
phpModeler – an approach to
Reverse Engineering legacy Web applications

Josip Maras
Faculty of Electrical Engineering,

Mechanical Engineering and Naval
Architecture

University of Split, Croatia
josip.maras@fesb.hr

Ana Petričić
 Faculty of Electrical Engineering and

Computing
University of Zagreb, Croatia

ana.petricic@fer.hr

Maja Štula

 Faculty of Electrical Engineering,
Mechanical Engineering and Naval

Architecture
University of Split, Croatia

maja.stula@fesb.hr

ABSTRACT
Web applications are complex systems that are in the core of

many businesses. However, their development is, contrary to

other domains, not characterized by rigorous software

engineering methods. The consequence is that many web

applications are poorly structured and are not adequately

documented, which leads to difficult maintenance. One way for

dealing with web application complexity is their modeling on a

higher level of abstraction. In this paper we present phpModeler,

a tool for reverse engineering legacy PHP web applications. It

generates UML diagrams showing resources that each web page

is using, web page’s functions, dependencies it has on other web

pages, and the flow of execution. Once the models have been

created, phpModeler can analyze them and generate dependency

models for each entity in every web page model. phpModeler can

also be used to highlight the difference between page models – a

feature that, when combined with an SVN repository shows the

way how a web page has evolved over time. Tool usability has

been tested on a case study application – iForestFire.

Categories and Subject Descriptors

D.2.7 [Software engineering]: Distribution, Maintenance, and

Enhancement – reverse engineering tool.

Keywords

Reverse engineering, application maintenance, architecture

recovery, legacy web applications, application evolution

1. INTRODUCTION
In the last two decades, web applications have made a

tremendous leap forward: from simple static web pages developed

only in HTML (HyperText Markup Language) to complex

dynamic web applications developed using server-side

technologies, e.g. PHP, ASP.NET, Java that extensively use web

services, databases and client-side technologies (e.g. JavaScript,

Flash, Silverlight). Because of the very short time-to-market,

these applications are often developed in an un-disciplined way.

For example, in PHP this often leads to whole web pages

developed as a mixture of SQL (Structured Query Language),

PHP, HTML, CSS (Cascading Style Sheets) and JavaScript – five

different languages in a single file, mixing business, presentation

and data access logic. In turn, this often means that considerable

effort is needed to maintain these applications [1].

According to surveys the process of software maintenance

consumes somewhere between 50% and 80% of project budget

[2]. During system maintenance, in the debugging phase

approximately 47%, and in the system evolution phase

approximately 62% of time is spent on activities related to better

understanding of software systems [3]. Therefore, in order to

decrease the general project cost it is necessary to develop

methods and tools that will facilitate system understanding.

Complex systems can be understood easier if they are

modeled on a higher level of abstraction. Web applications have

many dependencies between web pages (e.g. via links, frames,

forms) and resources (e.g. JavaScript libraries, database tables).

As the size of the web application grows, so does the number of

their interdependencies and soon they become hard to manage. In

order to tackle their complexity and to improve development and

maintenance efficiency they need to be modeled, preferably with

standard design or modeling languages, such as UML (Unified

Modeling Language).

PHP and JavaScript are dynamic script languages in which

variable types are not specified, and the type of the variable is

determined at runtime (dynamic typing). For that reason, when

defining functions there is no need to specify argument and return

value types. Both languages also support variadic function calls

and anonymous functions. As with any other dynamic languages

many errors and inconsistencies are discovered only at runtime,

and current IDEs (Integrated Development Environment) offer

little support for change tracking (e.g. function signature change),

code completion, and error reporting. Because of this,

maintenance is difficult. For a web developer, it would be useful

to know where certain entities are used, so that if any change

happens its propagation can easily be tracked.

Software systems are ever evolving and it is necessary to be

able to track changes between different versions of the same

artifact. Usually these source code changes are tracked via

different text comparison tools, but if there are models that

represent the system on a higher level of abstraction than source

code, it would be beneficial to track changes among them too.

In this paper we focus on legacy web applications and ways of

improving their maintainability and understandability by using a

reverse engineering (RE) process. RE is used for information

extraction from software artifacts (primarily source code) and

their transformation to easily understandable abstract

representations [4]. We have developed a RE tool – phpModeler

that) analyses web application source code (PHP scripts, HTML

pages, and JavaScript libraries) and generates models that can be

used as a basis for architecture recovery;) generates dependency

models that show interdependencies between web application

elements and) visualizes web page evolution.

The remainder of this paper is organized as follows: Section 2

gives an overview of the web application architecture and

mailto:ana.petricic@fer.hr%20%0EMaja
mailto:ana.petricic@fer.hr%20%0EMaja
mailto:ana.petricic@fer.hr%20%0EMaja

techniques that can be used for their modeling. Section 3 presents

our tool – phpModeler in greater detail, while Section 4 describes

a case study used for tool validation. Section 5 gives an overview

of currently available web page modeling tools. Finally, the

conclusions are presented in Section 6.

2. WEB APPLICATION MODELING
When deciding about the modeling approach, it is critical to

determine the correct level of abstraction and detail in order to

have a relevant representation of a system from a certain

viewpoint. In this section we give an outline of common web

application architecture and describe some of the techniques used

for their modeling.

2.1 Web application architecture overview
The basic infrastructure necessary for a web application to run

contains at least the following elements: a web browser used by

the user to send web page requests, a web server that processes

those requests and generates responses and a network over which

request/response pairs are transmitted.

A web application can be viewed as a collection of web pages

where each web page or a group of web pages is responsible for

certain application functionality. Web pages are hosted on a web

server that responds to user requests with a combination of HTML

code, client side scripts and embedded objects (e.g. Flash or

Silverlight content). The user can interact with the web

application by navigating to different web pages in the system or

by submitting information to the server, usually in that way

changing the business state of the application.

Important web application entities are the following:

 Server page is a dynamic web page residing on the

server whose content is built on every user request. It

usually contains server executables that access various

resources such as files, data bases or web services.

 Client page is a HTML web page sent as a response to

the user that contains data, presentation and even logic

(via client side scripting or embedded objects).

 HTML form is a client page element representing a

collection of user input fields and is used by the user to

input data that will be sent to the web server for further

processing.

 Client script is a script executed in the web browser that

enables dynamic behavior on the client side.

 Database table

2.2 Web application models
There are already several existing methodologies for web

application analysis, some of them referring only to static web

pages, and most of them putting emphasis on connections between

web pages of a web site in order to create a web site map.

One of approaches for analysis and design of web applications

which was entirely based on UML notation, was presented by

Koch and Kraus [5]. They extended the language with an UML

profile in order to achieve sufficient level of expressiveness. In

their methodology, they use separation of concerns, and perform

separate steps for conceptual, navigational and presentational

modeling with an emphasis on navigational structure modeling. In

each of these steps they create up to two models and use several

diagram types, with UML class diagram as the basis for

conceptual and navigational models, and UML composition

diagram and sequence diagram for presentational model. In the

mean time, web applications have evolved a lot, and currently

most of the pages are highly dynamical via the use of client and

server side scripting. Therefore, the approach mentioned above is

not sufficient for our target applications, as it focuses on static

web pages, and navigation between them.

Ricca and Tonella [6] present a reverse engineering tool –

ReWeb, which deals with complex structures of web applications,

their evolution and restructuring. They model the web site's

structure as a directed graph where each node represents a single

HTML page. An edge connects two nodes if a link exists between

two pages represented by those nodes. Their model is primarily

used to model the client side of the web application.

Web Application Extension (WAE) proposed by Conallen [7],

provides mechanisms to comprise all important elements of a web

applications stated in Section 2.1. It encompasses both server-side

resources and client-side scripts. He proposes an extension to

UML in a form of an UML profile which is designed so that all

web-specific components can be modeled. At the same time it

provides a proper level of abstraction and detail suitable for

designers, implementers, and architects of web applications.

The starting point for Conallen’s model is the class diagram,

and web applications are built out of elements represented by

following stereotypes extending the “Class” element:

 represents a server page. Server page

global variables become attributes and server pages

functions become operations.

 represents a Client page displayed in

the user’s web browser. Global variables and functions

declared in the page’s script tags map to attributes and

operations, respectively.

 corresponds to the HTML form element. The

input fields of the HTML form are mapped to attributes.

This element contains no operations.

 represents a JavaScript function

library. Global variables and functions are mapped to

attributes and operations.

These elements can be connected using the following

connectors extending the association connection: link, build,

submit, redirect, forward, object, include, script.

We consider that Conallen’s model is at the appropriate level

of abstraction in order to show the Web application architecture.

In our opinion it encompasses all important Web application

elements, except the database table element (many web

applications are data centric). So we augment his model with one

element stereotype: database Table that enables us to model

the usage of the database tables.

PHP and JavaScript are dynamic languages and important

information, such as the actual number and types of function

arguments, or the actual function calls, can only be found out at

runtime. Since we are representing the runtime behavior of the

web application, we also use sequence diagrams [8] since they

offer an easy to understand way of visualizing the application

execution and communication between different web application

entities.

3. PHPMODELER
phpModeler is an Eclipse plugin that facilitates modeling and

web application architecture recovery. It has three main features:

page modeling, dependency modeling and model comparison. For

the implementation of these functionalities the following modules

are used: dynamic analyzer, code processor, dependency analyzer,

UML generator and difference analyzer.

Dynamic analyzer is a module that tracks the execution of

PHP scripts in order to gather data about control flow and used

data types.

Code processor is a page parsing module that parses PHP,

HTML and JavaScript code. Its main functionality is to generate a

web page model based on the adapted Conallen model.

Dependency analyzer is a module that analyses all generated

models. For every web page entity (JavaScript library, database

table, file, PHP library, web page), it finds all other entities

dependent on it. For example, for every database table these

dependency models show all web pages that access them and for

function libraries they show web pages that use those functions.

These dependency models simplify the process of change,

because for each change the developer can easily see where the

change propagates.

UML generator is a module used to generate UML diagrams

in a standard XMI [8] format used by the majority of UML tools.

As an input it uses models generated by the dynamic analyzer,

code processor, and the dependency analyzer modules.

Figure 1 phpModeler – process of generating page models

The process of web page model generation (shown in Figure

1) goes as follows. In phpModeler, the user selects the target web

page and executes it by using the phpModeler Eclipse plugin. The

dynamic analyzer module then analyzes the execution of the web

application by communicating with the Xdebug PHP debugger

[10] and generates dynamic page models. When the execution

flow enters a new PHP file, the code processor module statically

analyzes the new page and generates static web page models. The

dependency analyzer module then analyses the generated models

and for each entity (server script, client page, database table)

generates models showing other entities dependent on it. After the

model generation phase, the UML generator module generates

UML diagrams.

Figure 2 phpModeler – process of analyzing page evolution

phpModeler can also be used to highlight the differences

between page models (shown in Figure 2). For that functionality

it uses the difference analyzer module which is based on the

algorithm presented in [10], which identifies common elements

based on name and structure similarity. We have connected this

module to a SVN (Subversion) repository and in that way gained

the functionality of modeling page evolution. The differences

between generated UML models are shown within the diagrams

themselves, in a way similar to [11].

3.1 Generating page models
In phpModeler, model generation for individual pages is

achieved with the dynamic analyzer, code processor and UML

Generator modules. The process starts with the dynamic analyzer

module which executes the selected page and tracks its execution

while building a dynamic model of the web application execution.

Based on gathered dynamic data the tool generates dynamic page

models. For each page in which the execution flow enters, the

code processor module separates the input file to three parts:

server side PHP code, client side HTML code, and client side

JavaScript code. Each of the parts is then separately analyzed and

parsed using pattern matching and lexical analysis. Based on this

analysis, augmented Conallen’s models described in Section 2.2.

are generated. Since all referenced pages do not have to be

executed, the code processor analyzes all referenced PHP scripts,

even the ones that will not be executed. The generated models are

used as an input to the UML generator module which generates

UML class diagrams in a standard XMI (XML Metadata

Interchange) format that can easily be imported in most available

UML tools.

3.1.1 Page model generation example
We illustrate the page model generation functionality with a

simple login page example. Most web applications have a login

form which enables user authentication to the system. Apart from

great security issues (which are not in the focus of this example),

these login forms are fairly simple. On the client side the user fills

in his/her credentials which are then sent to the server page for

processing. The server page checks the database for user data and

if the data is valid, the user is granted access to the application.

Otherwise the user is redirected to a new page where he/she can

apply for registration.

The difficult part of understanding web applications by

browsing through their source code is that there is lot of “noise” in

the source code. The content of the login.php web page is shown

in Figure 3 (PHP part) and in Figure 4 (HTML part).

Layout sections, written in HTML, take up a lot of code,

while providing little or no information about the web page

functionality. It is important to emphasize that if the main focus of

the application is the user interface, then it should be modeled

separately.

Figure 5 Page model generated from the login web page

Instead of dealing with complex code, we can use a model of

that code. Figure 5 shows the login page model that was generated

with phpModeler tool. From the architectural viewpoint, the

important elements are the server script that checks the validity of

submitted username and password and the client page containing

the login form for data input. This web page also uses the

functionality of a server script “dal.php” (Data Access Layer) and

can redirect the user to either the “adminPanel.php” web page or

“InvalidLogin.html”.

Figure 6 on the other hand shows a dynamic model of the

page execution when the user has entered the correct login

credentials.

Figure 6 Sequence diagram representing the flow of

application control when the user sends the login request

<?php

require_once ("dal.php");

function checkLoginCredentials()

{

 if(isset($_REQUEST['username'])

 && isset($_REQUEST['password']))

 {

 $username = $_REQUEST['username'];

 $password = $_REQUEST['password'];

 if(userExists($username, $password))

 {

 header('Location: adminArea.php');

 }

 else

 {

 header('Location:loginInvalid.html');

 }

 }

}

checkLoginCredentials();

?>

<html>

 <head>

 <link href="style.css" rel="stylesheet"

 type="text/css" />

 <title>phpModeler - login demo</title>

 </head>

 <body>

 <form action="login.php" method="post"

 class="loginForm" id="loginForm">

 <table>

 <tr><td>Username:</td>

 <td>

 <input type="text" id="username"/>

 </td></tr>

 <tr><td>Password:</td>

 <td>

 <input type="password" id="pass"/>

 </td></tr>

 <tr>

 <td colspan="2">

 <input type="submit" id="submit"

 value="Login"/>

 </td></tr>

 </table>

 </form>

 </body>

</html>

Figure 3 PHP code for login page exaple

Figure 4 Login Web page example - HTML part

The dynamic model, shown on Figure 6 represents the code

that was executed when the user has sent his/her user credentials

when trying to login into the web application. The diagram shows

the URL parameters accessed by the code, executed functions,

and the types of function arguments and return values. The

diagram is valid only for the analyzed execution flow.

3.2 Generating dependency models
One of the advantages of using PHP web applications is the

ease of their deployment. In theory, it is necessary to transfer the

web application files to the web server. Both PHP and JavaScript

are script languages and there is no need to compile the

application. However this has a drawback, since there is no

compiler, many errors and inconsistencies are typically discovered

at run time. This is especially inconvenient when making changes

to the application (e.g. changing function signature, deleting

functions, etc.) as it is hard to know where those changes

propagate in case of large web applications. For that reason it is

useful to have models that show dependencies between

application elements.

In phpModeler, dependency models are created in the

following way: the code processor module generates page models

for every web page in the web application. Second, the

dependency analyzer module goes through all generated models

searching for unique entities (uniqueness is determined based on

file URL for client scripts, server scripts and client pages and

based on name for database tables). For each unique element the

dependency analyzer determines its relationships to other entities

and generates models showing those dependencies.

3.2.1 Dependency models example
We will illustrate the functionality of generating dependency

models with an example that builds on the example described in

Section 3.1.1. After the user has successfully logged in, he is

redirected to the administration area where he has the ability to

add new users. If we model this web application, using our

phpModeler tool, we will get three models (the first two,

representing the login page were already shown on Figure 5 and

Figure 6). The third model, shown in Figure 7 represents the

adminArea page.

Figure 7 Page model of the adminArea web page

If we look closely at Figure 5 and Figure 7 we will notice that

both models are using the same data access layer (server script

“dal.php”). If any significant changes would be made to the server

script “dal” those changes would most likely propagate to the

“login.php” and “adminArea.php” server scripts. In this simple

example it is easy to remember that function library “dal.php” is

used in both server scripts, but imagine a complex web

application with hundreds of scripts.

One of the dependency models generated by the dependency

analyzer module is shown in Figure 8. The model clearly shows

which server scripts use functionalities provided by the “dal.php”

server script.

Figure 8 Page model representing dependency between server

scripts and the server side function library dal.php

3.3 Modeling page evolution
Today, applications are evolving to fit customer needs. One of

the problems that occur is tracking changes between various

versions of the application.

As shown in Figure 2, in order to achieve this functionality,

phpModeler uses the following modules:) svn Access to access

the source code from the SVN repository,) code processor and

dynamic analyzer module that generate models based on the

source code, and difference analyzer that merges the input

models (while clearly denoting elements belonging to both

models, and the ones which are unique). Model differences are

shown in a way similar to Fujaba [10] – parts detected as similar

are shown in black, parts detected as belonging only to the older

model are shown in green, while parts that can only be found in

the newer model are shown in red.

The algorithm for merging models is based on type, name and

structure similarity and is analogous to the one described in [9].

3.3.1 Modeling page evolution example
Let’s build on the example shown in section 3.1.1. in the

following way: the developers added a client script to stop the

submission of empty username and password values (in order to

relieve the server of unnecessary requests) and expand the

functionalities of the “dal.php” and “admiArea.php” server

scripts.

Figure 9 Example of a page evolution model

After the code has been checked in, a page evolution model

can be generated. Figure 9 shows the evolution model of the

“login.php” web page which clearly shows the newly added

functionality (a new client script that checks the user data, and

some changes in the “dal.php” and “adminArea.php” server

scripts).

4. CASE STUDY
The usability of phpModeler is analyzed on a case study

application – iForestFire [12]. iForestFire (web user interface is

shown in Figure 10) is a web based system, developed on the

University of Split, Croatia for early detection of forest fires.

Forest fires are detected in incipient stage using advanced image

processing and image analysis methods.

Figure 10 iForestFire user interface

iForestFire is composed of the following applications: Fire

detection application, which is an application running on the

server. It is a standard multi-threaded C application that gathers

data from distributed embedded devices (cameras and

meteorological devices), analyzes that data and decides whether

or not there is any sign of fire; Web application developed

with PHP, JavaScript, HTML and CSS which acts as a user

interface to the system. All of the systems functionalities and data

access are done via a web browser; Database which is used

for data storage and as means of communication between the fire

detection application and the Web application.

In this case study we will concentrate on the Web application

part which is composed of 402 scripts and pages in total. Source

code analysis results are shown in Table 1 and Table 2.

 PHP JavaScript HTML

Total LOC 42534 11457 14255

Max LOC in one file 3725 1113 557

Average 105 28 35

Table 1 iForestFire code statistics

In order to gain a better understanding of iForestFire, Table 2

shows web application complexity in terms of SQL queries,

function definitions, and function calls.

 SQL queries Function

definitions

Function calls

Total 348 1271 18773

Max 17 180 1561

Average 0.86 3 46

Table 2 iForestFire complexity statistics

We used iForestFire to benchmark phpModeler performance

and usability. On the test computer (Intel Core2Duo at 2.16 GHz,

2 Gb RAM) the whole process of generating UML page models

took 21 seconds, out of that 5 seconds have been used to parse

individual pages and generate models, 3 seconds to generate

dependency models and 13 seconds to generate UML diagrams

from those models.

In the process, 402 page diagrams and 423 dependency

diagrams (one for each server script, client script, and database

table) have been generated. Figure 10 shows the complexity of

generated page diagrams in terms of number of elements, their

complexity (number of attributes and operations) and

interconnections.

Figure 11 Complexity of page diagrams generated by

phpModeler

262

166

23 11

294

75
22 11

[1,4] [5,8] [9,12] [13,17]

N
o

. o
f

d
ia

gr
am

s

Elements per diagram Connections per diagram

As can be seen from Figure 10, on average, diagrams are of

reasonable size (e.g. 262 diagrams have between 1 and 4

elements, and 294 diagrams have between 1 and 4 connections),

although there are few diagrams that have too many elements and

are too crowded. In that case we recommend manual partitioning

of the diagram to a number of smaller, more specific ones.

Figure 11 shows that iForestFire is a complex system with a

lot of interdependencies, but most of which are between several

entities.

Figure 12 Complexity of dependency diagrams generated by

phpModeler

We used phpModeler for the reverse engineering of

iForestFire in order to recover the architecture and gain better

understanding of the system. Currently, the system is being

refactored in order to increase maintainability.

5. RELATED WORK
In the last decade several web application RE tools have been

made, some of which are: WARE [13], WebUml [14], Enterprise

Architect [15], Visual Paradigm for UML [16] and ReWeb [6].

Based on the type of generated models, these tools can be

divided into three groups: (i) tools that generate standard UML

class diagrams (i.e. Enterprise Architect and Visual Paradigm for

UML), (ii) tools that generate web page models based on

Conallen’s web UML extensions (WARE and WebUml) and (iii)

tools that generate models based on their own meta-models (e.g.

ReWeb).

Enterprise Architect and Visual Paradigm for UML are

commercial general modeling tools that perform web application

RE, but in a sense that they generate standard UML diagrams

from object-oriented PHP code. This is also the main difference,

in comparison to phpModeler. Unlike these tools phpModeler

uses Conallen’s UML extensions, since models built using the

extension describe web application architecture in much more

expressive way. The second reason is that the great majority of

legacy PHP web applications is written in procedural PHP code.

WARE tool is a RE tool developed as a part of the WARE

approach (Web Application Reverse Engineering) that uses static,

dynamic and behavioral analysis to generate class diagrams

representing the architecture of web applications; sequence and

collaboration diagrams to represent the dynamic model and use

case diagrams to represent web application behavior.

WebUml is a RE tool that generates class diagrams, used to

describe the structure and components of a web application and

state diagrams that represent the behaviors and the navigational

structure of the web application.

Both tools, WARE and WebUml, are missing analyses such as

dependency analysis and page evolution analysis which exist in

phpModeler. On the other hand, the WARE tool, except for static

and dynamic analysis also provides the ability to perform the

behavioral analysis of web applications.

Ricca and Tonella [6], developed ReWeb tool in order to deal

with complex structures of web applications, their evolution and

restructuring. ReTool uses reverse engineering approach to model

web site's structure with a graph and allows applying several

known analyses (including flow analyses, traversal algorithms,

and pattern matching). The tool also provides analysis of site's

history and evolution. They use their own modeling language and

GUI to represent a model of the site. At the moment, this tool

supports only analysis of static web pages and deals mostly with

client-side of a web site, i.e. it lacks examination of resources

available and used at server-side of the application.

6. CONCLUSION
Separation of concerns is a widely accepted practice that

increases understandability and eases program maintenance. A

disadvantage of the open-source web language chain (PHP, SQL,

HTML, CSS, JavaScript) is that it does not enforce separation of

concerns. It is possible to have up to five different languages in

the same file, each dealing with separate concerns: HTML and

CSS for presentation, JavaScript for client side logic, PHP mostly

for business logic and SQL for data access. Apart from mixing

concerns, there are parts of the files that deal with resources

running on the server (PHP, SQL) and parts that deal with

resources running on the client (HTML, CSS, JavaScript). It is

understandable that this can, at times, be overwhelming. Web

applications are characterized by a large number of

interdependencies between web application entities that are often

difficult to track. One way of coping with web application

complexity is their modeling.

In this paper we have presented a tool phpModeler that we

have developed and that facilitates reverse engineering and

maintenance of legacy web applications. phpModeler analyses

web application execution and source code and generates models

that can be used: a) as a basis for architecture recovery and better

system understanding; b) to facilitate system maintenance by

showing interrelationships between web application elements; and

c) as a way to track web page evolution.

We have tested the tool in a case study while reverse

engineering an application – iForestFire. The analysis has shown

that phpModeler is usable in reverse engineering legacy web

applications. Model generation takes a reasonable amount of time

(21 seconds) so models can be regenerated when necessary. The

analysis has also shown that in a smaller number of cases (see

Figures 10 and Figure 11) models are somewhat difficult to use

due to their size.

For future work we plan to extend phpModeler with the

ability to track dependencies between a client script and a server

resource (AJAX). Also, the analysis has shown that the usability

of the generated models drops when dealing with large models. It

will be necessary to provide a way to automatically partition large

diagrams into more manageable ones. There is also an issue with

small diagrams that could probably be merged. Finally, the

usability of the generated models will have to be tested.

371

31
5 3 1 18 5 1 1

[1,4] [5,15] [16,25] [26,50] [100-110]

N
o

. o
f

d
ia

gr
am

s

Number of elements Number of connections

392

7. ACKNOWLEDGMENTS
This work was partially supported by the Swedish Foundation for

Strategic Research via the strategic research centre PROGRESS,

and the Unity Through Knowledge Fund supported by Croatian

Government and the World Bank via the DICES project.

8. REFERENCES
[1] Mikkonen T., Taivalsaari A. Web Applications - Spaghetti

Code for the 21st Century.; Software Engineering Research,

Management and Applications - SERA, 2008.

[2] Boehm, Barry W. Software engineering economics. 2002.

[3] Nelson, Michael L. A Survey of Reverse Engineering and

Program Comprehension. Software Engineering Survey. 1996.

[4] Chikofsky E, Cross J. Reverse Engineering and Design

Recovery - a Taxonomy. IEEE Software. January, 1990.

[5] Koch, N., Kraus,A. The expressive power of UML-based

engineering. In Second International Workshop on Web Oriented

Software Technology (CYTED), 2002.

[6] Ricca F., Tonella P. Understanding and Restructuring Web

Sites with ReWeb. IEEE MultiMedia. Volume 8 Issue 2, 2001.

[7] Conallen J. Modeling Web application architecture with

UML. Communications of the ACM. Volume 42, Issue 10, 1999.

[8] XMI Mapping Specification. XMI. [20. 9 2009.]

http://www.omg.org/technology/documents/formal/xmi.htm.

[9] Xing Z.. Stroulia E. UMLDiff: an algorithm for object-

oriented design differencing. Proceedings of the 20th IEEE/ACM

International Conference on Automated software engineering,

2005.

[10] Niere J. Visualizing differences of UML diagrams with

Fujaba. In Proceedings of the 2nd Fujaba days, 2004.

[11] iForestFire [20.9.2009.] http://ipnas.fesb.hr/

[12] Di Lucca G., Fasolino A.R., and Tramontana P. Reverse

engineering Web applications: the WARE approach. Journal of

Software Maintenance: Research and Practice. Volume 16 Issue

1-1, 2004

[13] Bellettini C., Marchetto A., Trentini A. WebUml: reverse

engineering of web applications. Proceedings of the 2004 ACM

symposium on Applied computing, 2004.

[14] Enterprise Architect [20.9.2009.]

www.sparxsystems.com.au/platforms/php_uml.html

[15] Visual Paradigm for UML Visual Paradigm for UML

[20.9.2009.] www.visual-paradigm.com

http://ipnas.fesb.hr/

