
UNIVERSITY OF ZAGREB
and

MÄLARDALEN UNIVERSITY 

THESIS 

TRANSFORMATION BETWEEN JAVABEANS AND 
SAVECOMP SOFTWARE COMPONENT MODELS

Juraj Feljan

Zagreb, July 2008



Abstract
Component-based software engineering (CBSE) is an approach where systems are built 

from preexisting software components.  To ensure interoperability between components, 
component  specifications  conform to  a  particular  component  model.  Many component 
models exist and there is often a need for transformation between two different component 
models. 

In this thesis the basic concepts of CBSE are described. Two component models are 
presented – JavaBeans and SaveCCM. A transformation between them is discussed and 
implemented.

Key words: component-based software engineering, transformation between component 
models, JavaBeans, SaveCCM

Sažetak
Programsko inženjerstvo temeljeno na komponentama je pristup koji razmatra izgradnju 

sustava od postojećih programskih komponenti. Ne  bi  li se osiguralo zajedničko 
funkcioniranje komponenti,  njihove specifikacije slijede određeni komponentni  model. 
Razvijeni  su  mnogi komponentni  modeli pa  se javlja potreba za transformaciju među 
njima.

U  ovom radu su opisani osnovni koncepti programskog inženjerstva temeljenog  na 
komponentama. Dva komponentna  modela su prezentirana –  JavaBeans i  SaveCCM. 
Transformacija među njima je diskutirana i izvedena.

Ključne riječi:  programsko inženjerstvo temeljeno  na komponentama,  transformacija 
između komponentnih modela, JavaBeans, SaveCCM



Table of Contents
1 Introduction ........................................................................................................................1
2 Component-based software engineering ...........................................................................2

2.1 Components ................................................................................................................4
2.2 Interfaces ....................................................................................................................5
2.3 Contracts .....................................................................................................................6
2.4 Component models .....................................................................................................7
2.5 Component frameworks ..............................................................................................8
2.6 Component-based software development process ....................................................8

2.6.1 Development of components ...............................................................................8
2.6.2 Development of systems .....................................................................................9

2.7 CBSE versus OOP .....................................................................................................9
2.8 CBSE for embedded systems ....................................................................................9

3 The JavaBeans component model ...................................................................................11
3.1 Properties ..................................................................................................................13

3.1.1 Simple properties ..............................................................................................14
3.1.2 Indexed properties .............................................................................................14
3.1.3 Bound properties ...............................................................................................14
3.1.4 Constrained properties ......................................................................................14

3.2 Events .......................................................................................................................14
3.3 Methods ....................................................................................................................15
3.4 Customization ...........................................................................................................15
3.5 Introspection .............................................................................................................16

3.5.1 Design patterns .................................................................................................17
3.5.1.1 Design patterns for properties ....................................................................17
3.5.1.2 Design patterns for events .........................................................................18
3.5.1.3 Design patterns for methods ......................................................................18

3.5.2 Introspection API ...............................................................................................18
3.6 Persistence ...............................................................................................................18

3.6.1 Default serialization using the Serializable interface .........................................18
3.6.2 Selective serialization using the transient keyword ...........................................19
3.6.3 Selective serialization using the writeObject and readObject methods ............19
3.6.4 Selective serialization using the Externalizable interface .................................19
3.6.5 Long term persistence .......................................................................................19

3.7 Packaging Java beans ..............................................................................................19
4 The SaveComp Component Model .................................................................................21

4.1 Ports ..........................................................................................................................22
4.2 Components .............................................................................................................23

4.2.1 Clocks and delays .............................................................................................23
4.2.2 Composite components .....................................................................................24

4.3 Switches ....................................................................................................................24
4.4 Assemblies ................................................................................................................25
4.5 SaveCCM XML syntax ..............................................................................................25
4.6 SAVE-IDE .................................................................................................................29

5 Transformation from SaveCCM to JavaBeans ................................................................31
5.1 Development of the SaveCCM Java model .............................................................31

5.1.1 Executor ............................................................................................................32
5.1.2 Immediate connections and delegations ...........................................................33
5.1.3 Ports ..................................................................................................................33
5.1.4 Components ......................................................................................................34
5.1.5 Clocks and delays .............................................................................................36



5.1.6 Unsupported elements ......................................................................................36
5.2 Implementation of the transformation .......................................................................36

5.2.1 Parsing the .save file .........................................................................................36
5.2.1.1 SaveCCM DTD and SaveCCM schema ....................................................37
5.2.1.2 Changes to the savexmlgenerator.mt file ..................................................38

5.2.2 The unmarshall method .....................................................................................40
5.2.3 The copyClasses method ..................................................................................40
5.2.4 The generateDataPortClasses method .............................................................40
5.2.5 The generateComponentClasses method ........................................................40
5.2.6 The generateSystemDescriptionClass method .................................................41

5.3 Limitations of the transformation ..............................................................................41
5.4 Performing the transformation ..................................................................................42
5.5 Transformation example ...........................................................................................43
5.6 Possibilities for improvement ....................................................................................44
5.7 SaveCCM and SAVE-IDE errors ..............................................................................45

6 Conclusion .......................................................................................................................47
7 Bibliography .....................................................................................................................48
8 List of abbreviations .........................................................................................................50



Index of Figures
Figure 2.1: A component and its interface ............................................................................6
Figure 2.2: Component-based software development process ............................................8
Figure 3.1: Examples of beans ...........................................................................................12
Figure 3.2: NetBeans IDE property sheet ...........................................................................16
Figure 4.1: Formal definition of SaveCCM semantics ........................................................21
Figure 4.2: SaveCCM graphical syntax ..............................................................................22
Figure 4.3: SaveCCM clock and delay components ...........................................................24
Figure 4.4: A switch condition .............................................................................................25
Figure 4.5: Application definition .........................................................................................26
Figure 4.6: Component, switch and assembly type definitions ..........................................27
Figure 4.7: Component realisation definition ......................................................................28
Figure 4.8: Component, switch and assembly instantiation ...............................................28
Figure 4.9: Port definitions ..................................................................................................29
Figure 4.10: Connection definition ......................................................................................29
Figure 4.11: SAVE-IDE Architectural Editor ........................................................................30
Figure 5.1: Transformation from SaveCCM to JavaBeans .................................................31
Figure 5.2: UML diagram of a partial SaveCCM Java model .............................................32
Figure 5.3: Promoting trigger events ..................................................................................34
Figure 5.4: UML diagram of the Component class .............................................................35
Figure 5.5: JAXB binding compiler .....................................................................................37
Figure 5.6: JAXB binding runtime framework .....................................................................37
Figure 5.7: The Save2Java tool ..........................................................................................42
Figure 5.8: A simple SaveCCM system ..............................................................................43

Index of Code Snippets
Snippet 5.1: Executing the components .............................................................................33
Snippet 5.2: Methods implementing the transformation .....................................................36
Snippet 5.3: Unmarshalling the .save file ...........................................................................40
Snippet 5.4: Validation of the .save file against the SaveCCM schema .............................40
Snippet 5.5: The execute method in the generator1_1 class .............................................43
Snippet 5.6: The execute method in the generator2_4 class .............................................43
Snippet 5.7: The execute method of the comparator_7 class ............................................44
Snippet 5.8: The execute method of the print_11 class ......................................................44

Index of Tables
Table 5.1: Changes to the savexmlgenerator.mt file ...........................................................39



1 Introduction

1 Introduction
Today we are witnesses of a great expansion of software use in industry,  business, 

traffic,  health,  research,  education,  entertainment,  literally  all  aspects  of  everyday life. 
Software runs banks, hospitals, cars, planes, schools, it has become inevitably intertwined 
with our daily routine. But software systems are becoming extremely large and complex, 
thus  increasing  the  time  and  cost  to  develop  and  maintain  them.  So  methods  for 
navigating  and  simplifying  the  whole  software  lifetime  cycle  need  to  be  defined.  The 
discipline  handling  this  issue  is  software  engineering.  Software  engineering  is  the 
application  of  a  systematic,  disciplined,  quantifiable  approach  to  the  development, 
operation and maintenance of software  [1].  A promising new sub discipline of software 
engineering  recently  emerged  –  it  is  called  component-based  software  engineering 
(CBSE).

Component-based software engineering is an approach where systems are built from 
preexisting software components. The advantage of this approach is that components can 
be developed separately from systems. To ensure interoperability between components, 
component specifications conform to a particular component model. A component model 
defines the rules for component specification and communication between components. 
Many component models exist and there is often a need for transformation between two 
different component models. Although component models are in principle similar, many 
details in which they may differ can make the transformation difficult to achieve.

The  purpose  of  this  thesis  is  to  examine  the  possibility  of  transformation  between 
JavaBeans and SaveComp component models. First a theoretical introduction to CBSE is 
given in Chapter 2. Then key aspects of JavaBeans are described in Chapter 3. SaveCCM 
is presented in Chapter 4. The main part of this thesis is Chapter 5 - a discussion about 
and implementation of the transformation. 

The  reader  of  this  thesis  should  have  prior  knowledge  of  the  Java  programming 
language  and  basic  knowledge  of  XML  in  order  to  understand  the  transformation 
implementation.

1



2 Component-based software engineering

2 Component-based software engineering
Traditionally, software was developed with a single system in focus, by concentrating on 

meeting the budget and delivery deadline, with no evolutionary aspects in mind. This often 
led to failing to fulfil quality requirements and the increase in maintenance costs. Today the 
main  challenge  for  programmers  is  to  cope  with  the  mentioned  complexity  and  react 
quickly to change. Also, there is an increasing demand for software to be robust, reliable, 
flexible, adoptable etc. One possible way to handle this is by applying component-based 
development (CBD), an approach where systems are built from preexisting components, 
as opposed to building a system from scratch.

CBD is  a  concept  well  known in  building  hardware  systems.  For  instance,  connect 
various integrated circuits (ICs) together in the correct way and you get a radio. Cars are 
made  from  preexisting  components.  Another  example  is  assembling  computers  –  a 
customer can pick out the components (CPU, memory, hard disk) and get a computer that 
meets their exact desires and needs. Development of software systems is progressively 
moving in a similar direction – software components should give programmers the same 
benefits as hardware components do to computer assemblers. Programmers should be 
able to connect software components together building different applications, just as an 
electrical engineer connects ICs when building radios.

In contrast to a traditional approach of “reinvent, recode, retest”, CBD promotes a new 
approach  –  “reuse”.  Reusability  can  reduce  production  costs,  while  allowing  faster 
development of new software. Since a component is intended for use in different systems 
it can be repeatedly tested in various contexts, thus increasing its quality.  

CBD introduces many advantages to software development such as:

● increased  understandability  of  complex  systems,  which  allows  easier  system 
development and maintenance,

● lower development and maintenance costs,

● shorter time to market,

● reuse of components across several systems.

But it also holds many pitfalls [2]:

● It is sometimes unclear what can and can not be reused.

● It takes more time and effort to build units that are reusable.

● Reusable  components  are  intended  for  use  in  many  different,  and  possibly 
unknown applications, which makes it difficult to define precise requirements.

● To be reusable, components must be sufficiently general, scalable and adoptable, 
which makes them more complicated to use and more demanding on computing 
resources.

● Component maintenance can be very expensive, since components must respond 
to different requirements and run in different environments. 

2



2 Component-based software engineering

CBD needs a systematic and disciplined approach that can utilize its advantages and 
neutralize the risks. This is the role of component-based software engineering (CBSE). 
CBSE is a branch of software engineering focused on developing software components 
and  systems  constructed  from  those  components.  It  provides  methods  and  tools  for 
supporting different aspects of CBD1. 

The idea behind building software from prefabricated components is not new – it was 
first  published  in  Douglas  McIlroy's  address  at  the  NATO  conference  on  software 
engineering  in  Garmisch,  Germany in  1968.  However,  CBSE is  merely  in  its  starting 
phase.  It  covers  many software  engineering  disciplines  which  have  not  yet  been fully 
defined  and  exploited.  But  it  is  expected  to  improve  the  development  of  software  in 
general. It is considered to be a big step in software development methodology, similar to 
the transition from assembly to high level programming languages around 1970, or the 
jump  from procedural  to  object-oriented  programming  languages  around  1990.  CBSE 
promises to accelerate the software development process, reduce its cost and ease the 
maintenance of software systems.

The major goals of CBSE are [3]:

● providing support for the development of systems as assemblies of components,

● supporting the development of components as reusable entities,

● facilitating the maintenance and upgrading of systems by customizing and replacing 
their components.

Some of the main challenges CBSE is facing are [2]:

● component specification – still no consensus has been made about what software 
components exactly are and how they should be specified,

● component-based software life cycle 

○ the development phase – the development of components may be completely 
independent of the development of systems using them, so components usually 
lack features that the system requires

○ the maintenance phase – it is unclear who is responsible if the system fails, the 
system producer or the component producer,

● composition predictability – even if  all  attributes of  components are known, it  is 
unclear as how they define the attributes of the whole system,

● tool support – the objective of CBSE is to build systems from components simply 
and  efficiently,  this  can  only  be  achieved  through  extensive  tool  support  (for 
instance  component  selection  and  evaluation  tools,  component  repositories, 
component-based design tools, run-time system analysis tools, etc.).

The assembly of components should be smooth and simple in an ideal world. A system 
incorporating  components  should  know everything  about  them –  their  interfaces,  their 

1 CBD  and  CBSE  are  sometimes  used  as  synonyms.  In  this  thesis  CBSE  is  considered  to  be  a 
systematical and disciplined approach to CBD.

3



2 Component-based software engineering

functional and non-functional2 properties. Also, the components should know exactly what 
the  system  needs.  But  in  the  real  world  systems  are  built  from  already  developed 
components only when appropriate and often by developing new code for the specific 
system.  The  system  may  know  about  the  syntax  of  components'  interfaces,  but  not 
necessarily their other properties. So connecting components in the real world can get 
quite complicated, thus emphasizing the need for CBSE [2].

The basic concepts of CBSE are: components, interfaces, contracts, component models 
and component frameworks. They are described in next chapters.

2.1 Components
A software component is the fundament of CBSE. Although this concept may intuitively 

be clear or obvious, still there is no agreement as to what a software component exactly is. 
Not long ago the default notion of a component was the software module, because both a 
module and a component adhere to the concept of building parts of a software system. But 
in recent years, as CBSE evolved, experts have provided several definitions for the term 
software component [4]. 

One  of  the  most  accepted  definitions  is  given  by  Clement  Szyperski:  “A software 
component  is  a  unit  of  composition  with  contractually  specified  interfaces and  explicit 
context dependencies only. A software component can be deployed independently and is 
subject to composition by third party.” 

This definition highlights the component properties that are not addressed in traditional 
software  modules  –  context  independence,  composition,  deployment  and  contracted 
interfaces. 

For a component to be deployed independently there must be a clear distinction from its 
environment  and  other  components.  Since  a  component  communicates  with  the 
environment via its interface, the interface must be clearly specified. The implementation 
must  be  well  encapsulated  in  the  component  and  not  directly  reachable  from  the 
environment. This makes a component a unit of third-party3 deployment [2]. The motivation 
for third-party deployment is quite clear – the use of components should not depend on the 
tools and knowledge about the component that is only in the possession of the component 
provider.  A  component-based  system  can  consist  of  components  from  multiple, 
independent sources.  

A component must have a meaningful functionality by itself. It is a unit of deployment, so 
it is never deployed partially. It must explicitly specify its needs, i.e. what the deployment 
environment has to provide in order for the component to function. A component must be 
specified in a way that it is possible to connect it with other components and integrate it 
into  systems  in  a  predictable  way.  Component  integration  and  deployment  should  be 
independent of the component development life cycle and there should be no need to 
recompile or relink the application when updating with a new component.

2 Also  known  as  extra-functional  properties  or  quality  attributes.  They  include  performance,  required 
resources, reliability, availability, accuracy, worst case execution time, latency, security etc.

3 A third party is one that can not be expected to have access to the construction details of the component.

4

http://www.eudict.com/?lang=engcro&word=emphasize


2 Component-based software engineering

The most important feature for a component is the separation of the interface from the 
implementation. The component is visible exclusively through its interface. Hence, there is 
a need for a complete specification of a component, including its functional interface, non-
functional characteristics, use cases, tests and so on. Unfortunately, current technologies 
fail in specifying semantics and non-functional properties. 

A component has two parts: an interface and some code. The interface is the only point 
of access to the component. Thus it should ideally contain all of the information that users 
need to know about the component: what it does, how and where it can be deployed, its 
context  dependencies.  The  code,  however,  should  be  completely  inaccessible.  The 
specification  of  a  component  therefore  must  consist  of  a  precise  definition  of  the 
component's  operations  and  context  dependencies.  In  current  practice,  component 
specification techniques specify components only syntactically. Specification of semantics 
and non-functional properties of components is still an open area of research [2].

It takes significant effort to write a software component that is effectively reusable. The 
component needs to be:

● fully documented,
● more thoroughly tested,
● built with an awareness that it will be put to unforeseen uses.

2.2 Interfaces
Interfaces are access points to components. They define the means to connect to the 

component. Clients access components through their interfaces, since they are the only 
visible part of the component. A component can have multiple interfaces, if it for instance 
offers multiple services.

Interfaces provide no implementation whatsoever, they just name a set of operations the 
component can perform. As already stated, it is essential that interfaces remain separated 
from the implementation. This allows two things [2]:

1. an implementation can be changed without  tampering with the interface,  so the 
system does not need to be rebuilt,

2. new interfaces and implementations can be added without change to the existing 
interface.

There are two kinds of interfaces (Figure 2.1):

1. exported (provided) interface – states what services the component offers to the 
environment,

2. imported (required) interface – defines what services the component requires from 
the environment.

5



2 Component-based software engineering

Interface specification in current technologies has two serious shortcomings. First, the 
semantics of the operations should be specified by the interface, which is not the case. 
Interfaces only  specify  their  syntactics,  i.e.  the  inputs  and outputs  and give  very little 
information about  what  the component  does.  Also,  semantic  information about  context 
dependencies of  components (development and deployment environments) can not be 
expressed  by interfaces.  The second  drawback is  that  interfaces are  only  capable  of 
specifying the functional properties of the component. Non-functional properties are not 
handled  by  them.  This  has  resulted  in  the  need  for  a  facility that  clearly  specifies 
behaviours of components. 

2.3 Contracts
Contracts provide a more accurate specification of the component's behaviour. Although 

interfaces and contracts may seem alike, they are different concepts. An interface is a 
collection of operations of a component, while a contract specifies the behavioural aspects 
of a component or the interaction between different components. 

For each operation the contract states the [2]:

● invariant – a list of constraints that the component will maintain,

● precondition – a list of constraints that need to be met by the client,

● postcondition – a list of constraints the component promises to establish.

The  client  has  to  establish  the  precondition  before  executing  an  operation.  The 
component can rely on the precondition being met before a call  to the operation. The 
component has to establish the postcondition before returning to the client. The client can 
rely on the postcondition being met when the operation returns. 

Besides specifying the behaviour of a single component, contracts are used to specify 
interactions between groups of components. In this context they specify [2]:

● the participating components,

● the role of each participating component,

● the invariant to be maintained by the components,

● the specification of the methods that instantiate the contract.

Hierarchically contracts can be divided into levels [5]:

6

Figure 2.1: A component and its interface



2 Component-based software engineering

1. Syntactic level. Specifies the operation a component can perform and input/output 
parameters a component requires.

2. Behavioural level. Specifies pre and postconditions for an operation. 

3. Synchronization  level.  Specifies  synchronization  between  different  services  and 
method calls.

4. Quality of service level. Specifies non-functional properties. 

2.4 Component models
A  component model enables interoperability between components,  it  specifies,  at  an 

abstract level, the standards and conventions which developers and users of components 
must  follow.  Compliance  with  a  component  model  is  one  of  the  properties  that 
distinguishes components from other software entities [2]. In that context Bill Councill and 
George  T.  Heineman  define  a  component  as  a  software  element  that  conforms  to  a 
component model and can be independently deployed and composed without modification 
according to a composition standard. They also state that a component model defines the 
ways  to  construct  components  and  regulates  the  ways  to  integrate  and  assemble 
components. It supports component interactions, composition and assembly. In addition, a 
component model also defines the mechanisms for component customization, packaging, 
and deployment.

Component models prescribe how components interact with each other and impose the 
following standards and conventions [6]:

● Component types. A component model requires that components implement one or 
more interfaces. In this way a component model defines one or more component 
types. Different component types can play different roles in systems and participate 
in different types of interaction schemes. 

● Interaction  schemes.  Component  models  specify  how components  are  located, 
which  communication  protocols  are  used  and  how qualities  of  service  such  as 
security  and  transactions  are  achieved.  A  component  model  describes  how 
components  interact  with  each  other  or  how  they  interact  with  the  component 
framework (more in Chapter Component frameworks).

● Resource binding. The process of composing components is a matter of binding a 
component to one or more resources. A resource is either a service provided by a 
framework or by some other component deployed in that framework. A component 
model describes which resources are available to components, and how and when 
components bind to these resources. 

In a way, component models define the architecture of systems. This limits the flexibility 
of systems, but also speeds up the development process.

The  most  important  industrial  component  models  currently  are  CORBA, 
COM/DCOM/COM+, .NET, JavaBeans and Enterprise JavaBeans.

7



2 Component-based software engineering

2.5 Component frameworks
A  component  framework is  an implementation of  services that  support  or  enforce a 

component model  [6].  The main purpose of a framework is to endorse the process of 
component composition. A framework is a support infrastructure for the component model.

A component framework can be viewed as an operating system for components. From 
that viewpoint, components are to framework what processes are to the operating system. 
The difference is that component frameworks are more compact than operating systems. 
They are  specialized  to  support  a  limited  range  of  component  types  and  interactions 
between those types. By limiting the diversity, component composition becomes simpler, 
more robust and more predictable.

2.6 Component-based software development process
The development process of component-based software is divided into two processes:

● development of components and

● development of systems.

In many real situations these processes will be combined, maybe even not distinguished 
as separate activities. However, their separation is possible and desirable. It allows parallel 
development  which  results  in  shorter  time-to-market.  It  also enables organization of  a 
global component market.

In  the component  development process components are developed and stored in  a 
common  component  repository.  In  the  system  development  process,  components  are 
selected  from the  component  repository and used to  build  systems.  This  is  shown in 
Figure 2.2. For the component development, design for reuse is the main concern. For the 
system development,  the emphasis is  on finding the proper components and verifying 
them [7]. 

2.6.1 Development of components
Components are developed to be fully reusable and available for composition by third 

party. Building reusable units requires great design and development efforts. There is no, 
or very little knowledge about the systems the component will be used in. Thus, managing 
requirements  is  more  difficult.  A  precise  component  specification  is  required.  The 
components should be tested in isolation, but also in different configurations.

8

Figure 2.2: Component-based software development process



2 Component-based software engineering

2.6.2 Development of systems
In  the  requirements  analysis  and  specification  phase  it  is  important  to  analyse  if 

requirements can be fulfilled by available components. Since appropriate components can 
not always be found, there is a risk that the new components have to be developed. As 
this  can  be  expensive  or  time  consuming,  another  possibility  is  negotiating  the 
requirements and modifying them so existing components can be used. Components will 
often implement a generalized functionality to be reusable. Thus, most components have 
to be adapted to fit the system design.

The maintenance stage of a system life cycle is based on updating, replacing or adding 
new components. This approach makes the maintenance easier, and a component-based 
system is more suitable for changes, than a monolithic one. After replacing a component 
the whole system does not have to be rebuilt.

2.7 CBSE versus OOP
CBSE  and  the  object  oriented  paradigm  (OOP)  share  some  basic  concepts.  For 

instance, both promote reusability. The terms object and component are often thought to 
be synonymous or very similar. However, there are important distinctions between objects 
and components [8]:

● Components can be collection of objects.

● Components often use persistent storage, whereas objects have local state.

● Components have a more extensive set of intercommunication mechanisms than 
objects, which usually use the messaging mechanism.

● Components are often larger units of granularity than objects and have complex 
actions at their interfaces.

The idea in OOP is that software should be written according to a mental model of the 
objects it represents. OOP focuses on modelling real-world interactions and attempts to 
create “verbs” and “nouns” which can be used in intuitive ways. CBSE, by contrast, makes 
no such assumptions and instead states that  software should be developed by gluing 
preexisting components together,  much like in the field of  electronics or mechanics.  It 
accepts that the definitions of useful components, unlike objects, can be counter-intuitive.

2.8 CBSE for embedded systems
According to Michael Barr an embedded system is a special-purpose computer system 

designed to perform one or a few dedicated functions. This is in contrast with general-
purpose computers, such as a personal computers, which can do many different tasks 
depending  on  programming.  Embedded  systems  control  the  majority  of  the  common 
devices in use today, in range from portable devices such as digital watches and MP3 
players, to large stationary installations like traffic lights or factory controllers. 98% of all 
computer systems belong to embedded systems [9].

Traditionally embedded systems are still  developed in an assembler or in C. Current 

9



2 Component-based software engineering

monolithic and platform-dependent embedded systems are difficult to port, upgrade and 
customize. They offer very limited opportunities for reuse. CBSE for the embedded domain 
should  enable  reuse  of  once  developed  parts  and  provide  a  way  for  more  efficient 
development that results in more reliable systems. 

Currently, there is a lack of widely adopted component technology standards which are 
suitable for embedded systems. Tools that support component based development are still 
missing. There is a lack of efficient implementations of component frameworks, which have 
low requirements on memory and processing power  [9].  At this time there are several 
component  models  trying  to  cope  with  the  mentioned  problems  –  Koala,  Pecos, 
SaveCCM. CBSE methods for embedded systems are still in the research phase.

Most of embedded systems need to work in real-time and often have a safety-critical 
role.  Due  to  their  need  to  blend  into  the  environment  they  usually  have  very  limited 
memory and processing power at  their  disposal.  In  many domains their  life cycle  can 
stretch to several  decades, thus demands on reliability,  robustness and availability are 
important [9].

Most general  purpose component models (JavaBeans, EJB, .NET, CORBA etc.)  are 
built  to  maximize the efficiency of  the development  process,  counting on the powerful 
hardware to deal with the heavy overhead of the model and the framework. They focus on 
functionality,  flexibility,  run-time  adaptability,  simpler  development  and  maintenance. 
However, the design of embedded systems must consider additional constraints [10]:

● Embedded systems must satisfy constraints on non-functional properties such as 
timing, reliability, robustness, availability etc.

● It  is  often  important  that  functional  and  non-functional  properties  are  statically 
predictable, in particular if the system is safety-critical.

● Embedded systems must often operate with scarce resources (including processing 
power, memory, communication bandwidth).

10



3 The JavaBeans component model

3 The JavaBeans component model
The  JavaBeans  technology is  a  portable,  platform-independent  software  component 

model for the Java SE platform. It was introduced in 1997. Since then it has not changed 
much,  but  has  grown  in  significance.  The  technology  encompasses  a  Java  package 
(java.beans) and a document (JavaBeans specification). The document describes how 
to use the classes and interfaces from the package to implement “beans functionality” [11].

The basic idea behind JavaBeans is this: a Java bean4 is a Java class that complies to 
certain  conditions.  Almost  every  software  component  is  a  class.  What  makes  it  a 
component  is  its  conformance to  a  software  component  specification.  The JavaBeans 
specification is a document that describes what a Java class must “do” to be considered a 
Java bean [11].

The JavaBeans component model is relatively simple, the whole specification ([12]) is a 
114  page  document  (in  comparison  with,  for  instance,  the  562  pages  of  Enterprise 
JavaBeans5 specification, or 350 pages of CORBA specification). It  focuses on making 
small  lightweight  components  easy  to  implement  and  use,  while  making  heavyweight 
components possible. Basic JavaBeans concepts can be learned very quickly, little effort is 
needed to start writing and using simple beans [12].

The JavaBeans specification defines a bean as a reusable software component that can 
be manipulated visually in a builder tool. This covers a wide range of different possibilities, 
as builder tools can be web page builders, visual application builders, GUI layout builders, 
even server application builders. For instance, the NetBeans IDE GUI builder and Eclipse 
Visual Editor are builder tools that allow visual building of GUIs, using Swing6 and custom 
developed Beans. Beans may be simple GUI elements such as buttons and sliders, or 
sophisticated visual software components such as database viewers or data feeds (Figure
3.17).

4 The term “JavaBeans” stands for the technology, while the term “Java bean” signifies a particular software 
component that conforms to the JavaBeans component model.

5 It  is  important  to  differentiate  between JavaBeans and Enterprise  JavaBeans.  Both  technologies  are 
software component models, use a similar name and are implemented in Java. However their purpose 
and  architecture  are  different.  JavaBeans  is  a  general  purpose  component  model,  while  Enterprise 
JavaBeans is a component model specific for the enterprise environment.

6 Swing is the Java SE framework for GUIs. All common GUI components (buttons, panels, check boxes 
etc.) from Swing are Java beans.

7 Bar and tank bean images are from Mikulaj M.: Komponentno programiranje Java Beans tehnologijom, 
thesis no. 1485,  Faculty of Electrical Engineering and Computing, University of Zagreb, 2006.
Calendar bean image is from Toedter K: JCalendar, 2006, http://www.toedter.com/en/jcalendar/index.html.

11

http://www.toedter.com/en/jcalendar/index.html


3 The JavaBeans component model

This visual manipulation is a key aspect of the technology. However, although beans are 
primarily targeted at builder tools, they are also entirely usable by human programmers, as 
their use is not dependent on builder tools.

Each Java bean has to be able to run in two different environments. First it needs to be 
capable of running inside a builder tool. This is referred to as the design environment or 
design-time. The bean must be able to provide the builder tool with design information, so 
a  user  is  able  to  customize  it.  For  this  customization  process a  lot  of  extra  baggage 
(metadata, property editors, customizers, icons etc.) is carried by the bean. The bean must 
also be able to be used during run-time within a generated application. During run-time 
there is much less need for customization of the behaviour and appearance, so a bean 

12

Figure 3.1: Examples of beans



3 The JavaBeans component model

carries less baggage than during design-time [13]. 

Many beans have a strong visual aspect, but while this is common, it is not required. 
Beans can be visual or non-visual (invisible). The GUI representation of beans may be the 
most obvious and compelling part of the JavaBeans technology. However, it is possible to 
implement non-visual beans that have no GUI representation. These beans are still able to 
call methods, fire events etc. They are also represented visually in a builder tool, so they 
can be configured. They simply have no screen appearance of their own  [12]. In other 
words, non-visual beans are invisible only at run-time, but are visible during design-time. 
Visual beans are visible both during design-time and run-time.

For instance, a two dimensional graph bean or a calendar bean must have a visual 
representation to be useful. A database connection bean or a spelling bean do not require 
a GUI representation in an application, however they must be visible during design-time in 
order to be configured.

Individual Java beans vary in the functionality they support,  but their typical  unifying 
features are:

● properties,

● events,

● methods,

● customization,

● introspection and

● persistence.

These are key concepts of the JavaBeans technology and are discussed in the following 
chapters.

3.1 Properties
A  bean  property is  a  named  attribute  of  a  bean  that  can  affect  its  behaviour  or 

appearance  [14]. Examples of bean properties include colour, label, font etc. Properties 
can have arbitrary types, including both primitive types and class or interfaces types.

Properties  are  accessed  via  method8 calls  on  their  owning  object.  For  readable 
properties there is a getter method to read the property value. For writeable properties 
there is a setter method to allow the property value to be updated [12]. 

There are four types of properties defined in the JavaBeans specification:

1. simple,

2. indexed,

3. bound and

4. constrained properties.

8 These are accessor methods, or the getter and setter method.

13



3 The JavaBeans component model

3.1.1 Simple properties
A  simple  property has  a  single  value  whose  changes  are  independent  from  other 

properties. 

3.1.2 Indexed properties
Indexed properties support a range of values instead of a single value. It is possible to 

read or write a single element or the whole array corresponding to the indexed property. 

3.1.3 Bound properties
Sometimes when a bean's property changes, another object might need to be notified of 

the  change and react  to  it.  These are  bound properties.  Whenever  a  bound property 
changes,  a  notification  of  the  change  is  sent  to  interested  listeners.  The 
PropertyChangeEvent class encapsulates property change information. Listeners must 
implement the PropertyChangeListener interface.

Bound properties are normally used when a number of beans want to keep a shared 
value.  For  instance,  for  maintaining  a  common  background  colour.  When  one  bean 
changes its background colour, the change is then promoted to all beans registered as 
listeners of that property change. That way they can adjust their background colours too.

3.1.4 Constrained properties
Constrained properties are similar to bound properties. When a constrained property 

changes, an event is generated. However, the change is not necessarily accepted by the 
listeners, it first needs to be validated. If the change is not appropriate for a listener, it can 
be rejected, i.e vetoed by throwing a PropertyVetoException. 

The setter method for a constrained property needs to be implemented in the following 
way:

1. Save the old value in case the change is vetoed. 
2. Notify listeners of the new proposed value, allowing them to veto the change. 
3. If no listener vetoes the change, set the property to the new value. 

If a registered listener vetoes a proposed property change, the source bean with the 
constrained property must: 

1. Catch the PropertyVetoException.
2. Revert to the old value of the property. 
3. Inform the listeners that the old value is restored [14].

3.2 Events
Beans  use  the  Java  Event  Model  for  communication.  Events provide  a  convenient 

mechanism for allowing beans to be plugged together in a builder tool. Builder tools can 
discover which events a bean can fire (more in Chapter Introspection). 

14



3 The JavaBeans component model

For a bean to be the source of  an event,  it  must implement methods that add and 
remove listeners for that type of event. For a bean to receive an event, it must implement 
an event listener interface.

3.3 Methods
The  methods of  a  bean are  normal  Java  methods  which  can  be  called  from other 

objects.  A  bean's  methods  represent  its  interface,  a  point  for  bean  access  and 
manipulation.

3.4 Customization
When a user  is  composing  an  application  in  a  builder  tool  he needs to  be  able  to 

customize  the  beans  he/she  is  using.  Customization is  a  process  of  modifying  the 
appearance and behaviour of  a bean within a builder tool,  so that it  meets the user's 
specific needs. Customization is done at design-time and can be done in two ways:

● by using property editors and

● by using customizers.

A property editor is a class that allows GUI editing of a property. Bean developers may 
provide property editors for any new data types that they deliver as part of their bean. 
Property editors for known Java types are usually integrated in builder tools. A builder tool 
can find out what properties a bean has (more in Chapter Introspection). These properties 
are then used to construct a GUI property sheet that lists the properties and provides a 
property editor for each property. A property sheet from NetBeans IDE is shown in Figure
3.2. The user can then use this property sheet to update the various properties of the bean 
[12]. Property editors must implement the java.beans.PropertyEditor interface. 

15



3 The JavaBeans component model

Property  editors  are  normally  used  with  small  or  medium  sized  beans.  Often  it  is 
undesirable  to  have  all  the  properties  of  a  bean  listed  on  a  single,  sometimes  huge 
property  sheet.  Thus,  for  more  complex  beans  a  more  sophisticated  means  of 
customization  is  provided.  For  example,  a  bean developer  should be allowed to  write 
customization wizards which guide the user through a step by step customization. This is 
done using customizers. 

A customizer is a class that specifically targets a bean's customization. Customizers are 
used where sophisticated instructions are needed to configure a bean and where property 
editors  are  too  primitive  to  achieve  bean  customization  [14].  Each  customizer  should 
inherit  either  directly  or  indirectly  from  java.awt.Component.  They  also  need  to 
implement the java.beans.Customizer interface.

A property editor relates to a single property, while a customizer is associated with the 
whole bean. A property editor may be instantiated as part of a bean customizer.

3.5 Introspection
Introspection is  the  automatic  process of  analysing  a  bean to  reveal  its  properties, 

events  and  methods.  Introspection  is  used  by  builder  tools.  By  uncovering  beans' 
properties, events and methods, tools provide easy visual manipulation of beans.

Introspection can be done in two ways:

● by using design patterns and

● by using Introspection API.

The idea is to allow bean developers to work entirely in terms of Java and avoid using a 

16

Figure 3.2: NetBeans IDE property sheet



3 The JavaBeans component model

separate bean specification language. This is achieved through design patterns, i.e. writing 
the beans code by following specific rules. In this way, introspection is done automatically 
on  simple  beans,  without  requiring  developers  to  perform  extra  work  to  support 
introspection. However, for more sophisticated beans, the developers are allowed full and 
precise control over which properties, events and methods are exposed. This is achieved 
using the Introspection API [12].

A composite mechanism is applied – by default a low level reflection mechanism is used 
to study a bean's methods. Then design patterns are used to deduce what properties, 
events  and  methods  the  bean  possesses.  However,  if  a  bean  developer  chooses  to 
provide a class describing the bean, then this class is used to programmatically discover 
the bean's behaviour [12].

3.5.1 Design patterns
Design patterns refer to using conventional names and type signatures for methods. 

Builder  tools  that  recognize  design  patterns  can  be  written  and  used  to  analyse  and 
understand  beans.  Design  patterns  are  also  a  useful  documentation  hint  for  human 
programmers. By identifying particular methods as standard design patterns, programmers 
can understand and use new classes more quickly [12].

3.5.1.1 Design patterns for properties
The getter method for a simple property must start with “get”, followed by the name of 

the property, with the first letter of the property capitalized. The setter method is written 
similarly.  For  a  property  of  type  <PropertyType> named  <propertyName>  the 
accessor methods would have following signatures:

public <PropertyType> get<PropertyName>();
public void set<PropertyName>(<PropertyType> a);

An indexed property is specified by following methods: 

// methods to access individual values
public <PropertyType> get<PropertyName>(int index);
public void set<PropertyName>(int index, <PropertyType> a);
// methods to access the entire indexed property array
public <PropertyType>[] get<PropertyName>();
public void set<PropertyName>(<PropertyType>[] a);

The accessor methods for bound properties are defined in the same way as those for 
simple properties. However, event listener registration methods need to be provided.

The accessor methods for constrained properties are defined in the same way as those 
for  simple  properties,  with  the  addition  that  the  setter  methods  can  throw  a 
PropertyVetoException:

public void set<PropertyName>(<PropertyType> a) throws PropertyVetoException;

17



3 The JavaBeans component model

3.5.1.2 Design patterns for events
The  source  of  an  event  must  define  the  methods  for  registering  listeners  of  those 

events. The standard design pattern for listener registration is:

public void add<ListenerType>(<ListenerType> listener);
public void remove<ListenerType>(<ListenerType> listener);

3.5.1.3 Design patterns for methods
By default  all  public methods  are  exposed.  This  includes  any  property  accessor 

methods and any event listener registry methods.

3.5.2 Introspection API
The use of design patterns is optional. If a programmer is prepared to explicitly specify 

the bean's properties, events and methods, then the methods can be named arbitrarily. 
This is done by providing a class that implements the java.beans.BeanInfo interface. 
This interface defines a set of methods that allow developers to provide explicit information 
about their beans. By specifying a  BeanInfo, a developer can hide methods, specify a 
bean icon, provide descriptive names for properties, define which properties are bound 
properties etc. Apart from the BeanInfo interface, in the java.beans package there are 
other classes and interfaces used for manually specifying a bean.

3.6 Persistence
In  computer  science,  persistence refers  to  the  characteristic  of  data  to  outlive  the 

execution of the program that created it. Without this capability, data only exists in RAM, 
and will be lost when the memory loses power.

The  mechanism  that  makes  persistence  possible  is  called  serialization.  Object 
serialization means converting an object into a data stream and writing it to storage. A 
serialized object can then be reconstructed by deserialization [14]. 

All  beans have to persist.  To do so, they must support serialization by implementing 
either  the  java.io.Serializable interface  or  the  java.io.Externalizable 
interface.  These interfaces offer  the choices of  automatic  serialization and customized 
serialization.  A  class  is  serializable  if  it  or  a  parent  class  from  the  class  hierarchy 
implements Serializable or Externalizable [14].

3.6.1 Default serialization using the Serializable interface
The Serializable interface enables automatic serialization. It declares no methods, 

but  acts  as  a  marker  signalling  that  the  bean  is  serializable.  Classes  that  implement 
Serializable must  have  access  to  a  no-argument  constructor  of  supertype.  This 
constructor is called when a bean is restored from a .ser file. Serializable does not 
have to be implemented in a class if it is already implemented in a superclass. All fields 

18



3 The JavaBeans component model

except those marked static and transient are serialized [14].

3.6.2 Selective serialization using the transient keyword
To exclude fields from serialization in a Serializable object, they need to be marked 

with the transient modifier. 

3.6.3 Selective serialization using the writeObject and 
readObject methods

If  a  serializable class contains either  of  the following two methods,  then the default 
serialization is not performed. These methods enable control over serialization of complex 
objects.

private void writeObject(java.io.ObjectOutputStream out) throws IOException;
private void readObject(java.io.ObjectInputStream in) throws IOException, 
ClassNotFoundException;

 

3.6.4 Selective serialization using the Externalizable interface
The Externalizable interface is used when full control over serialization is required, 

for instance when a bean needs to be saved to or retrieved from a file with a specific 
format. To use this interface the readExternal and writeExternal methods need to 
be implemented. Classes that implement  Externalizable must have a no-argument 
constructor. 

3.6.5 Long term persistence
Long-term  persistence enables  beans  to  be  saved  in  XML format.  This  is  enabled 

through java.beans.XMLEncoder and java.beans.XMLDecoder classes.

3.7 Packaging Java beans
Java beans are packaged and delivered in JAR files. One JAR file can contain one or 

more beans. A JAR file containing beans must have a manifest file, which describes the 
beans in the JAR.

Each JAR holding beans includes the following:

● Class  files  representing  beans.  These  entries  must  have  names  ending  in 
“.class”.

● Optional serialized prototypes of beans. These entries must have names ending in 
“.ser”.

● Optional help files in HTML format to provide documentation for the beans. 

19



3 The JavaBeans component model

● Optional internationalization information to be used by the bean to localize itself.

● Other resource files needed by the beans (images, sound, video etc.) [12].

20



4 The SaveComp Component Model

4 The SaveComp Component Model
The SaveComp Component Model (SaveCCM) is being developed as part of the SAVE 

project at Mälardalen University in  Västerås, Sweden. It  is intended to provide efficient 
support  for  designing  and  implementing  embedded  control  applications  for  vehicular 
systems, mainly focusing on the safety-critical and real-time subsystems responsible for 
controlling the vehicle  dynamics (steering,  braking etc.).  Vehicular systems are usually 
produced  in  high  volumes  using  inexpensive  hardware.  For  use  in  that  domain,  the 
component model needs to support the development of systems in which tight constraints 
on resource usage,  real-time and interactions  with  the  environment  must  be satisfied. 
System  behaviour  should  be  predictable,  both  functionally  and  non-functionally  (with 
respect to timeliness and resource usage). This means that predictability and analysability 
are more important than flexibility. The model should be as restrictive as possible, while 
still  allowing  the  intended  applications  to  be  conveniently  designed.  SaveCCM  was 
designed with that in mind [15].

SaveCCM is described in the language reference manual ([16]) and in several articles. 
The reference manual gives a more complete description than the articles, so in this thesis 
it will be referred to as the SaveCCM specification.

SaveCCM is based on the control flow (pipes and filters) paradigm. Data transfer and 
control flow are separated, which allows both periodic and event-driven activities, since 
execution can be initiated by either clocks or external events. This separation also allows 
components to exchange data without handing over the control. Another aspect of explicit 
control flow is that the resulting design is analysable with respect to temporal behaviour. 
Temporal  factors  (schedulability,  response time etc.)  are  crucial  for  the  correctness of 
embedded real-time systems [16].

The SaveCCM semantics is formally defined by a two-step transformation, first from the 
full SaveCCM language to a similar but simpler language called SaveCCM Core, and then 
into timed automata with tasks  [16] (Figure 4.1). The timed automata semantics enables 
the analysability of SaveCCM models with model-checking tools such as Uppaal or Kronos 
[17]. 

Graphical  syntax  of  SaveCCM is  based  on a  modified  subset  of  UML2 component 
diagrams  (Figure  4.2).  Textual  syntax  of  SaveCCM  is  XML based  (it  is  described  in 
Chapter SaveCCM XML syntax).

21

Figure 4.1: Formal definition of SaveCCM semantics



4 The SaveComp Component Model

The  main  architectural  elements  of  SaveCCM  are  components,  switches  and 
assemblies. The interface of an architectural element is defined by a set of ports. Systems 
are built from architectural elements by connecting ports.

4.1 Ports
In SaveCCM there is a distinction between input and output ports, and between trigger 

and data ports. Trigger ports capture control flow and data ports capture the transfer of 
data. A port can have both triggering and data functionality.  This type is known as the 
combined port. A combined port is an association between a data and a trigger port. It 
exists to reduce the wiring between SaveCCM elements, as it can be a nightmare on a big 
design. 

Every data and combined port is typed and can contain an initial value. Only data and 
combined ports  of  matching  types  can be connected.  Data  and combined ports  have 
overwrite semantics.

There are three types of connections – immediate connections, complex connections 
and  delegations.  Immediate  connections  represent  lossless  transfer  of  data  or  trigger 
signals from one port to another. Complex connections represent transfer of data or trigger 
signals over  channels with  possible delay or  information loss.  The characteristics of  a 
particular complex connection are explicitly modelled by a timed automaton. Delegations 
are semantically identical to immediate connections, but connect two input ports or two 
output  ports  between  the  internals  and  externals  of  assemblies,  while  immediate 
connections connect an input port to an output port. Delegations also connect internal and 
external data ports in composite components. 

A trigger output port can only be connected to trigger input ports, a data output port can 
only be connected to data input ports of the matching type, and a combined output port 

22

Figure 4.2: SaveCCM graphical syntax



4 The SaveComp Component Model

can be connected to trigger,  data or combined input ports of  the matching type9.  One 
output port can be connected to several input ports, while a single input port can only be 
connected to one output port [16].

An external port is not connected to any other port, but has an extra label mapping it to 
some external entity, for instance to a register or a database query result. A set port is 
used in a switch (it is described in Chapter Switches).

4.2 Components
Components  are the main architectural  element  of  SaveCCM. They represent  basic 

units of encapsulated behaviour. The functionality of a component is typically defined by its 
entry function, which is written in C programming language. These are plain components. 
However,  the  functionality  can also  be  defined by an  internal  composition.  These are 
composite  components.  There  are  two  additional  types  of  components  –  a  clock 
component and a delay component.

In  addition  to  input  and  output  ports  (functional  interface),  a  component's  interface 
contains a series of quality attributes (non-functional interface). Each quality attribute is 
associated with a value and possibly a confidence measure. The quality attributes can 
include, for instance worst case execution time, reliability estimates etc., and are used for 
analysis of the developed system or for prediction of its characteristics.

A component is not allowed to have any dependencies on other components or other 
external software, except the dependencies visible through its ports.  

A component is initially idle and remains in that state until all its input trigger ports are 
activated. At that point it switches to active state, i.e. it has been triggered. This initiates 
the  “read”  phase,  in  which  all  data  input  port  values  are  stored  internally,  to  ensure 
consistent  computation.  Next  is  the  “execute”  phase,  in  which  the  computations  are 
performed.  After  execution  comes  the  “write”  phase,  in  which  data  is  written  to  the 
component's output ports. Finally, the triggers are reset – the input triggers are deactivated 
and the output triggers activated. This returns the component to idle state. This strict “read-
execute-write” semantics ensures that once a component is triggered, the execution is 
independent of any concurrent activity [16].

4.2.1 Clocks and delays
Clocks and delays (Figure 4.3) are special types of components which are in charge of 

manipulating trigger timing. 

A clock component is a trigger generator. It has one output trigger port and no other 
ports. its parameters are T, for period, and J, for jitter. A new period starts every T time 
units, and a clock component generates a trigger within J time units after the start of each 
period. 

A delay component detains a trigger signal. It has one input and one output trigger port 
and no other ports. Its parameters are D, for delay, and P, for precision. Upon receiving a 

9 All this applies to immediate connections, not delegations.

23



4 The SaveComp Component Model

trigger, the delay component waits between D and D+P time units before generating a new 
trigger [16].

4.2.2 Composite components
A composite  component  is  a  special  type  of  a  component,  where  the  behaviour  is 

specified by an internal composition. The internals and externals of composite components 
are connected by delegations – external input data ports are connected to internal input 
data ports  and internal  output  data ports  are connected to external  output data ports. 
Triggering is not transferred this way. Instead, all trigger ports in the internal composition 
become active when the composite component becomes active. In the “read” phase, data 
is transferred to the internals and internal components are activated. The “execute” phase 
performs computations of internal components, until no internal component is active. In the 
“write” phase data is transferred to the externals, the triggers of the composite component 
are reset and it becomes idle [16].

4.3 Switches
Switches  enable  changing  the  structure  of  connections  between  components.  They 

provide means for conditional transfer of data and triggering between components. 

A switch has a number of mappings between its input and output ports. Each mapping 
has a logical expression over the values on the input ports, which is used to determine if 
that mapping is active or not. The ports that are present in logical expressions are called 
set ports. Currently the only logical expression supported is equality. Data arriving to a set 
port  is  evaluated against  the value set  in  the set port,  to determine whether  a switch 
connection should be activated or not. This is shown in Figure 4.4. If data that arrives at 
the set port is of value “1”, then the connection between “in” and “out” is activated.

24

Figure 4.3: SaveCCM clock and delay components



4 The SaveComp Component Model

Switches are not triggered, they respond directly to the arrival of data or a trigger signal 
at an input port and immediately relay it according to the current connection patterns. They 
perform no computation other than the evaluation of logical expressions [16].

4.4 Assemblies
Assemblies are encapsulated subsystems, similar to composite components.  Internal 

elements and connections of an assembly are hidden from the rest of the system and can 
be  accessed  only  through  the  assembly's  ports.  Like  switches,  assemblies  are  not 
triggered,  signals  are directly relayed between externals  and internals  of  an assembly 
through delegations. 

Due to the strict execution semantics of SaveCCM components, an assembly does not 
satisfy the requirements of a component. It can break the “read-execute-write” semantics. 
Thus, it should only be viewed as a mechanism for naming a collection of components and 
hiding internal structure, and not like a mechanism for component composition [16]. 

4.5 SaveCCM XML syntax
In this chapter the SaveCCM XML type is described. Its formal definition is given in the 

SaveCCM DTD and SaveCCM schema.

The  APPLICATION element  is  the  root  of  the  SaveCCM XML type.  It  contains  an 
IODEF, a TYPEDEFS, a COMPONENTLIST and a CONNECTIONLIST element (Figure 4.5).

25

Figure 4.4: A switch condition



4 The SaveComp Component Model

The IODEF element defines the external ports of an application. The TYPEDEFS element 
gives  definitions  of  component,  switch  and  assembly  types  (Figure  4.6).  The 
COMPONENTLIST and  CONNECTIONLIST elements define a composition – either for an 
application, for a composite component or for an assembly [16].

26

Figure 4.5: Application definition



4 The SaveComp Component Model

A component type (COMPONENTDESC element) is defined as a set of input and output 
ports,  attributes  and  an  implementation.  The  REALISATION element  (Figure  4.7) 
describes the component's implementation as either: 

● a function written in C programming language (ENTRYFUNC), 

● a clock component (CLOCK), 

● a delay component (DELAY) or 

● a composite component ((COMPONENTLIST, CONNECTIONLIST)). 

The  BINDPORT element  is  used  to  map  a  port  used  within  a  component  with  an 
argument used in the C implementation function. A BEHAVIOUR element is a collection of 
MODEL elements. Models describe additional implementations of a component's behaviour. 
A model  can be an external  file  or embedded as text  within  the element.  An attribute 
(ATTRIBUTE element) is used to describe a non-functional property of a component [16]. 

A switch type (SWITCHDESC element) is defined as a set of input and output ports and 
switch  conditions.  The  SWITCHCONDITION element  defines  under  what  conditions  the 
switch ports are internally connected.

An assembly type (ASSEBBLYDESC element) describes an assembly as a set of input 
and output ports, and a composition of components and connections [16]

27

Figure 4.6: Component, switch and assembly type definitions



4 The SaveComp Component Model

A COMPONENT element instantiates a component type, a SWITCH element instantiates a 
switch  type  and  an  ASSEMBLY element  instantiates  an  assembly  type.  An  instanced 
element is a reference to its corresponding type definition (Figure 4.8). 

The  INPORT and  OUTPORT elements  (Figure  4.9)  define  input  and  output  ports, 
respectively. The mode attribute determines if a port is a data, trigger or a combined port. 
The type and value attributes are used to define data type and initial value of data and 
combined  ports.  The  external attribute  holds  the  label  defining  a  connection  to  an 
external entity. The setport attribute determines if an input port is a set port, i.e. used in 
a switch condition [16].

28

Figure 4.7: Component realisation definition

Figure 4.8: Component, switch and assembly instantiation



4 The SaveComp Component Model

A  CONNECTION element  (Figure  4.10)  defines  a  connection.  It  has  FROM and  TO 
elements, which are references to ports. A connection can have a  BEHAVIOUR element 
that  defines  it  as  a  complex  connection.  No  behaviour  means  that  the  connection  is 
immediate [16].

4.6 SAVE-IDE
SAVE-IDE is a development environment for SaveCCM. It comes in the form of a plugin 

for Eclipse IDE. It  is intended to provide full  support from designing to implementing a 
SaveCCM system. However, at the current time, only the design part has been finished.

The two main parts of SAVE-IDE that enable design are:

● SAVE-IDE Architectural Editor (Figure 4.11) and

● SAVE-IDE System Description Generator.

The former enables graphic modelling of a system by visually manipulating SaveCCM 
architectural elements. The later uses the graphical description of a system and generates 
its textual description. This is done by right clicking on the editor view in a blank space and 

29

Figure 4.10: Connection definition

Figure 4.9: Port definitions



4 The SaveComp Component Model

choosing  Generation ->  System Description (.save). This creates a file in the 
SAVE directory. This file has the extension save and contains the XML representation of 
the designed system. It will be referred to as “the .save file” in this thesis. The .save file 
follows the syntax described in the SaveCCM DTD and SaveCCM schema.

30

Figure 4.11: SAVE-IDE Architectural Editor



5 Transformation from SaveCCM to JavaBeans

5 Transformation from SaveCCM to 
JavaBeans

SaveCCM is  a  domain  specific,  while  JavaBeans  is  a  general  purpose  component 
model. SaveCCM is intended for use in embedded vehicular systems. JavaBeans is used 
mostly for desktop and web applications. 

Different component models provide different levels of support in various stages of a 
system development cycle.  SaveCCM is used in the design phase10,  while JavaBeans 
provides  implementation.  Therefore,  although  their  domains  are  quite  far  apart,  a 
transformation between the two models is worth exploring. The idea is to model a system 
in SAVE-IDE and automatically get its implementation by applying the transformation from 
SaveCCM to JavaBeans (Figure 5.1).

The realization consists from two crucial parts:

1. development of the SaveCCM Java model and

2. implementation of the transformation.

5.1 Development of the SaveCCM Java model
This chapter discusses the SaveCCM Java model.  It  is an object oriented model  of 

SaveCCM, i.e. it gives a Java representation of SaveCCM elements. 

Some classes are common to all systems, so they exist prior to the transformation, while 
others are generated from the system definition during the transformation. Together they 
form  the  SaveCCM  Java  model.  The  preexisting  classes  are:   Clock,  Component, 
DataEvent,  DataEventListener,  DataInPort,  DataOutPort,  DataPort,  Delay, 
Executor,  TriggerEvent,  TriggerEventListener,  TriggerInPort, 
TriggerOutPort and TriggerPort. An UML diagram of a part of the architecture (only 
preexisting classes) is shown in Figure 5.2.

10 Although  SaveCCM is  intended  to  provide  support  in  the  whole  development  cycle,  from design  to 
implementation, in its current form it fully supports only the design phase.

31

Figure 5.1: Transformation from SaveCCM to JavaBeans



5 Transformation from SaveCCM to JavaBeans

5.1.1 Executor
In a real system made from embedded computers each component can be a single 

embedded device. So all components can execute simultaneously. On a PC that is not 
possible,  thus  there  is  a  need  for  a  special  mechanism  that  simulates  simultaneous 
execution of components. This is archived through the Executor class. Each generated 
system has one object of type  Executor, which is in charge of executing components. 
This executor object holds a queue of triggered components and executes one by one, in 
the same order as they got triggered (Snippet 5.1). The executor object operates in its own 
thread.

32

Figure 5.2: UML diagram of a partial SaveCCM Java model



5 Transformation from SaveCCM to JavaBeans

Snippet 5.1: Executing the components

Component component = executionQueue.poll();
if (!stop && component != null) { 
    component.read();
    component.execute();
    component.write();
    component.resetTriggers();
    component.setIdle(true);
} 

5.1.2 Immediate connections and delegations
Immediate connections and delegations have no class representations, instead they are 

modelled using the Java Event Model. Connecting one port (let it be called “destination 
port”) to another one (called “source port”) is done by registering the destination port as 
the listener of the source port. Thus, a source port has to have methods for registering and 
unregistering listeners. A destination port has to implement a listener interface. 

An event type is modelled by an event class and an event listener interface. In the 
SaveCCM Java model there are two types of events, one for data port (data events) and 
one for trigger port connections (trigger events). Data connections use the  DataEvent 
class  and corresponding  DataEventListener interface.  Trigger  connections  use the 
TriggerEvent class and TriggerEventListener interface. 

5.1.3 Ports
Ports are modelled with two separate hierarchies – one for data ports and one for trigger 

ports. A combined port in SaveCCM is a plain association of a data and a trigger port. The 
SaveCCM Java model is much simpler without introducing a third type of port,  so one 
combined port from SaveCCM becomes one data port and one trigger port in Java.

Data ports are modelled using Java Generics, which allows a single hierarchy between 
ports of  different types. The full  hierarchy includes the  DataPort<T> generic abstract 
class  as  the  root.  It  is  extended  by  generic  abstract  classes  DataInPort<T> and 
DataOutPort<T>.  A new port type extends one of these two classes. For instance, a 
data  input  port  holding  a  value  of  string  type  would  be  modelled  with  the 
StringDataInPort class which extends DataInPort<String>. So, in addition to the 
three  preexisting  abstract  classes,  other  data  port  classes  are  generated  during  the 
transformation.

Data ports have methods for registering and unregistering data event listeners. Data 
input ports implement the data event listener interface, as they can listen to data output 
ports in connections and data input ports in delegations. Data output ports implement that 
interface as well, since they can listen to data output ports in delegations. On picking up a 
data event, a listener port updates its value with the value from the port that generated the 
event.

The  trigger  port  hierarchy  has  TriggerPort abstract  class  as  the  root,  which  is 

33



5 Transformation from SaveCCM to JavaBeans

extended  by  TriggerInPort and  TriggerOutPort classes.  No  other  trigger  port 
classes are generated during the transformation, since a trigger port does not have a type, 
unlike a data port. 

Trigger  ports  have methods for  registering  and unregistering  trigger  event  listeners. 
Trigger ports and components implement the trigger event listener interfaces. A trigger 
input  port  can  listen  to  trigger  output  ports  in  connections  and  trigger  input  ports  in 
delegations.  A trigger  output  port  can  listen  to  trigger  output  ports  in  delegations.  A 
component  always  listens  to  all  of  its  input  trigger  ports  so  it  can  recognize  when  it 
becomes triggered. 

The scenario shown in  Figure 5.3 is used to explain how trigger events are normally 
promoted. It consists of component “A” and its output trigger port “outA”, and component 
“B” and its input trigger port “inB”. “inB” listens to “outA” and “B” listens to “inB”. When 
“outA” generates a trigger event, “inB” picks it up, updates its state, and promotes it to “B”. 

Output ports have the priority over input ports, meaning that when a value is written to 
an output port it is immediately promoted to all input ports connected to it, overwriting the 
former values of the input ports.

External  ports  are  merely  marked  with  a  comment  //  TODO  external in  the 
generated component classes. That way the user can decide how to handle them. This is 
due to  the  following reasons.  The  IODEF element  which  defines  external  ports  is  not 
written correctly in the  .save file, it is always generated with no content. Also, a more 
precise description of using external ports is needed in the SaveCCM specification. 

5.1.4 Components
Components are modelled with the Component abstract class (Figure 5.4), which is the 

root  of  the  simple  component  hierarchy.  For  each  component  type  defined  by  the 
COMPONENTDESC element in the .save file, one component class is generated during the 
transformation. The generated classes extend the abstract one.

The  Component class  holds  a  reference  to  the  system's  executor  object  (1)11.  A 
component can be in two states – idle or active. If it is idle, it is not triggered and vice 
versa. Once it gets triggered, i.e. active, all changes to the input triggers are disregarded 
until after execution. After execution the triggers are reset - input triggers to inactive and 

11 The numbers in brackets relate to Figure 5.4.

34

Figure 5.3: Promoting trigger events



5 Transformation from SaveCCM to JavaBeans

output triggers to active state, and the component is returned to idle state. The state is 
regulated by the idle flag and corresponding getter and setter (2).

A separate  Vector for each port type exists - input data port, output data port, input 
trigger port and output trigger port  Vector (3). There are methods for adding new and 
fetching existing ports (4), a method for resetting the triggers (5), a method that registers 
the component as a listener of all of its input ports (6), and a method for checking if the 
component is triggered (7).  When one of its  input triggers gets active,  the component 
receives a trigger event. Then it checks the state of all other triggers – if all of them are 
active, the component is triggered, that is set to active state. Then it adds itself  to the 
executor object's queue for execution.

Component  classes that  are generated during the transformation have to implement 
three abstract methods (8) from the abstract parent class:

read – stores the values from data ports internally (to private variables), 

execute – executes the component, i.e. implements the component's behaviour,

write – writes the internally stored values to output data ports.

In the generated classes one private variable exists for every data port, which ensures 
consistent computation – if other values get written to data input ports during execution, 
they have no effect on the outcome of the computation.

35

Figure 5.4: UML diagram of the Component 
class



5 Transformation from SaveCCM to JavaBeans

5.1.5 Clocks and delays
Clocks are represented by the  Clock class. Each clock operates in its own thread. A 

delay (modelled by the Delay class) operates in the same thread as the clock connected 
to it.

In SAVE-IDE it is legal for clocks and delays to have any number and any type of ports. 
This is in contradiction with SaveCCM specification, so the  Clock and  Delay classes 
allow only ports stated in the specification - one output trigger port for a clock, one input 
and one output trigger port for a delay.

Although  clocks  and  delays  in  SaveCCM  are  special  types  of  components,  in  the 
SaveCCM  Java  model  their  classes  are  in  no  relation  to  the  component  hierarchy. 
However, this has no effect on the transformed systems.

5.1.6 Unsupported elements
Switches, assemblies, composite components and complex connections are currently 

not supported. 

5.2 Implementation of the transformation
The transformation is realised using the Java programming language. It is implemented 

by  the  hr.fer.rasip.save_to_java.Transformer class.  Unfortunately,  the  code 
that  preforms  the  transformation  can  be  quite  difficult  to  read.  The  implementation  is 
broken down into  five methods,  each handling one logical  piece of  the transformation 
(Snippet  5.2).  The  methods  are  discussed  later  in  this  chapter.  First  a  description  of 
parsing the input file is given. 

Snippet 5.2: Methods implementing the transformation

this.application = this.unmarshall(); 
this.copyClasses();
this.generateDataPortClasses();
this.generateComponentClasses(); 
this.generateSystemDescriptionClass();

5.2.1 Parsing the .save file
As mentioned before, a SaveCCM system is defined in the .save file, which is in XML 

format. This file is the input of the transformation.

Parsing the .save file is done using Java Architecture for XML Binding (JAXB). JAXB (a 
part of the Java SE 6) enables mapping between XML and Java. It provides two main 
features: 

1. marshalling Java objects into XML, i.e. transforming a Java object hierarchy into 
XML format  and

36



5 Transformation from SaveCCM to JavaBeans

2. unmarshalling XML into Java objects,  i.e.  transforming an XML document into a 
hierarchy of Java objects.

JAXB has two main parts:

● the binding compiler and

● the binding runtime framework.

The binding compiler (xjc) (Figure 5.5) transforms an XML schema into a collection of 
Java classes that  matches the  structure  described in  the  schema.  These classes are 
annotated with special JAXB annotations, which provide the runtime framework with the 
mappings it needs to process the corresponding XML documents. 

The binding runtime framework (Figure 5.6) provides a mechanism for marshalling and 
unmarshalling  XML  documents.  Marshalling  is  equivalent  to  XML  writing  and 
unmarshalling to XML reading. The binding framework also enables validation of an XML 
document against its corresponding schema.

Combined,  these  two  parts  produce  a  technology  that  lets  Java  developers  easily 
manipulate XML data in the form of Java objects, without having to know the details of 
XML processing or XML Schema12 [18]. This simple and intuitive use is the main reason for 
using JAXB instead of a DOM or SAX parser for this project.

5.2.1.1 SaveCCM DTD and SaveCCM schema
DTD and XML Schema are languages that  provide  specifications  of  a  type of  XML 

document.  The specification is  expressed in  terms of  constraints  on the structure and 
content of documents of that type. 

12 Schema with an upper-case 'S' refers to the language, and schema with a lower-case 's' to the document 
written in Schema language, a document that describes an XML type.

37

Figure 5.5: JAXB binding compiler

Figure 5.6: JAXB binding runtime framework



5 Transformation from SaveCCM to JavaBeans

DTD is  native to  XML specification,  however  it  has relatively limited capability.  XML 
Schema is richer, it can describe structural relationships and data types that can not be 
expressed (or can not easily be expressed) in DTD [19]. XML Schema is required by the 
current version of JAXB (2.1), as DTD is only experimentally supported. 

The SaveCCM DTD13 is provided in the SaveCCM specification, unlike the SaveCCM 
schema. The SaveCCM schema was automatically generated from the SaveCCM DTD. 
Various tools allow this. Here it was done using Microsoft Visual Studio.

Prior to generating the schema, the SaveCCM DTD was slightly modified, since it had 
contained an error. The BEHAVIOUR element can occur zero or more times, not one time 
and one time only, as was stated. So the above line was replaced with the one below:

<!ELEMENT COMPONENTDESC (INPORT*, OUTPORT*, ATTRIBUTE*, BEHAVIOUR, 
REALISATION)>

<!ELEMENT COMPONENTDESC (INPORT*, OUTPORT*, ATTRIBUTE*, BEHAVIOUR*, 
REALISATION)>

 Once the SaveCCM schema is obtained, it can be binded. The JAXB binding compiler 
is  located  in  the  bin directory  of  the  JDK installation.  The  binding  is  done  with  the 
following command:

xjc SaveCCM.xsd 

This results in generating a number of Java classes in the  se.mdh.save.saveccm 
package. They are used for parsing the .save file.

5.2.1.2 Changes to the savexmlgenerator.mt file
The .save file generated by SAVE-IDE in both currently available versions (0.5 alpha 

and the snapshot release from 2008-02-01) required modifications to be usable with JAXB. 
The modifications were done by editing the file in charge of generating the .save file – 
savexmlgenerator.mt in the se.mdh.mrtc.saveccm.xmlgenerator.jar archive. 

The changes are listed in Table 5.1.

13 Analogue to Schema and schema, DTD is a language and SaveCCM DTD is a document written in DTD 
language, a specification of the SaveCCM XML type.

38



5 Transformation from SaveCCM to JavaBeans

Table 5.1: Changes to the savexmlgenerator.mt file

original replaced with
<?xml version="1.0"?> <?xml version="1.0" encoding="utf-8"?>
<!-- DOCTYPE APPLICATION SYSTEM 
"sys/savecomp.dtd” --> removed

<APPLICATION id="<%name%>"> <APPLICATION id="<%name%>" 
xmlns="http://save.mdh.se/SaveCCM" 
xmlns:xsi="http://www.w3.org/2001/XMLS
chema-instance" 
xsi:schemaLocation="http://save.mdh.se
/SaveCCM resources/SaveCCM.xsd">

<%if (name.length()>0){%>
<%name%>#<%id%>
<%}else{%>
#<%id%>
<%}%>

<%if (name.length()>0){%>
<%name%>_<%id%>
<%}else{%>
_<%id%>
<%}%>

<%if (compose.length()>0){%>
<%componentlist%>
<%}else{%>
<%}%>

<%if (compose.length()>0){%>
<%componentlist%>
<%}else{%>
<COMPONENTLIST>
</COMPONENTLIST>
<%}%>

<%if (connects.length()>0||
define.length()>0){%>
<%connectionlist%>
<%}else{%>
<%}%>

<%if (connects.length()>0||
define.length()>0){%>
<%connectionlist%>
<%}else{%>
<CONNECTIONLIST>
</CONNECTIONLIST>
<%}%>

The  change  stated  in  row 1  adds  the  encoding  declaration  to  the  .save file.  The 
change in row 2 removes the commented SaveCCM DTD reference, since the SaveCCM 
DTD is replaced by the SaveCCM schema. Those two changes are not crucial14. 

The change in row 3 adds a namespace declaration and a reference to the SaveCCM 
schema. The row 4 change replaces '#', in the id attribute of various elements, with '_', 
because '#' is an illegal character in the ID and IDREF built-in data types of XML Schema. 
The row 4 and 5 changes add COMPONENTLIST and CONNECTIONLIST elements to the 
.save file  when the system has no components or connections, respectively15.  These 
changes are crucial and allow the .save file to be parsed using JAXB and to be a valid 
XML document16. This means that the transformation is not compatible with the currently 
available  versions  of  SAVE-IDE  –  the  original 
se.mdh.mrtc.saveccm.xmlgenerator.jar file  has to  be replaced with  the edited 
one.

14  The row 2 change would have been crucial if the SaveCCM DTD reference was not commented.
15  The purpose of that kind of system is questionable, but it is legal in SaveIDE.
16  An XML document does not have to have a schema, but if it does, it must conform to that schema to be a 

valid XML document.

39



5 Transformation from SaveCCM to JavaBeans

5.2.2 The unmarshall method
Before being parsed, the  .save file needs to be unmarshalled, which is done by the 

code  in  Snippet  5.3.  After  unmarshalling,  the  root  element  can  be  fetched.  All  other 
elements and attributes are reachable from the object representing the root element. This 
method returns the root object. Validation of the .save file against the SaveCCM schema 
is also done in this method (Snippet 5.4).

Snippet 5.3: Unmarshalling the .save file

JAXBContext jc = JAXBContext.newInstance("se.mdh.save.saveccm");
Unmarshaller u = jc.createUnmarshaller();

Snippet 5.4: Validation of the .save file against the SaveCCM schema

SchemaFactory factory = 
SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
Schema schema = factory.newSchema(new File("resources/SaveCCM.xsd"));
u.setSchema(schema);

5.2.3 The copyClasses method
As stated in the Chapter Development of the SaveCCM Java model, some classes are 

the same for every system and are not generated from the information contained in the 
.save file. They are merely copied from the resources directory to the desired package 
using the copyClasses and the copyFile methods.

5.2.4 The generateDataPortClasses method
COMPONENTDESC elements in the  .save file are scanned for  INPORT and  OUTPORT 

child elements whose mode attribute has the value “data” or “combined”. The value of 
the type attribute is then compared to supported types using the getPortType method. 
If the type is successfully obtained, a new data port class is generated.

So  far  byte,  boolean,  character,  integer,  float,  double  and  string  data  types  are 
supported. New data types can be added by modifying the getPortType method. If an 
unsupported data type is encountered, an UnknownDataTypeException is thrown and 
the system cannot be transformed to JavaBeans.  A possible recovery strategy can be 
editing the  .save file (replacing the unsupported type) and running the transformation 
again. 

5.2.5 The generateComponentClasses method
For each COMPONENTDESC element, the REALISATION child element is parsed. If the 

component  is  a  plain  component17 then  a  new  component  class  that  extends  the 

17 As opposed to clock, delay or composite component.

40



5 Transformation from SaveCCM to JavaBeans

Component class is generated. The class is named by the value of the id attribute of the 
COMPONENTDESC element. In the constructor, the ports are added.

If the component is a clock or a delay nothing is generated, since those classes already 
exist. Composite components are not supported.

The ATTRIBUTE and BEHAVIOUR child elements of the COMPONENTDESC element are 
ignored.  ATTRIBUTE specifies non-functional properties of components which are not of 
great importance for implementing the system in Java.  BEHAVIOUR specifies additional 
behaviours  of  the  component.  It  is  unclear  from the  SaveCCM specification  how it  is 
decided which additional behaviour is to be executed at a certain time, so the additional 
behaviours are ignored. The default and only behaviour of the component is defined by its 
execute method, and this is sufficient for implementing the system in Java.

The  BINDPORT child  element  of  the  ENTRYFUNC element  corresponds  to  the 
component's implementation in C. Since the C code is not used in any way, the BINDPORT 
is ignored.

5.2.6 The generateSystemDescriptionClass method
This  method  generates  an  executable  class  (contains  a  public static void 

main(String[] args) method) which describes the SaveCCM system defined in the 
.save file.  The class is named by the value of  the  id attribute of  the  APPLICATION 
element.

First  all  of  the  components  present  in  the  system  (that  is,  defined  by  the 
COMPONENTLIST element) are instantiated. An executor object is also instantiated. Then 
all ports are connected according to the CONNECTIONLIST element. After connecting the 
ports, their initial values are set, as stated in the COMPONENTDESC elements. Since output 
ports have the priority over input ports (the values from the output ports must be retained), 
initial values are set in the order – first input ports, then output ports. Finally the system is 
initiated by starting the executor object and clocks, if any present.

5.3 Limitations of the transformation
There are restrictions to what type of SaveCCM system can be transformed. Some of 

them come from not supporting all SaveCCM elements and some from errors in SAVE-
IDE. The restrictions are denominated in this chapter.

Composite components, switches, assemblies and complex connections must not be 
used. This is obvious since they are not supported.

A clock must have one trigger output port and no other ports. A delay must have one 
trigger input port, one trigger output port and no other ports. This is explained in Chapter 
Clocks and delays.

The clock and delay attributes (period and jitter, delay and precision) must be 
integers. This will be explained in the Chapter SaveCCM and SAVE-IDE errors.

41



5 Transformation from SaveCCM to JavaBeans

5.4 Performing the transformation
The transformation is performed in two steps – the automatic and the manual step. The 

description in Chapter Implementation of the transformation relates to the automatic step. 
It  is  done  using  the  SaveToJava  tool  (Figure  5.7),  which  is  implemented  by  the 
hr.fer.rasip.save_to_java.TransformerGUI class. The tool comes in the form of 
an executable JAR file. It can be executed by a double mouse click or from the command 
line with the following command (just be sure to have the  resources directory in the 
same directory as the the JAR):

java -jar SaveToJava.jar

Prior to transforming, the user must provide:

● the path to the .save file describing the SaveCCM system to be transformed,

● the desire whether to validate the .save file against the SaveCCM schema and

● the output package in which the Java classes will be generated.

The output of the automatic step of the transformation is a directory structure matching 
the desired output package and containing the generated Java classes.

In the manual  step, the user needs to manually edit  the generated code. Since the 
SaveCCM components are by default implemented in C, the generated Java component 
classes have empty execute methods and the user needs to provide them. Also, in the 
executable system class, the user needs to provide the code for terminating the system, 
as the system can be executed indefinitely, depending on its structure. The user can also 
provide code for handling external ports, as explained in the Chapter Ports.

No generated code is locked for editing18, so the user can edit the generated system in a 
way he/she desires. This allows, for instance, that only a part of the system is built in 
SaveCCM and it is finished using Java.

18  Which is not an uncommon situation with tools that automatically generate code.

42

Figure 5.7: The Save2Java tool



5 Transformation from SaveCCM to JavaBeans

5.5 Transformation example
This  chapter  gives  an  example  of  performing  the  transformation  from SaveCCM to 

JavaBeans. The system is show in Figure 5.8. It consists of a clock and four components. 
The “generator1” and “generator2” components generate a random number from 0 to 9 
and  write  it  to  their  output  ports.  These  numbers  are  compared  by  the  “comparator” 
component.  After  the comparison “comparator”  writes the result  to its output port.  The 
result  is  printed  in  the  console  by the  “print”  component.  The number  generators  are 
triggered by the clock. They trigger the comparator. The comparator triggers the printer.

First the system is designed in SAVE-IDE and the test.save file is generated. Then 
the automatic step of the transformation is performed – the SaveToJava tool is executed, 
the  test.save file  is  selected  as  input  and  the  test package  as  output  of  the 
transformation. By clicking the Transform button, the Java classes are generated in the 
test directory, which is then imported into a new Java project in Eclipse. As part of the 
manual step of the transformation, the execute methods of components are edited. They 
are shown in the following code snippets.

Snippet 5.5: The execute method in the generator1_1 class

public void execute() {
    try {
        Thread.sleep(100);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    this.gen1_out_2 = new Integer(new java.util.Random().nextInt(10));
}

Snippet 5.6: The execute method in the generator2_4 class

public void execute() {
    try {
        Thread.sleep(200);
    } catch (InterruptedException e) {
        e.printStackTrace();

43

Figure 5.8: A simple SaveCCM system



5 Transformation from SaveCCM to JavaBeans

    }
    this.gen2_out_5 = new Integer(new java.util.Random().nextInt(10));
}

Snippet 5.7: The execute method of the comparator_7 class

public void execute() {
    try {
        Thread.sleep(100);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    if (this.comp_in1_8 < this.comp_in2_9) {
        this.comp_out_10 = new String(this.comp_in1_8 + " less than " + 
this.comp_in2_9);
    } else if (this.comp_in1_8 > this.comp_in2_9) {
        this.comp_out_10 = new String(this.comp_in1_8 + " greater than " + 
this.comp_in2_9);
    } else {
        this.comp_out_10 = new String(this.comp_in1_8 + " equal to " + 
this.comp_in2_9);
    }
}

Snippet 5.8: The execute method of the print_11 class

public void execute() {
    try {
        Thread.sleep(300);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
    System.out.println(this.print_in_12);
}

The system is started by executing the test class and stopped by violently terminating 
the the program. The output looks like this:

6 equal to 6
1 less than 9
8 greater than 3
8 greater than 5
9 greater than 7
5 less than 9
8 greater than 3

5.6 Possibilities for improvement
In this chapter a few possibilities for future improvement of the SaveCCM Java model 

and the SaveToJava tool are given.

44



5 Transformation from SaveCCM to JavaBeans

The  most  obvious  improvement  is  adding  support  for  unimplemented  SaveCCM 
elements – switch, assembly, composite component and complex connection. 

SAVE-IDE is an Eclipse plugin, it is obvious that the SaveToJava tool should also exist 
in that form. Some research has been made in that direction, but has not been finished. 
This is the idea behind the SaveToJava plugin. Right clicking the  .save file in Eclipse 
opens a menu. A command would be added to that menu, for instance Transform to 
Java.  Clicking  it  would  pop  up  a  graphical  user  interface  similar  to  the  one  of  the 
SaveToJava  standalone  tool.  After  entering  the  necessary  input  (project  and  package 
name) and clicking the Transform button, a new project would be created. That project 
would contain the generated system files. This would eliminate the need for importing the 
generated files in Eclipse, which is necessary when using the SaveToJava standalone tool.

The  generated  Java  system  is  a  console  application.  A  possible  improvement  is 
providing some kind of  graphical  user interface that  would allow a direct  manipulation 
(making  new  component  instances,  defining  connections  between  ports  etc.)  and 
execution (starting and stopping) of the generated system.

Since the user needs to manually define the  execute method of each component, a 
nice feature would be having an automatic translation of the behaviour definition in C to a 
behaviour definition in Java. However this is quite complicated to achieve, as it includes 
translation  between programming languages.  It  exceeds the scope of  this  project  and 
requires a more specific definition of the C implementation in the SaveCCM specification.

5.7 SaveCCM and SAVE-IDE errors
Some  errors  in  SaveCCM  and  SAVE-IDE  were  found  during  the  work.  They  are 

denominated in this chapter. Also some suggestions for improving SAVE-IDE are given.

In the SaveCCM DTD it states that the  BEHAVIOUR element can occur one time and 
one time only, but it can occur zero or more times. This is discussed in Chapter SaveCCM 
DTD and SaveCCM schema.

The IODEF element is not written correctly in the .save file, it is always generated with 
no content. This is discussed the Chapter Ports.

Clock and delay can have any number and any type of ports defined in SAVE-IDE. This 
is discussed in the Chapter Clocks and delays.

The clock and delay attributes get formatted before being written in the .save file. The 
'.' character is inserted after every three digits from the decimal point leftward. The decimal 
point is written as the ',' character. For instance “1000000.5” is written as “1.000.000,5”. 
This complicates the parsing of the attributes from strings to numbers. A better solution 
would be not to insert the '.' character and to use it as the decimal point. There is also an 
occasional bug with the decimal part of the attributes, for instance “1000000.1” gets written 
as “1.000.000,125”.

 Delegations are not written correctly in the .save file. They contain only the FROM, and 
lack the TO element.

45



5 Transformation from SaveCCM to JavaBeans

The SWITCHDESC element is not written correctly in the .save file. There is always one 
SWITCHCONDITION child element generated, however there should be as many as there 
are  conditions.  Also,  the  SWITCHCONDITION element  contains  CONNECTION child 
elements, while it should contain CONDITION elements instead. 

SAVE-IDE allows some actions which should be illegal. For instance:

● Ports of different types can be connected. This is done in the following way – first 
ports  of  matching  types  are  connected,  then  one  port  type  is  changed.  The 
connection between the ports remains, while it should be broken. 

● The same two ports  can be connected by several  connections.  This  makes no 
sense.

● In  composite  components  external  and  internal  triggers  can  be  connected  by 
delegations.  However  this  makes  no  sense,  since  triggering  in  composite 
components is not transferred like data. 

Implementing such constraints  in  SAVE-IDE could make the mechanism behind  the 
SaveCCM system validating  quite  heavy,  so  it  is  understandable  that  not  all  possible 
constraints are enforced.

Since the .save file is the only file required for fully describing a SaveCCM system, a 
nice feature in SAVE-IDE would be the automatic generation of all necessary project and 
diagram files from the .save file. This would allow importing an existing system in SAVE-
IDE. Currently this is possible only if the whole SaveCCM system's project directory exists. 

46



6 Conclusion

6 Conclusion
Although  SaveCCM  is  intended  to  provide  support  throughout  the  whole  system 

development cycle, currently only the design phase support is complete. Thus, SaveCCM 
lacks  implementation.  A SaveCCM Java  model  was  developed,  which  represents  the 
SaveCCM elements in the object oriented paradigm. A transformation from SaveCCM to 
JavaBeans was carried out, providing implementation for SaveCCM. 

Despite that the transformation is not fully completed and has potential for improvement, 
the main task is accomplished – it is proven that SaveCCM can be implemented in Java. 
Since the quality attributes from a SaveCCM system are not retained in a generated Java 
system, the transformation is intended for demonstration purposes only.

Apart from the transformation, this thesis also contributes through reporting discovered 
SaveCCM and SaveIDE errors.

This transformation in the opposite direction, from JavaBeans to SaveCCM, was not 
considered  in  this  thesis.  The  purpose  for  the  transformation  in  this  direction  is 
questionable. Also it is debatable if it is even possible.

47



7 Bibliography

7 Bibliography
[1] IEEE Standard Glossary of Software Engineering Terminology, IEEE

[2] Crnković I., Larsson M.: Building Reliable Component-Based Software Systems, 
Artech House, 2002

[3] Heineman G. T.,  Councill W. T.: Component-Based Software Engineering: Putting 
the Pieces Together, Addison-Wesley Professional, 2001 

[4] Gao J.Z.,  Tsao H.-S., Wu Y.: Testing and Quality Assurance for Component-Based 
Software, Artech House, 2003

[5] Beugnard A., Jézéquel J.-M., Plouzeau N., Watkins D.: Making Components 
Contract Aware, http://people.cs.uchicago.edu/~robby/contract-reading-list/contract-aware-
components.pdf

[6] Bachmann F., Bass L., Buhman C., Comella-Dorda S., Long F., Robert J., Seacord 
R., Wallnau K.: Technical Concepts of Component-Based Software Engineering, 
http://www.sei.cmu.edu/staff/kcw/00tr008.pdf

[7] Crnković I., Larsson S., Chaudron M.: Component-based Development Process and 
Component Lifecycle, http://www.mrtc.mdh.se/publications/0953.pdf

[8] D'Souza D.F., Wills A.C.: Objects, Components, and Frameworks with UML: The 
Catalysis Approach, Addison-Wesley, 1998

[9] Crnković I.: Component-based approach for embedded systems, 
http://research.microsoft.com/~cszypers/events/WCOP2004/18-Crnkovic.pdf

[10] Component-based Design and Integration Platforms, ARTIST, 
http://www.irisa.fr/triskell/publis/2003/Jezequel03b.pdf

[11] Johnson M.: A walking tour of JavaBeans, 1997, 
http://www.javaworld.com/javaworld/jw-08-1997/jw-08-beans.html

[12] JavaBeans specification, Sun Microsystems, 1997 
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html

[13] Introduction to Java Beans, http://www.drbob42.com/JBuilder/jb210t.htm

[14] JavaBeans tutorial, Sun Microsystems, 
http://java.sun.com/docs/books/tutorial/javabeans

[15] Crnković I., Hansson H., Törngren M., Åkerholm M.:  SaveCCM – a component 
model for safety-critical real-time systems, http://www.mrtc.mdh.se/index.php?
choice=publications&id=0757

[16] Håkansson J.: The SaveCCM Language Reference Manual, 
http://www.idt.mdh.se/kurser/cd5490/2007/lectures/SAVE-REF.pdf 

[17] Carlson J., Håkansson J.,  Pettersson P.: SaveCCM An Analysable Component 
model for real time, http://www.mrtc.mdh.se/index.php?choice=publications&id=1024

48

http://www.mrtc.mdh.se/index.php?choice=publications&id=1024
http://www.idt.mdh.se/kurser/cd5490/2007/lectures/SAVE-REF.pdf
http://www.mrtc.mdh.se/index.php?choice=publications&id=0757
http://www.mrtc.mdh.se/index.php?choice=publications&id=0757
http://java.sun.com/docs/books/tutorial/javabeans
http://www.drbob42.com/JBuilder/jb210t.htm
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
http://www.javaworld.com/javaworld/jw-08-1997/jw-08-beans.html
http://www.irisa.fr/triskell/publis/2003/Jezequel03b.pdf
http://research.microsoft.com/~cszypers/events/WCOP2004/18-Crnkovic.pdf
http://www.mrtc.mdh.se/publications/0953.pdf
http://www.sei.cmu.edu/staff/kcw/00tr008.pdf
http://people.cs.uchicago.edu/~robby/contract-reading-list/contract-aware-components.pdf
http://people.cs.uchicago.edu/~robby/contract-reading-list/contract-aware-components.pdf


7 Bibliography

[18] Ferguson Smart J.: Java-XML mapping made easy with JAXB 2.0, 2006, 
http://www.javaworld.com/javaworld/jw-06-2006/jw-0626-jaxb.html

[19] Ort E., Mehta B.: Java Architecture for XML Binding (JAXB), 2003, 
http://java.sun.com/developer/technicalArticles/WebServices/jaxb

49

http://java.sun.com/developer/technicalArticles/WebServices/jaxb
http://www.javaworld.com/javaworld/jw-06-2006/jw-0626-jaxb.html


8 List of abbreviations

8 List of abbreviations
CBD Component-based development

CBSE Component-based software engineering

DTD Document Type Definition

GUI Graphical user interface

IDE Integrated development environment

JAR Java Archive

Java SE Java Platform, Standard Edition

JAXB Java Architecture for XML Binding 

JDK Java SE Development Kit 

OOP Object oriented paradigm (Object oriented programming)

SaveCCM SaveComp Component Model

XML Extensible Markup Language

50


	1Introduction
	2Component-based software engineering
	2.1Components
	2.2Interfaces
	2.3Contracts
	2.4Component models
	2.5Component frameworks
	2.6Component-based software development process
	2.6.1Development of components
	2.6.2Development of systems

	2.7CBSE versus OOP
	2.8CBSE for embedded systems

	3The JavaBeans component model
	3.1Properties
	3.1.1Simple properties
	3.1.2Indexed properties
	3.1.3Bound properties
	3.1.4Constrained properties

	3.2Events
	3.3Methods
	3.4Customization
	3.5Introspection
	3.5.1Design patterns
	3.5.1.1Design patterns for properties
	3.5.1.2Design patterns for events
	3.5.1.3Design patterns for methods

	3.5.2Introspection API

	3.6Persistence
	3.6.1Default serialization using the Serializable interface
	3.6.2Selective serialization using the transient keyword
	3.6.3Selective serialization using the writeObject and readObject methods
	3.6.4Selective serialization using the Externalizable interface
	3.6.5Long term persistence

	3.7Packaging Java beans

	4The SaveComp Component Model
	4.1Ports
	4.2Components
	4.2.1Clocks and delays
	4.2.2Composite components

	4.3Switches
	4.4Assemblies
	4.5SaveCCM XML syntax
	4.6SAVE-IDE

	5Transformation from SaveCCM to JavaBeans
	5.1Development of the SaveCCM Java model
	5.1.1Executor
	5.1.2Immediate connections and delegations
	5.1.3Ports
	5.1.4Components
	5.1.5Clocks and delays
	5.1.6Unsupported elements

	5.2Implementation of the transformation
	5.2.1Parsing the .save file
	5.2.1.1SaveCCM DTD and SaveCCM schema
	5.2.1.2Changes to the savexmlgenerator.mt file

	5.2.2The unmarshall method
	5.2.3The copyClasses method
	5.2.4The generateDataPortClasses method
	5.2.5The generateComponentClasses method
	5.2.6The generateSystemDescriptionClass method

	5.3Limitations of the transformation
	5.4Performing the transformation
	5.5Transformation example
	5.6Possibilities for improvement
	5.7SaveCCM and SAVE-IDE errors

	6Conclusion
	7Bibliography
	8List of abbreviations

