
PRIDE
Ivica Crnković, Séverine

Sentilles, Thomas Leveque
Mälardalen research and technology

centre
PO Box 883, SE-721 23, Västerås,

Sweden
{ivica.crnkovic, severine.sentilles,

thomas.leveque}@mdh.se

Mario Žagar, Ana Petričić, Juraj
Feljan, Luka Lednicki

Faculty of Electrical Engineering and
Computing

University of Zagreb, Croatia
{mario.zagar, ana.petricic, juraj.feljan,

luka.lednicki}@fer.hr

Josip Maras
Faculty of Electrical Engineering,

Mechanical Engineering and Naval
Architecture

University of Split, Croatia
josip.maras@fesb.hr

Abstract: This paper describes PRIDE, an integrated
development environment for efficient component-based
software development of embedded systems. PRIDE uses
reusable software components as the central development units,
and as a means to support and aggregate various analysis and
verification techniques throughout the whole lifecycle - from
early specification to deployment and synthesis. This paper
focuses on support provided by PRIDE for the modeling and
analysis aspects of the development of embedded systems based
on reusable software components.

1 INTRODUCTION

In the recent years, embedded system (ES) development
has changed significantly due to the rapid increase of
software in these systems. This has resulted in software
becoming as complex as in conventional systems. In non-
embedded domains, new approaches such as model-based,
component-based, and service-oriented development have
been proposed to manage software complexity and there is a
trend to apply these approaches also in ES development.
However, due to the specific requirements of ES, these
approaches are insufficient. In particular, ES correctness is
strongly correlated to specific extra-functional properties
(EFPs) such as timing (e.g. execution and response time) or
dependability (e.g reliability and safety) under constrained
resources such as memory, energy, or computation speed.
This calls for additional domain-specific technologies that
provide support not only for functional development but also
for analysis and verification of EFPs.

As a possible solution, we have been developing a new
component-based approach [1] built around a two-layer
component model called ProCom [2], which addresses the
particularity of ES development from big complex
functionalities, to small, close to control loop functionalities.
This approach requires specific tool support that should
enable:

• efficient system design by using existing
components,

• seamless integration of different tools to provide the
analysis and verification required for system
correctness, and

• efficient EFP management of components and
systems.

In this paper, we introduce the ProCom Integrated
Development Environment, PRIDE1, a tool-suite supporting
this approach. We focus on the support PRIDE provides
concerning two main aspects of developing ES with reusable
software components - modeling and analysis. In difference
to similar approaches ([3], [4], [5]), PRIDE puts emphasis on
EFPs during the entire lifecycle.

In Section 2 we describe the design strategies that drove
the development of PRIDE. We describe PRIDE's modeling
support in Section 3 and analysis support in Section 4. The
paper is concluded in Section 5. In Appendix A we give a
description of the tool demonstration.

2 PRIDE DESIGN STRATEGIES

PRIDE has been designed to support four design
strategies that are especially important to consider for having
an efficient component-based development of embedded
systems.

Levels of abstraction. Using components throughout the
whole development process implies that the component
concept spans a wide range of abstractions, from a vague and
incomplete early specification, to very "concrete" with a fixed
specification, a corresponding implementation and
information about their EFPs. This means that components at
different levels of abstraction must be able to co-exist within
the same model.

Component granularity. In distributed ES, components
span a large variety in size and complexity; the larger
components are typically active (i.e. with their own thread of
execution) with an asynchronous message passing

1 PRIDE Web page: www.idt.mdh.se/pride

communication style, whereas the smaller components are
responsible for a part of control functionality with a strong
synchronization. For an efficient development, a support for
handling different types of components must be provided.

Component vs. system development. The common
distinction between component development and system
development brings issues in ES development, where the
coupling between the hardware platform and the software is
particularly tight. As a consequence, component development
needs some knowledge of where the components are to be
deployed. This requires support to handle the coupling
between components, system and target platform, while still
allowing separate development of components and systems.

Extra-functional properties. The correctness of ES is
ascertained based on both the functional and extra-functional
aspects. However, many EFPs typically encountered in ES
are assessed through different methods during the
development lifecycle (from early estimation to precise
measurements) and different values may be obtained
according to the characteristics of the resources of the
platform on which the components are to be deployed. For
this reason, an efficient ES development should provide a
means for specifying, managing and verifying these
properties with respect to the context in which their values are
provided.

To comply with the design strategies, the following
requirements have been identified as principles that guided
the design and development of PRIDE:

• allowing to move freely between any development
stages,

• displaying the consequences of a change in the
system or within a component,

• supporting the coupling with the hardware
platform, and

• enabling and enforcing the analysis, validation and
verification steps.

In addition, a central requirement relates to the notion of
component. Components are the main units of development
and seen as rich-design artifacts that exist throughout the
whole development lifecycle, from early design stage, in
which little information about them exists, to deployment and
synthesis stages, in which they are fully implemented. PRIDE
views a component as a collection of all the development
artifacts (requirements, models, EFPs, documentation, tests,
source code, etc.), and enables their manipulation in a
uniform way.

Driven by the aforementioned principles, several tools
have been developed and tightly integrated into PRIDE.
PRIDE is built as an Eclipse RCP application that can be
easily extended with addition of new plugins.

3 MODELING WITH PRIDE

PRIDE's modeling part currently consists of a component
explorer and component editors.

Component Explorer. It enables browsing the list of the
components available in the current development project. In it
a component owns a predefined information structure
consisting of a source folder for source code, a model folder
to store the architectural model, and other models such as
resource usage models, behavioral models, etc., a
documentation folder, and a metadata file, which contains
specific properties of the component such as its creation
times, its version number, etc. This structure is extendable.

Component Editors. PRIDE is built around ProCom, a
hierarchical component model that additionally distinguishes
between two types of components: ProSys components, i.e
high granularity level components to develop complex
functionalities possibly distributed, and ProSave components,
i.e. non-distributed, smaller and simpler components.
However, in the component editors, all these components are
treated in an uniform way. Each component editor partitions
the components in two views. The "external view" provides
all the pieces of information about component functionality
such as the component name, its interface and EFPs. The
"internal view" depends on the component realization. For
primitive components, the internal view is linked to the
component implementation and the source code is displayed.
For composite components, the internal view corresponds to
an interconnection of subcomponent instances and a graphical
form is made available allowing to make modifications in this
inner structure (addition/deletion of component instances,
connectors, change in the connections, etc.).

4 ANALYSIS WITH PRIDE

The analysis support in PRIDE is based on two main
parts, an attribute framework and an analysis framework.

Attribute Framework. The purpose of the attribute
framework [6] is to provide a uniform and user-friendly
structure to seamlessly manage EFPs in a systematic way. The
attribute framework enables attaching extra-functional
properties to any architectural element. Attributes are defined
by attribute types, and include attribute values with metadata
and the specification of the conditions under which the
attribute value is valid. One key feature is that the attribute
framework allows an attribute to be given additional values
during the development without replacing old values.

The analysis framework provides a common platform for
integrating in a consistent way various analysis techniques,
ranging from simple constraint checking and attribute
derivation (e.g., propagating port type information over
connections), to complex external analysis tools. Analysis
results can either be presented to the user directly, or stored

as component attributes. They are also added to a common
analysis result log, categorized as Ok, Error or Warning,
allowing the user easy access to earlier analysis results.

4.1 Analysis example: Parametric component-level
WCET analysis

Worst case execution time (WCET) is a crucial property
in real-time systems, since it serves as the basis for
schedulability analysis. In practice, it is often determined by
extensive testing and measuring, but there are also methods to
derive safe approximations by means of static code analysis.
In either case, the information is only available late in
development, once all parts of the system are fully
implemented.

In early development stages, WCET analysis can be
performed at component-level, based on WCET information
for individual components (estimates in the case of
components under construction, or the result of code analysis
or measurements in the case of reused components). The
attribute representing the WCET of an individual component
is expressed in parametric form with respect to component
input, in order to facilitate reuse of this attribute when the
component is reused. It is possible to specify, for example,
that the WCET is 150 if x<10 and 100+5x otherwise, where x
denotes an input port value. In a similar way, component
outputs can be specified in terms of their inputs. Based on
these attributes, and the component interconnections, the
analysis tool derives a WCET value for the composite
structure. The result is stored in an attribute of the composite,
and presented to the user via the analysis result log.

5 CONCLUSION

The key benefits of PRIDE lay in its domain-orientation:
(i) it facilitates bringing design decisions related to EFPs and
system constraints such as resources usage or timing
characteristics. Designers can in an early phase of
development investigate different choices before component
implementation by estimating component properties. PRIDE
also enables (ii) system design that consists of already
existing components and components that still do not exist;
(iii) a separation of development of software from system
development, and yet allowing reasoning about the system
properties; (iv) a separate development of software
components from software systems and reusing not only the
code, but also of their EFPs and other development artifacts
such as models; (v) design of local and distributed embedded
systems that might have different concerns on different levels;
and (vi) an iterative development process.

The PRIDE toolset, through the attribute framework and
the analysis framework, provides a consistent interface to the

various analysis tools used to increase predictability during
the development process.

The WCET analysis exemplifies the use of parametric
attributes for capturing information that can be reused
together with the component in different systems, while still
allowing for sufficiently detailed analysis in a particular
context. It also shows how early analysis on component level
can be based on a combination of detailed information about
reused components and estimates or budgets for components
under development.

Additional tools will be integrated into PRIDE as part of
our future work, including analysis of failure propagation,
code-level WCET analysis, and model checking of behavioral
models.

REFERENCES

[1] T. Bureš, J. Carlson, S. Sentilles, A. Vulgarakis. A
Component Model Family for Vehicular Embedded
Systems, The Third International Conference on
Software Engineering Advances, IEEE, 2008

[2] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, I.
Crnković, A Component Model for Control-
Intensive Distributed Embedded Systems,
Proceedings of the 11th International Symposium on
Component Based Software Engineering
(CBSE2008), Springer Berlin, 2008

[3] M. Åkerholm, J. Carlson, J. Fredriksson, H.
Hansson, J. Håkansson, A. Möller, P. Pettersson, M.
Tivoli, The SAVE Approach to Component-Based
Development of Vehicular Systems, Journal of
Systems and Software, 2007

[4] Arcticus Systems, Rubus Software Components,
http://www.arcticus-systems.com

[5] R. van Ommering, F. van der Linden, J. Kramer, J.
Magee. The Koala Component Model for Consumer
Electronics Software, Computer, 2000

[6] S. Sentilles, P. Stepan, J. Carlson, and I. Crnkovic,
Integration of extra-functional properties in
component models, The 12th International
Symposium on Component Based Software
Engineering, Springer Berlin, 2009

[7] Séverine Sentilles, Anders Pettersson, Dag Nyström,
Thomas Nolte, Paul Pettersson, Ivica Crnković,
Save-IDE - A Tool for Design, Analysis and
Implementation of Component-Based Embedded
Systems, Proceedings of the Research Demo Track
of the 31st International Conference on Software
Engineering, 2009

6 APPENDIX - TOOL DEMONSTRATION
DESCRIPTION

We will demonstrate the core support of PRIDE: (i)
design of distributed embedded systems using the ProCom
component model, (ii) assigning quality attributes to
components and other architectural elements. The
demonstration will be implemented by an example: an
autonomous truck navigation system (Figure 1). A similar
example was demonstrated by another component model,
namely SaveCCM [7]. However, in PRIDE we also show
advantages of the ProCom component model (e.g. use of
reusable components), and the use of the attribute framework
built in PRIDE.

The truck is intended to follow a straight black line with
two filled black circles on each end. The truck has to follow
the line until it reaches its end. Then it turns around, signals
the turning with blinking lights, and starts searching for the
line again. The truck executes the navigation running in three
different operational modes, namely:

• Follow mode in which the truck aligns itself with
the line once it reaches it, and then follows the line
using its line sensors. When the truck detects the
end of the line, it changes mode to the Turn mode.

• Turn mode in which the truck turns for a fixed
distance and signals the turning until it reaches a
state where it is able to go straight to the line again.
Upon completion, the truck changes mode to the
Find mode.

• Find mode in which the truck goes straight to the
line. When the line is reached, the truck returns to
the Follow mode where it aligns itself with the line
and keeps following it.

The truck has four sensors - a speed sensor and three line
sensors (left, right and middle one). Line sensors are able to
detect the line on the surface, and are used to determine if the
truck has a correct position with respect to the line. The truck
also has two moving actuators, one for steering and one for
speed; and two light actuators that can turn on and off the
blinking lights.

In the demonstration we will show how to build the
matching system: first by decomposing it into two high level
functionalities: The “Movement” and the “Lights“
components which will be modeled as ProSys components
(Figure 2). Next, we will show how to model and implement
their internals (Figure 3) by composing a system from a
combination of pre-existing and newly developed
components. Each component can have a number of quality
attributes. In this example we will use worse-case execution
time (WCET) and static memory that can either be calculated
(using for example static source code analysis), derived by
analysis, or estimated. We will show how to derive the
mentioned quality attributes of the whole system from
attributes of individual components.

Figure 2: The ProSys components of the truck
system

Figure 1: The truck

Figure 3: The internals of the Movement ProSys component

