
Reducing the Number of Preemptions in Real-Time Systems Scheduling
by CPU Frequency Scaling

Abhilash Thekkilakattil∗, Anju S Pillai∗∗, Radu Dobrin∗, Sasikumar Punnekkat∗

* Mälardalen Real-Time Research Centre, ** School of Engineering,
Mälardalen University, Västerås, Sweden Amrita Vishwa Vidyapeetham, India

firstname.surname@mdh.se s anju@cb.amrita.edu

Abstract

Controlling the number of preemptions in real-time sys-
tems is highly desirable in order to achieve an efficient sys-
tem design in multiple contexts. For example, the delays due
to context switches account for high preemption overheads
which detrimentally impact the system schedulability. Pre-
emption avoidance can also be potentially used for the effi-
cient control of critical section behaviors in multi-threaded
applications. At the same time, modern processor architec-
tures provide for the ability to selectively choose operating
frequencies, primarily targeting energy efficiency as well as
system performance. In this paper, we propose the use of
CPU Frequency Scaling for controlling the preemptive be-
havior of real-time tasks. We present a framework for selec-
tively eliminating preemptions, that does not require modifi-
cations to the task attributes or to the underlying scheduler.
We evaluate the proposed approach by four different heuris-
tics through extensive simulation studies.

1. Introduction

Preemptions in real-time scheduling may cause unde-
sired high processor utilization, high energy consumption
and, in some cases, even infeasibility. The preemption cost
includes the direct costs to perform the context switches
[10] and to manipulate the task queues [4, 10], as well as the
indirect cost of cache-related preemption delays [13, 20].
The pessimism in many schedulability analysis methods
could be reduced if an efficient control of the critical sec-
tion behaviors can be established and preemption elimina-
tions are ideally suited for achieving this.

Preemptive Fixed Priority Scheduling (FPS) has been ex-
tensively analyzed since the work of Liu and Layland [14],
and is used in a large number of applications, mostly due
to its flexibility and simple run-time overhead. In practice,

however, preemptive FPS may imply large preemption re-
lated overheads and the need for preemption control is well
recognized [18, 4, 17]. Buttazzo [5] showed that the rate
monotonic algorithm (RM) introduces a higher number of
preemptions than earliest deadline first algorithm (EDF).

Many techniques towards eliminating/minimizing pre-
emptions have been proposed in literature [7, 23, 21, 19, 22,
12]. Most of the work focuses on reassigning task attributes
like release times, deadlines, priorities etc and cannot be
applied to those real-time tasks for which the task attributes
such as priority, release times and deadlines reflect strict
timing constraints. Alternative choices have to be devel-
oped for such systems where task attributes cannot be mod-
ified due to the inherent nature of the application involved.
Butazzo has identified Quality of Service (QoS) [6] as one
of the important research areas in future real time computer
systems. Current methods for preemption elimination may
reduce the quality of service as they change task attributes,
which can result in an increased jitter or reduced levels of
service due to late execution of tasks. Thus, removing pre-
emptions without affecting QoS and without any modifica-
tions to the task attributes would be the ideal one from a sys-
tem designer’s perspective. At the same time, reducing the
number of preemptions can also be beneficial from an en-
ergy point of view in systems with demands on low power
consumption. When a task is preempted, there is a great
probability that its contents in the cache will be lost. When
the execution of the task is again resumed it will cause a
lot of energy consuming accesses to off-chip memory. An
access to off-chip memory is typically 10-100 times more
expensive than an on-chip cache access in terms of energy
consumption. Reducing the number of preemptions will re-
duce these additional expensive memory accesses due to re-
duced cache pollution.

Traditionally, Dynamic Voltage and Frequency Scaling
(DVS) techniques have been used for reducing energy con-
sumption by slowing down tasks’ executions [1, 3, 15, 16].

This is effective in reducing the energy consumption ac-
cording to the relation P = CV 2F , where P is the power
consumed by the processor, V is the applied voltage, C is
the effective capacitance and F is the operating frequency.
This means that the power dissipation increases/decreases
linearly with frequency and quadratically with the applied
voltage.

In this paper we apply CPU Frequency Scaling the-
ory to control the preemption behavior in real-time system
scheduling. We propose an offline method that identifies
the maximum number of preemptions in a given schedule,
and provides specific frequencies at which task instances
need to be executed such that the preemptions are avoided.
Our method is capable of guaranteeing a significantly lower
number of preemptions without altering the original task at-
tributes or modifying the underlaying scheduler. While exe-
cuting tasks at a higher processor frequency may result in an
increased energy demand, our method is capable of provid-
ing trade-offs between the number of preemptions and the
overall energy consumption. While the methodology can
be easily applied to any existing scheduling policy, in this
paper we present an instantiation to FPS.

The main contributions of this paper consist of a) a for-
mal analytical model to detect and eliminate preemptions
using CPU Frequency Scaling by first detecting a preemp-
tion and then finding the minimum sufficient frequency that
guarantees the completion of the preempted task before the
release of the higher priority tasks, as well as b) a frame-
work to study the effect of change in frequency at which
task instances execute, over the rest of the schedule.

The rest of the paper is organized as follows: Section
2 describes the related work and in section 3 we give an
overview of our system model. In Section 4 we describe our
methodology illustrated by a simple example in Section 5.
In Section 6 we present the experimental evaluation results
and in Section 7 we discuss some important issues related to
this paper. Finally, in Section 8 we present the conclusions
and future work.

2. Related Work

Several methods have been proposed in the past to re-
duce the number of preemptions in real-time scheduling.
Preemption Threshold Scheduling (PTS) for FPS was pro-
posed by Wang and Saksena [21, 19], showing that this
method improves schedulability and reduces the number of
preemptions and the number of threads in the system. In
[21] the authors describe an optimal algorithm to assign
preemption threshold by iterating over the solution and at-
tempting to assign the largest feasible preemption thresh-
old values to tasks such that the task set remains schedu-
lable. The results show that large threshold values reduce
the probability of preemptions and therefore should result in

less preemptions. However, this approach results in a dual
priority system which may not be directly suitable for, e.g.,
legacy systems, where scheduler modifications may not be
possible.

The integration of real time synchronization schemes
into PTS was proposed [11], where the authors integrate pri-
ority inheritance protocol and priority ceiling protocol into
PTS. The authors have proposed two integrated schemes- in
the first approach, instead of priority, the preemption thresh-
old of a blocked task is inherited when blocking occurs;
in the second approach, the priority ceiling is used instead
of preemption threshold. The results show that the inte-
grated schemes can minimize worst-case context switches
and are appropriate for the implementation of real-time
object-oriented design models.

Gai et al. [8] extend this scheduling model to EDF prior-
ity assignment and showed that it can reduce the memory re-
quirements of the system. In [9], the authors have presented
an approach to combine PTS with DVS to enable energy
efficient scheduling. PTS decreases the number of context
switches among tasks as well as the memory requirement
in the system. Furthermore, the authors describe a dynamic
slack reclamation technique, in conjunction with PTS, that
yields energy gains depending on the available slack.

A method to integrate preemption threshold to FPS under
DVS scheduling algorithms, was proposed in [22], where
two preemption-aware algorithms, ccFPPT and FPPT-WD,
are studied. ccFPPT is a cycle conserving fixed priority
preemption scheduling, which slows down every task in-
stance in its cycle or working range by the same amount. All
the slack times are used to slowdown the processor speed.
FPPT-WDA is the FPPT- Work Demand Analysis which is
more complex compared to ccFPPT. The key feature of an
online WDA DVS method is to postpone the release of the
tasks as much as possible. Here, most of the slack time will
be used for the first several tasks that discover these times
leaving very tight, or even no scale down at all, for other
tasks that arrive later.

In [12], the authors present two techniques that can re-
duce the increased number of preemptions introduced by
using DVS algorithms. The first method is an acceler-
ated completion based technique, where the main idea is
to shorten the completion time of a low priority task before
the arrival of a high priority task by accelerating its execu-
tion. The second approach is a delayed preemption based
control technique, in which the activation point of a high
priority task is delayed so that a scheduled low priority task
can complete its execution without the preemption.

In an earlier work [7], we have proposed a method that
analyzes offline a set of periodic tasks scheduled by FPS,
and identifies the maximum number of preemptions that can
occur at run time. It then reassigns task attributes, such as
the task priority, period and offsets, without affecting the

schedulability of the task set, while attaining a significantly
lower number of preemptions. This is achieved at the cost
of increased number of tasks and/or reduced task execution
flexibility.

While the existing approaches have substantially ad-
vanced the state of the art in the field, all have either intro-
duced potential infeasible costs or have focused on energy
conservation when applying DVS. In this paper we propose
the use of CPU frequency scaling to control the preemptive
behavior in real-time scheduling without requiring modifi-
cations of the existing task attributes or to the underlaying
scheduler.

3. System Model

3.1. Task Model

We assume a uniprocessor system implementing a pre-
emptive fixed priority scheduling policy. We consider a
periodic task set Γ = {τ1, τ2, ...τn } where task τi has a
period Ti, a priority Pi, and a relative deadline Di. The
tasks are sorted in decreasing priority order, i.e., P1 is the
highest priority and Pn is the lowest. The hyperperiod of
the tasks is defined by LCM representing the least com-
mon multiple of the task periods. Each task instance τi,l is
characterized by a worst case execution requirement Ci,l,
i ∈ [1, n] and l ∈ [1, LCMTi

], at a discrete CPU frequency
Fp ∈ [Fmin, Fmax], where Fmin and Fmax are the mini-
mum and maximum frequency respectively, as imposed by
the hardware constraints. We assume that the tasks are ini-
tially executed at a default frequency supported by the hard-
ware.

Additionally, we denote the release time of the lth in-
stance of task τi by reli,l, its corresponding actual start time
by starti,l, and its finishing time by finishi,l. In the de-
scription of our method, we assume that the offsets are zero
and the deadlines are equal to the periods. However, this
restriction can be easily extended for non-zero offsets and
deadlines shorter than periods. Finally, we assume that the
tasks do not suspend themselves.

3.2. Energy Model

We consider a power-aware processor which can op-
erate in a set of discrete operating modes identified by
M = {m1,m2,m3, ...mp}, where eachmi is characterized
bymq = (Fq, wq), where Fq is processor frequency and wq
is the power (in watts) consumed by the processor in mode
mq [3]. We assume a negligible frequency-switch overhead,
which may occur only in conjunction with a scheduling de-
cision.

The total energy consumed by the system over the period

of LCM can be represented as:

ELCM =
n∑
i=1

LCM
Ti∑
l=1

Ci,l × wqi,l (1)

where wqi,l is the power consumed by the processor while
executing the task instance τi,l in mode mq at frequency
Fq .

3.3. Execution Time Model

The execution time of a task instance is inversely pro-
portional to the clock frequency at which the instance is ex-
ecuted, and can be represented as:

C1
i,j =

Cmaxi,j

F1
× Fmax

where F1 is the frequency which gives an execution time of
C1
i,j andCmaxi,j is the execution time obtained at Fmax. This

implies that,

F1 =
Cmaxi,j

C1
i,j

× Fmax (2)

Similarly to obtain an execution time of C2
i,j we require a

frequency of:

F2 =
Cmaxi,j

C2
i,j

× Fmax (3)

Dividing the equation 2 by 3, we get:

F2 =
C1
i,j

C2
i,j

× F1 (4)

This equation gives the frequency required for scaling C1
i,j

to C2
i,j . We have used this equation to derive the maxi-

mum frequency necessary to ensure a required worst case
execution time for a particular task instance. This model is
derived from the model presented in [15].

4. Methodology

In this paper we apply CPU Frequency Scaling theory to
control the preemption behavior in fixed priority schedules.
We propose an offline method that identifies the maximum
number of preemptions in a given schedule, and provides
specific frequencies at which task instances need to be exe-
cuted such that the number of preemptions is reduced.

A preemption typically occurs when a higher priority
task instance is released during the execution of a lower
priority task instance. One way to avoid the preemption
is to make sure that the preempted task instance completes
its execution before the release of the higher priority one.
As CPU Frequency Scaling can be used to speed up or

slow down task execution times within a specified range,
our method attempts to provide the minimum sufficient fre-
quencies per task instance that guarantees preemption elim-
ination.

In our offline preemption analysis we assume that tasks
execute for their WCET. However, at run-time, tasks will
most likely execute for less than WCET, implying a differ-
ent number of preemptions compared to the ones detected
by our off-line method. Hence, we divide the preemptions
in two major categories:

Initial preemptions – are detected in the off-line anal-
ysis assuming task executions equal to their WCET, i.e., a
high priority task instance is initially preempting a low pri-
ority task instance (Figure 1).

B B

Ahigh priority

low priority

Figure 1. An offline detected initial preemption

Potential preemptions – that occur at run-time due to
task executions less than WCET. In Figure 2 a) we can see
that if tasks execute for WCET, no preemption will occur.
However, in this situation we consider task A potentially
preempting task B since, if task C, that delays the execution
of B, is executing for less than its WCET, then B can start
executing earlier, i.e., before the release time of A, and will
actually be preempted by A (Figure 2 b)).

B

A

C

B

A

C

B

high priority

medium priority

low priority

a) off-line analysis – potential preemption b) on-line execution less than wcet - preemption

Figure 2. An off-line detected potential preemp-
tion

In this paper we focus on the offline part of the method-
ology and, thus, we do not explicitly address the elimina-
tion of potential preemptions that would mostly benefit of
the use of online mechanisms, and is the aim for future
work. However, as later illustrated by the evaluation results,
a large number of potential preemptions are automatically
eliminated in the process of eliminating initial preemptions.
At the same time, future work will address the use of online

mechanisms for slowing down tasks at runtime, to ensure
that the remaining potential preemptions are not converted
to actual preemptions, as well as to compensate for the in-
crease in energy for removing initial preemptions.

Our approach to eliminate a particular preemption is per-
formed in two steps: preemption identification followed
by the calculation of the minimum sufficient frequency at
which the preempted task instance needs to execute in or-
der to guarantee the preemption elimination. Obviously, the
frequency has to be available, i.e., if the required frequency
may not exceed the maximum available one, i.e., Fmax, oth-
erwise the preemption cannot be eliminated.

As the problem of finding the set of individual task in-
stance frequencies to minimize the number of preemption
for a given set of tasks is NP-hard, the significance of of-
fline analysis lies in the fact that complex algorithms can
be used to remove preemptions, which can complement the
efforts to remove initial preemptions online.

In this paper we investigate and compare four different
heuristics with respect to the order in which the preemp-
tions are eliminated. We have examined the following four
possibilities:

1. HPF – highest priority preempted task first

2. LPF – lowest priority preempted task first

3. FOPF – first occurring preemption first (under LCM)

4. LOPF – last occurring preemption first (under LCM)

In each of the approaches we attempt to eliminate the
preemptions recursively until all preemptions are elimi-
nated, or no feasible frequencies can be found for the re-
maining ones. Note that a preemption that cannot be elim-
inated at a particular stage, may be eliminated at a later it-
eration point in the algorithm, due to earlier completion of
interfering tasks in the schedule.

4.1. Preemption Identification

We say that a task instance τi,l initially preempts another
task instance τj,k if four conditions hold simultaneously [7]:

1. τi,l has a higher priority than τj,k,

2. τi,l is released after τj,k,

3. τi,l starts executing after the start time of τj,k

4. τj,k finishes its execution after the release time of τi,l

In case of nested preemptions we consider only the cases
where a context switch occurs.

4.2. Preemption elimination

To eliminate a single preemption, e.g., τi,l preempts τj,k,
we identify the new frequency at which the preempted in-
stance must execute, by calculating the execution reduc-
tion that guarantees its completion before the release of the
higher priority instance, i.e,:

finishnewj,k ≤ reli,l

Where, finishnewj,k is the new finishing time of the pre-
empted instance after preemption elimination.

Theorem 4.1. Given a preemption where τi,l preempts τj,k,
the worst case execution time of τj,k that guarantees the
preemption avoidance is given by the relation:

Cnewj,k = finishnewj,k − startj,k − Ij,k (5)

The interference Ij,k is given by:

Ij,k =
∑

∀l∈hp(j)

dLCM
Tl

e∑
x=1

Ψ(j, k, l, x)× Cl,x

where

Ψ(j, k, l, x) =
{

1, if startj,k < startl,x < finishnewj,k

0, otherwise
(6)

Proof. The finishj,k for a task instance τj,k is obtained by
adding its execution time and the interference due to pre-
emptions by higher priority tasks to its start time:

finishj,k = startj,k + Cj,k +
∑

∀τl,x∈Γ′
2

Cl,x

Where Γ′2 is the set of all higher priority task instances
released between the start time and finish time of τj,k. Γ′2
can be found by a recursively checking whether any higher
priority task instances start between the start time and the
latest computed finish time of τj,k with the finishj,k ini-
tially set to (startj,k + Cj,k) .Thus, we rewrite the above
equation as:

finishj,k = startj,k + Cj,k + (7)

+
∑

∀l∈hp(j)

dLCM
Tl

e∑
x=1

Ψ(j, k, l, x)× Cl,x

where

Ψ(j, k, l, x) =
{

1, if startj,k < startl,x < finishj,k
0, otherwise

with finishj,k set to startj,k + Cj,k initially.
We rewrite (7) as:

finishj,k = startj,k + Cj,k + Ij,k

Where Ij,k is given by:

Ij,k =
∑

∀l∈hp(j)

dLCM
Tl

e∑
x=1

Ψ(j, k, l, x)× Cl,x

and Ψ(j, k, l, x) is given by the earlier equation. Now rear-
ranging the terms we get:

Cj,k = finishj,k − startj,k − Ij,k

Here we substitute the new required finish time finishnewj,k

such that the preemption on τj,k by τi,l is eliminated:

Cj,k = finishnewj,k − startj,k − Ij,k

After calculating the new execution time required to
eliminate a single preemption, we check whether it is possi-
ble to speed up the execution of the task instance to guaran-
tee this execution time by checking whether the correspond-
ing frequency range is within the CPU permitted range.
This is done by first calculating the required CPU frequency,
denoted by Fr, using the formula:

Fr =
Ccurj,k

Cnewj,k

× Fq

where Cnewj,k is the execution time of kth instance of task
τj to finish before it is preempted by a higher priority task,
and Ccurj,k is its execution time before removing the preemp-
tion, when executing at a frequency Fq . The calculated Fr
is approximated to the nearest discrete value among the val-
ues which the processor can attain, and the old frequency is
retained if Fr 6∈ [Fmin, Fmax].

Finally, we need to investigate the impact of the preemp-
tion elimination on the rest of the schedule by recalculating
the start times and finish times of all lower priority task in-
stances, according to the equations 8 and 11, when

Fr ∈ [Fmin, Fmax]

Theorem 4.2. The start time of any task instance τj,k is
given by,

startj,k = max(fhp(j, k), relj,k) (8)

where,

fhp(j, k) = max∀l ∈ hp(j)(finishl,d fhp(j,k)+1
Tl

e
) (9)

and, initially,
fhp(j, k) = relj,k (10)

Proof. According to our assumption, a task instance τj,k
starts its execution if it is released, and after all high priority
tasks in the ready queue have finished execution. This has
two cases,

Case 1 : The ready queue is empty at relj,k and no
higher priority tasks are released simultaneously or are
currently executing

Case 2 : There exists at least one high priority task
instance that is released, or is currently executing at
relj,k

The value computed by fhp(j,k)+1
Tl

will give the latest in-
stance number of all higher priority tasks τl. Using this
instance number, equation 9 will return the maximum of
the finish times of the corresponding high priority task in-
stances. This is done recursively until a single value is ob-
tained.

Consider Case 1, where no high priority tasks are exe-
cuting/released or in the ready queue at relj,k. The value
computed by 9 will be less than relj,k, since the latest of
the higher priority task instances would have already com-
pleted. So equation 8 will return relj,k as the start time of
τj,k. Hence, the equation 8 holds for Case 1.

Consider Case 2, where there exists at least one higher
priority task that is currently executing at the time when
τj,k is released. The value computed by 9 will be greater
than relj,k, since 9 computes the latest of the finish times
of all high priority tasks that are released in the busy period
before τj,k starts executing. This finish time is the start time
of τj,k as we have assumed that no task can suspend itself.
Hence the equation 8 also holds for Case 2.

Finally, we calculate the finish time of τj,k.

Theorem 4.3. The finish time for a task instance τj,k is
given by the equation:

finishj,k = startj,k + Cj,k + Ij,k (11)

Ij,k is given by:

Ij,k =
∑

∀l∈hp(j)

dLCM
Tl

e∑
x=1

Ψ(j, k, l, x)× Cl,x (12)

where Ψ(j, k, l, x) is given by the equation:

Ψ(j, k, l, x) =
{

1, if startj,k < startl,x < finishj,k
0, otherwise

(13)

Proof. The proof is similar to the one of theorem 4.1.

Recalculation of the start times and finish times aims to
investigate the impact of one preemption elimination on the
rest of the schedule, i.e., whether any new preemptions have
been introduced or any additional ”old” preemptions have
been removed. Additionally, a schedulability test is per-
formed in order to ensure the task completions before their
deadlines.

∀i ∈ [1, n], j ∈ [1,
LCM

Ti
], finishi,j ≤ (j− 1)×Ti +Di

In this paper we use 4 different heuristics, i.e., HPF, LPF,
LOPF, FOPF, to recursively eliminate the preemptions in a
given set of tasks, schedulable by preemptive FPS, until all
preemptions are eliminated or no feasible solutions can be
found for the remaining ones.

5. Example

We illustrate the proposed preemption reduction method
with a simple example. We assume a set of tasks as de-
scribed in the Table 1 scheduled according to the rate mono-
tonic scheduling policy, using a default frequency of 40
MHz provided by the hardware. The time used in the ex-
ample is expressed in milliseconds (ms). In this example,
our method identifies 7 initial preemptions that may occur
at run time (Figure 3) when the tasks execute for their worst
case execution times.

Figure 3. Original RM schedule

For explaining how a single preemption is detected,
eliminated, and its effects over the rest of the schedule, we
describe the removal of the preemption of C1 by A4. The
preemption is detected as it satisfies the following condi-
tion:

{PA > PC}∧{relA,4 > relC,1}∧{startA,4 > startC,1}

∧{finishC,1 > relA,4}
To eliminate the preemption, C1 needs to complete before
the release of A4.

finishnewC,1 ≤ relA,4 = 12

Task Time period Execution Time Priority
A 4 1 1(highest)
B 8 2 2
C 20 6 3
D 40 4 4

Table 1. Example: task set

Mode 0 1 2 3 4 5
Frequency(MHz) 0 5 30 40 50 80

Power Consumption(mW) 0 20 50 50 200 500

Table 2. Example: CPU operating modes

Consequently, the new execution time for C1 is calculated
using the equation 5:

CC,1 = 12− 3− (1 + 1 + 2) = 5.

At this point, we need to check the possibility of elimi-
nating this preemption by ensuring that the corresponding
frequency is within the permissible range. For the analy-
sis we take a variable frequency processor having different
operating modes as described in Table 2 [3].

We find the frequency at which the task instanceC1 must
execute to eliminate it being preempted by A4 using equa-
tion 4.

F2 =
6
5
× 40 = 48

This is approximated to 50 MHz which is the next high-
est frequency supported, which can guarantee this execution
time. C1 will execute for 4.8 ms when it is run at 50 MHz.

Eliminating this particular preemption will affect the
lower priority task’s start times and finish times. Hence,
we re-calculate the start times and finish times of all the
lower priority task instances based on the newly calculated
execution and finish time of C1, according to the equation
11:

finishC,1 = 3 + 4.8 + (1 + 1 + 2) = 11.8

We calculate the start time of D1 using equation 8:

fhp(D, 1) = relD,1 = 0, initially
fhp(D, 1) = max(finishA,d 0+1

4 e, finishB,d 0+1
8 e,

finishC,d 0+1
20 e

)

= max(finishA,1, finishB,1, finishC,1)
= max(1, 3, 11.8) = 11.8

Since 0 6= 11.8, we recursively calculate the new value
for the start time for D1 until we reach a fixed point. Here
the start time of D1 is 11.8. The newly computed value of
the finish time of D1 is:

finishD,1 = 11.8 + 4 + (1 + 1 + 2) = 19.8

It is now possible to do a schedulability analysis on the fin-
ish times of the task instances or find the total number of
preemptions and take a decision on whether or not to elim-
inate this preemption. After the removal of the preemption
of C1, the total number of preemptions in the schedule is
reduced to 6 (figure 4). We use this process to eliminate

Figure 4. RM schedule after eliminating one
preemption

preemptions according to the last occurring preemption first
strategy (LOPF) as described in section 4, until no more
preemptions can be eliminated. Figure 5 shows the result-
ing schedule eliminating preemptions in the reversed order
of their occurrences in the schedule. The number of ini-
tial preemptions is reduced from 7 to 2, with a cost of 2.7
times increase in energy, according to equation 1. Finally,

Figure 5. RM schedule after reducing preemp-
tions using LOPF

the frequencies for all the task instances are computed and
illustrated in table 3.

Instance 1 2 3 4 5 6 7 8 9 10
τA 40 40 40 40 40 40 40 40 40 40
τB 40 40 40 40 40 - - - - -
τC 80 80 - - - - - - - -
τD 80 - - - - - - - - -

Table 3. Derived frequencies for each task in-
stances

6. Performance evaluation

We performed a number of experiments to evaluate the
efficiency of our proposed method. We used synthetic tasks
with randomly generated attributes, schedulable by FPS.
We studied the effect of the removal of preemptions in dif-
ferent orders. We generated task sets with utilizations rang-
ing from 0.6 to 1.0 using the UUniFast [2] algorithm that
were used to compare the efficiency of the different ap-
proaches. The tasks priorities were assigned according to
the RM policy. Each set consisted of 5 to 15 tasks respec-
tively, with time periods ranging from 5 to 1500. For the
purpose of obtaining integer values of execution times, we
assumed that the calculated CPU frequency is supported by
the processor. However, in our analysis, we assumed that
the tasks cannot be scaled to a value less than 60% of their
actual execution times i.e., any value above 60% of the orig-
inal execution time was deemed acceptable, and those be-
low unacceptable.

6.1. Experiment 1

In this scenario, we experimented the preemption elim-
ination based on the task priority order. We performed
two different runs for each taskset. In the first run
we eliminated the preemptions starting with the one in-
curred by the first instance of the highest priority task to
the last instance of the lowest priority task i.e., highest
priority first (HPF), in the order {τ1,1, τ1,2,.......τ1,LCM

T1
},

{τ2,1, τ2,2,....τ2,LCM
T2
},{τn,1, τn,2,....τn,LCM

Tn
}. In the

second run, we eliminated the preemptions starting from the
first instance of the lowest priority task to the last instance
of the highest priority task i.e, lowest priority first (LPF),
in the order {τn,1,τn,2,..τn,LCM

Tn
}, ..{τ2,1,τ2,2,..τ2,LCM

T2
},

{τ1,1,τ1,2,..τ1,LCM
T1
}.

6.2. Experiment 2

In this experiment we eliminated the preemptions in the
order of their occurrence in the schedule. We conducted
two runs, where in the first run we removed preemptions
from the first occurring preemption to the last (FOPF) and

in the second run from the last occurring preemption to the
first (LOPF). Our simulations results for the four heuristics
used in the 2 experiments are illustrated in Figure 6.

Figure 6. Average number of initial preemptions
after preemption elimination

We also observed that a significant number of potential
preemptions are also eliminated automatically in the pro-
cess of removing initial preemptions (Figure 7). In this case,
LPF and LOPF performed slightly better with respect to re-
ducing the number of potential preemptions.

Figure 7. Average number of potential preemp-
tions after preemption elimination

In some cases, some preemptions of medium priority
tasks are automatically eliminated which will not result in a
reduction of execution times of those medium priority tasks.
However while eliminating preemptions in the LOPF, the
preemptions which are removed automatically in the other
three cases are detected and eliminated first. This result in a
reduction in execution times of these medium priority task
instances. As a result of this, the preemptions (both ini-
tial and potential) of the lower priority tasks are reduced
since they complete earlier due to this reduction in execu-
tion times of medium priority tasks.

LOPF fares slightly better than LPF in our simulations.
This is because in LPF, the preemption that is removed first

need not be the last preemption in the timeline. Removal of
such preemptions might result in automatic removal of pre-
emptions occurring later in time without reducing execution
times of task instances. This can result in low priority tasks
completing later than those observed in LOPF.

6.3. Energy Consumption

The elimination of a preemption caused a 4.2 times in-
crease in energy consumption when using LOPF. We found
that for tasksets with high utilizations, the increase in en-
ergy was more prominent. Naturally, tasksets with a large
number of tasks also showed a high increase in energy as
this can be attributed to the high number of preemptions in
these task sets. However, our proposed approach provides
for trade-off between the number of preemptions and the en-
ergy consumption, as the user can selectively choose which
preemptions are desirable to eliminate.

7. Discussion

So far, in our methodology we have not addressed two
issues:

1. Speeding up tasks in the busy period before the start of
the preempted task to eliminate the preemption.

2. Explicit removal of potential preemptions (although,
as shown in the experiments, many of them are elim-
inated automatically when eliminating initial preemp-
tions).

Consider a preemption where τi,l preempts τj,k. It can be
either a potential preemption or an initial preemption. In
order to address both the cases described above, we must
find the set Υ where,

Υ = τj,k ∪ {
n∑
p=1

LCM/Tp∑
q=1

busy period(i, l, p, q)× τp,q}

where, busy period(i,m, p, q) returns 1 if τp,q is in the
busy period just before starti,l. Now we need to find Ca,b
for each τa,b in Υ such that ∀τa,b ∈ Υ:

finisha,b < (b− 1)× Ta +Da, and

finisha,b < starti,m

Speeding up task executions in the busy period raises two
issues:

1. One issue is finding the best execution times for each
τa,b such that all of them finish before starti,m while
meeting their individual deadlines. This is an opti-
mization problem and has to be performed for each

preemption elimination, as speeding up tasks may not
be the best option to remove a preemption. It may also
be that slowing down tasks in the busy period such that
the preempted task starts after the preempting task can
be a valid alternative. We plan to address this question
in the future work by incorporating energy reduction
and minimization of preemptions into the goal func-
tion of an optimization problem.

2. Eliminating potential preemptions by scaling up indi-
vidual task execution times can result in a drastic in-
crease in energy consumption. Hence, an attractive so-
lution may be to remove potential preemptions at run
time by slowing down tasks to ensure that the potential
preemptions are not converted to actual preemptions.
This approach again has the additional advantage of
compensating the increased energy consumption due
to the removal of preemptions by speeding up tasks.

8. Conclusions and Future Work

In this paper, we have proposed a methodology to reduce
the number of preemptions in real-time scheduling by using
CPU frequency scaling. We have provided an instantiation
to FPS by analyzing a schedulable task set and calculating
individual frequencies at which task instances need to exe-
cute such that the preemptions are eliminated, by taking into
account the effect of preemption elimination on the rest of
the schedule. The proposed approach does not imply modi-
fications to the task attributes or the underlaying scheduler.

As the main element of cost introduced by our method is
the energy consumption, the proposed framework provides
for tradeoff between the number of preemptions and the cost
by keeping track of the increase of energy required for each
preemption elimination. Though runtime variations in the
execution time of task instances can introduce (or remove)
additional preemptions, the offline method can be comple-
mented with online approaches by enabling the use of effi-
cient algorithms to remove/minimize preemptions.

Future work will focus on optimizing the approach with
respect to optimal energy consumption. It will also include
online extensions to cope with execution variations between
best and worst case, including cache related preemption de-
lay cost, as well as study the tradeoff between the energy
increase due to cache pollution and energy increase due to
preemption removal. At the same time, the method will be
extended to the sporadic task model.

9. Acknowledgements

The authors wishes to thank the anonymous reviewers
for their useful comments on the paper. This work was

partially supported by the Swedish Foundation for Strate-
gic Research via the strategic research centre PROGRESS
and the Erasmus Mundus External Co-operation Window
programme EURECA.

References

[1] H. Aydin, R. Melhem, D. Moss, and P. Meja-Alvarez.
Power-aware scheduling for periodic real-time tasks. IEEE
Transactions on Computers, 53(5):584–600, 2004.

[2] E. Bini and G. C. Buttazzo. Measuring the performance
of schedulability tests. Real-Time Systems Journal, 30(1-
2):129–154, 2005.

[3] E. Bini, G. C. Buttazzo, and G. Lipari. Minimizing CPU en-
ergy in real-time systems with discrete speed management.
ACM Transaction on Embedded Computer Systems, 8(4),
2009.

[4] A. Burns, K. Tindell, and A. Wellings. Effective analysis for
engineering real-time fixed priority schedulers. IEEE Trans-
actions on Software Engineering, 21(5):475–480, 1995.

[5] G. Buttazzo. Rate monotonic vs. EDF: Judgment day. In
Proc. 3rd ACM International Conference on Embedded Soft-
ware, Philadephia, USA, Oct 2003.

[6] G. Buttazzo. Research trends in real-time computing for
embedded systems. SIGBED Rev., 3(3):1–10, 2006.

[7] R. Dobrin and G. Fohler. Reducing the number of preemp-
tions in fixed priority scheduling. In 16th Euromicro Con-
ference on Real-time Systems (ECRTS 04), July 2004.

[8] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory uti-
lization of real-time task sets in single and multi-processor
systems-on-a-chip. In Proceedings of the 22nd IEEE Real-
Time Systems Symposium, pages 73–83, 2001.

[9] R. Jejurikar and R. K. Gupta. Integrating processor slow-
down and preemption threshold scheduling for energy effi-
ciency in real time embedded systems. In Proceedings of the
IEEE RTCSA, 2004.

[10] D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engineering
and analysis of fixed priority schedulers. IEEE Trans. Softw.
Eng., 19(9):920–934, 1993.

[11] S. Kim, S. Hong, and T.-H. Kim. Integrating real-time syn-
chronization schemes into preemption threshold scheduling.
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing, page 0145, 2002.

[12] W. Kim, J. Kim, and S. L. Min. Preemption-aware dynamic
voltage scaling in hard real-time systems. In ISLPED ’04:

Proceedings of the 2004 international symposium on Low
power electronics and design, pages 393–398, New York,
NY, USA, 2004. ACM.

[13] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong,
C. Y. Park, M. Lee, and C. S. Kim. Analysis of cache-related
preemption delay in fixed-priority preemptive scheduling.
IEEE Transactions on Computers, 47(6):700–713, 1998.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, 1973.

[15] M. Marinoni and G. Buttazzo. Elastic DVS management
in processors with discrete voltage/frequency modes. IEEE
Transactions on Industrial Informatics, 3(1):51–62, 2007.

[16] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In SOSP ’01:
Proceedings of the eighteenth ACM symposium on Operat-
ing systems principles, pages 89–102, New York, NY, USA,
2001. ACM.

[17] K. Ramamritham and J. A. Stankovic. Scheduling algo-
rithms and operating systems support for real-time systems.
In Proceedings of the IEEE, pages 55–67, 1994.

[18] H. Ramaprasad and F. Mueller. Tightening the bounds on
feasible preemption points. In RTSS ’06: Proceedings of
the 27th IEEE International Real-Time Systems Symposium,
pages 212–224, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[19] M. Saksena and Y. Wang. Scalable multi-tasking using pre-
emption thresholds. In In Digest of Short Papers For Work In
Progress Session, The 6th IEEE Real-Time Technology and
Application Symposium, 2000.

[20] J. Schneider. Cache and pipeline sensitive fixed priority
scheduling for preemptive real-time systems. Real-Time Sys-
tems Symposium, IEEE International, page 195, 2000.

[21] Y. Wang and M. Saksena. Scheduling fixed-priority tasks
with preemption threshold. In Sixth International Confer-
ence on Real-Time Computing Systems and Applications,
1999. RTCSA ’99., pages 328–335, 1999.

[22] L. Yang, M. Lin, and L. T. Yang. Integrating preemption
threshold to fixed priority DVS scheduling algorithms. In-
ternational Workshop on Real-Time Computing Systems and
Applications, pages 165–171, 2009.

[23] G. Yao, G. Buttazzo, and M. Bertogna. Bounding the max-
imum length of non-preemptive regions under fixed priority
scheduling. International Workshop on Real-Time Comput-
ing Systems and Applications, pages 351–360, 2009.

