a t 12 .01
S t a r t e d do ing t a s k A a t 12 .02
F i n i s h e d do ing t a s k A a t 12 .03
Listing 4. Portion of a system execution trace that contains a non-standard
dataflow model.

For example, Listing 4 illustrates an example system exe-
cution trace where the dataflow graph will not have unique
relations between the log format. This is because it is hard to
know start/finish messages are associated with one another

Work-in-Progress (RTCSA 2010) 2 Macau SAR, P.R.C.

without human intervention. Moreover, when an example
similar to the one present in Listing 4 is analyzed by UNITE,
it will yield incorrect results because it is hard to determine
correct causality between similar log messages.

With proper planning early in the software lifecycle, it is
possible to ensure generated system execution traces have
unique relations to facilitate proper analysis. This, however,
is not alway possible—especially when analyzing system
execution traces generated by third-party systems and their
components. Although such non-standard system execution
traces may not contain unique relations, the existing relations
can be exploited (or adapted) to enforce a unique relation. For
example, in Listing 4, although the relation is not unique, it can
be adapted to be a unique relation by adding an id to each log
message. This will ensure that UNITE analyzes the dataflow
model and evaluates the expression correctly. The next section
therefore explains how SETAF enables such adaptation of non-
standard system execution traces.

B. On Adapting Non-Standard System Execution Traces

As explained in Section III-A, dataflow models that do not
contain unique relations for analyzing system execution traces
can be adapted to contain unique relations. Unfortunately, it
is not possible to adapt each non-standard dataflow model in
the same manner to enforce a unique relation. This is because
the dataflow model is associated with the given system that
generates the system execution trace is used to analyze. A
dataflow model therefore can only be reused for different
executions of the same system.

Because of this fact, DRE system developers and testers use
SETAF by first manually analyzing the non-standard system
execution trace. Through this analysis, the DRE system devel-
opers and tester identify an adaptation pattern for adapting the
dataflow model to contain unique relations. More specifically,
the adaptation pattern contains details about what variables
(and values) needed to be added to each log format (and log
message) to enforce a unique relation between each log format
that does not contain a unique relation.

Using the example present in Listing 4, DRE system de-
velopers then define the adaptation pattern specification that
is used by SETAF to adapt the system execution trace. For
this example, each log message that represents a start task is
proceeded by a finish task before another start task occurs.
Using this domain knowledge of the system execution trace,
Listing 5 highlights the adaptation pattern specification DRE
system developers and testers write to ensure proper analysis
of a non-standard system execution trace.

Columns :
LF1 . uid , LF2 . u i d

I n i t :
l e t i = 0 ;

On LF1 :
LF1 . u i d = i ;

On LF2 :

LF2 . u i d = i ++;

Listing 5. Example of an adaptation pattern specification in SETAF.

As illustrated in Listing 5, first DRE system developers and
testers specify what data points need to be added to each log
format, e.g., uid for LF1 and LF2. DRE system developers
and testers then define the initial state of the adaptation pattern.
Finally, they define how to adapt each log format (and log
message) so that the relations in the dataflow graph are unique.
In this example, the uid variable is assigned the current value
of i in both LF1 and LF2. In LF2, however, the state variable
i is incremented. This will ensure the next occurrence of LF1
is differentiated from the previous occurrence of LF1, as well
as LF2. Finally, UNITE analyzes the system execution trace
and uses SETAF to adapt its analysis of the system execution
trace at run-time to ensure valid analysis, and reconstruction
of the different execution flows.

IV. PRELIMINARY RESULTS FOR APPLYING SETAF TO
APACHE ANT

This section presents preliminary result for applying SETAF
to an example application that contains non-standard system
execution traces.

A. Experimental Setup

Section III discussed SETAF’s technique for adapting non-
standard system execution traces for QoS validation. To deter-
mine initial validity of SETAF’s technique, we applied SETAF
to several Java-based open-source applications, e.g., ANT,
Tomcat Web Server, and ActiveMQ JMS Broker. We selected
Java-based applications because most standard Java-based
applications use log4j (http://logging.apache.org/index.html) to
generate system execution traces. It is therefore possible to use
UNITE’s log4j appender to intercept log messages and store
them in a database that is analyzable by UNITE.

One such open-source application that we have analyzed is
ANT (http://ant.apache.org), which is a build engine primarily
used to build Java applications. To setup the experiment, we
first executed ANT to generate a system execution trace.
Next, we analyzed the generated system execution trace to
identify an adaptation pattern. After we identified the adap-
tation pattern, we defined an adaptation pattern specification
for SETAF. Finally, we used UNITE and SETAF to analyze
ANT’s generated system execution trace. All experiments were
conducted on a Intel core 2 Duo 2.1 GHz processor, with 3GB
memory and running 32-bit Windows Vista operating system.

B. Experimental Results

Table I highlights the results for using UNITE to ana-
lyze a system execution trace generated by ANT without
applying SETAF. As illustrated in this table it is correlating
startTime and finishTime of different ANT tasks. For
example if we take the second row of the table an ANT Task
named “property” has started at 1500 and finished at 1704. The
problem with this table is for some entries (e.g., first and third
rows) the startTime is greater than the finishTime. This
is because of the non-uniqueness in the dataflow model used

Work-in-Progress (RTCSA 2010) 3 Macau SAR, P.R.C.

to reconstruct in the dataset from the non-standard system
execution trace. Because of the non-uniqueness in the dataflow

TABLE I
TABLE RECONSTRUCTED BY UNITE WITHOUT ADAPTATION PATTERN

SPECIFICATION.

startTime LF1.task finishTime LF2.task
1500 property 860 property
1500 property 1704 property
1516 available 1511 available
1516 available 1518 available

model used to reconstruct in the dataset from the non-standard
system execution trace, it resulted several negative values for
the evaluation time of different ANT tasks as illustrated below
in Table II.

TABLE II
RESULTS FOR ANALYZING RECONSTRUCTED TABLE IN UNITE WITHOUT

ADAPTATION SPECIFICATION.

Task Time (msec)
available -630.333333333333

delete 0.0
macrodef 140.0

mkdir -25.125
path 297.0

patternset -9.76923076923077
property -241.4

Total evaluation time (sec) 0.345873

Using the adaptation specification defined for ANT, which
is similar to the one illustrated in Listing 5, it is possible to
improve the results presented in Table I and Table II. Table III
therefore highlights the dataset reconstructed by UNITE after
using SETAF to apply the adaptation pattern to the recon-
struction process. As shown in this table, startTime and
finishTime are now correlated correctly because of the
unique id added by SETAF. In this table, all the values of
LF1.startTime is not greater than the finishTime. So
it is a correct mapping table.

TABLE III
IMPROVED TABLE RECONSTRUCTION USING SETAF AND UNITE.

LF1.uid LF1.task startTime LF2.uid LF2.task finishTime
1 property 766 1 property 860
2 property 1500 2 property 1704
3 available 1500 3 available 1511
4 available 1516 4 available 1518

Likewise, Table IV illustrates the updated final results for
analyzing task execution time after adapting the UNITE’s
analysis at runtime using SETAF. As shown in this table all the
evaluation times for different ANT tasks have positive values,
which is the expected analysis results.

V. CONCLUDING REMARKS

This work-in-progress paper presented initial work on
SETAF, which is a technique and tool that adapts non-standard
system execution traces for QoS validation. SETAF operates
by applying adaptation patterns to system execution traces

TABLE IV
FINAL RESULTS FOR ADAPTING UNITE’S ANALYSIS USING SETAF.

Task Time (msec)
available 93.6666666666667

delete 55.0
macrodef 79.0

mkdir 2.0
path 390.0

patternset 6.0
property 17.975

Total evaluation time (sec) 0.59851

to ensure correct analysis. Preliminary results from applying
SETAF to an open-source project highlight that it is possible
to perform such adaptation at run-time without modifying the
original source code to ensure the generated system execution
traces contain the necessary properties for QoS validation.
Future research will focus on applying this technique to other
applications—including large-scale enterprise DRE systems—
to further validate the technique.

REFERENCES

[1] P. Atzeni and V. D. Antonellis. Relational Database Theory. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1993.

[2] J. T. Buck. A Dynamic Dataflow Model Suitable for Efficient Mixed
Hardware and Software Implementations of DSP Applications. In Pro-
ceedings of the 3rd International Workshop on Hardware/software co-
design, pages 165–172, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[3] F. Chang and J. Ren. Validating System Properties Exhibited in
Execution Traces. In Proceeding of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, pages 517–520, New
York, NY, USA, 2007. ACM.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA, 1995.

[5] J. H. Hill. Data Mining System Execution Traces to Validate Distributed
System Quality-of-Service Properties. In D. A. S. Kumar, editor,
Knowledge Discovery Practices and Emerging Applications of Data
Mining: Trends and New Domains. IGI Global, 2010.

[6] J. H. Hill, H. A. Turner, J. R. Edmondson, and D. C. Schmidt. Unit
Testing Non-functional Concerns of Component-based Distributed Sys-
tems. In Proceedings of the 2nd International Conference on Software
Testing, Verification, and Validation, Denver, Colorado, April 2009.

[7] N. Joukov, T. Wong, and E. Zadok. Accurate and Efficient Replaying
of File System Traces. In FAST’05: Proceedings of the 4th conference
on USENIX Conference on File and Storage Technologies, pages 25–25,
2005.

[8] D. Narayanan. End-to-end Tracing Considered Essential. In Proceedings
of High Performance Transactions Systems, September 2005.

[9] N. Russell, W. M. P. van der Aalst, A. H. M. ter Hofstede, and P. Wohed.
On the Suitability of UML 2.0 Activity Diagrams for Business Process
Modelling. In Proceedings of the 3rd Asia-Pacific Conference on
Conceptual modelling, pages 95–104, Darlinghurst, Australia, Australia,
2006. Australian Computer Society, Inc.

[10] M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating
Systems. McGraw-Hill, Inc., New York, NY, USA, 1994.

Work-in-Progress (RTCSA 2010) 4 Macau SAR, P.R.C.

Calculating an upper bound on the finishing time of a group of threads executing
on a GPU: A preliminary case study

Gurulingesh Raravi and Björn Andersson
CISTER-ISEP Research Center
Polytechnic Institute of Porto

4200-072 Porto, Portugal
ghri@isep.ipp.pt, bandersson@dei.isep.ipp.pt

Abstract—Graphics processor units (GPUs) today can be
used for computations that go beyond graphics and such
use can attain a performance that is orders of magnitude
greater than a normal processor. The software executing on
a graphics processor is composed of a set of (often thousands
of) threads which operate on different parts of the data
and thereby jointly compute a result which is delivered to
another thread executing on the main processor. Hence the
response time of a thread executing on the main processor is
dependent on the finishing time of the execution of threads
executing on the GPU. Therefore, we present a simple method
for calculating an upper bound on the finishing time of
threads executing on a GPU, in particular NVIDIA Fermi.
Developing such a method is non-trivial because threads
executing on a GPU share hardware resources at very fine
granularity.

I. I NTRODUCTION

Graphics processors were originally used only for
graphics but they have evolved significantly during the
recent decade as witnessed by the following. First,
graphics processors double their performance every
6 months [1, page 1]; this should be compared with nor-
mal CPUs which double their performance every 18
months [1, page 1]. Consequently, graphics processors
today offer significantly higher peak performance than
a normal CPU. The most recent graphics processor,
NVIDIA Fermi [2], has a peak computing performance
of approximately one Teraflop [3]; this is approximately
thousand times greater than a normal single-core processor
in a normal PC. Second, graphics processors are able to
perform general-purpose computations, programmed using
CUDA APIs [1] with C; hence enabling ”normal software
developers” to use graphics processors for data-parallel
programs. Therefore, today this type of processor can be
thought of as a multicore processor; it has come to be
called General Purpose Graphics Processor Unit (GPGPU)
or simply GPU (the phenomenon is called GPU computing
[2]).

So far, the GPU has been marketed as a
”supercomputer-at-your-desktop” but we believe that
its use will also spread to embedded computer systems. A
GPU however has no I/O capability and was not designed
to run a normal operating system and therefore, a GPU
is used as a co-processor to a CPU – the term CPU/GPU
computing signifies this.

Figure 1(a) shows an example of the use of a GPU as
a co-processor. A thread on the main processor arrives

and performs some computations (for example reading
sensors) and copies data from main processor’s memory
to GPU’s memory. Then the thread on the main processor
invokes the threads on GPU and suspends itself. The
threads on the GPU execute in parallel on different data
that they have been assigned and when these threads finish
their execution, the thread on the main processor resumes
execution. It copies the data from GPU’s memory to main
processor’s memory and then uses this result (for example
for actuation).

We can see that in order for CPU/GPU computing to
be possible for hard real-time applications, three research
problems must be solved:

P1. A method must exist for synchronizing the
thread on the main processor and the threads
on the GPU and the schedulability analysis on
the main processor must take this synchroniza-
tion mechanism into account. One could either
(i) assign sub deadlines to the three different
phases (shown in Figure 1(a)) or (ii) let the
thread on the main processor suspend when not
all threads serving it on the GPU has finished.
The former approach transforms the problem
to many scheduling problems with constrained-
deadline sporadic tasks. For the latter approach,
we can use scheduling theory which assumes that
tasks can self-suspend [4], [5] for a time which is
unknown but is upper bounded. A discussion on
different models for describing such suspension
in the context of GPU computing is available in
[6].

P2. A method must exist for determining if the
GPU should be used to assist a thread on
the main processor. This amounts to the task-
assignment problem for heterogeneous multipro-
cessors which is known to be a very challenging
problem (it is NP-hard and the standard use of
normal bin-packing heuristics, such as first-fit,
can cause poor performance [7]). But fortunately,
in many practical scenarios, there are only two
types of processors available (processor cores of
the main processor and the processor cores in
the GPU) and for such situations, an efficient
algorithm can be created [7].

P3. A method must exist for determining the finish-

Work-in-Progress (RTCSA 2010) 5 Macau SAR, P.R.C.

Main processor

GPU

Thread 1 on main

processor arrives deadline of thread

Thread 2 on GPU

arrives. Thread 2 finishes execution

Thread 3 on GPU

arrives. Thread 3 finishes execution

thread k on GPU

arrives Thread k finishes execution

Thread 1 invokes

threads on GPU

time

......

Thread 1 must wait until Thread 2,

Thread 3, ..., Thread k has finished

phase!1 phase!2 phase!3

(a) A common use of a GPU. A thread executing on a main
processor arrives and after some of its execution, it suspends and
invokes multiple threads on the GPU. When these threads have
finished, the thread on the main processor resumes execution again.

NVIDIA Fermi GPU

Shared Cache

SM
1

SM
2

SM
8

...

SM
9

SM
10

SM
16

...

A thread block assigned to SM
1

Another thread block assigned to SM
1

A thread block assigned to SM
2

...

(b) The internals of NVIDIA Fermi GPU. It consists of 16 stream-
ing multiprocessors which share a cache memory. To the right is
shown thread blocks; a thread block is assigned to a streaming
multiprocessor.

A streaming multiprocessor

Instruction Cache

32 CUDA

cores

Register File

Cache Memory

16

load/

store

units

4 special

function

units

The cache memory can be configured as a scratchpad.

A CUDA core comprises input registers, an ALU, a floating point unit and

an output register.

A special function unit can perform sin, cos, inverting or square root.

The register file is shared between all threads assigned to this

streaming multiprocessor.

(c) A detailed view of a streaming multiprocessor.

Figure 1. The use of a GPU and its internals.

ing time of the group of threads executing on the
GPU.

P1 and P2 have partly been addressed in previous
research. The current research literature offers no method
for P3 however and therefore, we will discuss P3.

Figure 1(b) shows the internals of a GPU; we consider
the most recent one – NVIDIA Fermi. It comprises 16
so-calledstreaming multiprocessors (SMs) and a shared
cache memory. Software threads are organized into so-
called thread blocks, where a thread block is assigned to
a streaming multiprocessor. A streaming multiprocessor
may be assigned many thread blocks but a thread block
cannot be assigned to two or more streaming multiproces-
sors. In order to solve P3 we therefore need to address
two subproblems:

P31. Given that the assignment of thread blocks to
streaming multiprocessors is known, compute,

for each streaming multiprocessor, an upper
bound on the finishing time of the threads as-
signed to this streaming multiprocessor.

P32. Assuming that the exact assignment of thread
blocks is not known but some knowledge of the
assignment heuristic is available (for example
assign thread blocks in a round-robin fashion),
compute, for each streaming multiprocessor, an
upper bound on the finishing time of the threads
assigned to this streaming multiprocessor.

Given that chip makers of GPUs currently do not
publish the heuristic used for thread-block assignment,
we focus on P31 and postpone P32 for future work. P31
cannot be solved through normal Worst-Case Execution
Time (WCET) analysis [8] methods because they assume
that all hardware resources of a processor is dedicated
to a thread that executes. But this assumption is not
true for a streaming multiprocessor. Figure 1(c) shows a
detailed view of a streaming multiprocessor. A streaming
multiprocessor comprises 32 Compute Unified Device
Architecture (CUDA) cores; each CUDA core is composed
of an ALU, a floating point unit, input registers and an
output register. It is therefore possible for 32 threads to
perform ALU operations in parallel on a single streaming
multiprocessor. But there are only 16 load/store units;
hence only 16 threads can perform load instructions in
parallel. Analogously, only a limited number of trigono-
metrical computations can be performed in parallel. We
can see that we need a method for WCET analysis which
analyzes not only a single thread which has all hardware
resources under its control but instead we must analyze a
set of threads which share hardware resources.

Therefore, in this paper, we present a simple method
for calculating an upper bound on the finishing time of
threads assigned to a streaming multiprocessor. In order
to take this first step, we limit ourselves to the study
of a simplified version of a streaming multiprocessor in
NVIDIA Fermi.

II. SYSTEM MODEL

Program Structure: We consider the code structure
shown in Figure 2 (derived from matrix multiplication
code) for analyzing the finishing time of a set of threads.
The ‘+’ mark over the sub-block (involving LOAD, LOAD
and a CUDA instruction) in Figure 2 indicates that the sub-
block may repeat itself one or more times. The program
structure of Figure 2 consists of:

1) an arithmetic instruction (say, initializing a register)
that will be executed on a CUDA core followed by

2) a sub-block (which can occur one or more times)
consisting of two memory accesses (say, read-
ing two variables into registers) carried out by
LOAD/STORE unit and an arithmetic instruction
(say fused multiply and add) followed by

3) another memory access instruction (say, to store the
result of fused multiply and add instruction).

Assumptions: In order to calculate an upper bound on
the finishing time of akernel (a set of thread blocks

Work-in-Progress (RTCSA 2010) 6 Macau SAR, P.R.C.

LOAD

LOAD

CUDA

+

STORE

CUDA

Figure 2. The template of the program’s control flow. CUDA means
an instruction that uses the CUDA processor (e.g., an ALU operation),
LOAD is an instruction that fetches data from memory to a register and
STORE is an instruction that stores the content of a register to memory.

which serve a thread on the main processor), we make
the following assumptions on the SM and its scheduling
algorithm:

• Before run-time, tasks assigned to a SM are organized
into groups of 16 threads (also known as awarp).

• Each instruction takes just one clock cycle to execute
(including memory access instructions).

• There are no cache misses i.e., all the data that
memory access instructions are interested in is found
in cache (it is intuitive from the previous assumption).

• Each SM has 32 CUDA cores and 16 LOAD/STORE
units i.e., in a clock cycle, each SM can either
perform 32 arithmetic operations or 16 memory op-
erations.

• At run-time, in each clock cycle, the scheduler of SM
selects one or two warps for scheduling.

• Whenever there are warps available for execution,
the run-time scheduler must select a warp (work-
conserving). (Since we assume that each instruction
takes just one clock cycle, every warp is available
every time as long as its threads have not yet termi-
nated.)

• As already mentioned, we assume that the control
flow of the program is as specified by Figure 2; it
comprises a CUDA instruction followed byrep cnt

sub-blocks and then a LOAD/STORE instruction. In
addition, we assume that instructions are scheduled
in a fair manner on sub-block level, that is, when
threads compete for resources, an instruction belong-
ing to sub-blockk has priority over an instruction
belonging to sub-blockk+1 – this will be illustrated
in Section III. (The assumption on fairness on sub-
block level is probably not realistic for GPUs of today
but this assumption has the benefit that it simplifies
our analysis.)

III. T HE NEW METHOD

In this section, we present our method to determine an
upper bound on the finishing time ofn threads assigned to
a single SM. We assume all these threads have the same
program structure that is described in Section II. Recall
that we make no assumption on the exact scheduling
policy in a SM – we assume that it is work-conserving
and sub-block level fair. Hence, for a given set of threads,
there are many possible schedules (interleavings) that can
be generated. To calculate an upper bound on the finishing

a) One possible interleaving.

Threads 1−16

Threads 17−32

Threads 33−48

Threads 49−64

Clock Cycle

C L L C S

C L L C S

C

C

L L C S

L L C S
1 2 3 4 5 6 7 8 9 10 11 12 13 14

b) Another possible interleaving.

Threads 1−16

Threads 17−32

Threads 33−48

Threads 49−64

Clock Cycle

C L

C

C
1 2 3 4 5 6 7 8 9 10 11 12 13

L S

LC

C

SCL

L

L

SL C

L C S

Figure 3. Two possible interleavings/schedules when sub-block has
appeared only once.

time of a kernel, it is essential to know: “Given that a
certain number of threads are assigned to a particular SM,
what order of interleaving of these threads results in a
maximum time (measured in clock cycles) to finish their
execution”. Figure 3 shows two such possible interleavings
when 64 threads are assigned to a SM. Figure 3 shows,
in each clock cycle, the instruction of different warps
that is being executed by CUDA and LOAD/STORE
units. We have usedC, L and S to representCUDA,
LOAD and STORE instruction respectively. For example,
in Figure 3(a), in the first clock cycle, CUDA instruction of
thread 1-16 (say, warp1) and 17-32 (say, warp2) are being
executed; in the second cycle, LOAD instruction of warp1
and CUDA instruction of threads 33-48 (say, warp3) and
49-64 (say, warp4) are being executed.

In the first case (Figure 3(a)), the scheduler is trying
to finish the execution of one warp before switching to
another warp but without violating itswork-conserving
property. In this case, the scheduler has scheduled the
threads as follows: whenever possible, warp1 is executed,
then warp2, then warp3 and when none of these warps
can be executed, it executes warp4. In the second case
(Figure 3(b)), the scheduler is trying to give a fair share
of the resources to each warp by executing one instruction
each from every warp and at the same time exploiting
the parallelism whenever possible (to preserve the work-
conserving property). As we can observe form this exam-
ple, the first schedule has the worst case finishing time as
it takes 14 clock cycles whereas the second schedule takes
only 13 clock cycles to finish.

Hence, we conjecture that the worst case interleaving
happens for our program structure when the scheduler tries
to schedule threads (group of 16 for the architecture under
consideration) so as to finish the execution of a group of
16 threads in a particular order (as shown in Figure 3(a)).

Now, considering our conjectured worst possible inter-
leaving for a given number of threads on a SM, we discuss
the worst-case finishing time for a given number of threads
on a SM. From the schedule shown in Figure 3, we can ob-
serve that, for the program structure under consideration,
each warp (except the first one) needs 3 additional clock

Work-in-Progress (RTCSA 2010) 7 Macau SAR, P.R.C.

C L L C

C L L C

C

C

L L C

L L C

L L C S

L

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14

SCL

SCL

C SLL

15 16 17 18 19 20 21 22

Threads 1−16

Threads 17−32

Threads 33−48

Threads 49−64

Clock Cycle

Figure 4. A schedule when sub-block is repeated twice.

C L L C

C L L C

C

C

L L C

L L C

L L C

L

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Threads 1−16

Threads 17−32

Threads 33−48

Threads 49−64

Clock Cycle 23 24 25 26 27 28 29 30

SCLL

S

S

SCL

CL

CLL

L

L

L C

L L C

L L C

Figure 5. A schedule when sub-block is repeated thrice.

cycles to finish its execution compared to its previous
warp. Note that in Figure 3, the inner sub-block (consisting
of LOAD, LOAD and CUDA instructions) appears only
once in the program structure. This can be generalized ton

threads: The total number of clock cycles needed to finish
the execution ofn threads when the sub-block appears
only once in the program structure is:⌈ n

16
⌉ · 3 + 2.

Now, consider the same number of threads (i.e., 48
threads) but with the sub-block repeated multiple times. To
understand the finishing times in such a scenario, consider
schedules for the cases when the sub-block has repeated
twice and thrice in Figure 4 and 5. As we can observe,
the total number of clock cycles (required to finish the
execution of all the 48 threads) for each repetition of sub-
block increases by 8. This can be generalized ton threads:
The number of additional clock cycles needed to finish the
execution ofn threads when the sub-block has appeared
rep cnt of times is:⌈ n

16
⌉ · (rep cnt− 1) · 2.

Hence, with the help of above two relations, we conjec-
ture that the total number of clock cycles needed to finish
the execution ofni threads withrep cnt appearances of
the sub-block assigned toSMi is:

FTi =
(⌈ni

16

⌉

· 3
)

+ 2 +
⌈ni

16

⌉

· (rep cnt− 1) · 2

This equation gives the finishing time ofni threads
assigned toSMi. As described earlier, a GPU con-
sists of many such SMs (saym) and hence the max-
imum finishing time of a kernel is: FTkernel =
max(FT1, FT2, . . . FTm).

IV. CONCLUSION AND FUTURE WORK

We presented a method for calculating an upper bound
on the finishing time of threads executing on an NVIDIA
Fermi GPU. We left the following problems open:
(i) proving mathematically the correctness of our stated
upper bounds on finishing times, (ii) relaxing the assump-
tion of fairness on sub-block level, (iii) relaxing the hard-
ware assumptions to allow cache misses and longer latency
of floating-point operations, (iv) generalizing the method
to other control flows and to user-specified number of
LOAD/STORE units and CUDA cores and (v) validating
the output of our method by comparing it with experimen-
tal runs on real hardware.

Acknowledgments

This work was partially supported by ARTISTDesign Network
of Excellence on Embedded Systems Design, funded by the Eu-
ropean Commission under FP7 with contract number ICT-NoE-
214373 and the Portuguese Science and Technology Foundation
(Fundaç̃ao para Cîencia e Tecnologia - FCT) and the Luso-
American Development Foundation (FLAD).

REFERENCES

[1] “NVIDIA CUDA Compute Unified Device
Architecture Programming Guide, available at
http://developer.download.nvidia.com/compute/cuda/
1 1/NVIDIA CUDA ProgrammingGuide 1.1.pdf.”

[2] “NVIDIA’s Next Generation CUD-
ATM Compute Architecture: Fermi,
http://www.nvidia.com/content/pdf/fermiwhite papers/
nvidia fermi computearchitecturewhitepaper.pdf.”

[3] “http://techreport.com/articles.x/17670.”

[4] K. Bletsas, “Worst-case and best-case timing analysis for
real-time embedded systems with limited parallelism,” Ph.D.
dissertation, The University of York, 2007.

[5] P. Gai, L. Abeni, and G. C. Buttazzo, “Multiprocessor
DSP scheduling in system-on-a-chip architectures,” in14th
Euromicro Conference on Real-Time Systems (ECRTS 2002),
Vienna, Austria, Jun. 2002, pp. 231–238.

[6] K. Lakshmanan, S. Kato, and R. Rajkumar, “Problems in
scheduling self-suspending,” inRTSOPS 2010: 1st Inter-
national Real-Time Scheduling Open Problems Seminar in
conjunction with the 22th Euromicro Intl Conference on
Real-Time Systems, Brussels, Belgium, Jul. 2010.

[7] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-
time tasks on heterogeneous multiprocessors with two unre-
lated types of processors,” CISTER research unit, ISEP/IPP,
Polytechnic Institute of Porto, Porto, Portugal, Tech. Rep.
HURRAY-TR-100505, May 2010.

[8] A. C. Shaw, “Reasoning about time in higher-level language
software,” IEEE Trans. Software Eng., vol. 15, no. 7, pp.
875–889, 1989.

Work-in-Progress (RTCSA 2010) 8 Macau SAR, P.R.C.

Reusable and Partial WCET analysis

Johan Fredriksson

Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden

Abstract—Due to shorter time-to-market and product cycles,
development of embedded software has increasingly become
a more iterative and agile process. Engineers often make
small corrections late in the development process. However,
whenever any part of the software is changed a complete
WCET analysis is required. Thus, todays WCET analyses are
not tuned towards the late stages of the embedded system
development process, where often smaller bugs, or minor code
improvements, are discovered and fixed. Consequently, always
performing a complete system WCET analysis contradicts the
type of fine tuning that the engineers often want to do.

In previous research we have presented a technique for ac-
curate reusable WCET analysis by classifying software inputs
with respect to WCET estimates. In this paper we describe
an extension to our previous work for lowering the amount of
analyses that have to be made at a code change. We propose
methods for associating input classes with parts of the source
code for allowing WCET analysis to be partially performed
with respect to only updated source code.

I. INTRODUCTION

WCET analysis provides bounds on the estimated execu-

tion time, and the closer these bounds are to the true worst-

case, the higher the value of the analysis. Therefore, software

designers often want to restrict performance analysis to parts

of the software system, called a context, or a mode.

When software systems are exposed to minor code

changes the whole system is re-analyzed, and for large

complex system, like e.g., avionics, the WCET analyses may

take several days. Therefore there is a strong desire to be

able to do partial WCET analysis.

Programming embedded systems is a complex task, and

often fine tuning in the late stages of development is needed.

Quick product cycles leads to that development become

more iterative where engineers make smaller corrections,

and often late in the development process. However, when-

ever a smaller part of the code has been modified the whole

WCET analysis most often has to be remade. Thus, todays

WCET analyses are not tuned towards the late stages of the

embedded system development process, where often smaller

bugs are discovered and fixed, or minor code improvements

are made. Consequently, always doing a complete system

WCET analysis contradicts the type of fine tuning that the

engineers often want to do.

The overall goal of this work is to provide means for

faster estimation of timing behavior in embedded real-time

systems. Specifically we propose a method for reducing

the amount of analyses that needs to be remade to derive

program timing guarantees when only limited parts of the

system code have been modified.

II. RELATED WORK

To the best of the authors knowledge, there has been

little research on the topic of partial WCET analysis. In this

section we describe some previous work in the area WCET

analysis that touches upon similar aspects.

Staschulat et al. [1] make a partitioning of execution time

behavior of software modules based upon the context in

which the module is derived. Our approach have similarities

to this work, but we use the partitioning for providing

reusable and parametric analysis, whereas Stachulat et al.

use partitioning only for increasing the accuracy of WCET

analyses. Recent case-studies show that it is important to

consider mode- and context-dependent WCET estimates

when analyzing real sized industrial software systems [2].

Gheorghita et al. in [3] use usage scenarios to determine

tighter loop bounds. In [4] Mohan et al. use run-time usage

information for dynamic voltage scaling depending on the

timing requirements. Wenzel et al. [5] use both model

checking and genetic algorithms to derive which input data

that makes a certain instrumented code part to be executed.

Gross et al. [6] use evolutionary testing with measurement-

based WCET analysis to find a context dependent WCET. In

[7] David and Puaut present a framework for probabilistic

WCET with static analysis is presented. The probabilities

are related to the probability of possible values of external

and internal variables. In [8], Bernat et al. analyze each

basic block of a program with respect to execution-times,

and derived probability distributions of the execution-times.

This method is, in contrast to our method, based on measure-

ments. In [9] Lee et al. develop a framework that considers

the usage of a system; however, neither software components

nor reuse is considered. Ji et al. [10] divide the source code

in modes depending on input, and only the parts that are

used in a specific usage are analyzed.

III. REUSABLE WCET ANALYSIS

In previous work [11], [12] we have proposed a method

for increasing the accuracy of software components WCET

by classifying input data with respect to execution-times. We

use binary search heuristics to efficiently create parameter-

izable contracts as a function of a input data to determine

the WCET estimate for specific usage scenarios.

Work-in-Progress (RTCSA 2010) 9 Macau SAR, P.R.C.

The reusable WCET analysis is based on a combination

of static WCET analysis and systematic search over the

value space of component input variables, for deriving a

parameterizable WCET of a reusable software component.

We use the input-sensitiveness of computer software com-

ponents to express a relationship between component inputs

and execution times. A WCET contract is defined as a set

of input classes with corresponding WCET estimates. The

contract is not created with respect to any specific usage, but

describes the execution time solely with respect to inputs. A

WCET estimate is a context-dependent property that varies

depending on inputs, internal software and hardware states.

Consider a software component ci with a nuber of pro-

vided inputs pi,j . Each provided input pi,j is associated with

a variable vi,j and a value domain vi,j ∈ Vi,j . The set of

variables vi,0, vi,1, ..., vi,n−1 represent an input value space

as a set of input value combinations described as tuples

〈vi,0, vi,1, . . . , vi,n−1〉.

Definition 3.1: An input variable vi,j represents the value

of a provided input pi,j , and Vi,j represents the possible

values for vi,j ∈ Vi,j .

Definition 3.2: An input value space Di is a set of input

value combinations, such that Di = {〈vi,0, vi,1, ..., vi,n−1〉 :
vi,j ∈ Vi,j}.

Consider the two input variables vi,0 and vi,1, with

the value domains Vi,0 = {v : 0 ≤ v ≤ 1} and

Vi,1 = {v : 0 ≤ v ≤ 1}, then the possible input

variable combinations are described by the input value space

Di = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}.

An input combination tuple d represents one combination

of single values on the provided inputs. Consider a provided

interface Pi = {pi,0, pi,1} and the input combination d =
〈0, 1〉 represents that the input pi,0 takes the value 0 and

pi,1 takes the value 1. The input value space Di represents

all possible value combinations tuples d for a component

ci. In the input-sensitive WCET analysis, Di is partitioned

in subsets with respect to a predicate φ. For example, the

predicate φ may restrict the input variables vi,0, vi,1 and

vi,2 such that φ = [0 ≤ vi,0 < 1, 0 ≤ vi,1 < 1, 0 ≤
vi,2 < 2]. In this case, each tuple d ∈ Di is restricted to the

single value 0 for vi,0 and vi,1 and to the values 0 and 1 for

vi,2. A predicate φ may also express dependencies between

input variables, e.g., φ = [1 ≤ vi,j < 3, vi,k < vi,j]. Di|φ

represents the tuples in Di that fulfill the predicate given

in φ. Thus, Di|φ is a condition subset of Di such that all

tuples must fulfills the predicate φ.

Definition 3.3: A tuple d = 〈vi,0, vi,1, ..., vi,n−1〉 de-

scribes one input combination for the provided interface Pi.

Definition 3.4: φ is a predicate on an input value space

Di, and φ(d) notates that the tuple d fulfills φ.

Definition 3.5: An input value space partition Di|φ is a

condition subset of all tuples d with respect to a predicate

φ, such that Di|φ = {d ∈ Di : φ(d)}.

Definition 3.6: |Di| is the concrete number of input com-

bination tuples in Di.

We use the concept of input value space partitions with

predicates to define a set of input combinations as a use-

case. We denote a predicate φU to define a use-case.

Definition 3.7: A use case U = 〈φU ,P , pt〉 is a predicate

φU connected with a probability mass function P and 0 ≤
pt < 1 is a given priority threshold to ignore low probability

WCETs.

A WCET contract is used for obtaining a WCET. The

contract is parameterized with the use case. All input value

space partitions Di|φ ∩Di|φU 6= ∅ are referred to as active

input value space partitions, i.e., all input value space

partitions Di|φ that are active and their respective WCETs

are eligible for the usage dependent component WCET. A

WCET contract is a function of a usage U that results in a

usage dependent WCET. (Equation 1)

fWCET : Di|φU → max
(

WCET i|φ

)

∀i(Di|φ∩D
i|φU 6=∅)

(1)

IV. EXTENSION: PARTIAL WCET ANALYSIS

The reusable WCET analysis is used to create WCET

contracts. Subsets of the software behavior are analyzed

by iteratively creating smaller input classes. Assuming that

static WCET analysis is used, the software is divided in so

called basic blocks bb, and each bb represents a part of the

source code. We also associate an input class with a set of

basic blocks, namely those that are analyzed with respect to

the input class.

Definition 4.1: a basic block bb is a part of a software

behavior, and can be related to a source file or an object

code file.

Definition 4.2: bb(d) denotes that the basic block bb is

affected by the input tuple d.

To keep track of all basic blocks that belong to a value

space partition, we define a list of basic blocks. The list

contains all basic blocks that are affected by the input value

space partition.

Definition 4.3: A basic block list BBi|φ is a list of all

basic blocks bb such that BBi|φ = {bb : bb(d)∧d ∈ Di|φ}.

Definition 4.4: |BBi| is the concrete number of basic

blocks in BBi.

A basic block contract is used for obtaining all value space

partitions that affect a basic block. The contract is used to

mark those value space partitions as invalid. Invalid value

space partitions need to be re-analyzed.

Definition 4.5: inv(Di) denotes that the value space par-

tition Di is marked invalid and needs to be re-analyzed with

respect to WCET.

A basic block contract is a function of a basic block bb

and results in the invalidation of a number of value space

partitions. The contract is parameterized with a basic block

derived from a code change. If the basic block bb belongs to

Work-in-Progress (RTCSA 2010) 10 Macau SAR, P.R.C.

the list BBi|φ, then the corresponding value space partition

Di|φ is considered affected by the code changed and is

marked invalid. (Equation 2)

fBB : bb → inv(Di|φ)
∀i(bb∈BBi|φ)

(2)

The idea is simple - the value space partitions that are

invalid are re-analyzed. However, there are a number of

challenging problems that we need to handle. For instance,

we must ensure that value space partitions that are not

marked invalid still have valid WCET estimates. Changed

source code may not only affect one basic block, the size of

one basic block may also affect where in memory other basic

blocks are located. Changing one basic block may in turn

lead to that the linker moves whole object files in memory.

We try to solve the latter by forcing the linker to layout the

object files on specific addresses.

Other problems that we believe that we will encounter are

related to cache behavior. When an object file is recompiled

and re-linked, small changes caused by internal changes in

basic blocks may affect, e.g., the cache behavior.

V. EVALUATIONS

We have only performed a few early simulations on the

proposed extension. We have performed the evaluation with

two components from an academic ACC example with the

components “LoggerOutput” and “SpeedLimit”, described

in Tables 1 and 2. The ACC example is described in detail

in, e.g., [12].

The results indicate that greater number of smaller input

value space partitions leads to fewer basic blocks associated

with each value space partition. In the best case, each input

value space partition is associated with only one basic block.

In this way, any source code change always only invalidates

one value space partition. Consequently, the wort case is

when all basic blocks are associated to all value space

partitions.

#vsp |BBi|
1 12

2 8,7

3 5,3,6

4 3,2,3,6

Table I
NUMBER OF VALUE SPACE PARTITIONS (#vsp) AND BASIC BLOCKS

FOR EACH VALUE SPACE PARTITION, FOR “SPEEDLIMIT”.

VI. HARDWARE DEPENDENCIES
It should be noted that the we only consider input data

limits. The execution time is also dependant on the hardware

upon which the code is executed and where in memory the

code is located. In the case that a simple 4-, 8- or 16-bit

CPU is used, which is common in a large segment of the

embedded domain, and that the code is forced to reside in

#vsp |BBi|
1 7

2 7,3

3 2,5,3

4 2,2,3,3

Table II
NUMBER OF VALUE SPACE PARTITIONS (#vsp) AND BASIC BLOCKS

FOR EACH VALUE SPACE PARTITION, FOR “LOGGEROUTPUT”.

and access memory areas with the same timing properties as

assumed in the WCET analysis, the WCET estimates derived

should also be valid in the new context. However, if a more

advanced CPU is used, maybe with a cache or some other

performance enhancing features, and the compiler and linker

change the code structure, the derived component WCET

estimates should be used with caution.

VII. CONCLUSIONS

In this paper we have presented an on-going extension

to our previous work [11], [12], where we have proposed

methods for increasing the accuracy of software components

WCET by classifying input data with respect to execution-

times. The contracts express the relation between input data

and execution time. In this way it is possible to determine a

parameterized and more accurate WCET by considering the

input. In the current on-going research we propose to use

input data to express a relation between source code and

inputs.

With a good control over the linker, and assigning each

object file to a specific address in memory it is possible

to recompile and re analyze only affected object files. The

advantage of the proposed method is that a smaller part of

the code can be re-analyzed, lowering the effort required for

re-analyzing the code for small changes.

Further research on hardware dependencies and evalua-

tions are still required.

REFERENCES

[1] Staschulat, J., Ernst, R., Schulze, A., Wolf, F.: Context
sensitive performance analysis of automotive applications. In:
Proc. Design, Automation and Test in European Conference
and Exhibition (DATE’05), Munich, Germany, IEEE Com-
puter Society Press (2005) 165–170

[2] Sehlberg, D., Ermedahl, A., Gustafsson, J., Lisper, B.,
Wiegratz, S.: Static wcet analysis of real-time task-oriented
code in vehicle control systems. In: Proc. 2nd International
Symposium on Leveraging Applications of Formal Methods
(ISOLA’06), Paphos, Cyprus, IEEE Computer Society Press
(2006) 212–219

[3] Gheorghita, S.V., Stuijk, S., Basten, T., Corporaal, H.: Sharper
wcet upper bounds using automatically detected scenarios.
Technical Report ESR-2005-04, Eindhoven University of
Technology, Department of Electrical Engineering, Electronic
Systems (2005)

Work-in-Progress (RTCSA 2010) 11 Macau SAR, P.R.C.

[4] Mohan, S., Mueller, F., Hawkins, W., Root, M., Healy, C.,
Whalley, D.: Parascale: Exploiting parametric timing analysis
for real-time schedulers and dynamic voltage scaling. In:
Proc. 26th IEEE Real-Time Systems Symposium (RTSS’05),
Miami, FL, USA, IEEE Computer Society Press (2005) 233–
242

[5] Wenzel, I., Rieder, B., Kirner, R., Puschner, P.P.: Automatic
timing model generation by CFG partitioning and model
checking. In: Proc. Design, Automation and Test in European
Conference and Exhibition (DATE’05), Munich, Germany,
IEEE Computer Society Press (2005) 606–611

[6] Groß, H.G., Mayer, N.: Evolutionary testing in component-
based real-time system construction. In: GECCO ’02:
Proceedings of the Genetic and Evolutionary Computation
Conference, San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (2002) 1393

[7] David, L., Puaut, I.: Static determination of probabilistic ex-
ecution times. In: Proc. 16th Euromicro Conference of Real-
Time Systems, (ECRTS’04), Catania, Sicily, IEEE Computer
Society Press (2004) 223–230

[8] Bernat, G., Colin, A., Petters, S.: pWCET, a Tool for
Probabilistic WCET Analysis of Real-Time Systems. In:
Proc. 3d International Workshop on Worst-Case Execution
Time analysis (WCET’03) in conjunction with 13th Euromi-
cro Conference of Real-Time Systems, (ECRTS’03), Porto,
Portugal, IEEE Computer Society Press (2003) 21–38

[9] Lee, J.I., Park, S.H., Bang, H.J., Kim, T.H., Cha, S.D.: A
hybrid framework of worst-case execution time analysis for
real-time embedded system software. In: Proc. Aerospace
Conference, Big Sky, MT, USA, IEEE Computer Society
Press (2005) 1–10

[10] Ji, M.L., Wang, J., Li, S., Qi, Z.C.: Automated wcet analysis
based on program modes. In: Proc. International workshop on
Automation of Software Test (AST’06) in conjunction with
International Conference on Software Engineering (ICSE’06),
Shanghai, China, ACM Press (2006) 36–42

[11] Fredriksson, J.: Improving Predictability and Resource Uti-
lization in Component-Based Embedded Real-Time Systems.
PhD thesis, Mlardalen University, School of Innovation De-
sign and Technology, Mlardalen University, Sweden (2008)

[12] Fredriksson, J., Nolte, T., Nolin, M., Schmidt, H.: Contract-
based reusable worst-case execution time estimate. In: Proc.
of the 13

th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA’07),
Daegu, Korea (2007)

Work-in-Progress (RTCSA 2010) 12 Macau SAR, P.R.C.

Using a Markovian model for branch prediction related WCET

Stéphane Louise, Amira Dkhil
CEA, LIST, MB 94, F91191 Gif-sur-Yvette Cedex, FRANCE

firstname.lastname@cea.fr

Abstract—In this paper we use a Markovian model previ-
ously applied to cache related delay modeling and preemption
delay modeling to a subset of dynamic branch predictors
related WCET delays. Our model allows the modeling of a de-
terministic or non deterministic automaton or set of automata
thanks to a Markovian model. We previously applied this
formalism to cache related delay and cache related preemption
delays [7], [9] and to non deterministic cache policy [8]. Now we
would like to introduce an application to some forms of branch
prediction associated Worst Case Execution Time (WCET)
computation.

I. INTRODUCTION

In this short paper we will focus on the evaluation of a
simple local dynamic branch predictor related Worst Case
Execution Time (WCET). WCET (and Execution Time as a
whole) are of special interest for embedded applications like
hard real-time systems or more recently for the compilation
process of embedded multicore architectures (for the compi-
lation problem, both Best and Worst CET are required). As
a consequence, automatic execution time evaluation should
become more and more a field of interest in the near future,
as multicore architectures become more pervasive.

As our interest targets are embedded systems, associated
embedded processors are usually quite simple, which means
that branch predictors, when they are available, are usually
also quite simple. A good example are branch predictors
based on 2 bits saturating counter like seen in figure 1,
which can be encountered e.g. in some Freescale PowerPC
processors. These branch predictors are simple yet quite
efficient especially for short pipelines[6] (usually over 90%
of correct prediction over Spec89 benchmarks), and the
presence of a branch predictor avoids most waits cycles in
the pipeline by speculatively executing instructions. Only
when the prediction is wrong the speculative execution is
cancelled and the pipeline refilled.

Strongly
Taken

Weakly
Taken

Strongly
Not Taken

Weakly
Not Taken

Not taken
Not taken Not taken

N
o
t ta

k
e
n

TakenTaken
Taken

Ta
k
e
n

Figure 1. Simple 4 state dynamic branch predictors

We will show in this paper how to use a formalism based
on linear algebra previously used on cache related WCET
[7], [8] in order to predict also dynamic branch prediction
associated WCET overheads. This is a first evaluation of

a theorical development. The paper is organized as follows:
section II presents the bases of the formalism and the model,
section III presents first results on a limited set of usual
WCET benchmarks and discuss the results, before conclud-
ing and presenting future directions of work in section IV.

II. FORMALISM

A. Bases

The formalism relies on static analysis, but the static
analysis by itself of the Control Flow Graph (CFG) is out of
the scope of the paper (an extensive literature exists about
it see e.g. [10], [5], [3]). Hence we will only focus on the
analysis of branch predictor states. As long as static analysis
is concerned, there can be 3 possible outcomes of a CFG
branch static analysis for each conditional branch:

• Branch taken: the given branch is taken for sure (e.g.
the n− 1 increments of a for loop with n increments),

• Branch not taken: the given branch is not taken, for
sure (e.g. the last increment of a simple loop),

• Branch unknown: the given branch can not be statically
predicted (e.g. because it depends on run time data).

Therefore, for static analysis, the branch predictor state for
each conditional branch can be updated by adding several
“unknown” states, as seen in figure 2.

Figure 2. Simple 4 state dynamic branch predictors

The meaning of these unknown states reflects the principle
of static analysis where the real state is mapped to an abstract
space where properties of interest can be computed (see
Cousot & Cousot [4]). The new states, thus, translate the
fact that some information can not be statically known about
the branch predictor state, typically because of dependence
on external data, only available at runtime (control flow
hazards).

Work-in-Progress (RTCSA 2010) 13 Macau SAR, P.R.C.

B. Vector Space

As the static analysis automaton in figure 2 has 7 states,
that means that the basic state vector for a given branch
instruction state will have also 7 linearly independent states.
For a complete state of execution of a given branch predic-
tion, tree additional states must be provided: the number of
rightly predicted branches (p), the number of badly predicted
branches (p̄) and the number of unknown predictions (pu),
meaning that p+ p̄+ pu is the total number of execution of
the given branch instruction.

The 10 coordinates of the vector space for the branch
instruction are:

• p number of rightly predicted branches,
• p̄ number of badly predicted branches,
• pu number of statically unknown predictions,
• T predicted Taken state,
• t predicted weakly taken state,
• n predicted weakly not taken state,
• N predicted Not Taken state,
• uT predicted unknown taken state,
• U predicted Unknown state,
• uN predicted unknown not taken state.

And the associated state will be a vector

s =t
(
p p̄ pu T t n N uT U uN

)
The global state will be the Cartesian product of all the state
spaces associated with each conditional branch instruction of
the program: if s0, s1, . . . , sn−1 are n conditional branches
of a given program, the associated global state is:

S = ⊗n−1
k=0sk

C. Operators

Operators, in our formalism, modelize the evolution of the
state vectors as an instruction is executed. It means that the
state after execution, let us note it si+1, can be derived from
the previous state si by the application of a given operator
W so that si+1 = W si. This, by definition, describes a
Markovian evolution of the vector space. Here, only the
conditional branch instructions are modelized.

For static analysis of state updates, we will use 3 operators
corresponding to the 3 possible outcomes of a conditional
branch as seen previously (taken, not taken, and unknown).

Wt =



1 0 0 1 1 0 0 1 0 0
0 1 0 0 0 1 1 0 0 1
0 0 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0



Wn =



1 0 0 0 0 1 1 0 0 1
0 1 0 1 1 0 0 1 0 0
0 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0



Wu =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0


It can be noticed that the lower-right side 7× 7 matrix of

each operator is the transition matrix of the state machine
of figure 2 (it is a transfer sub-matrix from one state to
the other). The upper 3 lines update the number of right
or bad or unknown predictions. For example, in the Wu

operator most of the third line is filled with 1 translating
that pi+1

u = piu + 1 (i.e. the number of predictions statically
classified as unknown is incremented by 1 after applying
Wu onto the branch predictor state).

D. From branch predictor state to Execution Time
We will use simple hypotheses here, as it is only a

preliminary work: Branch Prediction penalty is only paid in
case of a bad prediction and consist in a complete pipeline
invalidation. As we target embedded processors, we will
make the assumption that the execution is either in order
or only slightly out of order, so that only the pipeline
refilling penalty is paid in this case. Filling the Branch Target
Buffer and initializing the Branch History Table (BHT) for
the first time a given branch is encountered is paid only
once at the first occurrence, therefore once for each branch
(hypothesis of perfect cache, which would work well on the
tiny examples that we use for our first validation: we will
talk in the conclusion about how we can go further here).

Based on these hypotheses, the branch prediction over-
head can be calculated as:

obest =
n−1∑
k=0

p̄k.cr + cf .n

and

oworst =

n−1∑
k=0

(p̄ + pu)k .cr + cf .n

Work-in-Progress (RTCSA 2010) 14 Macau SAR, P.R.C.

Where cr is the cost of pipeline refilling, and cf the cost of
filling the BTB and initializing the predictor state.

III. FIRST EVALUATIONS

A. Experimental setup

We compiled the benchmarks using gcc with “-O2” opti-
mization level, targeting MIPS R3000 architecture and their
Control Flow Graphs (CFGs) were extracted as input to our
model. We have chosen Mälardalen WCET research group
benchmark programs, used to evaluate and compare different
types of WCET analysis tools and methods [11]. The set
of benchmarks is listed in Table I. Our choice included
applications with small code size (e.g., sqrt, matmult, bs)
as well as medium code size (e.g., crc). Also, our chosen
benchmarks contain both single-path programs (e.g., mat-
mult) and multiple-path programs (e.g., crc) with different
degrees of complexity in the analysis of the assembly code
and the determination of the associated predictor.

B. Analysis methodology

First we analyze the assembler code to extract the Control
Flow Graph and also detect the conditional branches. This
analysis is very useful to determine whether it is a “Back-
ward” or a “Forward” branch. Such information will enable
us to set the initial state vectors. We have performed these
experiments for all of the benchmarks but as an example,
we choose the matrix multiplication presented in Figure 3.
Three conditional branches were found, which will be the
number of the state vectors.

The corresponding state vectors in the case backward is

sb0,i =t
(

0 0 0 0 1 0 0 0 0 0
)

where i = 1 . . ., and n is the number of conditional
branches. Which means that backward branch are preset as
weakly taken and forward jump as weakly not taken.

The origin of such a hypothesis is the well known heuristic
BTFN (Backward Taken Forward Not Taken), which differ-
entiate the conditional branches with their way of evolution
[1]. si+1 can be derived from the previous state si by the
application of the appropriate operator Wt, Wn or Wu. The
employment of such operators will depend on the analysis
results of the CFG, it means that it depend on whether the
state of the conditional branch is related to unknown data,
for example, or not.

C. Results

The analysis results are shown in Table II. We simulated
the branch predictors to get the total number of badly
predicted branches.

These results were not difficult to obtain straight from the
model. To compute branch predictor related time overheads
(both best case and worst case), we used the following
figures: cr = 5 cycles and cf = 2 cycles (estimated worst
case). The results are shown on figure 3.

Table II
RESULTS OF THE BRANCH PREDICTOR

Benchmark p p̄ pu

matmult 7239 381 0
bs 5 1 15

sqrt 17 1 34
crc 18 1 40

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

m
atm

ult

bs sqrt
crc

best case
worst case

Figure 3. Best and worst case prediction overhead predicted by the model
(real best and worst case are the same in the model as the real one)

Of course we need to compute the total branch overhead
by taking into account both the several control flow out-
comes in conjunction with the evaluation of the predictions.
This is shown in figure 4. As expected, matmult whose
CFG has no hazards is entirely dominated by prediction
overhead (that means that without any branch prediction, the
branch overhead would be 2 orders of magnitude larger). For
the others, with actual CF hazards, the prediction overhead
stands for ≈ 10% of the total control flow execution time
overhead.

Figure 4. Best and worst case total branch overhead predicted by the
model (real best and worst case are the same in the model as the real one)

D. Comments

We compared the results of our first evaluation with the
actual real best and worst case overheads, and as expected
on quite simple benchmarks, the results of the model match
the real worst and best cases. It is also expected that this

Work-in-Progress (RTCSA 2010) 15 Macau SAR, P.R.C.

Table I
BENCHMARKS DESCRIPTION

Benchmark Description Comments Lines of code

matmult Matrix multiplication of two 20x20 matrices Multiple calls to the same function, nested function calls,
triple-nested loops 163

bs Binary search for the array of 15 integer elements Completely structured 114
sqrt Square root function implemented by Taylor series Simple numerical calculation 77

crc Cyclic redundancy check computation on 40 bytes of
data

Complex loops, lots of decisions, loop bounds depend on
function arguments, function that executes differently the first
time it is called

128

will remain true for a large number or even all the programs
as this type of dynamic branch predictor is very simple.

Nonetheless, we made several assumptions here. Firstly,
we supposed that the CFG of the program was correctly
analyzed. This hypothesis can be endangered by complex
CFGs especially when loops exit conditions are tricky (e.g.
non decidable behaviors). But anyway, good practices of
embedded system programming mostly forbid hard or im-
possible to analyze CFGs, so that best and worst bounds can
always be obtained (at least approximate ones).

Secondly, we also made the assumption that the BHT and
BTB are infinite (i.e. no conflicts can be observed). This is
true for these programs since there is typically less than
a dozen branches. For larger programs this would not be
the case. Nonetheless, our model is based on a Markovian
formulation. That means that it is able to handle non
deterministic behaviors like cache replacement in control
flow hazards (this feature was used to determine cache
related WCET in case of preemption in previous works
or “exact” WCET associated with non deterministic cache
replacement policies). We believe that this can be an asset
of our method to characterize branch prediction related
execution time overhead in comparison to other methods. Of
course, works like [3] or [2] already take into account the
finiteness of BTH and BTB and we will need to compare
that also. It can also be remarked that most of the time
embedded computations have an important spacial locality,
even more so for branches than for data accesses, so with
reasonably sized BTB, real conflicts are expected to be low
on most of applications.

Of course more work is required to strengthen our results
but the first benchmarks show that the method is worthy of
further investigations.

IV. CONCLUSION AND FUTURE WORK

As a preliminary work, we demonstrated that applying a
formalism that we introduced previously for cache related
WCET to a simple case of dynamic branch predictor works
well on simple benchmarks. Further work is still required to
go beyond these first cases, but there is no forecasted issues.

Therefore, our future work will focus on taking into
account the finiteness of BHT and BTB. Once the results are
consolidated with this first type of dynamic branch predictor,
we aim at doing further work with more elaborate branch

predictors, as, e.g. history based branch predictors which are
typically hard to statically take into account and for which
a Markovian model would be a real asset.

REFERENCES

[1] Claire Burguière. Modélisation de la prédiction de branche-
ment pour le calcul de temps d’exécution pire-cas. Thèse
de doctorat, Université Paul Sabatier, Toulouse, France, juin
2008.

[2] Claire Burguière and Christine Rochange. A contribution to
branch prediction modeling in WCET analysis. In Proceed-
ings of the Conference on Design, Automation and Test in
Europe (DATE’05), volume 1, pages 612–617, march 2005.

[3] Antoine Colin and Isabelle Puaut. Worst case execution time
analysis for a processor with branch prediction. Real–Time
Systems, 18:249–274, may 2000.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In ACM Symposium on
Principles of Programming Languages, pages 238–252, 1977.

[5] Christopher Healy, Mikael Sjödin, Viresh Rustagi, David
Whalley, and Robert Van Engelen. Supporting timing analysis
by automatic bounding of loop iteration. Real–Time Systems,
18:129–156, may 2000.

[6] J.L.A. Hennessy and D.A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufman, 4th edition,
2007.

[7] Stéphane Louise. WCET safe upper bound computation for
hard real–time tasks, for systems using cache memories. PhD
thesis, Université Paris XI, UFR scientique d’Orsay, 2002.

[8] Stéphane Louise. A preliminary study of wcet for a non
deterministic cache policy. In Proceedings Work in Progress
Session of the 21st ECRTS, pages 17–20, 2009.

[9] Stéphane Louise, Vincent David, and Jean Delcoigne. A new
paradigm for cache related wcet computation. In NPDPA’02,
2002.

[10] Thomas Lundqvist and Per Stenström. An integrated path
and timing analysis method based on cycle–level symbolic
execution. Real–Time Systems, 17:183–207, nov 1999.

[11] Mälardalen WCET research group. Wcet benchmarks,
http://www.mrtc.mdh.se/projects/wcet/benchmarks.htm.

Work-in-Progress (RTCSA 2010) 16 Macau SAR, P.R.C.

Divisible Load Scheduling of Real-time Task on Heterogeneous Clusters with

Worker Selection Strategy

Suriayati Chuprat and Zuraini Ismail

Universiti Teknologi Malaysia

International Campus, Kuala Lumpur, Malaysia
suria@ic.utm.my, zurainisma@ic.utm.my

Abstract— Real-time Divisible Load Theory (RT-DLT)

holds enormous potential for modeling an emergent class

of parallel real-time workloads. However, the theory

needs strong formal foundations before it can be widely

used for the design and analysis of real-time systems. As

part of our on-going research effort to develop such

formal foundations, we recently [11] extended an

algorithm based on Linear Programming to schedule a

divisible real-time workload upon heterogeneous clusters.

Through series of simulation, we observed that the

features of clusters have a significant impact upon the

completion time of a workload execution. In this paper,

we proposed an enhancement to the framework for

scheduling a divisible real-time workload upon

heterogeneous clusters.

Keywords-Divisible Load Scheduling, Parallel, Real-

time Systems, Heterogeneous Clusters

I. INTRODUCTION

Real-time computer application systems are systems in

which the correctness of a computation depends upon

both the logical and temporal properties of the result of

the computation. As the functionality demanded of

such real-time application systems has increased, these

systems are increasingly coming to be implemented

upon multiprocessor platforms. However, the formal

models for representing real-time workloads have

traditionally been designed for the modeling of

processes that are expected to execute in uniprocessor

environments. These traditional models fail to capture

some important characteristics of multiprocessor real-

time systems and imposed additional restrictions. One

particular such restriction is that each task may execute

upon at most one processor at each instant in time. We

believe that this is overly restrictive for many current

multiprocessor platforms and in fact one significant

causal factor of much of the complexity of

multiprocessor scheduling [1]. Moreover, the next

generation of embedded and real-time systems

undoubtedly will demand parallel executions. Looking

at these significant needs, recently, some researchers

[9, 10, 14, 15, 16, 17] have studied extension to the

traditional workload models, to allow for the possibility

that a single job may execute simultaneously on

multiple processors.

In a series of papers [4, 5, 6, 7, 8], Lin et al. have

applied divisible load theory (DLT) [2, 3] to real-time

workloads. In DLT, such workloads, it is pointed out

in [4, 5, 6], are quite common in data-intensive

applications from domains as diverse as bioinformatics

and high energy particle physics (e.g., the Compact

Muon Solenoid and the ATLAS [AToroidal LHC

ApparatuS] projects associated with the Large Hadron

Collider at CERN. Lin et al. extended DLT to apply to

divisible real-time jobs, that is divisible jobs with

associated deadlines and the requirement that a job

complete by its deadline in order to be useful. We refer

this promising workload model as RT-DLT.

We improved upon approximation algorithm as in

[7,8] by providing exact efficient algorithms [12,13] to

determine the smallest number of processors needed to

complete the divisible job by its deadline and minimize

the completion time. One assumption made in the

previous work on RT-DLT is that all processors are

homogeneous, in sense that each processing node has

the same computational power. In our most recent

work [11], we have extended the algorithm proposed in

[12, 13] to schedule a real-time divisible workload

upon heterogeneous processors and observed that the

features of cluster have a great impact in minimizing

the completion time of a workload and complete by its

deadline. Thus, particularly in heterogeneous clusters, a

worker selector needs to be introduced.

The remainder of this paper is organized as follows.

In Section 2, we briefly describe the foundations of

RT-DLT. The proposed scheduling framework and

preliminary simulation work will be presented in

Section 3. Finally we conclude and propose some

future research agenda in Section 4.

Work-in-Progress (RTCSA 2010) 17 Macau SAR, P.R.C.

II. RT-DLT: FOUNDATIONS

We now describe the foundations of RT-DLT used

in this research. We keep our discussion brief; please

refer to [4, 5, 6] for the motivation for this model, and

for important emerging example applications that are

accurately and conveniently modeled in it.

Job Model. The job model in RT-DLT allows for the

simultaneous execution of a job upon multiple

processors. Each divisible job iJ is characterized by a

3-tuple (, ,)i i iA Dσ , where 0iA ≥ is the arrival time of

the job, 0iσ > is the total load size of the job, and

0iD > is its relative deadline, indicating that it must

complete execution by time-instant i iA D+ .

System Model. The computing cluster used in DLT is

comprised of a head node denoted P0, which is

connected via a switch to N processing nodes denoted

P1, P2…PN. Each processing node has the same

computational power, and all the links from the head to

the processing nodes have the same bandwidth. It is

assumed in [4, 5, 6] that:

• The head node does not participate in the

computation – its role is to accept or reject

incoming jobs, execute the scheduling algorithm,

divide the workload and distribute data chunks to

the processing nodes.

• Data transmission does not occur in parallel.

However, computation in different processing

nodes may proceed in parallel to each other.

• The head node, and each processing node, is non-

preemptive: the head node completes the dividing

and distribution of one job's workload before

considering the next job, and each processing

node completes executing one job's chunk before

moving on to the chunk of any other job that may

have been assigned to it.

• Different jobs are assumed to be independent of

one another.

In [4, 5, 6], linear models are used to represent

transmission and processing times. The computation

time of a load of size σ is equal to mCσ × , while the

processing time is equal to pCσ × , where mC is a cost

function for transmitting a unit workload and pC is a

cost function for processing a unit workload. For the

kinds of applications considered in [4, 5, 6], the output

data is just a short message and is assumed to take

negligible time to communicate. For a given computing

cluster, ()p p mC C Cβ ≡ + .

Figure 1 depicts an example of a time diagram of a RT-

DLT scheduling. For a given job (), ,A Dσ and a given

number of processing nodes n, let jσ α× denote the

amount of the load of the job that is assigned to the j’th

processing node, 1 j n≤ ≤ .

P0

P1

P2

P3

Pn

1 i m
Cα σ

2 i mCα σ
3 i mCα σ n i mCα σ

1 i pCα σ

2 i p
Cα σ

3 i pCα σ

n i p
Cα σ

id(,)i i ir n dξ σ+ ≤ir

Figure 1. Time diagram of a RT-DLT scheduling

Since data-transmission occurs sequentially, the i’th

node iP can only receive data after the previous ()1i −

nodes have completed receiving their data. Hence, each

iP receives its data over the interval:

1

1 1
,

i i

m j m jj j
C Cα σ α σ

−

= =

 
 ∑ ∑ and therefore

completes execution at time-instant:

1

i

m j p ij
C Cα σ α σ

=
+∑ . Letting (,)nξ σ denote the

time-instant at which the job completes execution, and

observing that this completion time is given by the sum

of the data-transmission and processing times on iP ,

we have:

1 1(,) m pn C Cξ σ α σ α σ= +

1

(,) ()
1

m pn
n C C

β
ξ σ σ

β

−
≡ = +

−
 (1)

Scheduling Framework. Figure 2 depicts an

abstraction of the scheduling framework as proposed

by Lin et al. [4, 5, 6] combining scheduling algorithms,

node assignment strategies, and task partitioning

strategies. Each arrival jobs (, ,)
i i i i

J A Dσ= will be

placed in the Jobs Queue. The Scheduling Strategy

decide the execution order, the Node Assignment

Strategy compute the number of processors needed for

a task execution and Partitioning Strategy distribute a

job into subtasks and send each subtask to each

processors via a switch.

Work-in-Progress (RTCSA 2010) 18 Macau SAR, P.R.C.

Figure 2. The abstraction of RT-DLT framework

__

Min-ξ

 subject to the following constraints:

(1) 1 2 3 4 1α α α α+ + + =

(2)

1 1

2 2

3 3

4 4

r s

r s

r s

r s

≤

≤

≤

≤

(3)

2 1 1 1

3 2 2 2

4 3 3 3

m

m

m

s s C

s s C

s s C

α σ

α σ

α σ

≥ +

≥ +

≥ +

(4)

1 1 1 1

2 2 2 2

3 3 3 4

4 4 4 4

()

()

()

()

m p

m p

m p

m p

s C C

s C C

s C C

s C C

α σ ξ

α σ ξ

α σ ξ

α σ ξ

+ + ≤

+ + ≤

+ + ≤

+ + ≤

__

Figure 3. Computing the completion time – Modified

MIN-ξ for heterogeneous clusters, N=4

III. EXTENDING MIN-ξ AND FRAMEWORK

MODIFICATION

In [11] we recently customized the formulated LP,

MIN-ξ [12,13] to compute the earliest completion time

upon more general heterogeneous platforms in which

there may be a different mC and a different pC

associated with the data-communication and computing

capacity of each processor iP . Figure 3 depicts the

heterogeneous transformation for cluster N=4.

100 110 120 130 140 150 160 170 180 190
1000

1500

2000

2500

3000

3500

4000

DataSize

C
o
m

p
le

ti
o
n
 T

im
e

Heterogeneous

Cm=1, Cp=100

Cm=2, Cp=110

Cm=4, Cp=140

Cm=1, Cp=140

Figure 4. Simulation result – Modified MIN-ξ for

heterogeneous clusters, N=4

Figure 4 demonstrates the impact of different values

of mC and pC in the heterogeneous clusters. As

obviously observed, the completion time increases as

m
C or pC increases. As shown in Figure 5, we

proposed a modification to the existing RT-DLT

scheduling framework – that is to include a module

called Worker Selection Strategy. Among other

strategies that considered in this module are:

• The scheduler should select the suitable

communication links – Minimum communication

cost mC would minimize the completion time, thus

should be assigned to jobs with critical deadlines.

• Similarly, the scheduler should select the most

appropriate processors – Minimum computation

cost pC would further minimize the completion

time should be also assigned to jobs with critical

deadlines.

• The scheduler should also assign more processors

to a job with critical deadlines.

Figure 5. Modified Scheduling Framework

Work-in-Progress (RTCSA 2010) 19 Macau SAR, P.R.C.

This phase of the research is ongoing; we are currently

building the simulation model to evaluate the modified

scheduling framework. The second step, which is

currently in a very preliminary phase, is to draw

convincing hypotheses based on the outcomes of the

simulation results, and to use current real-time

scheduling theory to explain these hypotheses

(extending the theory if the need arises).

IV. CONCLUSION

Most workload models currently used in real-time

scheduling theory restrict each job to execute upon at

most one processor at each instant in time. This

restriction is increasingly proving to be unrealistic

upon modern multiprocessor platforms; hence, new

models are needed. One of the more promising

approaches in this respect has been the recent work of

Lin et al. that applies divisible load theory (DLT) to

multiprocessor real-time systems. We believe that DLT

and its variants hold tremendous promise as potential

sources of ideas for providing such general models. In

recent work [11, 12, 13], we have studied and extended

the work on RT-DLT initiated by Lin et al. in [4, 5, 6].

We are currently studying further generalizations that

more accurately reflect the reality of actual multi-

cluster computing environments and building

theoretical foundations.

REFERENCES

[1] C. L. Liu. Scheduling algorithms for multiprocessors in a

hard real-time environment. JPL Space Programs

Summary 37-60, II:28-31, 1969.

[2] V.Bharadwaj, D.Ghose, V.Mani and T.G.Robertazzi.

Scheduling Divisible Loads in Parallel and Distributed

Systems, IEEE Computer Society Press, Los Alamitos

CA, September, 1996.

[3] T. G.Robertazzi. Ten reasons to use divisible load

theory. Computer, 36(5):63–68, 2003.

[4] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time

divisible load scheduling for cluster computing.

Technical Report UNL-CSE-2006-0016, Department of

Computer Science and Engineering, The University of

Nebraska at Lincoln, 2006.

[5] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time

divisible load scheduling for clusters. In Proceedings of

the Real-Time Systems Symposium--Work-In-Progress

Session, pp. 9-12, Rio de Janerio, December 2006.

[6] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time

divisible load scheduling for cluster computing. In

Proceedings of the IEEE Real-Time Technology and

Applications Symposium (RTAS), pp. 303-314,

Bellevue, Washington, April, 2007.

[7] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time

divisible load scheduling with different processor

available times. In Proceedings of The International

Conference on Parallel Processing (ICPP), Xian, China,

September 2007.

[8] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Enhanced

real-time divisible load scheduling with different

processor available times. In Proceedings of the 14th

IEEE International Conference on High Performance

Computing (HiPC), pp. 308-319, Goa, India, December

2007.

[9] X. Lin, J. Deogun, Y. Lu and S. Goddard. Multi-round

Real-Time Divisible Load Scheduling for Clusters. In

Proceedings of 15th International Conference on High

Performance Computing (HiPC), pp. 196-207,

Bangalore, India, December 2008.

[10] A. Mamat, Y. Lu, J. Deogun and S. Goddard. Real-Time

Divisible Load Scheduling with Advance Reservation.

In Proceedings of the Euromicro Conference on Real-

Time Systems (ECRTS), pp. 37-46, Prague, Czech

Republic, July 2008.

[11] S. Chuprat. Divisible Load Scheduling of Real-time

Task on Heterogeneous Clusters. In Proceedings of the

International Symposium on Information Technology

(ITSim 2010, co-sponsored by the IEEE), Kuala

Lumpur, Malaysia. June 2010.

[12] S. Chuprat, S. Salleh and S. Baruah. Evaluation of a

linear programming approach towards scheduling

divisible real-time loads. In Proceedings of the

International Symposium on Information Technology

(ITSim, co-sponsored by the IEEE), I:455-462, Kuala

Lumpur, Malaysia. August 2008.

[13] S. Chuprat and S. Baruah. Scheduling Divisible Real-

Time Loads on Clusters with Varying Processor Start

Times. In Proceedings of the IEEE 14th International

Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA), pp. 15-24,

Kaohsiung, Taiwan. August 2008.

[14] G.Manimaran and C. S. R. Murthy. An efficient

dynamic scheduling algorithm for multiprocessor real-

time systems. IEEE Transaction on Parallel and

Distributed Systems, 9(3):312–319, 1998.

[15] W. Lee, S. J. Hong, and J. Kim. On-line scheduling of

scalable real-time tasks on multiprocessor systems.

Journal of Parallel and Distributed Computing,

63(12):1315-1324, 2003.

[16] S. Collette, L. Cucu, and J. Goossens. Algorithm and

complexity for the global scheduling of sporadic tasks

on multiprocessors with work-limited parallelism. In

Proceedings of the 15th International Conference on

Real-Time Systems (RTNS), pp. 123-128, Nancy,

France, March 2007.

[17] S.Collette, L.Cucu, and J.Goossens. Integrating Job

Parallelism in Real-Time Scheduling Theory.

Information Processing Letters, 106(5):180-187, May,

2008.

Work-in-Progress (RTCSA 2010) 20 Macau SAR, P.R.C.

Temperature-Aware Online Real-Time Scheduling for Multiple Feasible Intervals

Bo Liu, Fang Liu, Jian Lin, Albert M.K. Cheng
Department of Computer Science

University of Houston
Houston, TX 77204, USA

e-mail: {boliu, fliu, jlin6, cheng}@cs.uh.edu

Stefan Andrei
Department of Computer Science

Lamar University
Beaumont, Texas 77710, USA
e-mail: sandrei@cs.lamar.edu

Abstract—In this paper, we propose a temperature-aware
online real-time scheduling algorithm for Multiple Feasible
Intervals task model which aims to reduce the power
consumption subject to the operation temperature threshold
for low-power Multiprocessor System-on-Chip platforms. To
the best of our knowledge, we are the first to address this
problem with details of our algorithm.

Keywords-embedded system; temperature-aware; real-time
scheduling; Multiple Feasible Intervals; low-power;
Multiprocessor system-on-chip(MPSoC)

I. INTRODUCTION
Multiple Feasible Intervals (MFI) is a new type of

aperiodic task model that was first addressed in [7, 8]. In
MFI task model, each task can have multiple feasible
intervals for execution. Once a task chooses one of its
intervals to execute, it needs to complete its work within this
interval. Otherwise, it has to choose another interval to start
over. Most of time, the intervals may not be known
beforehand and the intervals may be changed during run-
time, e.g. when new tasks arrive or network congestions
occur. We call a MFI task model with changing feasible
intervals Dynamic Multiple Feasible Intervals (DMFI) task
model.

As the system power consumption soars in modern
microprocessors, we proposed a few power-aware MFI
scheduling schema including both online algorithms for
DMFI [9, 26] and offline algorithms for MFI [10]. While we
target on reducing the power consumption and lowering
deadline missing ratios for MFI tasks, we did not take
thermal issues into consideration. Because the power density
directly transforms into heat, the temperature in modern
integrated circuits increases dramatically due to smaller
feature size e.g. recently announced 28nm technology,
higher packing density, and rising power consumption [2,
16], it is critical to tackle thermal issues in all levels of the
system design.

A wide range of thermal-issue studies for integrated
circuit (IC) design has been delivered in a decade [12, 13, 14,
17, 19, 20, 21, 22]. Temperature affects not only the power
but also the performance, reliability, and cost of embedded
systems. Specifically, three problems arise due to the high
rising operation temperature. First, the higher the
temperature becomes, the more leakage power is consumed.
The leakage power increases exponentially with the
temperature increase, which in turn causes further

temperature increase and might incur the well-known
thermal runaway problem. Second, a higher temperature also
reduces the system’s lifetime. Third, a higher temperature
impacts the performance of the transistors and usually
decreases the performance of circuits. As a consequence,
deadline missing ratios become higher.

Studies of thermal energy by Paci et al. [14] indicate that
power dissipation is negligible for low-power platforms with
their experiments on the feature size as small as 65nm.
However, researchers recently start to address temperature-
aware scheduling on low-power embedded systems due to
the trend of adopting Multiprocessor System-on-Chip
(MPSoC) into their designs. Two categories of research are
published. One is on the architecture level during design time
[2, 6, 16, 17, 18, 19]. It either targets on solving thermal
problems from complete hardware point of view, or on
solving them with Hardware/Software co-synthesis which is
a combination of the two. The other is on the application
level [1, 4, 11, 15]. It aims to solve thermal problems for
general platforms such as smart phones and future personal
mobile devices, which have various hot-spot profiles of
applications on these platforms. Thus, application-oriented
scheduling with design flexibility works better on them.

In this paper, we introduce a multilevel temperature-
aware online DMFI scheduling on the application level. It
extends Online Dynamic Multiple Feasible Intervals
(ODMFI) introduced in [26]. It scales CPU frequency to
bring down energy consumption subject to the operation
temperature threshold. Since frequency and temperature have
impacts on each other, the task allocation and the workload
on each core are adjusted dynamically based on combined
profile of applications and the platform. Thus, the operation
frequency is scaled up and down based on available slacks,
the estimated execution time built from priori, and the
temperature threshold. To the best of our knowledge, the
thermal problem for Dynamic MFI task sets [10] was not yet
addressed.

Dynamic scaling techniques, including Dynamic Voltage
Scaling (DVS) and Dynamic Voltage Frequency Scaling
(DVFS), are commonly used in temperature-aware
scheduling, for instance [1, 4, 11, 15, 17]. However, none of
them targets on the same system model as ours. Specifically,
Bao, Andrei, Eles and Peng in [17] propose voltage selection
enabled by DVS on architecture level; Wang and Bettati in
[1] extend general task arrivals with First-in First-out
scheduling and Static Priority scheduling; Chantem, Dick
and Hu in [4] minimize peak temperature subject to time

Work-in-Progress (RTCSA 2010) 21 Macau SAR, P.R.C.

constraints with static task allocation; and Chen, Wang and
Thiele in [15] propose a temperature-aware scheduling
extending Earliest Deadline First (EDF) scheduling. The
closest work we found is done by Fisher, Chen, Wang and
Thiele in [11] where they describe a two-phase thermal-
aware global scheduling: an ideally preferred speed is
calculated in the first phase to minimize peak temperature for
the tasks, and a feasible speed is further calculated by
increasing the preferred speed in the second phase in order to
guarantee global scheduability.

The rest of this paper is organized as the following.
Section II provides background of thermal issues on MPSoC
platforms and derives our temperature function. Section III
proposes the multilevel temperature-aware ODMFI (MT-
ODMFI) which has a task allocator distributing work to
safely operating cores from temperature point of view, and a
local scheduler who executes each task contingent on both
timing and temperature restrictions. Section IV describes
some experiment design issues, and Section V outlines our
future work.

II. THERMAL MODEL FOR LOW-POWER MPSOCS
There are two kinds of power consumption on ICs:

dynamic power consumption and leakage power
consumption [2, 3, 4, 12, 13, 14, 15]. Dynamic power or
switching power is the result of charge and subsequent
discharge of digital circuits. Leakage power or static power
is the result of leakage currents in CMOS circuits. The
dynamic power consumption can be calculated using (1):

where C is the collective switching capacitance, V is the
power supply voltage and ƒ is the operation frequency.

As mentioned earlier, the leakage power consumption
grows exponentially, and the dominant types will be
subthreshold leakage and gate leakage [4, 13, 15]. For low-
power MPSoCs (LP-MPSoCs), leakage power can be
approximated by a linear function in the operating
temperature ranges of integrated circuits with roughly 5%
error [3, 14]. Thus, we use the leakage power function
defined in (2):

where α, β are constants and θ(τ) is a function of time τ for
the operation temperature.

Thermal models derived from (1) and (2) have different
forms in a wide range of studies. One of the most influential
studies is about the relationship between a function unit’s
temperature and its frequency formalized as a super-linear
function in [1]. Since we use the temperature model in online
scheduling algorithm, we follow the simple rule and choose a
simplified temperature function defined in (3):

where a, b, α are curve fitting constants, and Θ(τ0) is the
operation temperature at any start point τ0. Since we assume
no other dynamic workload except MFI task sets, τ0 can be
any time point when system is idle or in an equilibrium state.
The system is in the equilibrium state before all the tasks
arrive, and we can derive Θ(τ0) from another simplified
function for the operation frequency defined in (4):

where a, b, α are the same fitting constants as in (3).

The linear relationships of temperature and frequency
expressed in (3) and (4) are simplified with fixing one or the
other [1]. That is, (3) is derived with a constant frequency ƒC
and (4) is derived with a constant temperature θC. Since
temperature keeps changing during run-time, we need a way
to estimate it. The estimation is based on the derivative of
(3):

where a, b, α are the same as in (3).

III. TEMPERATURE-AWARE ONLINE DYNAMIC MULTIPLE
FEASIBLE INTERVALS

In our system, DMFI task sets begin as Earliest Deadline
First (EDF) tasks. Feasible intervals of each task are
generated later by considering outside factors, current
circumstances, and other tasks. For example, a multi-
threaded download manager can be required to start a high
priority task set immediately. Thus, it needs to adjust feasible
intervals of its current, ready tasks besides determining
running intervals for this new comer. We previously
proposed an efficient feedback-based online scheduling
algorithm ODMFI in [26] to address the dynamic features of
MFI task sets. It aggressively utilizes slack times by scaling
CPU frequencies according to a modeled execution time
instead of Worst Case Execution Time (WCET). However, it
can also dramatically upscale CPU frequencies when there is
a workload burst. For example, when many urgent tasks
arrive at the same time, ODMFI increases CPU speed to its
highest available operating frequency to meet deadlines. This
may result in performance degradation and thus longer
execution time and higher timing violations. Although a low
CPU frequency indicates low power consumption according
to (1) ~ (3), the heat dissipation is more complicated. Studies
by Liu et cl. in [13] about the relationship between thermal
optimization and energy optimization point out that
optimizing energy consumption with DVFS can lead to
unnecessary high temperature. Thus, it is critical to set a
temperature threshold in our scheduling algorithm.

Besides introducing a temperature threshold, we also
need to adjust ODMFI for MPSoC. We choose multilevel
scheduling, a scheduling framework that has been used in
modern Operating Systems (OS) and proposed for
multiprocessor and multi-core systems [23, 24, 25]. It
enables the task allocation to schedulable components e.g.
multi-core processors, which further perform fine-grained

Θ′(τ) = -b·(Θ(τ0) - a·ƒC
α ⁄ b)·e-b·∆τ. (5)

ƒ(τ) = (b·θC ⁄ a)1/α . (4)

Θ(τ) = (Θ(τ0) - a·ƒC
α ⁄ b)·e-b(τ-τ0) + a·ƒC

 α ⁄ b. (3)

Ρleakage = α·θ(τ) + β. (2)

Ρdynamic = C·V2·ƒ. (1)

Work-in-Progress (RTCSA 2010) 22 Macau SAR, P.R.C.

scheduling among the composing elements of the
components, for example on-chip cores. It meets scheduling
requirements of MPSoCs such as aggregate performance,
load balancing and resource sharing. ODMFI stated in [26] is
for single-core platforms. With the extension of temperature-
aware control, it naturally becomes a local scheduler
controlling each core. A task allocator is designed to
schedule MFI tasks among cores in compliance with
requirements of temperature and timing. We allow task
migration for both thermal and workload balancing. We
describe MT-ODMFI in two parts as follows: task allocator
and local scheduler.

A. Task Allocator
We assign MFI tasks to each core based on the following

rules: 1) cooler cores have higher priorities to get tasks; 2)
cores with lighter workload have higher priorities to get
tasks.

Rule 1) requires that we maintain each core’s current
approximated temperature θcurrent. As mentioned in the above,
we estimate Θ(τ0) from (4) before MT-ODMFI starts, and
we initialize each core’s θcurrent with it. As tasks execute on
each core, we need to update their temperatures after each
task completes. We modify (5) to approximate temperature
change caused by each task run from (6):

where a and b are the same constants as in formula (3), θcurrent
is each core’s temperature before task Ti runs, and
execution_time(i) is the actual execution time of Ti.

For rule 2), we express workload on each core in
temperature as well. Since each local scheduler, temperature-
aware ODMFI (T-ODMFI), can queue more than one task
when necessary, we have an expectation about how much
each core needs to do based on WCET, and thus we can
estimate what temperature each core will be at after they
finish their assigned work. Because of the severity of thermal
problems mentioned previously, we follow conservative rule
and thus use WCET in temperature prediction. The expected
temperature is expressed as θexpected and we calculate it from
modification of (6) with WCET(j) for the assigned task Tj
replacing execution_time(i). Thus, we characterize each core
with a real pair (θcurrent, θexpected).

We also allow tasks to be re-assigned to other cores. It
happens when any core reaches the temperature threshold θ∗.
Task migration is designed in a simple way: re-submit the
un-executed tasks to the task allocator. The task allocator
will adjust feasible intervals of these tasks accordingly and
get them ready to re-assign.

B. Local Scheduler
We introduce temperature-aware ODMFI (T-ODMFI) as a
local scheduler which extends ODMFI with temperature
constraints. The extension is straight-forward: temperature
threshold θ∗ is checked every time after each task finishes.
Besides temperature checking, the scheduler aggregates
available slacks and proportionally scales down the current

operation frequency according to the ratio of the estimated
execution time to the sum of the available slacks. Contrast to
temperature control, we use the estimated execution time
which is calculated from curve fittings of historical data.
Thus, the temperature-aware extension does not have any
impact on the execution time modeler or the selection of
CPU frequency scale factor. The algorithms are outlined in
Figure 1.

IV. EXPERIMENT DESIGN ISSUES
Temperature threshold selection is critical for meeting

deadlines and performance requirements because the on-chip
core is effectively paused by the local scheduler when its θ∗
is reached. As mentioned in the above, we follow the
conservative rule for thermal related metrics and set θ∗ as
the following. We first refer to the architecture data sheet.
For example, there are two case temperatures Τcase for
PXA255 single-core platform [5]. One is the nominal case
temperature from 0°C to 85°C. The other is the extended
case temperature from -40°C to 100°C. According to [21], a

Task Allocator

 While(task queue is not empty)
{

 Choose the core with smallest tuple ((θcurrent, θexpected) for Ti;
 Update θexpected of the chose core with ∆θ;
 If(θexpected ≤ θ∗)
 {
 Assign Ti to the chosen core;
 Release memory related to Ti;
 }
 Else goto cooling;

 }
 cooling: check temperature of each core regularly until one of
them has θexpected in safe range;

T-ODMFI Algorithm

 While(task queue is not empty)
{

 Locate first un-executed task in queue, Ti;
 Search available slack times and decide if Ti or other later

tasks suitable to run;
 Choose scale factor for current CPU frequency;
 Scale CPU frequency;
 Run task Ti;
 Update θcurrent with ∆θ;
 Adjust θexpected with the difference between ∆θ calculated

with the actual execution time and the one calculated with WCET;
 Release memory related to Ti;
 If(θcurrent ≥ θ∗)
 {
 Set CPU frequency to lowest frequency;
 goto re-assign;
 }

 }
 re-assign: submit all the un-executed tasks to task allocator;

Figure 1. Pseudo Code of MT-ODMFI

∆θi = -b·(θcurrent - a·ƒα ⁄ b)·e-b·execution_time(i). (6)

Work-in-Progress (RTCSA 2010) 23 Macau SAR, P.R.C.

small difference of operating temperature, i.e. 10 ~ 15°C, can
result in a 2X difference in the lifespan of devices [21], so
85°C is chosen. Then we provide a cushion with lowering
the temperature by a portion, e.g. 15%, which sets 72°C ≅ (1-
15%) · 85°C as system θ∗ for PXA255 example.

We also need criteria to evaluate our MT-ODMFI
algorithm. One key indicator is the energy efficiency defined
in (7) which illustrates how much energy is used as dynamic
power, because leakage is expected to account for more than
50% of the overall power consumption for feature sizes
below 65nm [20]. Leakage power is quite difficult to
measure directly, but we can derive it based on (1) and total
energy measured through application life time.

V. FUTURE WORKS
For experiments of MT-ODMFI, several items are on our

agenda for the near future. We plan to investigate the effect
of thermal issue in the context of adding new tasks to be
scheduled in the system, in particular how the addition of
new tasks would affect the temperature change. Besides
energy efficiency, we also need to compare non-temperature
related aspects including but not limited to: 1) missing
deadline ratio; 2) overall energy consumption; and 3)
algorithm overhead.

ACKNOWLEDGMENT
This work is sponsored in part by the National Science

Foundation under Award No. 0720856.

REFERENCES
[1] S. Wang and R Bettati, “Delay Analysis in Temp.-Constrained Hard

Real-Time Systems with General Task Arrivals,” in Proc. IEEE Real-
Time System Syposium (RTSS), IEEE Press, Dec. 2006, pp. 323-334.

[2] Y. Xie and W.-L. Hung, “Temperature-Aware Task Allocation and
Scheduling for Embedded Multiprocessor Systems-on-Chip Design,”
Journal of VLSI Signal Processing, 45(3), 2006, pp. 177-189.

[3] Y. Liu, R. P. Dick, L. Shang and H. Yang, “Accurate Temperature-
Dependent Integrated Circuit Leakage Power Estimation is Easy,” in
Proc. IEEE Design, Automation and Test in Europe (DATE), Mar.
2007, pp. 204–209.

[4] T. Chantem, R. P. Dick and X. S. Hu, “Temperature-Aware
Scheudling and Assignment for Hard Real-Time Applications on
MPSoCs,” in Proc. IEEE Design, Automation and Test in Europe
(DATE), 2008, pp. 288-293.

[5] Intel PXA255 Processor Data Sheet, www.phytec.com/pdf/datasheets
/PXA255_DS.pdf .

[6] Y.-W. Yang and K. S.-M. Li, “Temperature-Aware Dynamic
Frequency and Voltage Scaling for Reliability and Yield
Enhancement,” Asia and South Pacific Design Automation
Conference (ASPDAC), 2009, pp. 49-54.

[7] J.-J. Chen, J. Wu and C.-S. Shih, “Approximation algorithms for
scheduling real-time jobs with multiple feasible intervals,” Journal of
Real-Time Systems, pages 155-172, vol. 34, no. 3, Nov. 2006.

[8] C.-S. Shih, J. W.-S. Liu and I. K. Cheong, “Scheduling jobs with
multiple feasible intervals,” in Proc. IEEE Real-Time Computing and
Systems and Applications (RTCSA), 2003.

[9] J. Lin and A. Cheng, “Power-aware scheduling for Multiple Feasible
Interval Jobs,” in Proc. 15th IEEE-CS International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA), Beijing, China, Aug. 2009.

[10] J. Hall, J. Lin, and A. Cheng, “Dynamic Multiple Feasible Intervals,”
in Proc. IEEE-CS Real-Time and Embedded Technology and
Applications Symposium (RTAS) WIP Session, Stockholm, Sweden,
April 13-16, 2010.

[11] Nathan Fisher, Jian‐Jia Chen, Shengquan Wang and Lothar Thiele,
“Thermal‐Aware Global Real‐Time Scheduling on Multicore
Systems,” in Proc. IEEE Real‐Time and Embedded Technology and
Applications Symposium, San Francisco, CA, April 2009.

[12] S. Borkar, “Design Challenges of Technology Scaling,” IEEE Micro,
July-August 1999, pp. 23-29.

[13] Y. Liu, H. Yang, R. P. Dick, H. Wang and L. Shang, “Thermal vs
Energy Optimization for DVFS-enabled Processors in Embedded
Systems,” in Proc. IEEE 8th International Symposium on Quality
Electronic Design (ISQED), 2007.

[14] G. Paci, P. Marchal, F. Poletti and L. Benini, “Exploring
“temperature-aware” design in low-power MPSoCs,” in Proc. IEEE
Design, Automation and Test in Europe (DATE), 2006, pp. 1-6.

[15] J.-J. Chen, S. Wang and L. Thiele, “Proactive Speed Scheduling for
Real-Time Tasks under Thermal Constraints”, in Proc. IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2009, pp. 141-150.

[16] Y. Xie and W.-L. Hung, “Temperature-Aware Task Allocation and
Scheduling for Embedded Multiprocessor System-on-Chip (MPSoC)
Design,” Journal of VLSI Signal Processing 45, 2006, pp. 177-189.

[17] M. Bao, A. Andrei, P. Eles and Z. Peng, “Temperature-Aware
Voltage Selection for Energy Optimization,” in Proc. IEEE Design,
Automation and Test in Europe (DATE), 2008, pp. 1083-1086.

[18] W.-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir and M. J. Irwin,
“Thermal-Aware Task Allocation and Scheduling for Embedded
Systems,” in Proc. IEEE Design, Automation and Test in Europe
(DATE), 2005.

[19] A. K. Coskun, T. S. Rosing, K. A. Whisnant and K. C. Gross,
“Temperature-Aware MPSoC Scheduling for Reducing Hot Spots
and Gradients,” Asia and South Pacific Design Automation
Conference (ASPDAC), 2008, pp. 49-54.

[20] M. Santarini, “Thermal integrity: A must for low-power IC digital
design,” Electronics Design, Strategy, News (EDN), September 15,
2005, pp. 37-42.

[21] R. Viswanath, V. Wakharkar, A. Watwe and V. Lebonheur, “Thermal
performance challenges from silicon to systems,” Intel Technology
Journal, (Q3), 2000.

[22] L. Shang, L-S. Peh, A. Kumar and N. K. Jha, “Temperature-Aware
On-Chip Netowrks,” IEEE Micro, Vol. 26, Issue 1, 2006, pp. 130-
139.

[23] J. Bennett and H. Zhang, “Hierarchical Packet Fair Queuing
Algorithms,” Proc. ACM SIGCOMM ’96, pp. 143-156, Aug. 1996.

[24] P. Goyal, X. Guo, and H. Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems,” Proc. Second Usenix Symp.
Operating System Design and Implementation (OSDI ’96), pp. 107-
122, Oct. 1996.

[25] F. Mulas, D. Atienza, A. Acquaviva, S. Carta, L. Benini and G. D.
Micheli, “Thermal Balancing Policy for Multiprocessor Stream
Computing Platforms,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 28, Issue 12, pp.
1870-1882, IEEE Press, 2009.

[26] B. Liu, F. Liu, J. Hall, J. Lin and A. Cheng, “Power-Aware Online
Dynamic Scheduling for Multiple Feasible Intervals,” Department of
Computer Science, University of Houston, Technical Report UH-CS-
10-06, 2010.

Ρe = Ρdynamic / Ρtotal. (7)

Work-in-Progress (RTCSA 2010) 24 Macau SAR, P.R.C.

A Study of Dynamic Navigation with WAVE/DSRC in VANET
Environment

Shu-Ping Lu, Kuan-Ming Li and Cheng-Yi Hsieh

Abstract— This paper presents an integrated architecture
for the implementation of dynamic routing/navigation appli-
cation in VANET environment using WAVE/DSRC. Dynamic
navigation re-routes after receiving traffic event from VANET
is examined in the test using a WAVE On-board-Unit(OBU)
and a WAVE Road-Side-Unit(RSU) as the network node. In
this study, the loopback detection method is adopted to detect
re-broadcasting packets when a forward request in real-time
needed. Finally, tests showed that the real-time traffic messages
are delivered efficiently for dynamic navigation application with
high mobility situations.

I. INTRODUCTION

Advances in electronic and computer technologies have
accelerated the progresses of Intelligent Transport Systems
(ITS) recently. ITS is essentially the merger of developments
in computing, information technology and telecommunica-
tions coupled to automotive and transportation sector exper-
tise [3], [8], [13]. Vehicles communicate to each other to
share some important and emergent information in typical
application scenarios. ITS presents cost-effective solutions
to a wide range of applications such as electronic toll
collection, emergency vehicle notification systems, automatic
road enforcement.

In content distribution network(CDN) [1], [2] latency
fluctuates in the vehicular environment due to such factors
as network instability, weak signal and bandwidth limit.
With highly progress of wireless network and broadcasting
technologies, however, CDN for vehicle communications
has now become realistic than ever before. In the well
defined infrastructure, vehicles can receive messages from
various information sources. First of all, vehicle can receive
data from information center via wireless communication or
broadcasting (e.g., 3G, FM, Dedicated Short Range Commu-
nications(DSRC) [4], [6] and DVB-T[5]) as shown in Fig. 1.
Furthermore car-to-car communication could share informa-
tion while maintaining its mobility. The wireless network
with multi-hop transmission usually has low throughput and
high packet drop rate in high speed moving. The advent of
Vehicular Ad Hoc Network(VANET) [9], [10] have been

Shu-Ping Lu and Kuan-Ming Li are with Information and Communi-
cations Research Laboratories, Industrial Technology Research Institute,
Hsinchu, Taiwan. {dolinlu,crush}@itri.org.tw

Cheng-Yi Hsieh is with the Department of Electrical
Engineering, ASUSTek Computer INC, Hsinchu, Taiwan.
hikaruu@seed.net.tw

envisioned to be useful in road safety and many commer-
cial applications. VANET opens a myriad of possibilities
towards sharing and exploiting dynamic information. Traffic
conditions can be collected and exchanged on the fly while
traveling the roads.

Traffic Center

Other
Information
Center

FM RSU

DVB-T

Information
Exchange in

VANET

DSRC
FM

3G

3G

TV
broadcasting

Fig. 1. Overall picture of information services in Vehicle Network.

The way to cope with network dynamics and high mo-
bility efficiently in vehicular network is an important issue.
Collectively, as a whole, IEEE 1609.x and IEEE 802.11p
are called wireless access in vehicular environments (WAVE)
standards because their objective is to facilitate the provision
of wireless access in vehicular environments [11]. The real-
time road network information may be beneficial for people
in moving vehicles to make a better road plan in Dynamic
Navigation. However, Yi et al. [12] investigated that the
performance of WAVE has not been widely studied. The
purpose of this paper is to bring an integrated architecture
for the implementation of Dynamic Navigation application in
WAVE/DSRC VANET environment. Our results indicate that
the real-time traffic messages deliver efficiently for Dynamic
Navigation application.

The remainder of this paper is organized as follows:
Section II describes system architecture and Dynamic Nav-
igation aspects that are relevant in an environment of
WAVE/DSRC VANET wireless transmission. Section III
enumerates the throughput analysis of experiments. Fi-
nally, Section IV concludes the integrated architecture for
the implementation of Dynamic Navigation application in
WAVE/DSRC VANET environment.

Work-in-Progress (RTCSA 2010) 25 Macau SAR, P.R.C.

Fig. 2. System Architecture

II. COMMUNICATION ARCHITECTURE

In this section, the system architecture and Dynamic
Navigation aspects that are relevant in an environment of
WAVE/DSRC VANET wireless transmission are described.

A. System Architecture

The aim of our integrated architecture is to evaluate
the Dynamic Routing performance over WAVE/DSRC
VANET environment. The basic architectural concept of the
environment is illustrated in Fig.2.

• Hardware Layer: Physical network devices such as 3G,
WIMAX, and OBU are defined in Hardware Layer.
Vehicles can connect to the Internet through 3G and
WIMAX in outer door environment. And vehicles can
also establish data communication by inter-vehicle com-
munication by OBU through DSRC protocol.

• Data Extraction Layer: Data Extraction Layer extracts
service information messages from data received by
Hardware Layer. The communication through socket by
OBU, 3G, and WIMAX perform socket data extraction
in this layer.

• Data Management Layer: The data blocks to transferred
are stored and extracted from Data Extraction Layer.
Application Data Manager broadcasts the data blocks
to be transferred via inter-vehicle communication.

• Application Layer: Various data applications retrieve
data from Application Data Management Layer, such
as news, and real-time traffic information.

B. Dynamic Navigation

The components and the data flow of Dynamic Navigation
are depicted in Fig. 3. The hybrid model of pre-defined
routes is used in Dynamic Navigation to provide the proper
path for travelers. For example, the potential traffic jams can
be alerted to drivers by vehicular network which providing
increased convenience and efficiency. Based on the traffic
data, vehicles are also able to calculate the optimal paths.
Pre-defined routes select an origin and a destination and

Fig. 3. Data flow of Dynamic Navigation

then calculate the route based on a shortest-path method,
such as A* algorithm and Dijkstra’s algorithm. Shortest-path
based on time uses not only the speed limits of segments,
but mainly the dynamic traffic information derived from
WAVE/DSRC VANET communication. Furthermore, we de-
velop a loopback detection method to discard the forwarded
packet. For example, when Driving car receives the same
message again from vehicular environment, the broadcasted
message may loop back to the original sender. Once Driving
car receives the traffic event from vehicular environment,
routing engine changes the weight of accident road section
and re-routed. Algorithm 1 shows the establishment of the
Traffic Parser with loopback detection.

Algorithm 1: Traffic Parser Procedure
input : Traffic message {m1,m2, ...,md} ∈M, where md

with RSU/OBU unique ID {w1,w2, ...,wk} ∈W
output: Packetize message to be forwared P

1 begin
2 P←− ϕ
3 Traffic Buffer T B←− ϕ
4 for i← 1 to d do
5 T B←− T B∪mi
6 if wk existed then
7 T B←− {T B−mi}
8 else
9 P←− T B

∪
wk

10 Broadcast P

III. PERFORMANCE EVALUATION

A. An implement of DSRC Box

The IEEE has developed a system architecture known
as WAVE to provide wireless access in vehicular
environments [11]. ITRI WAVE/DSRC Communication
Unit(IWCU) can transfer data in WAVE/DSRC VANET
environment. ITRI develops ITS applications that utilize
WAVE/DSRC for two years. The DSRC Box considers that
the next generation of vehicles will be commonly equipped
with a wireless communication apparatus, according to IEEE
802.11 standards.

IWCU has two wave ports and Fig. 4 is the setup interface.
Each wave port has different RF antenna, channel plan and
network converter. We could use web browser to connect

Work-in-Progress (RTCSA 2010) 26 Macau SAR, P.R.C.

Fig. 4. ITRI DSRC/WAVE Communication Box Setup

the DSRC box to configure. For channel plan, the setting
contains channel, bit rate and TX power. Higher TX power
could transmit packet data further but power consumption is
also higher. Network converter is the rule how DSRC box
converts the Ethernet UDP/IPv4 packet to DSRC network
packet. The converter setting contains Provider Service Iden-
tifier (PSID), IPv4, UDP Port and Wave Port. One DSRC box
which has converter with one PSID number could receive
the packet with the PSID number from the other DSRC
box. IPv4 is the TCP/IP address of Ethernet packet that
requires transform to 802.11p packet. The address also used
to transform 802.11p packet to Ethernet packet. UDP port is
the port number of TCP/IP when packet is Ethernet. Wave
port is the port number when packet is 802.11p.

Because IWCU delivers and broadcasts data in vehicular
communication, the IP addresses of all DSRC box are
set to a same address as 192.168.10.10. We also set the
PSID, UDP port and Wave port to a same number, 123.
The application receives all the broadcasting packets and
identifies the different service by checking a number in the
network message.

B. Traffic Efficiency

Vehicular communication is used to create and share the
traffic related information. In this paper, traffic efficiency
is the criteria to measure Dynamic Navigation performance
of the transportation network. The criteria will be used to
address the performance of the experimental results later.
Table I shows the traffic efficiency of 14 sec response time
and 200 meters response distance by the speed of 40km/hr
or 60km/hr.

C. Experimental Results

The trials [7] were based on an OBU that is only able
to provide position information to enable the road segment
on which the vehicle is travelling to be identified. The im-
plementation of this paper addressed a Dynamic Navigation
application and developed a loopback detection method to

TABLE I
TRAFFIC EFFICIENCY OF 14 SEC RESPONSE TIME AND 200 METERS

RESPONSE DISTANCE BY THE SPEED OF 40KM/HR OR 60KM/HR.

Speed 40km/hr 60km/hr
Msg Arrive 45s, 30s,

526.760419002042m 552.771699410834m
Route Begin 45s, 30s,

526.760419002042m 552.771699410834m
Route End 43.96s, 28.96s,

516.449716783234m 537.916799130385m

Fig. 5. The real word environment

discard the re-forwarded packet. After the car received the
traffic event in the original routing path, it rerouted to another
routing path to avoid road section which had the traffic event.
Furthermore, the loopback detection method was adopted to
discard the broadcasting packet to be re-forwarded.

Fig. 5 shows the real world scenario of the experiment.
The top node was the position of Event car with one DSRC
Box. The middle node was decision point of Dynamic Navi-
gation. The rest nodes were the positions of message arrival,
route end, route begin, and Driving car with one DSRC
Box. The routing procedure of this scenario is described in
the following and depicted in Fig. 6 and Fig. 7. Note that
the bolded line was the routing path. The bolded line was
changed while receiving real-time traffic event. In Dynamic
Navigation demo, one DSRC Box on Event car beside the
road and another one on Driving car were set up. Event car
broadcasts the traffic event out. Once Driving car received
the traffic event from Event car, routing engine changed
the weight of accident road section and re-routed. When
Driving car received the same message again, the broadcasted
message might loop back to the original sender.

Table II shows the distances between nodes of exper-
imental results. Traffic efficiency of experimental results
in response time and response distance are displayed in
Table III. Compared with Table I, the results indicate that Dy-
namic Navigation works well and efficiently in WAVE/DSRC
VANET environment when receiving real-time traffic infor-
mation.

Work-in-Progress (RTCSA 2010) 27 Macau SAR, P.R.C.

Fig. 6. The original path before rerouting

Fig. 7. The re-routed path

IV. CONCLUSION

In this paper, we proposed an integrated architecture for
the implementation of Dynamic Navigation application using
WAVE/DSRC in VANET environment. WAVE/DSRC is a
low latency and high bandwidth device that is necessary
for real-time safety-critical applications, such as collision
avoidance or pedestrian safety applications. Dynamic Nav-
igation could re-route after receiving traffic events. The
loopback detection method was adopted to eliminate the
broadcasting packet to be re-forwarded. The real-time traffic
messages delivery for Dynamic Navigation application was
examplified.

By the time this work is ongoing, the implemented envi-
ronment is being used to further investigate various use cases
that involves Vehicle-to-Vehicle communication. Future re-
search are planned to assessed a comprehensive VANET
applications using this mechanism, and will be conducted
in much larger scale.

REFERENCES

[1] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer
content distribution technologies. ACM Comput. Surv., 36(4):335–371,
2004.

[2] M. Bateni and M. Hajiaghayi. Assignment problem in content distribu-
tion networks: unsplittable hard-capacitated facility location. In SODA
’09: Proceedings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 805–814, Philadelphia, PA, USA, 2009.
Society for Industrial and Applied Mathematics.

TABLE II
DISTANCES BETWEEN NODES

Speed 40km/hr 60km/hr
Routing Time 1.045s 1.029s

(MsgArrive,RSU) 907.36394326477m 948.89419810080m
(RouteBegin,RSU) 907.36394326477m 948.89419810080m

(MsgArrive, DecPoint) 526.76041900204m 552.77169941083m
(RouteBegin, DecPoint) 526.76041900204m 552.77169941083m
(RouteEnd, DecPoint) 516.44971678323m 537.91679913038m

TABLE III
TRAFFIC EFFICIENCY OF EXPERIMENTAL RESULTS IN RESPONSE TIME

AND RESPONSE DISTANCE

Speed 40km/hr 60km/hr
Msg Arrive 24.0680483333333s, 24.0676733333333s,

120.393166666667m 120.393168333333m
Route Begin 24.0680483333333s, 24.0676733333333s,

120.393166666667m 120.393168333333m
Route End 24.0681405008717s, 24.0679463546302s,

120.393115839189m 120.393089956913m
Decision Point 24.0728038333332s, 24.0728038333332s,

120.393037166892m 120.393037166892m

[3] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Ver-
scheure, H. Koutsopoulos, and C. Moran. Ibm infosphere streams
for scalable, real-time, intelligent transportation services. In SIGMOD
’10: Proceedings of the 2010 international conference on Management
of data, pages 1093–1104, New York, NY, USA, 2010. ACM.

[4] J.-M. Bohli, A. Hessler, O. Ugus, and D. Westhoff. A secure and
resilient wsn roadside architecture for intelligent transport systems.
In WiSec ’08: Proceedings of the first ACM conference on Wireless
network security, pages 161–171, New York, NY, USA, 2008. ACM.

[5] P. Bures. The architecture of traffic and travel information system
based on protocol tpeg. In EATIS ’09: Proceedings of the 2009 Euro
American Conference on Telematics and Information Systems, pages
1–8, New York, NY, USA, 2009. ACM.

[6] J. He, H.-H. Chen, T. M. Chen, and W. Cheng. Adaptive congestion
control for dsrc vehicle networks. Comm. Letters., 14(2):127–129,
2010.

[7] M. Kitchen and S. Hoepfel. Traffic Choices Study V Puget Sound Trial.
ITS (UK) Road User Charging Interest Group, November 2005.

[8] S. Kurihara, H. Tamaki, M. Numao, J. Yano, K. Kagawa, and
T. Morita. Traffic congestion forecasting based on pheromone com-
munication model for intelligent transport systems. In CEC’09:
Proceedings of the Eleventh conference on Congress on Evolutionary
Computation, pages 2879–2884, Piscataway, NJ, USA, 2009. IEEE
Press.

[9] J. Lee, G.-L. Park, S.-W. Kim, H.-J. Kim, and S. Y. Shin. A hybrid
prefetch policy for the retrieval of link-associated information on
vehicular networks. In SAC ’10: Proceedings of the 2010 ACM
Symposium on Applied Computing, pages 189–193, New York, NY,
USA, 2010. ACM.

[10] O. K. Tonguz and M. Boban. Multiplayer games over vehicular ad
hoc networks: A new application. Ad Hoc Netw., 8(5):531–543, 2010.

[11] R. A. Uzcátegui and G. Acosta-Marum. Wave: a tutorial. Comm.
Mag., 47(5):126–133, 2009.

[12] B. K. Yi Wang, Akram Ahmed and K. Psounis. Ieee 802.11p
performance evaluation and protocol enhancement. Proceedings of
the 2008 IEEE International Conference on Vehicular Electronics and
Safety, pages 317–322, 2008.

[13] T. Zelinka and M. Svitek. Identification of communication solution
designated for transport telematic applications. WTOC, 7(2):114–122,
2008.

Work-in-Progress (RTCSA 2010) 28 Macau SAR, P.R.C.

Development of Mesovirtualization for the ARM Architecture

Akihiro Suzuki Shuichi Oikawa
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

Abstract—The performance gain of embedded processors
is significant in theses days. As their performance is being
increased, it is very likely that embedded systems will use
virtualization technologies. This paper describes the devel-
opment of SIVARM, a virtual machine monitor (VMM) for
the ARM architecture, which is the most popular processor
architecture among embedded systems. An obstacle to intro-
duce virtualization to embedded systems is high development
costs of VMMs. In order to overcome the obstacle, we applied
mesovirtualization to its development, so that we could simplify
the development effort. After less than a year of our effort
to develop SIVARM, we could successfully execute Linux
on SIVARM. We can now perform some experiments on
an emulated environment using QEMU, which defines the
Integrator/CP board with the ARM926EJ-S processor. We are
currently working on porting SIVARM to the ARM1136JF-S
(Freescale i.MX31) based system.

Keywords-Virtual machine monitors; embedded systems;
ARM architecture

I. INTRODUCTION

The performance gain of embedded processors is sig-
nificant in theses days. The clock frequency of some of
such processors reaches 1 GHz. Also, the trend of CMP
(Chip Multi-Processing) or multi-core architectures diffuses
silently, and processor manufacturers have begun shipping
of such products. With the high performance of current
embedded processors, which is comparable to the PCs of
a few years ago, it is very likely that embedded systems
will use virtualization technologies. Virtualization enables
more dependability and higher security [3], [5], and those
features are beneficial to embedded systems, too.

An obstacle to introduce virtualization to embedded sys-
tems is high development costs of virtual machine monitors
(VMMs) [6]. VMMs are the software layer that runs on bare
machines and creates virtual machines, on which operating
systems (OSes) can run. Most VMMs have been developed
targeting servers, and many of them are for the IA-32
architecture because of its popularity. There are few attempts
to port full fledged VMMs to embedded processors, and
XenARM [7] is such an example. XenARM is a port
of the Xen hypervisor [1] to the ARM architecture. Its
development is, however, very slow. After more than 3 years
of its development, it is not still usable enough even for
experimental uses.

This paper describes our effort to develop a VMM,

called SIVARM, on the ARM architecture. We apply meso-
virtualization to its development. Mesovirtualization is a
lightweight virtualization technique, which we developed
for the IA-32 architecture [8]. Mesovirtualization can make
VMMs smaller and require only a few modifications for
the guest operating system (OS) source code; thus, we can
keep the development cost of our VMM as low as possible.
After less than a year of our effort to develop SIVARM,
we could successfully execute Linux on SIVARM. We can
now perform some experiments on an emulated environment
using QEMU[2], which defines the Integrator/CP board with
the ARM926EJ-S processor. We are currently working on
porting SIVARM to the ARM1136JF-S (Freescale i.MX31)
based system.

II. MESOVIRTUALIZATION

Mesovirtualization is a lightweight virtualization tech-
nique to construct a VMM. Mesovirtualization opts to mod-
ify a few parts of the guest OS source code in order to enable
lightweight configuration of a VMM, but the cost of modi-
fications can be kept as low as possible to make the modifi-
cations easily manageable. Therefore, it does not require the
complicated work typically needed for full virtualization and
paravirtualization. We must configure huge VMMs for full
virtualization and modify a huge amount of the guest OS
source code for paravirtualization. Mesovirtualization does
not require such complicated work, yet it can provide guest
OSes with sufficient virtualization environments, in which
guest OSes can manage their environments, use processors,
memory and devices as if they run on a physical machine.

Mesovirtualization is based on the principle of minimal-
ism. We do not need to virtualize the entire of the host
machine to provide identical environments to guest OSes as
full virtualization. We do not need to modify many parts of
the guest OS source code to trap into a VMM and to handle
it in the VMM as paravirtualization. Mesovirtualization is a
technique which supports guest OSes just enough to run
it on a VMM. For some parts of the host machine that
are considered safe to be dedicated or shared, a VMM
does not virtualize these parts and allows guest OSes touch
them directly. This rationale keeps a VMM as simple as
possible. It is beneficial to the development of the both
VMM and guest OSes in a sense that the code size and
memory footprint of the VMM becomes small and also that

Work-in-Progress (RTCSA 2010) 29 Macau SAR, P.R.C.

the costs of virtualization can be kept cheap. Therefore, it
works better on embedded and ubiquitous systems, of which
computing resources are not as rich as desktop and server
systems.

III. ARM ARCHITECTURE

This section describes the features of the ARM architec-
ture that are different from the IA-32 architecture and that
affect the design and implementation of SIVARM.

The processor mode of the ARM architecture is composed
of the privileged mode and the non-privileged mode (USR),
and there are 6 different types of the privileged mode, FIQ,
IRQ, SVC, ABT, UND and SYS, corresponding to different
reasons to trap into the the privileged mode.

Among those types of the privileged mode, 5 of them
except for SYS are for handling exceptions and interrupts. In
order to avoid saving registers and to enable quick handling
of exceptions and interrupts, the ARM architecture employs
banked registers. FIQ defines 5 general purpose registers,
a stack pointer register (SP), a link register (LR), and a
saved program status register (SPSR) in its banked registers.
The other 4 types defines only SP, LR, and SPSR in their
banked registers. When an exception or interrupt occurs, the
corresponding banked registers are automatically used.

Table I shows the reasons to trap into the the privileged
mode and the types of the privileged mode used to handle
traps. The ARM architecture has 7 exceptions. When an
exception occurs, the processor mode changes to the corre-
sponding exception type, the CPSR is saved in the SPSR of
its banked registers, and the execution starts from the fixed
address according to the caused exception type.

The ARM architecture employs a two-stage access control
using a domain and an access permission (AP) bit. The
domain can divide memory space into several parts. When
a virtual memory space is shared, it can isolate a part of
memory space from the other. The AP bit controls access to
a specific virtual memory page frame based on the current
processor mode. Both the domain ID and the AP bit are
included in page table entries.

Sensitive instructions are the instructions that affect or
depend on the processor state, and a VMM needs to handle
them appropriately when a guest OS kernel executes them.
The ARM architecture includes several sensitive instruc-
tions. Most of them are privileged instructions, of which
execution in the non-privileged mode causes an exception.
There are, however, a few sensitive instructions that can be
executed in the non-privileged mode. The access instruc-
tions, MRS and MSR, to the current program status register
(CPSR) are such examples.

IV. DESIGN AND IMPLEMENTATION

This section describes the design and implementation of
SIVARM and the modification needed to the Linux kernel,
which we use as a guest OS to run on SIVARM.

A. Virtual Processor Mode

Since the ARM architecture provides only the two ex-
ecution modes, the privileged mode and the non-privileged
mode, there is no choice other than executing a VMM in the
privileged mode. In order to protect a VMM from a guest
OS, both the kernel and its user processes of the guest OS
need to run in the non-privileged mode. This way, however,
introduces a problem. Since the Linux kernel expects itself
to run in the privileged mode, it has to be able to distinguish
in which of the 6 types of the privileged mode it is currently
running.

We solve the problem by introducing the virtual processor
mode. SIVARM creates an illusion that there are virtually the
7 types of the privileged mode and the non-privileged mode.
We execute kernel mode of Linux in virtual privileged mode
and user mode of Linux in virtual non-privileged mode.

B. Virtual Banked Registers

The virtual processor modes must have the virtual banked
registers as the real processor modes. But, the number
of registers is limited in non-privileged mode; thus, extra
registers do not exist.

We use the memory space of SIVARM as the space of the
virtual banked registers. The virtual banked registers prepare
the registers that are used in virtual USR and virtual SYS.
In this study, we call it the virtual registers. And, when the
guest OS executes the instruction of changing the processor
mode, we store the current registers to the virtual registers
and copy the virtual banked registers to the current registers.
These can use the current registers as the banked registers.

Moreover, the CPSR before the exception is stored to the
SPSR of the mode of the caused exception automatically in
the real processor modes. So, in the virtual processor modes
too, the CPSR before the exception is stored to the virtual
SPSR of the virtual mode of the caused exception by the
hand.

C. Virtual Protection Level by Domain

We must allow the virtual privileged mode to access all
memory space in the guest OS. And, we must not allow the
virtual non-privileged mode to access the kernel memory
space in the guest OS. These are the same protection of
the real processor modes. In addition, SIVARM is executed
in privileged mode of the real processor mode. So, we must
maintain the state that the VMM is protected from accessing
by the guest OS.

Therefore, in this study, we construct a virtual protection
level by using the domain. We use the domain as shown
in Table II. D0, D1 and D15 show respectively the domain
where the kernel process belongs, the user process belongs
and SIVARM belongs. It is necessary that the AP bit of
the PTE that the VMM belongs is set to 0b01 beforehand,
and not to access the VMM from non-privileged mode.
Moreover, D15 that the VMM belongs is always set to the

Work-in-Progress (RTCSA 2010) 30 Macau SAR, P.R.C.

Table I
THE EXCEPTION TYPE, THE PROCESSOR MODE AND THE HIGH VECTOR ADDRESS

Exception Type Type of Privileged Mode Vector Address
Reset SVC 0xFFFF0000
Undefined instructions UND 0xFFFF0004
Software interrupt (SWI) SVC 0xFFFF0008
Prefetch Abort (instruction fetch memory abort) ABT 0xFFFF000C
Data Abort (data access memory abort) ABT 0xFFFF0010
IRQ (interrupt) IRQ 0xFFFF0018
FIQ (fast interrupt) FIQ 0xFFFF001C

Table II
THE ACCESS CONTROL FOR VIRTUAL PROCESSOR MODE USING

DOMAIN.

D15 D1 D0
VMM (D15) Client Manager Manager
User (D1) Client Client No access
Kernel (D0) Client Manager Manager

client, and the access control always uses the AP bit. As
a result, the VMM is protected from the guest OS that is
executed in non-privileged mode.

As mentioned above, the virtual protection level is con-
structed by using the domain in non-privileged mode, and
Linux can be executed as the guest OS.

D. Exception Handling

Exceptions need to be handled by Linux while they
are first delivered to SIVARM since the ARM architec-
ture defines the fixed start addresses of exception vectors.
SIVARM stores appropriate branch instructions at the ex-
ception vectors during the initialization, so that exceptions
invoke SIVARM’s exception handlers. SIVARM’s exception
handlers then calls Linux’s exception handlers. Since Linux
assumes exception handlers run at the corresponding proces-
sor modes, he virtual banked registers described in Section
IV-B are used.

Depending up the source of exceptions, SIVARM deter-
mines if exceptions need to be delivered to Linux or not.
If the source of exceptions are Linux’s user processes, they
are delivered to Linux. If the source of exceptions are the
Linux kernel, SIVARM examines the exceptions in order
to determine if SIVARM needs to handle them. If they
are caused by the execution of sensitive instructions in the
Linux kernel or device accesses, SIVARM handles them.
Otherwise, they are delivered to Linux.

E. Emulation of Non-Privileged Sensitive Instructions

Both the MRS and the MSR instructions are non-
privileged instructions; thus, their execution in user mode
does not cause an exception. They are, however, sensitive
instructions, which SIVARM needs to detect their execu-
tion. If they execution cannot be detected, SIVARM cannot
execute the guest OS correctly.

In this study, we rewrite the MRS and the MSR in-
structions in the code of Linux to an adequate privileged
instruction off-line. The instruction obviously causes an
exception, so SIVARM detects the execution of the non-
sensitive instruction using the substitutional privileged in-
struction. In this study, we call the instruction causing an ex-
ception on purpose the representative privileged instruction.
We use following privileged instruction as the representative
privileged instruction. It’s operand isn’t used in Linux.

mrc p15, 7, rX, c7, c7, 7

It is necessary for the VMM to associate the representa-
tive privileged instruction with the non-privileged sensitive
instruciton.

The representative privileged instruction allows SIVARM
to emulate the MRS and the MSR instructions in the guest
OS. The exception caused by the representative privileged
instruction is the undefined instructions exception. The way
of the emulation is the same until the PC moves to the
undefined exception handler. The undefined instructions ex-
ception handler in the VMM describes the handling of the
representative privileged instruction individually in advance.

The representative privileged instructions enable the cor-
rect emulation of the non-privileged sensitive instruction.

V. EXPERIMENT AND EVALUATION

This section describes the experiment and evaluation
done on SIVARM constructed based on the design and
implementation policy described in section IV.

A. Experiment Environment

The experimental environment of this system is as fol-
lows. We developed and evaluated SIVARM on an emulated
environment using QEMU.

• OS : Linux 2.6.25.4
• Board : Integrator/CP
• CPU : ARM926EJ-S (ARMv5TEJ)
• Memory : 128MB

B. Evaluation of the Size of Implementation

When SIVARM was constructed based on the design and
implementation policy described in Section IV, it became
2662 lines in C and 792 lines in assembly language including
inline assembler. The representative privileged instructions

Work-in-Progress (RTCSA 2010) 31 Macau SAR, P.R.C.

Table III
EXECUTION RESULT OF EACH BENCHMARK

Benchmark NativeLinux (usec) SIVARM (usec) Speed ratio
fork+exit 3,255.97 86,488.48 26.56

fork+exec 14,917.65 274,880.32 18.43
pipe 210.02 1,001.09 4.77

syscall 0.87 7.21 8.29

described in Section IV-E are 44 lines (the number of the
MRS instruction is 20 lines and the MSR instruction is 24
lines) in total. So, the change to the Linux kernel is very
little. In addition, we adopt that the way of booting SIVARM
by adding the VMM to the zImage in this study. So, we add
70 lines to the decompression handling of the zImage.

C. Evaluation of the Performance

We executed a benchmark program on Linux introducing
SIVARM and native Linux. It was done with the execution
time of each instruction have been made constant by using
icount option of QEMU.

We show the result of comparing the execution speeds
in Table III. The speed ratio shows the execution speed
of SIVARM when the execution speed of Native Linux is
adjusted to one.

According to Table III, an intense performance decrease
occurs in SIVARM. Therefore, it is not possible to use
the VMM by the scene where real time is demanded at
present. We will aim at the performance gain of the VMM
in the future. Especially, the speed ratio of the benchmark
that creates a new process by using fork like fork+exit and
fork+exec is higher than the other one. It seems that this
is because a lot of privileged instructions are executed for
PTE when PT is updated when the process is created and
the number of emulation executed in the VMM increased.

VI. RELATED WORK

Xen[1] is a popular VMM that runs on the IA-32 archi-
tecture. It was also ported to the ARM architecture, and is
called XenARM [7]. XenARM employs paravirtualization,
so that a significant amount of modifications are necessary to
its guest OS kernel; thus, Its development is, however, very
slow. After more than 3 years of its development, it is not
still usable enough even for experimental uses. On the other
hand, SIVARM employs mesovirtualization, which requires
only a small amount of changes to its guest OS kernel. After
less than a year of our effort to develop SIVARM, we could
successfully execute Linux on SIVARM.

The ARM architecture now provides a hardware assisted
virtualization feature, called TrustZone which is available
only on few high end processors, such as ARM1176JZF-
S. By taking advantage of TrustZone, virtualization should
become easier as it happened when the Intel VT was
introduced to the IA-32 architecture. The ARM architecture
is, however, used in a variety of SoC solutions; thus, such a

hardware feature may not be always available. Therefore, a
lightweight VMM like SIVARM is useful for those solutions.

VII. SUMMARY

This paper described the development of SIVARM,
a VMM for the ARM architecture. We applied meso-
virtualization to its development, so that we could simplify
the development effort. After less than a year of our effort
to develop SIVARM, we could successfully execute Linux
on SIVARM. We can now perform some experiments on an
emulated environment using QEMU. We are currently work-
ing on porting SIVARM to the ARM1136JF-S (Freescale
i.MX31) based system. In addition, we are trying to improve
the performance of a guest OS on SIVARM.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield: Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium
on Operating System Principles, pp. 164-177 (2003).

[2] Febrice Bellard: QEMU, a Fast and Portable Dynamic Trans-
lator, USENIX 2005, pp.41-46 (2005).

[3] T. Bressoud and F. Schneider: Hypervisor-Based Fault Toler-
ance. ACM Transactions on Computer Systems, Vol.14, No.1,
pp.80-107 (1996).

[4] M. Cereia, I. C. Bertolotti: Virtual Machines for Distributed
Real-Time Systems, Computer Standars & Interfaces, pp.30-
39 (January 2009).

[5] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D.
Boneh: Terra: a virtual machine-based platform for trusted
computing. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pp. 193-2006 (2003).

[6] R. P. Goldberg: Survey of Virtual Machine Research, IEEE
Computer, Vol.7, No.6, pp.34-45 (1974).

[7] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-
Ju Park, Jae-Min Ryu, Seong-Yeol Park, Chul-Ryun Kim:
Xen on ARM: System Virtualization using Xen Hypervisor
for ARM-based Secure Mobile Phones, CCNC 2008, pp.257-
261 (2008).

[8] M. Ito, S. Oikawa: Mesovirtualization: Lightweight Virtual-
ization Technique for Embedded Systems. In Proceedings of
the 5th IFIP Workshop on Software Technologies for Future
Embedded & Ubiquitous Systems, pp. 496-505 (2007).

Work-in-Progress (RTCSA 2010) 32 Macau SAR, P.R.C.

Handling Lock-Holder Preemption in Real-Time Virtualization Layer
for Multicore Processors

Hitoshi Mitake, Yuki Kinebuchi, Alexandre Courbot, Tatsuo Nakajima
Department of Computer Science

Waseda University
{mitake, yukikine, alex, tatsuo}@dcl.info.waseda.ac.jp

Abstract—Porting ordinary operating systems to a virtual
machine monitor produces a semantic gap because assumptions
which guest OSes rely on cannot be preserved. On multicore
environments, this gap can cause fatal performance degrada-
tions. Lock Holder Preemption (LHP) is a well known example
of the sources of perfromance degradation. It occurs when a
thread of guest OS holding a mutex based on busy wait is
preempted by virtual machine monitor.

Some previous research developed techniques to avoid this
phenomenon, but none of them cares about real-time respon-
siveness of guest OSes. In this paper, we introduce a plan for
developing a new method to avoid LHP. The difference between
previous methods and our new one is awareness of real-time
responsiveness of guest OSes. So this method can be applied
to virtualization technology designed for real-time embedded
systems.

I. INTRODUCTION

As predicted by Moore’s law, today’s computer systems
have become significantly powerful especially in number
of cores. The increase of processor cores turned virtu-
alization technology into a real world method. In server
side computing, virtualization already became a de-facto
standard method, mainly for system integration. In this
field, virtualization significantly reduces cost of engineering,
management, and hardware resources.

Increasing the number of processor cores is becoming a
common trend for embedded systems too. Rich devices like
smart phones have become functional along with hardware
enhancements. However developing dedicated software for
each rich device introduces a siginificant engineering cost.

The increasing cost of developing and managing software
is a problem that not only embedded systems but also
servers have to address. Of course, both sides have their own
specific problems. In this work, we will concentrate on the
specific problems of real-time responsiveness for virtualized
embedded systems.

Guaranteeing real-time responsiveness is one of the rep-
resentative problems of embedded systems. In addition,
recent embedded models feature new and rich interfaces
like touch panels. There is therefore a difficult convergence
point to be reached in today’s embedded systems: featuring
both common applications with rich interfaces and real-time
responsiveness on the same device.

This goal is very hard to achieve using existing OSes
because almost every operating system is one of these two
types:

� General Purpose OS (GPOS) which provides fair
scheduling, high throughput, and highly abstracted in-
terfaces for ease of programming and isolation but no
real-time guarantee.

� Real Time OS (RTOS) featuring real-time scheduling,
low latency, but low abstractions in order to preserve
low overhead.

An example of GPOS, Linux, most used OS especially
in server side computing, has lots of existing software
resource in form of programs, libraries and kernel modules:
device drivers, file systems, network protocol stacks, natural
language processors, multimedia players and so on. But, as a
Unix-like operating system, Linux is not suitable for running
real-time processes: for instance, a non real-time process can
block the interrupts globally and thus prevent execution of
real-time processes within a non-predictable timespan.

On the other hand, a traditional RTOS is suitable for
running real-time processes, but misses the huge software
library that OSes like Linux have.

For these reasons, developing modern embedded devices
with both rich interfaces and guaranteed real-time respon-
siveness based on single GPOS or RTOS is a difficult task.
But running the two types of OSes on the same device is a
good technique to combine the best of both worlds.

RTLinux [3], Adeos [2] and our ongoing project
SPUMONE [1] all propose a solution to combine RTOS
and GPOS. However all of them are sharing the same
problem according to the semantic gap between real and
virtual multicore processor. OSes assume they are control-
ling hardware resources directly. When porting such OSes
to a virtualization layer, a semantic gap appears. In this
case, by combining a RTOS and a GPOS, the GPOS loses
complete control of the interrupt controller. Therefore there
is a possibility for the RTOS to preempt the GPOS even
when it is executing a critical section. This preemption can
cause critical performance degradation of GPOS, because
if other threads of GPOS running on a different CPU try
to acquire a lock that is already acquired by the preempted
thread, they spin in vain until the RTOS releases CPU.

Work-in-Progress (RTCSA 2010) 33 Macau SAR, P.R.C.

Preempting the virtual CPU which is executing a thread
holding a lock is a common problem of virtualization
technology and is referred to as Lock Holder Preemption [4].
Previous research [4], [5] proposed some solutions to this
problem, but as we will describe in this paper, these tech-
niques cannot be applied to real-time systems.

In this work, we first demonstrate the problem and try to
establish a method also applicable to real-time systems.

II. BRIEF DESCRIPTION OF SPUMONE

The method we are trying to establish is for a virtual
machine monitor called SPUMONE [1]. This is a para-
virtualization technology that works as a thin abstraction
layer between hardware and OSes. Virtualization technology
categorized into para-virtualization requires modification of
guest OSes, but overhead of the virtualization layer is
relatively low.

In SPUMONE, each OS runs on a vCPU provided and
scheduled by SPUMONE. The vCPU scheduler is activated
by interrupt and through the sleep instruction of guest OSes.
When the guest OSes issue a sleep instruction, SPUMONE
selects the next runnable vCPU assigned to its physical CPU
(pCPU). If there is no runnable vCPU, a special vCPU
representing an idle state is executed just like the idle task of
traditional OSes. And when interrupt is raised, SPUMONE
delivers it to the vCPU which the interrupt number is
assigned to.

SPUMONE leverages the interrupt priority mechanism
of hardware. Thanks to this mechanism, it is possible to
mask interrupts partially. The interrupt controller judges
which interrups should be masked based on their priority.
For example, if we assume that there are two devices with
different priorities, one being the timer device which rises
an interrupt periodically and the other being the ethernet
controller which rises an interrupt when it receives a frame,
if a high priority is assigned to the timer device and a low
one to the ethernet controller, the interrupt service routine
of the OS processing the interrupt of the timer device can
mask the interrupt of the ethernet device.

This feature is key to implementing SPUMONE. In the
example described above, if the RTOS is assigned the timer
device and GPOS the ethernet device, SPUMONE delivers
timer interrupts to the vCPU of the RTOS, triggering its
execution. If the ethernet controller receives a frame and
tries to raise an interrupt during the execution of the RTOS,
the pCPU will not be interrupted by the ethernet controller
because the priority of the timer device is higher than the
one of the ethernet controller.

This interrupt priority mechanism is a common feature
of CPU targeting embedded systems. Our test environment,
SH-4A, provides it, as well as ARM-based processors.

As the description above implies, SPUMONE requires
modifying the source code of guest OSes. The amount
of modification is however very small: only the entry of

SPUMONE

RTOS

GPOS

RT

App

RT

App

Kernel

User

Core 0

VCPU VCPU

SPUMONE

Core 1

VCPU

App App App

Figure 1. Structure of SPUMONE on multicore processor

interrupt service routine and functions for issuing sleep
instruction.

There are several similar work focusing on combining a
RTOS and a GPOS together. RTLinux [3] treats Linux as
a idle task of the real-time OS. Linux is therefore allowed
to run when there is no real-time tasks to run. Adeos [2],
targeting the x86 architecture, enables running multi OSes
on one system without modification of guest OSes. It only
requires inserting kernel module, but highly depends on the
unused privilege levels of the x86 architecture.

III. PROBLEM STATEMENT: MULTICORE SPECIFIC
PERFORMANCE PROBLEM

SPUMONE is a successful technology on single core
environment. But on multicore systems, depicted in Fig.1, a
critical performance degradation of the GPOS is observed.

Fig.2 is the result of running the backbench benchmark.
The leftmost bar, labeled 4 cores, is the score of Linux
running on 4 dedicated physical cores. The rightmost bar,
labeled 3 cores, is the score of Linux running on 3 dedicated
physical cores. The bars in the middle, labeled with percent-
ages, are the scores of Linux running on top of 4 physical
core while sharing one core with the RTOS. The percentage
describes the CPU time consumed by the RTOS.

As this graph describes, when the CPU time consumption
of the RTOS is larger than 70%, the scores of hackbench is
lower than when Linux is running on 3 cores only.

This performance degradation occurs because of the Lock
Holder Preemption (LHP) [4] phenomenon. In general, LHP
is caused by preemption of the vCPU executing a thread
holding a busy-wait mutex (e.g. spinlock).

LHP causes a significant waste of time because when
other vCPUs try to acquire the lock acquired by preempted
vCPU, the vCPU holding the lock cannot continue to execute
the critical section protected by the lock because it is
preempted. Therefore, other vCPUs trying to acquire the
lock will spin in vain until the blocked vCPU is scheduled
again and finally releases the lock, provoking the observed
performance degradation.

There is also another problem related to LHP. OSes
running on a multicore processor use Inter Core Interrupt
(ICI) for some types of synchronization. For example, ICI is

Work-in-Progress (RTCSA 2010) 34 Macau SAR, P.R.C.

0

1

2

3

4

5

6

7

8

9

4 cores

10%
20%

30%
40%

50%
60%

70%
80%

90%
3 cores

w/o migration

w/ migration

dedicated cores

Figure 2. Result of hackbench on multicore SPUMONE

used for TLB shootdown. In a virtualized environment, this
can cause significant performance degradation or deadlock
if the destination vCPU is preempted.

IV. RELATED WORK FOR SOLVING LHP
The traditional way to solve the LHP problem is

coscheduling [6]. Coscheduling was originally designed for
multi process programs frequently interacting with each
other via IPC. A scheduler implementing this method tries
to execute processes communicating with each other in
same time slice, so that occurrence of blocking by IPC and
overhead of context switch is reduced. Today, coscheduling
is used for scheduling virtual machines to avoid LHP. For
example, VMWare [7] employs a customized version of this
method. However, coscheduling still wastes a non-negligible
amount of CPU resource, so some projects explored other
ways to solve this problem.

Uhlig et al. proposed a method to avoid LHP in both para-
virtualization and full virtualization in [4]. The method for
para-virtualization is indicating the holding of a lock by a
guest OSes with flags of the VMM. If the flags indicate the
thread of a guest OS is holding a lock, the VMM never
preempts the guest OS but sets another flag indicating de-
layed preemption. When the thread of the guest OS releases
the lock, it checks the delayed preemption flag, which, if
turned on, yields the CPU to another VM. This method is
efficient for virtualization environments containing GPOSes
only, but cannot be applied to RTOSes because it causes
delay in interrupt delivery.

Wells et al. proposed another method to avoid LHP using
extended hardware in [5]. The extended hardware com-
ponent, called Spin Detection Buffer (SDB), features eight
content-addressable memory entries that can hold unique
stores and loads instruction. During a given period it records
stores and loads. If the entries are not full, SDB indicates
that a thread of a guest OS is holding a lock.

All these work introduces an extra delay to the real-time
responsiveness of guest OSes, so these techniques can not
be applied in a satisfactory manner to embedded systems.

V. DISCUSSION

A. Goal of This Work

The aimed goal of this work is realizing all the conditions
below:

� Guaranteeing real-time responsiveness of the RTOS,
� Preserving the high throughput of the GPOS,
� Maximizing CPU resource utilization.

It is not self-evidence whether realizing these three goals at
once is possible or not.

For example, when SPUMONE allocates 1 pCPU for the
RTOS and 3 pCPU for the GPOS statically, realizing real-
time responsiveness and good GPOS throughput without
degradation is possible. But this way sacrifices the exploita-
tion of the CPU resource. Because the GPOS can only use 3
pCPU even if the RTOS is sleeping and doing nothing. For
exploiting the CPU resource efficiently, effective sharing of
a single pCPU with several vCPUs must be realized.

The essential part of this problem is the possibility to
schedule an overcommited virtual machine. When a virtual
machine monitor executes N vCPUs on M pCPUs and
N > M , the state of the virtual machine monitor is called
overcommitted.

B. Former Approach

We are trying to solve this scheduling problem using
the vCPU migration feature of SPUMONE. SPUMONE
can migrate a vCPU from pCPUN to pCPUM (N 6= M)
dynamically. Using dynamic vCPU migration, it is possible
to migrate a vCPU of the GPOS from the pCPU executing
the vCPU of the RTOS. So the problem is resumed to
scheduling overcommited vCPUs of GPOS.

Work-in-Progress (RTCSA 2010) 35 Macau SAR, P.R.C.

RTOS Linux

User

Kernel

Core 0

trap

interrupt

SPUMONE

Linux

Core 1

RTOS

User

Kernel

Core 0 Core 1

Linux Linux

migration

SPUMONE

VC 2

SPUMONE SPUMONE

VC 2 VC 1 VC 1 VC 0 VC 1 VC 0

Figure 3. Migration triggered by issuing system call or interrupt

The important difference between this work and related
work addressing the LHP is the type of overcommitment.
The typical overcommitted state is that the sum of vCPUs
number belonging to several virtual machines is larger than
those of pCPUs. But in our situation, the sum of vCPUs
number belonging to a single virtual machine is larger than
pCPUs.

Current multicore SPUMONE migrates the vCPU of the
GPOS running on the pCPU shared with the RTOS when
the thread running on the vCPU of GPOS issues a system
call or when an interrupt is raised to the vCPU of GPOS in
order to avoid LHP as shown in Fig.3. If no thread executing
kernel code runs on the shared pCPU, there is no possibility
of LHP because the lock with busy wait is virtually only
acquired in kernel space.

This approach has the drawback of being too pessimistic.
Even if the vCPU of the GPOS does not execute a critical
section, its virtual machine will be overcommitted.

C. Directions for New Method

Since the former approach is too pessimistic, we are trying
to optimize it in order to reduce frequency of migration.

When LHP occurs, the thread trying to acquire the lock
which is acquired by the thread running on preempted
vCPU vainly consumes CPU time as lock mechanisms using
busy wait, like the spinlock, only do simple iteration when
acquiring. So we want to modify the guest GPOS in order
to count how long it is waiting for the lock.

If we can define the appropriate threshold of spinning
count, guest OSes can recognize occurrence of LHP when
the spin count becomes larger than the threshold. This is the
appropriate timing to migrate preempted vCPU. The GPOS
should request to migrate the vCPU which is currently
preempted by the vCPU of RTOS to another pCPU to
SPUMONE.

The next problem is scheduling of overcommitted vCPUs
running the GPOS only. Because the vCPUs are overcom-
mitted, there is at least one vCPU not executed at a given
time. If other vCPU tries to acquire the lock hold by the
preempted vCPU, LHP can occur again even on a single
OS. But LHP in single OS can also be solved using the

scheme described above. The factor that may cause serious
problem in this situation is TLB shootdown. If the processors
are not always available assumption of ordinary OSes can
be violated. In this situation performance can be degraded
or deadlock can occur. TLB shootdown employs ICI to
notify another CPU to invalidate or update TLB entries.
When OSes are executed in a virtualized environment,
the vCPU expected to receive the TLB shootdown might
not be running. In such case, the vCPU issuing the TLB
shootdown cannot obtain any response till preempted vCPUs
are resumed and reply. This situation can cause performance
degradation. Or if the virtual machine employes fixed pri-
ority scheduling for vCPU scheduler, deadlock might occur.
We therefore have to modify ICI usage of the GPOS to adopt
overcommitted environment.

The last problem is the cost of returning a migrated vCPU
to its original pCPU. The policy for migrating the vCPU of
the GPOS to its original pCPU right after the vCPU of RTOS
sleeps may not work well when a large quantity of interrupts
for the RTOS are raised in a short period because of the cost
of vCPUs migration. This timing should be decided based on
heuristic patterns of the RTOS workload. Whether a dynamic
or static policy should be employed is an important design
problem. If we employ a dynamic policy, its design becomes
another discussion point.

If all of these problems are solved, we should be able
to establish a method to handle overcommited virtualization
environment while guaranteeing real-time responsiveness.

REFERENCES

[1] Kinebuchi, Y. and Morita, T. and Makijima, K. and Sugaya,
M. and Nakajima, T. Constructing a Multi-OS Platform with
Minimal Engineering Cost. In Analysis, Architectures and
Modelling of Embedded Systems, 2009

[2] K. Yaghmour. Adaptive domain environment for operating
systems. Opersys inc, 2001.

[3] Victor Yodaiken. The RTLinux Manifesto. In the Proceedings
of the 5th Linux Expo, March 1999, in Raleigh North Carolina

[4] Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and Uwe
Dannowski. Towards Scalable Multiprocessor Virtual Ma-
chines. In VM’04: Proceedings of the 3rd conference on Virtual
Machine Research And Technology Symposium

[5] Philip M. Wells, Koushik Chakraborty, and Gurindar S. Sohi.
Hardware Support for Spin Management in Overcommitted
Virtual Machines. In Proc. of the 15th International Con-
ference on Parallel Architectures and Compilation Techniques
(PACT-2006), Sept. 2006, Seattle, WA

[6] J. K. Ousterhout. Scheduling Techniques for Concurrent Sys-
tems. Proceedings of Third International Conference on
Distributed Computing Systems, 1982

[7] VMware, Inc. VMware vSphere(TM) 4: The
CPU Scheduler. in VMware(R) ESX(TM) 4
http://www.vmware.com/files/pdf/perf-vsphere-
cpu scheduler.pdf

Work-in-Progress (RTCSA 2010) 36 Macau SAR, P.R.C.

	förlaga-letter3
	alla-papper-next-to-final.pdf
	14_camera_ready_paper
	11_camera_ready_paper
	10_camera_ready_paper
	12_camera_ready_paper
	13_camera_ready_paper
	9_camera_ready_paper
	4_camera_ready_paper
	5_camera_ready_paper
	7_camera_ready_paper

	emptypage

