
Towards Hierarchical Scheduling in
Linux/Multi-core Platform

Mikael Åsberg, Thomas Nolte
MRTC/Mälardalen University

P.O. Box 883, SE-721 23,
Västerås, Sweden

{mikael.asberg,thomas.nolte}@mdh.se

Shinpei Kato
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-8656, Japan

shinpei@il.is.s.u-tokyo.ac.jp

Abstract—This paper proposes the implementation of 4 dif-
ferent scheduling strategies for combining multi-core scheduling
with hierarchical scheduling. Three of the scheduling schemes
are analyzable with state-of-the-art schedulability analysis theory,
available in the real-time systems community. Our idea is to
implement these hierarchical multi-core scheduling strategies in
a Linux based operating system, without modifying the kernel,
and evaluate them. As of now, we have developed/implemented
a prototype two-level hierarchical scheduling framework (HSF)
in Linux (uni-core), which supports fixed priority preemptive
scheduling (FPPS) of periodic servers at the top level, and FPPS
of periodic tasks at the second level. The HSF is based on the
REal-time SCHeduler (RESCH) framework.1

I. INTRODUCTION

Our ongoing research is highly focused on the imple-
mentation of hierarchical scheduling [1] and execution time
monitoring (in Linux) for hierarchical/flat scheduler debugging
[2], [3]. Although hierarchical scheduling has major strengths
which have been shown in industry, for example the AR-
INC653 standard inherent in the integrated modular avionics
architecture, and considering it is a relatively old technique,
it is rarely found integrated in General Purpose Operating
Systems (GPOSs) intended for the embedded systems mar-
ket. Linux has recently included real-time group scheduling
(server-based scheduling), i.e., control groups and sched-rt-
group which makes it possible to schedule groups of tasks.
The interface given to each group is a period and runtime,
specifying that each group may run a certain amount of
time (runtime) each period. One motivation for introducing
server-based (hierarchical) scheduling in a GPOS, such as
Linux, is because of the possibility to allocate a specific
amount of CPU power to an application that may consist
of many Linux processes. Multimedia intensive applications
will gain performance due to this kind of scheduling (since
the CPU availability for video/audio processing increases)
which directly affects the users media quality experience. An
interesting example is when you execute a process which
processes a movie, using, e.g., the VLC library or similar.
Running it (as a real-time task) with high priority will affect
all lower priority real-time tasks and non real-time tasks.

1The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS.

Lowering its priority will result in an unexpected degradation
of CPU time (depending on the priority, type and amount of
running real-time tasks). The problem is that it is not possible
to fine-tune its performance by setting a frequency at which it
will get a specified amount of CPU time, since it is a aperiodic
task.

We have successfully implemented a prototype hierarchical
scheduler with the use of RESCH [4]. This framework sup-
ports fixed priority preemptive scheduling (FPPS) of periodic
(real-time) Linux tasks. The RESCH scheduler is a loadable
kernel module which only uses exported Linux kernel primi-
tives, as a means to affect scheduling. RESCH itself, and our
HSF, is completely free of kernel modifications (no patches).
This complies with the requirements in the area of embedded
systems where reliability and stability of software are impor-
tant properties, hence, proven versions of Linux are therefore
preferred. In this way, our scheduling framework adapts a
high degree of usability (since it does not require patches),
and it is more flexible than the built-in group scheduling of
Linux, such as control groups and sched-rt-group, since our
scheduler is highly adaptable. For example, our current server
scheduler supports periodic server scheduling, but could easily
be extended to support Constant Bandwidth Server (CBS),
Sporadic Server (SS) etc.

A major drawback with the current version of our HSF
is that it only supports uni-core scheduling. This makes it
inefficient since it cannot utilize the entire CPU capacity
of the multi-core platforms. Hence, we want to extend our
hierarchical scheduler combining hierarchical scheduling with
different types of multi-core scheduling schemes.

A. Preliminaries

a) RESCH: As mentioned previously, RESCH is a patch-
free scheduling framework for Linux. It supports periodic tasks
which can be scheduled in a fixed-priority preemptive manner.
RESCH runs as a kernel module (in kernel space), giving both
an interface to users in user space (e.g. a task specific interface
like rt wait for period()), as well as in kernel space. The
kernel space primitives (hooks) can be implemented by a
RESCH plugin, i.e., a kernel module that has access to
the RESCH kernel API. Examples of such hook functions
are job release plugin and job complete plugin, which



are executed when a RESCH task is released for execution
respectively when it has completed its current job.

In Linux, since kernel version 2.6.23 (October of 2007),
tasks can be either a fair or a real-time. The latter group
has higher priority (0-99 where 0 is highest) than fair tasks
(100-140). A task that registers to RESCH is automatically
transformed to a real-time task. RESCH is responsible for
releasing tasks, and tasks registered to RESCH must notify
when they have finished their execution in the current period.
In this way, RESCH can control the scheduling. The cost of
having a patch-free solution is that it can only see scheduling
events related to its registered tasks, i.e., higher priority real-
time tasks, which are not registered in RESCH, can thereby
interfere with RESCH tasks without the RESCH core detecting
it. A simple solution to this problem is to schedule all real-time
tasks with RESCH.

b) Multi-core scheduling: There exits three types multi-
core scheduling schemes [5], [6], [7], [8]. Global scheduling
is referred to when a single scheduler (with a single task ready
queue) schedules tasks on all cores on the platform. In this
type of scheduling, tasks may switch (migrate) to other cores.
Partitioned scheduling is defined as multiple schedulers
(one per core) scheduling tasks on only one core. Tasks are
statically assigned to a CPU and they do not migrate. The
third approach, Cluster scheduling, is a combination of the
two mentioned. It may have at minimum one scheduler (and
maximum equal to the amount of cores) and each scheduler
is assigned a subset of cores (minimum 1 and maximum the
number of cores on the platform). Each scheduler schedules
its tasks on its assigned cores, note that there may exist global
and partitioned scheduling in this scheme.

c) HSF: As mentioned previously, we have implemented
a hierarchical scheduler (HSF) plugin in RESCH. HSF sched-
ules RESCH tasks in groups, where a group (server) is
scheduled in FPPS, with respect to its interface: period,
budget and priority. A server runs budget time units every
period, and in the order of their priority, i.e., FPPS. Inside
each server, RESCH schedules the group of tasks according to
FPPS. An example execution trace of HSF/RESCH is shown
in Fig. 1. We ran a movie processing (aperiodic) task (rt vlc)
in server Server0, and 2 periodic real-time tasks (rt task1
and rt task2) in server Server1. Server0 had highest server
priority (and high frequency), leading to that rt vlc interfering
with task rt task1 and rt task2 very frequent. We ran these
tasks/servers on a desktop computer (Intel Pentium Dual-Core,
E5300 2,6GHz) equipped with Ubuntu Linux (kernel version
2.6.31.9). The arrows represent task releases and the trace
itself is visualized with the Grasp tool [9].

B. Outline

The outline of this paper is as follows: Section II presents
related work. In Section III we propose the implementation of
4 different hierarchical multi-core scheduling schemes, and
finally in Section IV, we discuss the complexity of these
schemes.

II. RELATED WORK

To the best of our knowledge, related to hierarchical
scheduling implementation in combination with multi-core
and Linux for real-time systems, there is only one paper
presenting such work [10]. The scheduler (patch) is composed
of one Hard Constant Bandwidth Server (H-CBS) per core, and
global multi-core scheduling within each partition, which has a
fraction of each core at its disposal. Further, theoretical work in
this area [11] has been done by Shin et al. The difference from
[10] is that there is only one hierarchical global scheduler and
a partition might not have access to all cores. The hierarchical
global scheduler is defined to be Global Earliest Deadline First
(G-EDF) as well as the local ones.

Hierarchical scheduler implementations in Linux are, to the
best of our knowledge, all based on modifications of the Linux
kernel. Here are some examples.
The SCHED DEADLINE project [12], is in charge of the
Earliest Deadline First (EDF) scheduler implementation for
Linux. The scheduler (patch) supports scheduling of servers
which has a period, budget and a task associated with it.
SCHED DEADLINE is the highest priority scheduling class,
i.e., higher than SCHED FAIR and SCHED RT and it
supports multi-core (one runqueue per CPU).

Real-Time Application Interface for Linux (RTAI) [13] is a
collection of loadable kernel modules and a kernel patch which
together provides a rich real-time scheduling API to the user.
It does not implement a hierarchical scheduler but it exports
the sufficient primitives to implement one. Similar to RTAI,
RT-Linux [14] is a patch to the Linux kernel and introduces
a layer between the OS and the hardware. Linux is scheduled
as low priority task while real-time tasks have higher priority.

The AQuoSA framework [15] is a hierarchical scheduler
based on the Constant Bandwidth Server (CBS) with a ad-
vanced adaptive resource reservation. The framework is built
on a patch which exports appropriate scheduling hooks.

A POSIX compliant (minimally invasive) implementation of
the sporadic server (SCHED SPORADIC) [16] is presented
in [17]. The sporadic server improves the response time of
aperiodic tasks within fixed priority scheduling.

Related to multi-core scheduling in Linux, LitmusRT [18]
is an experimental platform which extends (modifies) the
Linux kernel (latest version is 2.6.32). It provides a simplified
scheduling interface for multi-core scheduling development.

III. PROPOSED IMPLEMENTATIONS

There exists (to the best of our knowledge) three known
hierarchical multi-core scheduling schemes for real-time sys-
tems, where one of these has been implemented in Linux.
Our aim is to implement all 3 of these in Linux, based
on our HSF/RESCH scheduler implementation, i.e., without
kernel patches. The current HSF implementation could also
be evaluated by comparing it with existing Linux hierarchical
schedulers such as the AQuoSA framework [15]. These are the
4 hierarchical multi-core scheduling schemes that we intend to



0 50 100 150 200 250 300 350 400

idle

rt_task1

rt_task2

rt_vlc

0

1

1

Server0

0

33

66

Server1

0

400

800

Idle

Fig. 1. Example trace visualized with the Grasp tool

implement: Shin et al. [11] has proposed analysis for cluster-
based scheduling. In this setup, tasks are scheduled with G-
EDF at the local level, i.e., the ready queue is ordered by short-
est deadline and tasks are transferred to the different cores until
they are all occupied. At the global level, each subsystem, i.e.,
group of tasks and servers are assigned a subset of the cores.
The global scheduler schedules the subsystems servers based
on G-EDF and the assigned cores. The subsystem has the same
amount of servers as the amount of assigned cores, and all
servers have the same period, but the budget is distributed
among them. This distribution is not fair, e.g., 3 servers with
budget 2.5 will result in budgets 1, 1 and 0.5. In Checconi et
al. [10] (has an implementation in Linux), each subsystem will
have access to all cores, and the number of servers (in each
subsystem) are the same as the number of cores. Locally, tasks
are scheduled with global multi-core fixed priority, globally,
each core has its own H-CBS scheduler, scheduling one server
from each subsystem. Note that the global scheduling is done
in parallel (several H-CBS schedulers). Nemati et al. [19]
has a scheme where the servers are scheduled with a global
multi-core scheduling scheme (fixed or dynamic priority),
and locally, each subsystem is scheduled with partitioned
multi-core (fixed or dynamic priority) scheduling, i.e., each
subsystem has maximum one server (that may run on any
core), so tasks always execute on the same core. Yet a fourth
scheme could be to schedule servers in sequence, thereby
scheduling tasks, within each subsystem, with global multi-
core on all cores. The difference from [10] is that there is
only one global scheduler. All 4 schemes are summarized in
Table I.

Fig. 2 illustrates how the servers would be executed in
the 4 different schemes. In Shin et al. [11], the servers of
a subsystem typically occupies a subset of all cores at a time

Strategy Multi-core scheduling Server parallelism
Shin et al. [11] Cluster Yes

Checconi et al. [10] Global Yes
Nemati et al. [19] Partitioned Yes

Sequential Global No

TABLE I
HIERARCHICAL MULTI-CORE STRATEGIES

(depending on the priority of other subsystems and its assigned
number of cores). All subsystem server periods are the same,
but the budget may differ, which is illustrated in the figure.
Checconi et al. [10] differs in that there is one scheduler per
core, scheduling independently of one another. A subsystem
has one server per core with the same parameters. Fig. 2
illustrates that the schedule will look similar on all cores,
but asynchronous, if we assume different scheduler drift or
similar interference. In Nemati et al. [19], there is maximum
one subsystem server running at once, but it may migrate, as
illustrated. Our proposed scheme, the sequential approach, will
execute the subsystems in sequential order, occupying each
core with one server.

IV. DISCUSSION

The implementation complexity of the four schemes differ
in both the local (the scheduling of tasks inside subsystems),
and the global (the scheduling of servers) level. Shin et al.
[11] has the most complex server scheduler (global level),
since the maximum number of cores that may be utilized,
and the occupied cores must be checked when scheduling a
server. Checconi et al. [10] is more simple since all servers



CPU#1
CPU#2
CPU#3
CPU#4

CPU#1
CPU#2
CPU#3
CPU#4

CPU#1
CPU#2
CPU#3
CPU#4

CPU#1
CPU#2
CPU#3
CPU#4

time

Shin et al.

Checconi et al.

Nemati et al.

Sequential

Fig. 2. Example server execution with all 4 schemes

are assigned to a core statically offline. In fact, one (H-
CBS) global scheduler could be sufficient to handle all servers
(which would make it similar to our sequential approach).
Nemati et al. [19] is quite simple since there is maximum
one server per subsystem, but the availability of cores need
to always be checked since servers are not statically assigned
to cores. Our proposed solution is simple since servers are
statically assigned to cores.

Looking at the local scheduling, Shin et al. [11] and Chec-
coni et al. [10] have similar local scheduling schemes. Both of
them schedules global multi-core scheduling, on a subset of
cores. Nemati et al. [19] uses simple partitioned scheduling
(uni-core scheduling), while our approach schedules global
multi-core scheduling on all cores. To summarize, [11] and
[10] have slightly more complex scheduling than the sequential
approach, while [19] is the most simple.

Looking at shared resources, due to that Nemati et al. [19]
uses partitioned scheduling, shared resources within a subsys-
tem becomes less complex with this approach, compared to
the other three schemes.

Our aim is to implement all four approaches and compare
their runtime scheduling complexity, their implementation
complexity and their utilization of the cores with/without
shared resources. Also, the current implementation could be
extended with CBS, SS etc. and compared to other hierarchi-
cal schedulers, such as AQuoSA [15]. The main difference
between these two approaches is that our scheduler does not
require any patches, which may decrease the performance. It
would be interesting to measure the performance loss due to
the higher degree of usability.

REFERENCES

[1] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards
Hierarchical Scheduling on top of VxWorks,” in Proc. of the 4th
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications, 2008.

[2] M. Åsberg, J. Kraft, T. Nolte, and S. Kato, “A Loadable Task Execution
Recorder for Linux,” in Proc. of the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems,
July 2010.

[3] M. Åsberg, T. Nolte, C. M. O. Perez, and S. Kato, “Execution Time
Monitoring in Linux,” in Proc. of the W.I.P. session in the 14th Interna-
tional Conference on Emerging Technologies and Factory Automation,
2009.

[4] S. Kato, R. Rajkumar, and Y. Ishikawa, “A Loadable Real-Time
Scheduler Suite for Multicore Platforms,” Technical Report CMU-
ECE-TR09-12, 2009. [Online]. Available: http://www.contrib.andrew.
cmu.edu/∼shinpei/papers/techrep09.pdf

[5] P. Gai, M. D. Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca,
“A comparison of MPCP and MSRP when sharing resources in the Janus
multiple-processor on a chip platform,” in Proc. of the 9th Real-Time
and Embedded Technology and Applications Symposium, May.

[6] U. C. Devi, “Soft real-time scheduling on multiprocessors,” Ph.D.
dissertation, 2006.

[7] S. Baruah and N. Fisher, “The Partitioned Multiprocessor Scheduling of
Sporadic Task Systems,” in Proc. of the 26th International Real-Time
Systems Symposium, December.

[8] T. P. Baker, “A comparison of global and partitioned edf schedulability
tests for multiprocessors,” In International Conf. on Real-Time and
Network Systems, Tech. Rep., 2005.

[9] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, Visualizing and Measuring the Behavior of
Real-Time Systems,” in Proc. of the 1st International Workshop on
Analysis Tools and Methodologies for Embedded and Real-time Systems,
July 2010.

[10] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical
Multiprocessor CPU Reservations for the Linux Kernel,” in Proc. of
the 5th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, June 2009.

[11] I. Shin, A. Easwaran, and I. Lee, “Hierarchical Scheduling Framework
for Virtual Clustering of Multiprocessors,” in Proc. of the 20th Euromi-
cro Conference on Real-Time Systems, July 2008.

[12] D. Faggioli and F. Checconi, “An EDF scheduling class for the Linux
kernel,” in Proc. of the Real-Time Linux Workshop, 2009.

[13] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza and S.
Papacharalambous, “RTAI: Real Time Application Interface,” Linux
Journal, vol. 29, no. 10, 2000.

[14] V. Yodaiken, “The RTLinux Manifesto,” in Proc. of the 5th Linux Expo,
1999.

[15] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQuoSA—
adaptive quality of service architecture,” Softw. Pract. Exper., vol. 39,
no. 1, pp. 1–31, 2009.

[16] IEEE Portable Application Standards Committee (PASC), “Standard for
Information Technology - Portable Operating System Interface (POSIX)
Base Specifations,” vol. 7. IEEE, December 2008.

[17] D. Faggioli, A. Mancina, F. Checconi, and G. Lipari, “Design and
Implementation of a POSIX compliant Sporadic Server for the Linux
Kernel,” in Proc. of the 10th Real-Time Linux Workshop, October 2008.

[18] B. Brandenburg, J. Calandrino, and J. Anderson, “On the Scalability
of Real-Time Scheduling Algorithms on Multicore Platforms: A Case
Study,” in Proc. of the 29th Real-Time Systems Symposium, November.

[19] F. Nemati, M. Behnam, and T. Nolte, “Multiprocessor Synchronization
and Hierarchical Scheduling,” in Proc. of the 1st International Workshop
on Real-time Systems on Multicore Platforms: Theory and Practice, in
conjunction with ICPP’09, September 2009.


