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Abstract

In this thesis we propose techniques to simplify the integration of subsystems

while minimizing the overall amount of CPU resources needed to guarantee

the schedulability of real-time tasks. In addition, we provide solutions to the

problem of allowing for the use of logical resources requiring mutual exclusion.

The contribution of the thesis is presented in three parts. In the first part, we

propose a synchronization protocol, called SIRAP, to facilitate sharing of log-

ical resources in a hierarchical scheduling framework. In addition, we extend

an existing synchronization protocol, called HSRP, such that each subsystem

can be developed independently. The performance of the proposed protocols is

evaluated by extensive simulations. In the second part, we present an efficient

schedulability analysis that exploits the lower scheduling overhead introduced

by each of the proposed protocols. Finally, in the third part, we propose new

methods and algorithms that find the optimal system parameters (e.g., optimal

resource ceiling), that minimize the amount of CPU resources required to en-

sure schedulability, when using the proposed synchronization protocols in a

hierarchical scheduling framework.

The motivation of this work comes from an emerging industrial trend in

embedded software development to integrate multiple applications (subsys-

tems) on a small number of processors. The purpose of this integration is to

reduce the hardware related costs as well as the communication complexity be-

tween processors. In this setting a large number of industrial applications face

the problem of preserving their real-time properties after their integration onto

a single processor. An additional motivation is that temporal isolation between

the applications during runtime may be required to prevent failure propagation

between different applications.

Specifically, we propose a hierarchical scheduling framework that allows

for a simplified integration of subsystems. The framework preserves the essen-

tial temporal characteristics of the subsystems, both when running in isolation
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as well as when they are integrated with other subsystems. In this thesis, we

assume a model where a system consists of a number of subsystems. The

subsystems can interact with each other using shared logical resources. The

framework ensures that the individual subsystem respects its allocated share of

the processor. The difficulty lies in allowing two or more subsystems to share

logical resources, which introduces an additional complexity in the schedula-

bility analysis and also increases the system load.
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Västerås, November, 2010



List of Publications

Publications included in this thesis

• Paper A Moris Behnam, Insik Shin, Thomas Nolte, Mikael Sjödin,
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Notes for the Reader

This thesis contains two parts. The first part is an introductory part included in

chapters 1-5. The second part is a collection of seven papers (A-G) in chapters

6-12. The seven papers are structured in 3 sections as follows:

• Hierarchical scheduling and synchronization (papers A-C).

• Schedulablity analysis (papers D-E).

• Algorithms for efficient CPU resource usage (papers F-G).

Note that throughout the seven papers, there are some differences in nota-

tions, indexes and terminologies. For instance, in some papers we use the term

resource holding time and in other papers we use resource locking time for the

same thing. In addition, in some papers we assume that tasks are sorted accord-

ing to their priorities, in the order of increasing priority, and in other papers we

assume that they are sorted in the order of decreasing priority. Therefore it

is important to read and follow the corresponding system model of each pa-

per, respectively. Finally, it is recommended to read all included papers before

reading chapter 4 (Summary, Conclusions and Future Work) for a better under-

standing of this chapter.
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Swedish Summary

Målet med avhandlingen är att förenkla integration av delsystem och sam-

tidigt minimera processorkraften som krävs för att delsystemen ska hinna med

att utföra alla uppgifter på ett tillfredsställande sätt. I den här avhandlin-

gen fokuserar vi på problemet med att tillåta användandet av logiska resurser

tillsammans med hierarkisk schemaläggning och vi föreslår ett nytt synkron-

iseringsprotokoll för detta. Vi föreslår även nya algoritmer och analyser som

på ett resurseffektivt sätt kan minimera processorbelastning vid användandet

av synkroniseringsprotokoll för hierarkiska schemaläggare.

En tydlig trend inom många programvaruintensiva industriella tillämp-

ningsområden, till exempel bilindustrin och flygindustrin, är att integrera flera

delsystem på ett mindre antal processorer. Syftet med denna integrering är dels

att minska olika typer av kostnader, samt att minska komplexiteten framförallt

med avseende förenkling av kommunikation mellan delsystem som efter inte-

grering inte längre behöver ske över fysiska nätverk.

Många applikationer/delsystem har realtidskrav och ett problem som upp-

står vid integration är att garantera tidsmässiga egenskaper hos dessa appli-

kationer även efter integrering. När integrering sker så finns det en risk att

applikationerna kommer att störa varandra på olika sätt. Delsystemens integ-

rering kräver en tidsmässing isolering mellan applikationer/delsystem under

körning för att förhindra att en applikation orsakar fel i andra applikationer.

Vi föreslår ett hierarkiskt schemaläggningsramverk som möjliggör en för-

enklad integrationsprocess av delsystem. Detta ramverk bevarar väsentliga

tidsmässiga egenskaper hos delsystemen, både när dessa kör isolerat och när

de är integrerade tillsammans med andra delsystem.

I denna avhandling utgår vi ifrån en modell där ett system består av ett

antal delsystem. Delsystemen kan interagera med varandra med hjälp av delade

logiska resurser. Ramverket ser till att de enskilda delsystemen respekterar sin

tilldelade andel av processorn. Svårigheten ligger i att tillåta två eller flera

xiii
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delsystem att dela logiska resurser, vilket introducerar en extra komplexitet i

schemaläggningsanalysen och dessutom ökar processorns belastning.
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Chapter 1

Introduction

In this thesis we address the challenges of allowing sharing of logical resources

between tasks that are scheduled by a Hierarchical Scheduling Framework

(HSF). Given this HSF, our aim is to provide an efficient compositional in-

tegration framework, in terms of CPU resources required to preserve temporal

behavior for independently developed applications (subsystems) executing on

a single processor.

Motivation The complexity of embedded systems is increasing exponen-

tially due to requirements on advanced functionality. For example in the au-

tomotive domain, functionality that was realized by mechanical subsystems is

often partially or completely replaced by embedded systems (for example en-

gine control, anti-lock braking, etc.). Also new and advanced functionalities

are required to be added (for example collision avoidance system, car to car

communication, steer by wire, brake by wire, etc.).

To deal with the high complexity of embedded systems, systems are today

developed as a set of independent subsystems often by different suppliers. In

the final development stages, these subsystems are integrated to produce the

final product. Traditionally, in many software intensive industrial application

domains, such as automotive and avionics, each subsystem is assigned to one

or more dedicated Electronic Control Units (ECUs). In order to provide isola-

tion between subsystems during runtime, different subsystems are not allowed

to be executed on the same ECU. However, with the increase of functionality,

this approach significantly increases the complexity of the embedded systems

in terms of requiring a high number of ECUs, with complex communication so-
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4 Chapter 1. Introduction

lutions in between ECUs. To reduce complexity and cost of these systems, one

current trend is to integrate more software subsystems into a lower number of

processors [1]. One example can be integrating both the engine control and the

gearbox subsystems in one ECU. However, many subsystems have real-time

requirements which raise the problem of guaranteeing the timing behavior of

these subsystems also after integrating them in a single processor. In addi-

tion, temporal isolation between the subsystems during runtime is required to

prevent one application from causing a failure of another subsystem.

The hierarchical scheduling framework has been introduced to enable com-

positional schedulability analysis of systems with real-time constrains to sim-

plify schedulability analysis of complex systems [2]. It offers many additional

interesting features that can solve the problem of guaranteeing temporal re-

quirements during the integration of independently developed applications in

a single processor. The HSF provides means for decomposing a complex soft-

ware system into well-defined parts (subsystems). Each subsystem is asso-

ciated with an abstract notion of its total CPU resource requirements. This

abstract notion, manifested by the subsystem timing interface, is used during

subsystem design time for various kinds of analysis, and during runtime to

guarantee correct allocation of CPU resources to the system. In this thesis we

refer to this kind of interface-based hierarchical scheduling as the Hierarchical

Scheduling Framework (HSF). The main feature of the HSF is that it provides

CPU partitioning between different subsystems. Thus, subsystems can be iso-

lated from each other for, e.g., fault containment, compositional verification,

validation and certification, unit testing, independent development etc. Finally,

since subsystems can be developed independently, the HSF facilitates reusabil-

ity of subsystems in systems that have real-time constrains.

Integrating different subsystems in a single processor implies that these

subsystems will not only share the CPU resources, but they may also be in

direct competition for other types of resources (such as flash memory, a mem-

ory map of a peripheral device, data structures etc.). Many of these resources

may be accessed in a non-preemptable manner (using mutual exclusion). Re-

sources that are shared by tasks (in a non-preemptable manner) from different

subsystems are called global shared resources, and synchronization protocols

should be used to synchronize the access to these shared resources. However,

traditional synchronization protocols such as the Priority Inheritance Protocol

(PIP) [3], the Priority Ceiling Protocol (PCP) [4], and the Stack Resource Pol-

icy (SRP) [5], give rise to a problem of excessive blocking of subsystems due to

budget depletion during global shared resource access (more details will be ex-

plained in Chapter 3). More appropriate protocols are needed for hierarchical
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scheduling frameworks.

In this thesis, our overall goal is to propose a HSF and corresponding syn-

chronization protocols that together are able to fulfill the following require-

ments:

• The HSF should support sharing of logical resources between subsys-

tems while preserving temporal predictability.

• The HSF should support independent development of subsystems. This

requirement enables parallel development of subsystems, as different

suppliers can develop different subsystems without revealing the internal

details of each subsystem. In addition, this requirement facilitates reuse

of software legacy systems/subsystems; systems that have been devel-

oped for a long time possibly not complying with any particular system

model.

• The HSF should use CPU-resources efficiently. This requirement can

be achieved by minimizing system load, the collective CPU needed to

guarantee the schedulability of the entire framework. This requirement

is a very important since fulfilling the first two requirements, increases

the systems load (this will be explained in more details in Chapter 3).

1.1 Contributions

The contributions presented in this thesis can be divided into three parts:

1.1.1 Hierarchical scheduling and synchronization

As mentioned above, traditional synchronization protocols such as PIP, PCP

and SRP can not handle the problem of resource sharing in hierarchical schedul-

ing frameworks. Hence, more advanced protocols are needed for this kind of

systems.

• In paper A we present Subsystem Integration and Resource Allocation

Policy (SIRAP); a synchronization protocol for hierarchical scheduling.

In addition, we present a simple schedulability analysis that bounds the

timing behavior of SIRAP.

• In paper B we develop a schedulability analysis of an existing synchro-

nization protocol HSRP, such that it allows for independent analysis of
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individual subsystems. To distinguish between the original analysis of

HSRP and the proposed analysis, we use the term Overrun to refer to the

proposed analysis.

• Finally, in paper C we present a comparative evaluation of the Overrun

and SIRAP by means of simulation. We apply the protocols on the HSF

and we use the same system settings allowing for a fair comparison. The

simulation results indicate when one protocol is better than the other and

how system/subsystem parameters should be selected in order to operate

efficiently.

1.1.2 Schedulability analysis

Supporting global shared resource among subsystems is a major challenge as it

increases the complexity of the system analysis considerably. Due to this com-

plexity, the schedulability analysis of both SIRAP and Overrun (also HSRP)

are based on some simplifying assumptions which make them easier. The con-

sequence of these simplifying assumptions is that the analysis may become

very pessimistic, potentially requiring more CPU resources than what is ac-

tually needed. Therefore we aim at reducing the potential pessimism in the

schedulability analysis of SIRAP and HSRP by introducing tighter analysis.

• In paper D we show that the schedulability analysis associated with the

SIRAP protocol can be pessimistic if the number of shared resources

and/or number of resource accesses is high. We present two different

schedulability analysis approaches for SIRAP. The results obtained from

simulation analysis show that the new approaches can decrease the CPU

resources allocated to each subsystem significantly compared with the

original schedulability analysis.

• In paper E we show that the existing schedulability analysis of the Over-

run (without payback) is pessimistic1. We present a tighter analysis that

reduce the required CPU resource demand. In addition we evaluate the

improvements that the new analysis can achieve compared with the tra-

ditional analysis. Depending on the system parameters, a significant im-

provement in the CPU resource usage can be achieved when using the

new analysis. However, the time complexity of the new analysis is higher

than the existing analysis presented in paper B.

1The pessimism in the scheduability analysis is also included in the original analysis of HSRP.
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1.1.3 Algorithms for efficient CPU resource usage

It is required that the HSF should use the CPU-resources efficiently, i.e., given

a particular system configuration, the system load should be minimized. How-

ever, it may not be straightforward to find the optimal subsystems parameters

that generate the minimum system load without violating the requirement of

independent subsystem development, i.e., without knowledge about temporal

behavior of other subsystems that will be integrated on the same CPU. By tak-

ing this contradiction between allowing for independent development of sub-

systems, and minimizing system load, into account, we propose approaches

and algorithms that can decrease the CPU resources demand.

• For SIRAP, we show that it is possible to reduce the allocated CPU re-

source needs for a subsystem by manipulating the ceiling of resources in

paper F. Based on this, we propose an algorithm that selects the optimal

resource ceiling value per global shared resource that will be used during

self-blocking, resulting in the lowest CPU resources allocation needs for

that subsystem.

• For the Overrun, and considering the requirement of subsystem indepen-

dent development, we propose a two-step approach to find an optimal

solution to the system load minimization problem in paper G. In the first

step, and for each subsystem in isolation, an algorithm is proposed to

derive a set of interface candidates. In the second step, during system

integration, another algorithm is used to select one candidate for each

subsystem that minimizes the system load.

1.2 Outline of thesis

The outline of this thesis is as follows: in Chapter 2 we explain and define the

basic concepts of real-time systems, and the terms that will be used throughout

this thesis. In Chapter 3 we describe the hierarchical scheduling framework, we

address the problem of allowing global shared resource between subsystems

and we present some solutions for this problem. In Chapter 4 we present our

conclusion and suggestions for future work. We present the technical overview

of the papers that are included in this thesis in Chapter 5 and we present these

papers in Chapters 6-12.





Chapter 2

Background and System

Model

In this chapter we present some basic concepts concerning real-time systems,

as well as the system model that will be used in the next chapters.

2.1 Real-time systems

A real-time system is a computing system whose correctness relies not only on

its functionality, but also on timeliness, i.e., the system should produce correct

results at correct instances of time [6]. Real-time systems are usually con-

structed using concurrent programs called tasks and each task is supposed to

perform a certain functionality (for example reading a sensor value, computing

output values, sending output values to other tasks or devices, etc). A real-time

task should complete its execution before a predefined time called deadline.

Real-time tasks can be classified according to their timing constraint to ei-

ther hard real-time tasks or soft real-time tasks. For hard real-time tasks, all

tasks should complete their execution before their deadlines otherwise a catas-

trophic consequence may occur. However, for soft real-time tasks, it is accept-

able that deadlines are missed which may degrade the system performance,

e.g., in a mobile phone where missing some deadlines will decrease the quality

of the sound. Many systems contain a mix of hard and soft real-time tasks.

A real-time task consists of an infinite sequence of activities called jobs,

and depending on the their execution behaviors, real-time tasks are modeled as

9
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either periodic, sporadic or aperiodic tasks:

• Periodic tasks have a fixed inter-arrival time called period, i.e., a periodic

task become ready to execute every predefined period.

• Sporadic tasks have known minimum inter-arrival time while the maxi-

mum inter-arrival time can be infinity.

• Aperiodic tasks are triggered at arbitrary times, with no known minimum

inter-arrival time.

2.1.1 Scheduling algorithms

In a single processor, the CPU can not be assigned to more than one task at

any given point in time. If a set of tasks are ready to execute, then a schedul-

ing criterion should be used to define the execution order of these tasks. The

scheduling criterion uses a set of rules defined by a scheduling algorithm to de-

termine the execution order of the task set. If all tasks complete their execution

before their deadlines then the schedule is called a feasible schedule and the

tasks are said to be schedulable. If the scheduler permit other tasks to interrupt

the execution of the running task (task in execution) before completing of its

execution then the scheduling algorithm is called preemptive, otherwise it is

called a non-preemptive scheduling algorithm.

Real-time scheduling falls in two basic categories; online scheduling (the

order of task execution is determined during runtime) and offline scheduling (a

schedule is created before runtime)[7].

For online scheduling, the order of task execution is determined during

runtime according to task priorities. The priorities of tasks can be static which

means that the priorities of tasks will not change during runtime. This type of

scheduling algorithm is called Fixed Priority Scheduling (FPS) and both Rate

Monotonic (RM) scheduling [8] and Deadline Monotonic (DM) [9] are exam-

ples of this type of scheduling. In RM, the priorities of the tasks are assigned

according to their periods, while for DM the priority of a task is assigned based

on its deadlines. The task priorities can be dynamic which means that they can

change during runtime, and Earliest Deadline First (EDF) [8] is an example of

such a scheduler. For EDF, the task that has earlier deadline among all ready

tasks will execute first.
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2.1.2 Logical resource sharing

A logical resource is any software structure that can be used by a task to ad-

vance its execution [10]. For example a resource can be a data structure, flash

memory, a memory map of a peripheral device. If more than one task uses

the same resource, then that resource is called shared resource. The part of

task’s code that uses a shared resource is called critical section. When a job

enters a critical section (starts accessing a shared resource) then no other jobs,

including the jobs of higher priority tasks, can access the shared resource until

the accessing job exits the critical section (mutual exclusion method). The rea-

son is to guarantee the consistency of the data in the shared resource and this

type of shared resource is called non-preemptable resource. For preemptive

scheduling algorithms, sharing logical resources cause a problem called prior-

ity inversion [4]. The priority inversion problem happens when a job with high

priority must access a shared resource that is currently accessed by another

lower priority job, so the higher priority job will not be able to preempt the

lower priority job. The higher priority job will be blocked until the lower prior-

ity job releases the shared resource. The time that the high priority job will be

blocked can be unbounded since other jobs with intermediate priority that do

not access the shared resource can preempt the low priority job while it is exe-

cuting inside its critical section. As a result of the priority inversion problem,

the higher priority job may miss its deadline. A proper protocol should be used

to synchronize the access to the shared resource in order to bound the waiting

time of the blocked tasks. Several synchronization protocols, such as the Prior-

ity Inheritance Protocol (PIP) [3], the Priority Ceiling Protocol (PCP) [4] and

the Stack Resource Policy (SRP) [5], have been proposed to solve the problem

of priority inversion. We will explain the SRP protocol in details, a protocol

central for this thesis, suitable for RM, DM, and EDF scheduling algorithms.

Stack resource policy To describe how SRP works, we first define some

terms that are used with SRP.

• Preemption level. Each task has a preemption level which is a static

value proportional to the inverse of task relative deadline for the EDF

scheduling. For RM/DM the preemption level equals to the priority of

the task.

• Resource ceiling. Each shared resource is associated with a resource

ceiling which equals to the highest preemption level of all tasks that use

the resource.
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• System ceiling. System ceiling is a dynamic parameter that changes dur-

ing execution. The system ceiling is equal to the currently locked highest

resource ceiling in the system. If at any time there is no accessed shared

resource then the system ceiling would be equal to zero.

According to SRP, a job ji generated by task τi can preempt the currently

executing job jk only if ji is a higher-priority job of jk and the preemption

level of τi is greater than the current subsystem ceiling.

2.2 System model

In this thesis, our focus is on a two-level hierarchical scheduling framework

where a system S, executing on a single processor, consists of one or more

subsystems Ss ∈ S. The hierarchical scheduling framework can be generally

represented as a two-level tree of nodes, where each node represents a sub-

system with its own scheduler for scheduling internal tasks, and CPU time is

allocated from a parent node to its children nodes, as illustrated in Figure 2.1.

Each subsystem Ss consists of a set of tasks and a scheduler as shown in Fig-

ure 2.1. During runtime, the system level scheduler (global scheduler) selects

which subsystem will access the CPU resources. Once a subsystem is assigned

the processor, the corresponding subsystem scheduler (local scheduler) selects

which task that will be executed.

In this thesis, tasks from different subsystems are allowed to access logical

shared resources. Let Rs denote the global shared resources accessed by Ss.

Let us also define resource holding time Xsk as the maximum time that a task

of Ss may lock a resource Rk ∈ Rs. Finally, let Xs = {Xsk} denote the set of

maximum resource holding times Xs = {Xsk}|∀Rk ∈ Rs.

Shin and Lee [2] proposed the notion of subsystem timing interface that

abstract the collective temporal requirements of each subsystem, based on the

periodic resource model and assuming that tasks do not share global shared

resources. The periodic resource model Γs(Ps, Qs) includes Ps as a subsys-

tem period and Qs as a subsystem budget (which represents a periodic CPU

resources allocation time). To consider the problem of global shared resources

in the HSF, we extend the subsystem timing interface by including a third pa-

rameter on it, i.e., a resource holding time Xs. Note that, we assume that each

subsystem is associated with a subsystem timing interface and it is used to

perform the composability test of the subsystems. Moreover, the subsystem

timing interface is used by the global scheduler during runtime, to assign CPU

resources to the subsystem.
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Figure 2.1: Two-level hierarchical scheduling framework with resource shar-

ing.

For the task model, we consider a deadline-constrained sporadic hard real-

time task model τi(Ti, Ci, Di, {ci,j}) where Ti is the minimum separation time

between its successive jobs, Ci is the worst-case execution time, and Di is a

relative deadline (Ci ≤ Di ≤ Ti). Each task is allowed to access one or more

logical shared resources and each element ci,j ∈ {ci,j} is a critical section

length that represents the worst-case execution time of τi’s access to a global

shared resource Rj .

In this thesis, we assume that both local and global schedulers use the

fixed priority preemptive scheduling policy (FPS), however, most of the re-

sults of this thesis are not limited to FPS and can be extended to include other

paradigms such as EDF (papers A and B present analysis for EDF as well).

Additionally, we focus only on two synchronization protocols that handle the

problem of sharing global shared resources, i.e., SIRAP and Overrun (without

payback), as these protocols have similarities in their analysis (use the periodic

resource model) and implementation (use the periodic server1). Finally, the

SRP protocol is assumed to be used within a subsystem to arbitrate the access

of shared resources by tasks.

Note that throughout the seven included papers in this thesis, there are some

differences in notations, indexes and terminologies. Therefore it is important

to read and follow the corresponding system model of each paper, respectively.

1A periodic server is a server that executes as a periodic task.





Chapter 3

A Real-Time Hierarchical

Scheduling Framework with

Logical Resource Sharing

In this chapter, we will first describe the analysis of the HSF. Then we will

explain the problem of accessing global shared resources in a hierarchical

scheduling framework, and we present some protocols that can handle this

problem.

Over the years, there has been a growing attention to using hierarchical

scheduling for real-time systems. Deng and Liu [11] proposed a two-level

hierarchical scheduling framework for open systems, where subsystems may

be developed and validated independently in different environments. Kuo and

Li [12] presented schedulability analysis techniques for such a two-level frame-

work with the fixed-priority global scheduler. Lipari and Baruah [13, 14] pre-

sented schedulability analysis techniques for the EDF-based global schedulers.

Mok et al. [15, 16] proposed the bounded-delay virtual processor model to

achieve a clean separation in a multi-level HSF. In addition, Shin and Lee [2]

introduced the periodic virtual processor model (to characterize the periodic

CPU allocation behaviour), and many studies have been proposed on schedu-

lability analysis with this model under fixed-priority scheduling [17, 18, 19]

and under EDF scheduling [2, 20]. Being central to this thesis, the virtual peri-

odic resource model is presented in detail in this chapter. Easwaran et al. [21]

introduced the Explicit Deadline Periodic (EDP) virtual processor model. A

15
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with Logical Resource Sharing

common assumption shared by all above studies is that tasks are independent,

i.e., tasks are not allowed to share logical resources.

In this thesis, we relax the assumption of independent tasks by addressing

the challenge of enabling efficient compositional integration for independently

developed subsystems interacting through sharing of global shared resources.

In particular, we extend the HSF proposed by Shin and Lee [2] enabling sharing

of global shared resources.

3.1 HSF schedulability analysis

In the following sections, we will explain how to evaluate the subsystem tim-

ing interface and we will show how to verify the composability of the system.

We will first explain the virtual processor resource model and the local schedu-

lability analysis that are used to evaluate the subsystem timing interface; the

subsystem’s abstract notion of respurce requirement needed to ensure correct

timing.

3.1.1 Virtual processor model

The notion of real-time virtual processor (resource) model was first introduced

by Mok et al. [15] to characterize the CPU allocations that a parent node pro-

vides to a child node in a hierarchical scheduling framework. The CPU supply

of a virtual processor model refers to the amount of CPU allocations that the

virtual processor model can provide. The supply bound function of a virtual

processor model calculates the minimum possible CPU supply of the virtual

processor model for a time interval length t.
Shin and Lee [2] proposed the periodic virtual processor model Γ(Ps, Qs),

where Ps is a subsystem period (Ps > 0) and Qs is a subsystem budget (0 <
Q ≤ P ). The supply bound function sbfs(t) (shown in Figure 3.1) of the

periodic resource model is computed as follows;

sbfs(t) =

{
t − (k + 1)(Ps − Qs) if t ∈ V k

(j − 1)Qs otherwise,
(3.1)

where k = max
(⌈(

t − (Ps − Qs)
)
/Ps

⌉
, 1

)
and V k denotes an interval

[(k+1)Ps −2Qs, (k+1)Ps−Qs] in which the subsystem Ss receives budget.

To guarantee a minimum CPU resource supply, the worst-case budget provi-

sion is considered in Eq. (3.1) assuming that I) tasks are released at the same
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time when the subsystem budget depletes (at time t = 0 in Figure 3.1), II) the

first budget was supplied at the beginning of the period, and III) all following

budgets will be supplied at then end of the subsystem period. By considering

the worst-case budget provision, a subsystem assumes that the maximum inter-

ference from higher priority subsystems will occurs which delays the budget

supply to the end of the subsystem period, and by this it does not require any in-

formation from other subsystems that will be integrated. Note that, depending

on the parameters of the subsystem, the assumption of the worst-case budget

provision may make the analysis pessimistic (se Section 6.6.5).
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t

sb
f(

t)
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P P P

Q QQ

(k-1)P

Figure 3.1: The supply bound function of a periodic virtual processor model

Γ(P, Q) for k = 3.

3.1.2 Local schedulability analysis

The local schedulability analysis is used to check whether a given periodic

resource model Γ(P, Q) (subsystem period and budget) can guarantee the tem-

poral requirements of the subsystem internal tasks. The local schedulability

analysis is as follows [2]:

∀τi, 0 < ∃t ≤ Di rbfFP(i, t) ≤ sbf(t), (3.2)
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where rbfFP(i, t) denotes the request bound function of a task τi which com-

putes the maximum cumulative execution requests that could be generated

from the time that τi is released up to time t. rbfFP(i, t) is computed as follows

rbfFP(i, t) = bi + Ci +
∑

τk∈hp(i)

⌈ t

Tk

⌉
· Ck, (3.3)

where hp(i) is the set of tasks with priorities higher than τi and bi is the maxi-

mum blocking time from lower priority tasks.

3.1.3 System composability

For a system S that consists of a set of m subsystems S1, S2, ...Sm, the subsys-

tems are composable if each subsystem receives sufficient execution satisfying

its timing interface [2], in other words, the subsystems are schedulable under

the given global (system level) scheduler. As long as the periodic resource

model is used in evaluating the subsystem timing interface, each subsystem

can be modeled as a simple periodic task where the subsystem period is equiv-

alent to the task period and the subsystem budget is equivalent to the worst

case execution time of a task. Moreover, resource holding times can be mod-

eled as critical section execution times. Then the schedulability analysis used

for simple periodic tasks with resource sharing can be used. Hence, the general

condition for global schedulability is,

∀Ss ∃t : 0 < t ≤ Ps, RBFs(t) ≤ t, (3.4)

where RBFs(t) denotes the request bound function of a subsystem Ss and it is

computed as follows,

RBFs(t) = Qs + Bs +
∑

Sk∈HP(s)

⌈ t

Pk

⌉
· Qk, (3.5)

where HP(i) is the set of subsystems with priorities higher than that of Ss and

Bs is the maximum blocking time (resource holding time) imposed to a sub-

system Ss, when it is blocked by lower-priority subsystems (suppose that Sj

imposes the maximum blocking on Ss then Bs = Xj).

3.1.4 Subsystem interface evaluation

Looking at Eq. 3.5, the composability of a system is increased when decreasing

the subsystem utilization Qs/Ps. Finding optimal values for Ps and Qs that
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minimize the overall processor requirement of the system, without providing

information about other subsystems, is rather complex and requires extensive

search algorithms [22] given a HSF without sharing of global shared resources.

The problem becomes even more complex when allowing for global shared

resources, inherent in the dependency that is created between subsystems as a

result of sharing global shared resources. To simplify this problem, similar to

the work presented in [2], we assume that the subsystem period Ps is given for

each subsystem and we are required to evaluate the minimum subsystem budget

needed to guarantee the schedulability of all internal tasks. To evaluate the

smallest subsystem budget Qs, we use the FPMINIMUMCAPACITY algorithm

presented in [23]. Furthermore, the algorithm presented in [2], which is based

on linearizing the supply bound and the request bound functions, can be used

to provide faster but less accurate results.

To be able to apply global schedulability analysis (compositional analysis),

the resource holding time of the global shared resources should be provided

in the subsystem timing interface (see Eq. 3.5). The resource holding time of

a task τi accessing a global shared resource Rj includes the critical section

execution time of τi accessing Rj and the maximum interference from higher

priority tasks within the same subsystem [24]. Since the resource holding times

of all global shared resources should be included in the timing interface, then

depending on the number of global shared resources, the subsystem timing

interface may contain a lot of information. One way to increase the level of ab-

straction of the timing interface (providing less information) is to use one value

for resource holding time equal to the maximum value among all elements of

Xs. For this case, the subsystem timing interface will include less information

at the cost of the global schedulability analysis being less accurate.

3.2 Global resource sharing

In this section we will focus on the problem of supporting global shared re-

sources such that tasks from different subsystems share logical resources. The

logical resources that are shared by tasks from the same subsystem are called

local shared resources and the works presented in [12, 17, 25] show that us-

ing existing synchronization protocols such as SRP can handle the problem of

sharing local resources without any modification. However, for global shared

resources, new synchronization protocols are required. First we explain the

problem of supporting global shared resources followed by discussing some

solutions.
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Figure 3.2: Task preemption while running inside a critical section.

3.2.1 Problem formulation

When a task τj locks a shared resource Rk, all other tasks that want to access

the same resource Rk will be blocked until τj releases it. To achieve a pre-

dictable real-time behaviour, the waiting time of other tasks that want to access

a locked shared resource should be bounded. The traditional synchronization

protocols, such as SRP used with non-hierarchical scheduling, can not with-

out modification handle the problem of sharing global shared resources in a

hierarchical scheduling framework. To explain the reason, suppose τj that be-

longs to a subsystem SI is holding a logical resource R1, the execution of the

task τj can be preempted while τj is executing inside the critical section of the

resource R1 (see Fig 3.2) due to the following reasons:

1. Intra subsystem preemption, a higher priority task τk within the same

subsystem preempts the task τj .

2. Inter subsystem preemption, a ready task τc that belongs to a subsys-

tem SP preempts τj when the priority of subsystem SP is higher than

the priority of subsystem SI .

3. Budget depletion inside a critical section, if the budget of the sub-

system SI depletes, the task τj will not be allowed to execute until the

budget of its subsystem will be replenished at the beginning of the next

subsystem period PI .
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The SRP protocol can only solve the problem caused by task preemption

within a subsystem (case number 1) since there is a direct relationship between

the priorities of tasks within the same subsystem. Moreover, if tasks are from

different subsystems (inter task preemption) then priorities of tasks belonging

to different subsystems are independent. Still, the priorities of the subsystems

can be used to solve this problem, and SRP can be used between subsystems

such that, if a task that belongs to a subsystem locks a global shared resource,

then this subsystem blocks all other subsystems if any of their internal tasks

want to access the same global shared resource. However, SRP can not handle

case number 3, i.e., budget depletion inside a critical section. Budget depletion

can cause a problem if it happens while a task τj of a subsystem SI is executing

inside the critical section of a global shared resource R1. If another task τm,

belonging to another subsystem, is waiting for the same resource R1, this task

must wait until SI is replenished so τj can continue executing until it releases

the lock on resource R1. This waiting time exposed to τm can be potentially

very long, causing τm to miss its deadline.

3.3 Supporting global resource sharing

Four different mechanisms have been proposed to enable resource sharing in

the context of hierarchical scheduling. The mechanisms use different methods

to bound the waiting time of tasks that share the same global shared resources.

Three of them use the SRP protocol to synchronize access to a global shared

resource, while the forth mechanism uses an extended version of PIP.

If SRP is used in a HSF then the SRP’s associated terms resource and sys-

tem ceiling should be extended as follows:

Resource ceiling: With each global shared resource Rk, two types of re-

source ceilings are associated; an internal resource ceiling (rcsk) for local

scheduling and an external resource ceiling (RXk) for system level scheduling.

System/subsystem ceiling: The system/subsystem ceilings are dynamic pa-

rameters that change during execution. The system/subsystem ceiling is equal

to the highest external/internal resource ceiling (i.e. highest priority) of a cur-

rently locked resource in the system/subsystem.

Solving the problem of budget depletion inside a critical section can be

done following one of the three approaches:

• Preventing a task from locking a shared resource if its subsystem does

not has enough remaining budget (skipping and deadline shifting mech-

anisms).



22 Chapter 3. A Real-Time Hierarchical Scheduling Framework

with Logical Resource Sharing

• Adding extra resources to the budget of each subsystem to prevent the

budget depletion inside a critical section (overrun mechanism).

• Using the budget of other subsystems when their internal tasks want to

access an already locked global shared resource (bandwidth inheritance).

The following sections explain different synchronization protocols using

these three approaches.

3.3.1 SIRAP

The Subsystem Integration and Resource Allocation Policy (SIRAP) [26] pro-

tocol is based on the skipping mechanism to prevent depletion of the budget

during global shared resource access. SIRAP uses the periodic resource model

and its mechanism works as follows; when a task τi tries to access a global

shared resource Rk, SIRAP checks the remaining budget before granting the

access to the global shared resource; if there is sufficient remaining budget to

lock and release Rk before budget depletion (i.e., the currently un-consumed

budget is greater than the maximum time that τi may lock Rk), then the task

enters the critical section, and it updates both system and subsystem ceiling. If

there is insufficient remaining budget, SIRAP takes the following actions:

• Self-blocking: the job of τi is blocked until the next following budget

replenishment so, at that time, there will be enough budget to lock and

release the shared resource Rk.

• Subsystem ceiling: the subsystem ceiling will be updated to bound the

minimum required subsystem budget, while the system ceiling is only

updated when a global shared resource is accessed so that tasks from

other subsystems can access the global shared resource Rk.

• Budget replenishment: at the time instant when the subsystem budget

is replenished, the state of the job of task τi will be changed to ready

such that it can execute and lock the global shared resource.

The reason of updating the subsystem ceiling during the self-blocking is

to bound the minimum required budget. If tasks with priority lower than that

of τi are allowed to execute while τi is in the self-blocking state, it may cause

additional self-blocking. This is unpractical as the subsystem budget should

be big enough to finish all self-blocking within one budget supply. In paper F

we have proposed an algorithm that finds the best value of subsystem ceiling
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during the self-blocking state in order to decrease the minimum subsystem

budget.

Figure 3.3 illustrates an example of a self-blocking occurrence during the

execution of subsystem Ss. A job of a task τi tries to lock a global shared

resource Rk at time t2. It first determines the remaining subsystem budget Qr

(which is equal to Qr = Qs − (Q1 + Q2), i.e., the subsystem budget left after

consuming Q1 + Q2). Next, it checks if the remaining budget Qr is greater

than or equal to the maximum resource locking time (Xik) of the job access

to Rk, i.e., if (Qr ≥ Xik). In Figure 3.3, this condition is not satisfied, so τi

blocks itself and is not allowed to execute before the next replenishment period

(t3 in Figure 3.3).

Q@PA
t

QBQC
tC tB tD tE

Figure 3.3: An example illustrating self-blocking.

SIRAP uses the periodic resource model to abstract the timing requirements

of each subsystem. The effect of using SIRAP on the schedulability analysis

appears in the local schedulability analysis in Eq. (3.2) either on rbfFP(i, t) or

sbf(t) (papers A and D).
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3.3.2 HSRP

The Hierarchical Stack Resource Policy (HSRP) [25] extends the SRP pro-

tocol to handle the sharing of global shared resources problem in hierarchical

scheduling frameworks. HSRP is based on the overrun mechanism and it works

as follows: when the budget of a subsystem expires and a job of task τi that

belong to the subsystem has not released the lock of a global shared resource,

the subsystem overruns its budget and the job continues its execution until it

releases the locked resource. When a job accesses a global shared resource

its priority is increased to the highest local priority to prevent any preemption

from other tasks that belong to the same subsystem during the access of the

shared resource. SRP is used at the global level to synchronize the execution

of subsystems. Each global shared resource has a ceiling equal to the maxi-

mum priority of the subsystem that its internal tasks may access that resource.

Two versions of the overrun mechanism have been presented: 1) The overrun

mechanism with payback which works as follows: whenever overrun happens

in a subsystem, the budget of the subsystem will be decreased by the amount

of the overrun time in its next execution instant as shown in Figure 3.4a. 2)

In the second version which is called overrun mechanism without payback, no

further actions will be taken after the event of an overrun (see Figure 3.4b).

Selecting which of these two mechanisms gives better results, in terms of task

response times depends on the system parameters. The presented schedulabil-

ity analysis does not support composability, disallowing independent analysis

of individual subsystems, since information about other subsystems is needed

in order to apply the schedulability analysis for all tasks. In paper B the analy-

sis of HSRP has been extended to support compositional scheduling based on

the periodic resource model. In addition, and to generalize the local analysis,

SRP is assumed to be used locally and globally. The effect of using Overrun

on the schedulability analysis is added to the global schedulability analysis in

Eq. (3.5).

3.3.3 The BROE server

The Bounded-delay Resource Open Environment (BROE) server [29] extends

the Constant Bandwidth Server (CBS) [30] in order to handle the problem of

sharing logical resources in a hierarchical scheduling framework. The analysis

associated with the BROE server supports independently developed subsys-

tems (open environment). BROE uses the bounded-delay resource model [15]

to characterize the CPU allocations for each subsystem. Because of using the
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Figure 3.4: Overrun mechanism.

bounded-delay resource model, the timing interface of a subsystem includes

server speed, delay tolerance and resource holding time. These parameters

are used both during design time, to verify the composability of the system

(global schedulability analysis), as well as during runtime, when the global

scheduler allocates the required CPU for each subsystem. The BROE server is

based on the deadline shifting mechanism and it uses the SRP protocol to ar-

bitrate access to global shared resources. In order to prevent budget depletion

inside critical sections, the subsystem performs a budget check before access-

ing a global shared resource. If the subsystem remaining budget is sufficient,

it allows the task to lock the global shared resource. Otherwise it postpones

its current deadline and replenishes its budget (according to certain rules that

guarantee the correctness of the CBS servers execution and the CPU resource

model supply) to be able to lock and release the global shared resource safely.

Finally, as BROE extends the CBS server, only the EDF scheduling algorithm

can be used in the global (system level) scheduling.
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3.3.4 BWI

The BandWidth Inheritance protocol (BWI) [31] extends the resource reserva-

tion framework to systems where tasks can share resources. The BWI approach

uses (but is not limited to) the CBS algorithm together with a technique that is

derived from the Priority Inheritance Protocol (PIP). According to BWI, each

task is scheduled through a server, and when a task that is executing inside a

lower priority server blocks another task executing in a higher priority server,

the blocking task will be added to the higher priority server. When the task

releases the shared resource, it will be discarded from the high priority server.

For schedulability analysis, each server should include a characterization of in-

terference time due to adding lower priority tasks in the server. This approach is

suitable for systems where the execution time of a task inside a critical section

can not be predicted. In addition, the scheduling algorithm does not require

any a-prior knowledge about which shared resources that tasks will access nor

the arrival time of tasks. However, BWI is not suitable for systems that consist

of many hard real-time tasks. The reason is that the worst-case interference

from all tasks that belong to other servers and access global shared resources

will be added to the budget of each server to guarantee the timing requirements

of the tasks. Hence, BWI becomes pessimistic in terms of CPU-resource usage

for systems that have hard real-time tasks accessing global shared resources.

In this thesis we consider systems with hard real-time requirements, hence we

will exclude further discussion of BWI.

3.4 Isolation between subsystems

One of the key advantages of hierarchical scheduling is that it provides an

isolation between subsystems during runtime, i.e., the execution of tasks that

belong to a subsystem will not affect the execution of tasks that belong to other

subsystems in an unpredictable manner. A full isolation between subsystems

can be achieved for independent subsystems where tasks do not share global

shared resources. However, sharing of global shared resources makes it more

difficult to guarantee isolation between subsystems during runtime. There are

two reasons that may violate the isolation between subsystems:

• The execution time of a job inside a critical section may exceed its esti-

mated worst-case execution time. This may increase the resource hold-

ing time and may affect the global schedulability of the system. As a

result, the other subsystems may not get enough CPU resources and their
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tasks may miss their deadlines. To solve this problem, a runtime mecha-

nism should be used to make sure that a task will never exceed its critical

section execution time when it accesses a global shared resource.

• A task may corrupt the data of a global shared resource which may af-

fect all subsystems that share the same global shared resource [29]. If

the corrupted data is detectable by the system then a backup strategy may

be used to restore the latest correct data. Otherwise it is impossible to

achieve a full isolation between subsystems and it will be the responsi-

bility of the designer/developer to avoid the use of such global shared

resources.

3.5 Comparing SIRAP, HSRP and BROE

This section compares HSRP, BROE, and SIRAP, looking at some theoretical

properties, implementation complexity and overhead.

3.5.1 Theoretical comparison

A detailed systematic comparison may not be possible/fair between the three

protocols SIRAP, HSRP and BROE, since each protocol has different assump-

tions, settings and goals. For example, in both HSRP and BROE it is assumed

that subsystem parameters (period and budget) are given and it is required to

verify the schedulability of the system, while the goal of the analysis associated

with SIRAP is to find optimal/suboptimal subsystem parameters that increase

the composability of the system. In addition, the schedulability algorithms

used in the three approaches are different; HSRP uses only FPS in both sub-

system and system level, while BROE uses only EDF and SIRAP uses either

FPS or EDF in the local and global level. Another difference between the pro-

tocols is the resource supply model; BROE uses the bounded-delay resource

model while SIRAP uses the periodic resource model, and HSRP uses the pe-

riodic resource model implicitly. Furthermore, HSRP uses SRP in the global

level while locally it uses a simple non-preemptive approach when a task ac-

cesses a global shared resource. For BROE and SIRAP, SRP is used locally

and can also be used globally depending on the required level of abstraction

of the subsystem timing interface. Finally, the analysis associated with HSRP

does not support independent subsystem development, while this is supported

by SIRAP and BROE.
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In this thesis, we aim at defining a common framework in which we can

compare the mechanisms used by the protocols, such that we can compare the

protocols and/or properties of the protocols.

One of the properties that can be used to compare efficiency of the proto-

cols is the system load, which is a measure of the amount of collective CPU

requirements necessary to guarantee the schedulability of an entire framework.

By minimizing the system load, more subsystems can be integrated in a single

processor, which makes the framework cost-efficient and applicable for a wider

range of applications.

In spite of the differences between the three protocols, a theoretical high

level comparison can be carried out based on their schedulability analysis.

Comparing the schedulability analysis of SIRAP and HSRP, it is not possi-

ble to prove that one of the protocols is more efficient than the other. The

reason is that their efficiency depends on the subsystem parameters as well

as on the parameters of the shared resources (even between the two types of

overrun mechanisms presented in [25] is not easy to find which of them that

requires less system load). In paper C we have compared SIRAP and Overrun

by means of simulation analysis using the same assumptions and settings. The

results of this comparison confirmed our conclusion that the efficiency of the

mechanisms depends exclusively on the system parameters.

BROE seems to be more efficient than the other two as it does not add

direct effect on the local and global schedulability analysis. However, BROE

uses the bounded-delay resource model which may affect both the local and

global schedulability analysis compared with the periodic resource model used

by SIRAP and HSRP. The periodic resource model provides more CPU re-

sources than the bounded-delay resource model. As a result, it may affect the

local schedulability analysis and it may require larger subsystem budget com-

pared with the case of using periodic resource model. In the global schedula-

bility analysis, because of using the bounded-delay resource model, it is only

possible to use an approximated schedulability analysis with BROE, while for

the other protocols, exact schedulability analyses can be applied which give

tighter (less pessimistic) results. Considering this effect, there can be some

cases when SIRAP or HSRP give better results than BROE and of course the

performance also depends on the system parameters.

3.5.2 Implementation complexity and overhead

Both SIRAP and HSRP rely on using the periodic server to implement each

subsystem, and a server is assigned Qs budget every period Ps. Implementing
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the BROE server is done relying on an EDF global scheduler together with a

modified version of CBS. Comparing the two types of servers, the implementa-

tion of the periodic server is easier and has less runtime overhead than the im-

plementation of the CBS server (CBS has more states). Comparing the SIRAP

and HSRP implementations using the periodic server, the implementation of

HSRP impose more runtime overhead than SIRAP as it requires to change the

behavior of the global scheduler when an overrun occurs. SIRAP does not re-

quire any change in the execution of the periodic server during runtime. An

implementation of both SIRAP and HSRP has been presented in [32, 33], and

the results show that the primitives that are used to implement HSRP impose

more runtime overhead than using the SIRAP primitives. In addition, the num-

ber of scheduler calls will be higher for HSRP than SIRAP, which increases

the runtime overhead. In [34] the implementation of all three protocols includ-

ing BROE is presented and the results show that BROE imposes the highest

runtime overhead compared with the other protocols to solve the problem of

budget depletion. The reason for this is that BROE may change the deadline

and the replenishment time of the server more often and such operations are rel-

atively expensive, in terms of runtime overhead, as they require to arrange the

ready queue of the server. On the other hand, SIRAP requires that the resource

holding times of all tasks accessing any global shared resource should be pro-

vided during runtime, while the other two protocols may require the maximum

resource locking time for each subsystem. This may require more memory

space storing the resource holding times, which is one of the disadvantages

of SIRAP compared with the other protocols (HSRP and BROE). One way to

decrease the memory space for SIRAP is to consider the maximum value of

resource holding times per global shared resource or among all global shared

resources. However, this should be taken into account in the local schedulabil-

ity analysis which makes the results of SIRAP less accurate (more pessimistic).





Chapter 4

Summary, Conclusions and

Future Work

In this thesis we have addressed the problem of supporting global shared re-

sources in the context of hierarchical scheduling. For this purpose, we have

presented a novel synchronization protocol called Subsystem Integration and

Resource Allocation Policy (SIRAP), which provides temporal isolation be-

tween subsystems that share logical resources. We have evaluated the overhead

introduced by SIRAP through a simulation study. To decrease this overhead,

the results of the study showed that the subsystem period should be chosen

as small as possible, while taking into account that the resource holding time

may increase the subsystem utilization for small subsystem periods, and the

overhead of context-switch will increase when selecting a smaller subsystem

period.

In addition, we have extended the analysis of HSRP allowing subsystems to

be developed independently. Also, we have proposed a new version of the over-

run mechanism that in certain cases performs better than the other two over-

run mechanisms proposed by HSRP. We have compared the three versions of

overrun mechanisms based on their schedulability analysis and we have shown

which parameters have greater effect on the system overhead. For example,

to decrease this overhead, I) the resource holding time should be as small as

possible, II) the subsystem period should be much greater than the resource

holding time, and III) the subsystem period should be less than the smallest

internal task period.

Furthermore, we have evaluated and compared the performance of SIRAP

31
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and Overrun by means of simulation analysis. The results of the simulation

studies showed that in general, it is not trivial to evaluate which protocol is

better than the other and the performance is extremely dependent on the sub-

system and task parameters. In general, our evaluation shows that the Skipping

mechanism used by SRIAP can perform better than the two mechanisms of

Overrun if the task periods are much larger than their corresponding subsystem

period. On the other hand, for a high difference between subsystem periods,

the version of Overrun with payback can give better results. For equal or close

to equal subsystem periods, the version of Overrun without payback performs

better.

Based on the evaluation results, we could identify some sources of pes-

simism in the analysis of SIRAP and HSRP, and we have proposed tighter and

more complex analysis. For SIRAP, we have proposed two different tighter

analyses; one based on adding the effect of using SIRAP on the request bound

function, and the other is based on adding the effect of using SIRAP on the sup-

ply bound function. The simulation studies showed that both proposed analyses

can significantly decrease the CPU resource requirement when the number of

accesses to a shared resource of a subsystem is high.

For Overrun (without payback), we have presented a tighter analysis, more

accurately considering the limited preemptions from higher priority subsys-

tems during overrun. In spite of the higher complexity of the new analysis,

it can achieve a significant improvement in the CPU resource usage in some

cases, especially when the ratio between resource holding time and subsystem

period is high, which makes the performance of the traditional Overrun without

payback very low.

Finally, we have studied the relationship between certain subsystem pa-

rameters that have great effect on the performance of the protocols, and we

have proposed algorithms and design approaches that manipulate the subsys-

tem parameters in order to improve the performance of the protocols in terms

of requiring less CPU resource.

For SIRAP, we have presented an algorithm that finds the best internal ceil-

ings of the global shared resources during the self-blocking state of a subsys-

tem, and thereby minimizing the CPU resource requirement. We have shown

through a simulation study that using the algorithm can decrease the overhead

of using SIRAP in terms of requiring less CPU resource, specially for subsys-

tems that have high subsystem periods.

For Overrun (without payback), we have identified a tradeoff between re-

ducing resource holding time and increasing subsystem budget and its effect

on the system load. We have showed that it is not possible to use this trade-



4.1 Conclusions 33

off during the development phase of a subsystem to minimize the system load,

without providing the timing parameters of all other subsystems of the system.

To effectively explore such tradeoff, we have presented a two step approach,

where in the first step, we have proposed an optimal algorithm to generate a

set of timing parameters (interfaces) during the development phase of a sub-

system. In the second step and during the integration phase of subsystems, we

have proposed an algorithm that can select the best interface from each subsys-

tem to minimize the system load of the system.

4.1 Conclusions

To conclude, supporting global resource sharing is complex and may signifi-

cantly increase the overhead when using a synchronization protocol. For in-

stance, when using a synchronization protocol, and if the parameters of the

subsystem are not selected carefully, it is not possible to guarantee schedula-

bility of a subsystem even if its corresponding task set utilization is low. It

is obvious that decreasing certain parameters can decease the extra overhead

of using synchronization protocols, such as decreasing the subsystem period,

subsystem budget and resource holding times. However, unfortunately, the

relationship between these parameters are so complex that decreasing one pa-

rameter may increase another parameter. Moreover selecting the optimal pa-

rameter depends on other subsystems. In this thesis we tried to provide some

guidelines and methods for the designers of the subsystems to select the best

synchronization protocol and the best subsystem parameters to decrease the

overhead as much as possible.

4.1.1 Discussion

In the following text, we will discuss the applicability of each single contribu-

tion that we have presented, and also the possibility of generalizing and com-

bining them.

Starting from the two considered protocols, SIRAP and Overrun, SIRAP

handles the problem of budget depletion (explained in section 3.2) within the

subsystem level. For Overrun, the budget depletion problem is considered in

the global level by overrunning the given budget of a subsystem. This dif-

ference has many consequences on the analysis and implementation of each

protocols. For instance, in SIRAP any scheduler in the global level providing

SRP (if the global scheduler is of preemptive type) can be used without modifi-
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cation. In addition, no communication between the local and global schedulers

is required which provides better isolation between local and global schedulers.

For Overrun, the global scheduler should be informed by the local scheduler

when an overrun occurs, and this requires extending the implementation of the

global scheduler. Since the effect of using SIRAP is handled locally within

the subsystem level, its overhead in terms of requiring extra CPU resources, is

added into the local schedulability analysis. This makes it possible for SIRAP

to consider the behavior of tasks including the frequency of accessing global

shared resources and the critical section execution time, in the local analysis

to optimize the local schedulability analysis. This possibility has been used in

the tighter analysis presented in paper D. For Overrun, and since its overhead

should be considered in the global schedulability analysis, the task information

should be included in the subsystem timing interface to be able to optimize

the global scheduler considering the frequency of accessing global shared re-

sources and the critical section execution time.

To decrease the overhead introduced by the proposed synchronization pro-

tocols, we have presented tighter analyses and algorithms that may be used

during runtime and/or off-line depending on the type of the system. In general,

systems can be classified as static and dynamic systems. Static systems are de-

veloped off-line and they do not change during runtime, while for dynamic sys-

tems, subsystems and/or tasks may be added or removed during runtime. We

refer to the systems that their subsystems can be added or removed as Subsys-

tem Level Dynamic (SLD). Usually, an admission controller is used to verify

the possibility of adding a new subsystem without violating the schedulability

of the subsystems. The admission controller applies the compositional analysis

(global schedulability analysis) whenever a new subsystem is added. If tasks

are allowed to be added or removed from a subsystem during runtime, then

the systems is called Task Level Dynamic (TLD). Whenever a task is added to

a subsystem, an admission controller re-computes the timing interface of the

subsystem, and then it applies the compositional analysis.

For static systems all analysis is done off-line. Hence, the presented tighter

analyses and algorithms for both SIRAP and Overrun (without payback) are

applied during the design time of subsystems. For SLD, the subsystem analy-

sis is performed off-line while the compositional analysis is done during run-

time. The new analysis and the algorithm presented for SIRAP (in paper D and

paper F) are applied at the subsystem level, i.e., they can be applied off-line

during the design of the subsystem. On the other hand, the tighter analysis

and the algorithm (presented in paper E and paper G) for Overrun (without

payback) should be done at the system level, i.e., they have to be performed
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online. Note that the presented analyses and the algorithms give better result

than the original analysis, however, they increase the computation complex-

ity of the analysis during runtime. To decrease the computation complexity

during runtime, the admission controller may first apply a simple and less ac-

curate analysis for faster response, and if the system is not composable it may

use the more advanced analysis and algorithms. Considering TLD systems, all

proposed analysis and algorithms should be applied during runtime.

Furthermore, let us discuss the possibility of combining the tighter analysis

and the proposed algorithm for each proposed protocol. For Overrun, com-

bining the tighter analysis and the algorithms of the two step approach signifi-

cantly increases the computation complexity since the computation complexity

of evaluating the system load when considering the tighter analysis is relatively

high. For SIRAP, combining the presented algorithm and the new analysis may

not increase the computation complexity since they do not affect each other.

Finally, considering the possibility of generalizing the two step approach

(presented in Paper G) which was proposed to explore the tradeoff between

decreasing resource holding time and subsystem budget, using Overrun (with-

out payback). A similar tradeoff can be founded in SIRAP, however, because

of high dependencies between some parameters used in the analysis of SIRAP

(subsystem budget and resource holding time), the algorithms may not be able

to find optimal settings. Nevertheless, we could prove in [35] that the two

proposed algorithms can be used without modification for BROE as well.

4.2 Future work

The work presented in this thesis has left and opened some issues that would

be interesting to investigate in the future.

• Multi-processor: The work presented in this thesis is suitable only for

systems executed on a single processor while multi-processor architec-

tures are becoming more attractive for real-time applications. Recently,

there has been some focus on extending the hierarchical scheduling ap-

proach to multi-processor platforms [36, 37]. However, the problem of

sharing logical resources has not been considered. It would be very inter-

esting to generalize this work by including support for sharing of logi-

cal resources. As an initial step in this area, we have proposed a syn-

chronization protocol for hierarchically scheduled multi-core systems

in [38]. The presented protocol groups dependent tasks that directly or
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indirectly share mutually exclusive resources into independent compo-

nents. Within a component, dependent tasks use classical uni-processor

synchronization protocols, such as SRP. The components are then sched-

uled on the cores by a global scheduler.

• Multi-level HSF: Another interesting work will be investigating the effi-

ciency of using the synchronization protocols in multi-level hierarchical

scheduling frameworks, since we only consider a two-level hierarchi-

cal scheduling framework. In [39] we present a schedulability analysis

algorithm for FTT Ethernet enabled switches. The framework is a mul-

tilevel hierarchical scheduling framework and it uses the skipping mech-

anism to avoid pre-emption during message transmission which makes

the analysis similar to the analysis of SIRAP.

• Resources: In this thesis, we have only focused on optimizing the CPU

resource usage. However, considering other types of resources can be

interesting and important, e.g., network, memory, power consumption,

etc.

• Approximation algorithms: For task level dynamic systems TLD, the

subsystem interface parameters should be recalculated during runtime,

which may require faster algorithms. An efficient approximation algo-

rithm has been proposed for the HSF [23] which significantly decreases

the computation time of the local schedulability test, assuming that tasks

are independent. A similar algorithm has been extended to be used with

BROE in [40] and a simulation study showed that the pessimism gen-

erated from the approximation is very low. It would be interesting to

generalize the use of this algorithm with SIRAP and HSRP.

• Implementation: Most of the recent implementations of the HSF pre-

sented in [32, 33, 41] do not separate the execution of the global sched-

uler and the local schedulers, and all these schedulers should be sup-

ported by the operating system. The motivation behind this way of im-

plementation is that it is easier and more efficient to implement both

schedulers together. One of the drawbacks of such an implementation

is that the subsystems become platform dependent and if a subsystem

uses a special scheduler, then the platform should support it. It would be

interesting to implement a platform independent local schedulers within

their subsystems and compare this approach with our existing implemen-

tations.
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• BROE: We have compared the performance of SIRAP and Overrun by

means of simulation analysis. We are planning to extend the comparison

to include the BROE server. As a first step, we have adapted the analysis

of BROE in [35, 40] to be compatible with our framework and the as-

sumptions that we have considered when we compared between SIRAP

and Overrun.

• Subsystem period: Finding optimal values for Ps and Qs that mini-

mize the overall processor requirement of the system, without providing

information about other subsystems, is very complex and it requires ex-

tensive search algorithms [22] even for a hierarchical scheduling frame-

work without resource sharing. Adding the problem of logical resource

sharing makes it even more complex. It is an interesting research direc-

tion that could be investigated.
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Overview of the Papers

5.1 Paper A

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Sjödin, SIRAP: A Synchro-

nization Protocol for Hierarchical Resource Sharing in Real-Time Open Sys-

tems, In Proceedings of the 7th ACM & IEEE International Conference on

Embedded Software (EMSOFT’07), pages 279-288, October, 2007.

Summary This paper presents a protocol for resource sharing in a hierar-

chical real-time scheduling framework. Targeting real-time open systems, the

protocol and the scheduling framework significantly reduce the efforts and er-

rors associated with integrating multiple semi-independent subsystems on a

single processor. Thus, our proposed techniques facilitate modern software de-

velopment processes, where subsystems are developed by independent teams

(or subcontractors) and at a later stage integrated into a single product. Using

our solution, a subsystem need not know, and is not dependent on, the tim-

ing behaviour of other subsystems; even though they share mutually exclusive

resources. In this paper we also prove the correctness of our approach and

evaluate its efficiency.

Contribution The basic idea of this paper was suggested by Moris Behnam.

The work was mainly done in cooperation with Moris and Insik Shin, and

Moris was responsible for the evaluation part of the paper and he was also

involved in the schedulability analysis. All authors contributed to the writing

39
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of the paper.

5.2 Paper B

Moris Behnam, Insik Shin, Thomas Nolte, Mikael Sjödin, Overrun Methods

and Resource Holding Times for Hierarchical Scheduling of Semi-Independent

Real-Time Systems, IEEE Transactions on Industrial Informatics, vol 6, nr 1,

pages 93-104, February, 2010.

Summary The Hierarchical Scheduling Framework (HSF) has been intro-

duced as a design-time framework to enable compositional schedulability anal-

ysis of embedded software systems with real-time properties. In this paper a

software system consists of a number of semi-independent components called

subsystems. Subsystems are developed independently and later integrated to

form a system. To support this design process, in the paper, the proposed

methods allow non-intrusive configuration and tuning of subsystem timing-

behaviour via subsystem interfaces for selecting scheduling parameters. This

paper considers three methods to handle overruns due to resource sharing be-

tween subsystems in the HSF. For each one of these three overrun methods

corresponding scheduling algorithms and associated schedulability analysis are

presented together with analysis that shows under what circumstances one or

the other is preferred. The analysis is generalized to allow for both Fixed Pri-

ority Scheduling (FPS) and Earliest Deadline First (EDF) scheduling. Also,

a further contribution of the paper is the technique of calculating resource-

holding times within the framework under different scheduling algorithms; the

resource holding times being an important parameter in the global schedulabil-

ity analysis.

Contribution The paper is based on an idea of Insik Shin but Moris has done

most of the work including the schedulability analysis for enhanced overrun

mechanism and the comparison between the enhanced and the basic overrun

mechanism, as well as the simplified equation to evaluate the resource holding

times with the required proofs. All authors contributed to the writing of the

paper.
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5.3 Paper C

Moris Behnam, Thomas Nolte, Mikael Åsberg, Reinder J. Bril, Overrun and

Skipping in Hierarchically Scheduled Real-Time Systems, In Proceedings of the

15th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications (RTCSA’09), pages 519-526, August, 2009.

Summary Recently, two SRP-based synchronization protocols for hierarchi-

cally scheduled real-time systems based on Fixed- Priority Preemptive Schedul-

ing (FPPS) have been presented, i.e., HSRP [9] and SIRAP [4]. Preventing

depletion of budget during global resource access, the former implements an

overrun mechanism, while the latter exploits a skipping mechanism. A theo-

retical comparison of the performance of these mechanisms revealed that none

of them was superior to the other, as their performance is heavily dependent on

the systems parameters. To better understand the relative strengths and weak-

nesses of these mechanisms, this paper presents a comparative evaluation of

the depletion prevention mechanisms overrun (with or without payback) and

skipping. These mechanisms are investigated in detail and the corresponding

system load imposed by these mechanisms is explored in a simulation study.

The mechanisms are evaluated assuming FPPS and a periodic resource model

[23]. The periodic resource model is selected as it supports locality of schedu-

lability analysis, allowing for a truthful comparison of the mechanisms. Given

system characteristics, guiding the design of hierarchically scheduled real-time

systems, the results of this paper indicate when one mechanism is better than

the other and how a system should be configured in order to operate efficiently.

Contribution The paper was based on ideas of Moris and Reinder and

Thomas. Moris has done most of the work including simulations and the anal-

ysis of the results. All authors contributed to the writing of the paper.

5.4 Paper D

Moris Behnam, Thomas Nolte, Reinder J. Bril, Bounding the number of self-

blocking occurrences of SIRAP, In Proceedings of the 31th IEEE International

Real-Time Systems Symposium (RTSS’10), December, 2010.

Summary In this paper we have developed a new schedulability analysis

for hierarchically scheduled real-time systems executing on a single processor
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using SIRAP; a synchronization protocol for inter subsystem task synchroniza-

tion. We have shown that it is possible to bound the number of selfblocking oc-

currences that should be taken into consideration in the schedulability analysis

of subsystems, and correspondingly developed and proved correctness of two

novel schedulability analysis approaches for SIRAP. An evaluation suggests

that this new schedulability analysis can decrease the analytical subsystem uti-

lization significantly.

Contribution The paper was based on ideas of Moris and Reinder. Moris has

done most of the work including the schedulability analysis and the evaluation.

All authors have contributed to the writing of the paper.

5.5 Paper E

Moris Behnam, Thomas Nolte, Reinder J. Bril, Schedulability Analysis of Syn-

chronization Protocols Based on Overrun Without Payback for Hierarchical

Scheduling Frameworks revisited, MRTC report ISSN 1404-3041 ISRN MDH-

MRTC-237/2010-1-SE, Mälardalen Real-Time Research Centre, Mälardalen

University, October, 2010.

Summary In this paper, we show that both global as well as local schedu-

lability analysis of synchronization protocols based on the stack resource pro-

tocol (SRP) and overrun without payback for hierarchical scheduling frame-

works based on fixed-priority pre-emptive scheduling (FPPS) are pessimistic.

We present improved global and local schedulability analysis, illustrate the im-

provements by means of examples, and show that the improved global analysis

is both uniform and sustainable. We evaluate the improved global and local

schedulability analysis based on an extensive simulation study and compare

the results with the existing analysis.

Contribution The paper is based on an idea of Reinder. The analysis was

developed by Reinder but Moris was responsible for evaluating the new analy-

sis and finding the parameters that affect the improvement of the new analysis.

All authors have contributed to the writing of the paper.



5.6 Paper F 43

5.6 Paper F

Moris Behnam, Thomas Nolte, Reinder J. Bril, Refining SIRAP with a Ded-

icated Resource Ceiling for Self-Blocking, In of the 9th ACM & IEEE Inter-

national Conference on Embedded Software (EMSOFT’09), pages 157-166,

October, 2009.

Summary In recent years, several synchronization protocols for resource

sharing have been presented for use in a Hierarchical Scheduling Framework

(HSF). An initial comparative assessment of existing protocols revealed that

none of the protocols is superior to the others and that the performance of

a protocol heavily depends on system parameters. In this paper, we aim at

efficiency improvements of the synchronization protocol SIRAP and its asso-

ciated schedulability analysis, where efficiency refers to calculated CPU re-

source needs. The contribution of the paper is threefold. Firstly, we present

an improvement of the schedulability analysis for SIRAP, which makes SIRAP

more efficient. Secondly, we generalize SIRAP by distinguishing separate re-

source ceilings for self-blocking and resource access. Using a separate re-

source ceiling for self-blocking enables a reduction of the interference from

lower priority tasks, which can result in efficiency improvements. The effi-

ciency improvement depends on both subsystem characteristics and the value

selected for the resource ceiling for self-blocking, however. The third contri-

bution of this paper is therefore an algorithm that given a subsystem selects

for each globally shared resource an optimal value in terms of efficiency for its

resource ceiling for self-blocking. The efficiency improvement gained by the

algorithm compared to the original SIRAP approach is evaluated by means of

simulation.

Contribution The paper was based on ideas of Moris and Reinder. Moris

was responsible for developing the algorithm and evaluating its performance.

All authors have contributed to the writing of the paper.

5.7 Paper G

Insik Shin, Moris Behnam, Thomas Nolte, Mikael Sjödin, Synthesis of Opti-

mal Interfaces for Hierarchical Scheduling with Resources, In Proceedings of

the 29th IEEE International Real-Time Systems Symposium (RTSS’08), pages

209-220, December, 2008.
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Summary This paper presents algorithms that (1) facilitate system indepen-

dent synthesis of timing-interfaces for subsystems and (2) system-level selec-

tion of interfaces to minimize CPU load. The results presented are developed

for hierarchical fixed-priority scheduling of subsystems that may share logical

recourses (i.e., semaphores). We show that the use of shared resources results

in a tradeoff problem, where resource locking times can be traded for CPU

allocation, complicating the problem of finding the optimal interface config-

uration subject to schedulability. This paper presents a methodology where

such a tradeoff can be effectively explored. It first synthesizes a bounded set

of interface-candidates for each subsystem, independently of the final system,

such that the set contains the interface that minimizes system load for any given

system. Then, integrating subsystems into a system, it finds the optimal selec-

tion of interfaces. Our algorithms have linear complexity to the number of

tasks involved. Thus, our approach is highly suitable for adaptable and recon-

figurable systems.

Contribution The paper was based on ideas of Moris and Insik. Moris was

responsible for developing the algorithms and proving their correctness and

optimality formally. Moris was also involved in the discussions and witting of

the other parts of the paper. All authors have contributed to the writing of the

paper.
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Abstract

This paper presents a protocol for resource sharing in a hierarchical real-

time scheduling framework. Targeting real-time open systems, the protocol

and the scheduling framework significantly reduce the efforts and errors asso-

ciated with integrating multiple semi-independent subsystems on a single pro-

cessor. Thus, our proposed techniques facilitate modern software development

processes, where subsystems are developed by independent teams (or subcon-

tractors) and at a later stage integrated into a single product. Using our solution,

a subsystem need not know, and is not dependent on, the timing behaviour of

other subsystems; even though they share mutually exclusive resources. In this

paper we also prove the correctness of our approach and evaluate its efficiency.



6.1 Introduction 55

6.1 Introduction

In many industrial sectors integration of electronic and software subsystems

(to form an integrated hardware and software system), is one of the activities

that is most difficult, time consuming, and error prone [1, 2]. Almost any

system, with some level of complexity, is today developed as a set of semi-

independent subsystems. For example, cars consist of multiple subsystems

such as antilock braking systems, airbag systems and engine control systems.

In the later development stages, these subsystems are integrated to produce

the final product. Product domains where this approach is the norm include

automotive, aerospace, automation and consumer electronics.

It is not uncommon that these subsystems are more or less dependent on

each other, introducing complications when subsystems are to be integrated.

This is especially apparent when integrating multiple software subsystems on

a single processor. Due to these difficulties inherent in the integration process,

many projects run over their estimated budget and deadlines during the inte-

gration phase. Here, a large source of problems when integrating real-time

systems stems from subsystem interference in the time domain.

To provide remedy to these problems we propose the usage of a real-time

scheduling framework that allows for an easier integration process. The frame-

work will preserve the essential temporal properties of the subsystem both

when the subsystem is executed in isolation (unit testing) and when it is in-

tegrated together with other subsystems (integration testing and deployment).

Most importantly, the deviation in the temporal behaviour will be bounded,

hence allowing for predictable integration of hard real-time subsystems. This

is traditionally targeted by the philosophy of open systems [3], allowing for the

independent development and validation of subsystems, preserving validated

properties also after integration on a common platform.

In this paper we present the Subsystem Integration and Resource Allocation

Policy (SIRAP), which makes it possible to develop subsystems individually

without knowledge of the temporal behaviour of other subsystems. One key

issue addressed by SIRAP is the resource sharing between subsystems that are

only semi-independent, i.e., they use one or more shared logical resources.

Problem description A software system S consists of one or more subsys-

tems to be executed on one single processor. Each subsystem Ss ∈ S, in turn,

consists of a number of tasks. These subsystems can be developed indepen-

dently and they have their own local scheduler (scheduling the subsystem’s

tasks). This approach by isolation of tasks within subsystems, and allowing for
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their own local scheduler, has several advantages [4]. For example, by keep-

ing a subsystem isolated from other subsystems, and by keeping the subsystem

local scheduler, it is possible to re-use a complete subsystem in a different

application from where it was originally developed.

However, as subsystems are likely to share logical resources, an appropri-

ate resource sharing protocol must be used. In order to facilitate independent

subsystem development, this protocol should not require information from all

other subsystems in the system. It should be enough with only the information

of the subsystem under development in isolation.

Contributions The main contributions of this paper include the presentation

of SIRAP, a novel approach to subsystem integration in the presence of shared

resources. Moreover, the paper presents the deduction of bounds on the timing

behaviour of SIRAP together with accompanying formal proofs. In addition,

the cost of using this protocol is thoroughly evaluated. The cost is investi-

gated as a function of various parameters including: cost as a function of the

length of critical sections, cost depending on the priority of the task sharing

a resource, and cost depending on the periodicity of the subsystem. Finally,

the cost of having an independent subsystem abstraction, which is suitable for

open systems, is investigated and compared with dependent abstractions.

Organization of the paper Firstly, related work on hierarchical scheduling

and resource sharing is presented in Section 6.2. Then, the system model is

presented in Section 6.3. SIRAP is presented in Section 6.4. In Section 6.5

schedulability analysis is presented, and SIRAP is evaluated in Section 6.6.

Finally, the paper is summarized in Section 6.7.

6.2 Related work

Hierarchical scheduling For real-time systems, there has been a growing

attention to hierarchical scheduling frameworks [5, 6, 3, 7, 8, 9, 10, 11, 12, 13,

14].

Deng and Liu [3] proposed a two-level hierarchical scheduling framework

for open systems, where subsystems may be developed and validated indepen-

dently in different environments. Kuo and Li [8] presented schedulability anal-

ysis techniques for such a two-level framework with the fixed-priority global

scheduler. Lipari and Baruah [9, 15] presented schedulability analysis tech-

niques for the EDF-based global schedulers.
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Mok et al. [16] proposed the bounded-delay resource partition model for

a hierarchical scheduling framework. Their model can specify the real-time

guarantees that a parent component provides to its child components, where

the parent and child components have different schedulers. Feng and Mok [7]

and Shin and Lee [14] presented schedulability analysis techniques for the hi-

erarchical scheduling framework that employs the bounded-delay resource par-

tition model.

There have been studies on the schedulability analysis with the periodic re-

source model. This periodic resource model can specify the periodic resource

allocation guarantees provided to a component from its parent component [13].

Saewong et al. [12] and Lipari and Bini [10] introduced schedulability condi-

tions for fixed-priority local scheduling, and Shin and Lee [13] presented a

schedulability condition for EDF local scheduling. Davis and Burns [6] evalu-

ated different periodic servers (Polling, Deferrable, and Sporadic Servers) for

fixed-priority local scheduling.

Resource sharing When several tasks are sharing a logical resource, typi-

cally only one task is allowed to use the resource at a time. Thus the logical

resource requires mutual exclusion of tasks that uses it. To achieve this a mu-

tual exclusion protocol is used. The protocol provides rules about how to gain

access to the resource, and specifies which tasks should be blocked when trying

to access the resource.

To achieve predictable real-time behaviour, several protocols have been

proposed including the Priority Inheritance Protocol (PIP) [17], the Priority

Ceiling Protocol (PCP) [18], and the Stack Resource Policy (SRP) [19].

When using SRP, a task may not preempt any other tasks until its priority

is the highest among all tasks that are ready to run, and its preemption level is

higher than the system ceiling. The preemption level of a task is a static param-

eter assigned to the task at its creation, and associated with all instances of that

task. A task can only preempt another task if its preemption level is higher than

the task that it is to preempt. Each resource in the system is associated with

a resource ceiling and based on these resource ceilings, a system ceiling can

be calculated. The system ceiling is a dynamic parameter that changes during

system execution.

The duration of time that a task lock a resource, is called Resource Hold-

ing Time (RHT). Fisher et al. [20, 21] proposed algorithms to minimize RHT

for fixed priority and EDF scheduling with SRP as a resource synchronization

protocol. The basic idea of their proposed algorithms is to increase the ceil-

ing of resources as much as possible without violating the schedulability of the
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system under the same semantics of SRP.

Deng and Liu [3] proposed the usage of non-preemptive global resource

access, which bounds the maximum blocking time that a task might be sub-

ject to. The work by Kuo and Li [8] used SRP and they showed that it is

very suitable for sharing of local resources in a hierarchical scheduling frame-

work. Almeida and Pedreiras [5] considered the issue of supporting mutually

exclusive resource sharing within a subsystem. Matic and Henzinger [11] con-

sidered supporting interacting tasks with data dependency within a subsystem

and between subsystems, respectively.

More recently, Davis and Burns [22] presented the Hierarchical Stack Re-

source Policy (HSRP), allowing their work on hierarchical scheduling [6] to be

extended with sharing of logical resources. However, using HSRP, information

on all tasks in the system must be available at the time of subsystem integra-

tion, which is not suitable for an open systems development environment, and

this can be avoided by the SIRAP protocol presented in this paper.

6.3 System model

6.3.1 Hierarchical scheduling framework

A hierarchical scheduling framework is introduced to support CPU time shar-

ing among applications (subsystems) under different scheduling services.

Hence, a system S consists of one or more subsystems Ss ∈ S. The hierar-

chical scheduling framework can be generally represented as a two-level tree

of nodes, where each node represents a subsystem with its own scheduler for

scheduling internal tasks (threads), and CPU time is allocated from a parent

node to its children nodes, as illustrated in Figure 6.1.

The hierarchical scheduling framework provides partitioning of the CPU

between different subsystems. Thus, subsystems can be isolated from each

other for, e.g., fault containment, compositional verification, validation and

certification and unit testing.

The hierarchical scheduling framework is also useful in the domain of open

systems [3], where subsystems may be developed and validated independently

in different environments. For example, the hierarchical scheduling framework

allows a subsystem to be developed with its own scheduling algorithm internal

to the subsystem and then later included in a system that has a different global

level scheduler for scheduling subsystems.
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Global scheduler

Subsystem1

Local
scheduler

Subsystem2

Local
scheduler

Subsystemn

Local
scheduler

Figure 6.1: Two-level hierarchical scheduling framework.

6.3.2 Shared resources

For the purpose of this paper a shared (logical) resource, ri, is a shared memory

area to which only one task at a time may have access. To access the resource a

task must first lock the resource, and when the task no longer needs the resource

it is unlocked. The time during which a task holds a lock is called a critical

section. Only one task at a time may lock each resource.

A resource that is used by tasks in more than one subsystem is denoted a

global shared resource. A resource only used within a single subsystem is a

local shared resource. In this paper we are concerned only with global shared

resources and will simply denote them by shared resources. Management of

local shared resources can be done by using any synchronization protocol such

as PIP, PCP, and SRP.

6.3.3 Virtual processor model

The notion of real-time virtual processor (resource) model was first introduced

Mok et al. [16] to characterize the CPU allocations that a parent node provides

to a child node in a hierarchical scheduling framework. The CPU supply of

a virtual processor model refers to the amounts of CPU allocations that the

virtual processor model can provide. The supply bound function of a virtual

processor model calculates the minimum possible CPU supply of the virtual

processor model for a time interval length t.
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Shin and Lee [13] proposed the periodic virtual processor model Γ(Π, Θ),
where Π is a period (Π > 0) and Θ is a periodic allocation time (0 < Θ ≤ Π).

The capacity UΓ of a periodic virtual processor model Γ(Π, Θ) is defined as

Θ/Π. The periodic virtual processor model Γ(Π, Θ) is defined to characterize

the following property:

supplyΓ

(
kΠ, (k + 1)Π

)
= Θ, where k = 0, 1, 2, . . . , (6.1)

where the supply function supplyRs
(t1, t2) computes the amount of CPU allo-

cations that the virtual processor model Rs provides during the interval [t1, t2).

t

sbf(t)

Π

Φ

0    1     2     3     4     5    6     7     8     9    10

Φ Φ Φ

Π-Φ
Π Π Π
kΠ-Φ

kΠ

Figure 6.2: The supply bound function of a periodic virtual processor model

Γ(Π, Θ) for k = 3.

For the periodic model Γ(Π, Θ), its supply bound function sbfΓ(t) is de-

fined to compute the minimum possible CPU supply for every interval length t
as follows:

sbfΓ(t) =






t − (k + 1)(Π − Θ) if t ∈ [(k + 1)Π − 2Θ,
(k + 1)Π − Θ],

(k − 1)Θ otherwise,
(6.2)
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where k = max
(⌈(

t − (Π − Θ)
)
/Π

⌉
, 1

)
. Here, we first note that an interval

of length t may not begin synchronously with the beginning of period Π. That

is, as shown in Figure 6.2, the interval of length t can start in the middle of

the period of a periodic model Γ(Π, Θ). We also note that the intuition of

k in Eq. (6.2) basically indicates how many periods of a periodic model can

overlap the interval of length t, more precisely speaking, the interval of length

t− (Π−Θ). Figure 6.2 illustrates the intuition of k and how the supply bound

function sbfΓ(t) is defined for k = 3.

6.3.4 Subsystem model

A subsystem Ss ∈ S, where S is the whole system of subsystems, consists

of a task set and a scheduler. Each subsystem Ss is associated with a peri-

odic virtual processor model abstraction Γs(Πs, Θs), where Πs and Θs are the

subsystem period and budget respectively. This abstraction Γs(Πs, Θs) is sup-

posed to specify the collective temporal requirements of a subsystem, in the

presence of global logical resource sharing.

Task model We consider a periodic task model τi(Ti, Ci,Xi), where Ti and

Ci represent the task’s period and worst-case execution time (WCET) respec-

tively, and Xi is the set of WCETs within critical sections belonging to τi.

Each element xi,j in Xi represents the WCET of a particular critical section

cxi,j executed by τi. Note that Ci includes all xi,j ∈ Xi.

The set of critical sections cover for the following two cases of multiple

critical sections within one job:

1. sequential critical sections, where Xi contains the WCETs of all sequen-

tial critical sections, i.e. Xi = {xi,1, ..., xi,o} where o is the number of

sequential shared resources that task τi may lock during its execution.

2. nested critical sections, where xi,j ∈ X being the length of the outer

critical section.

Note that in the remaining paper, we use xi rather than xi,j for simplicity

when it is not necessary to indicate j.

Scheduler In this paper, we assume that each subsystem has a fixed-priority

preemptive scheduler for scheduling its internal tasks.
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6.4 SIRAP protocol

6.4.1 Terminology

Before describing the SIRAP protocol, we define the terminology (also de-

picted in Figure 6.3) that are related to hierarchical logical resource sharing.

(Shared) Resource Access Time

Waiting Time Resource Holding Time

Semaphore
Request Instant

Critical Section
Entering Instant

Critical Section
Exiting Instant

Figure 6.3: Shared resource access time.

• Semaphore request instant: an instant at which a job tries to enter a

critical section guarded by a semaphore.

• Critical section entering (exiting) instant: an instant at which a job enters

(exits) a critical section.

• Waiting time: a duration from a semaphore request time to a critical

section entering time.

• Resource holding time: a duration from a critical section entering instant

to a critical section exiting instant. Let hi,j denote the resource holding

time of a critical section cxi,j of task τi.

• (Shared) resource access time: a duration from a semaphore request in-

stant to a critical section exiting time.

In addition, a context switch is referred to as task-level context switch if

it happens between tasks within a subsystem, or as subsystem-level context

switch if it happens between subsystems.
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6.4.2 SIRAP protocol description

The subject of this paper is to develop a synchronization protocol that can ad-

dress global resource sharing in hierarchical real-time scheduling frameworks,

while aiming at supporting independent subsystem development and valida-

tion. This section describes our proposed synchronization protocol, SIRAP

(Subsystem Integration and Resource Allocation Policy).

Assumption SIRAP relies on the following assumption:

• The system’s global scheduler schedules subsystems according to their

periodic virtual processor abstractions Γs(Πs, Θs). The subsystem bud-

get is consumed every time when an internal task within a subsystem ex-

ecutes, and the budget is replenished to Θs every subsystem period Πs.

Similar to traditional server-based scheduling methods [23], the system

provides a run-time mechanism such that each subsystem is able to fig-

ure out at any time t how much its remaining subsystem budget Θs is,

which will be denoted as Θ′
s(t) in the remaining of this section.

The above assumption is necessary to allow run-time checking whether or

not a job can potentially enter and execute a whole critical section before a

subsystem-budget expire. This is useful particularly for supporting indepen-

dent abstraction of subsystem’s temporal behavior in the presence of global

resource accesses.

In addition to supporting independent subsystem development, SIRAP also

aims at minimizing the resource holding time and bounding the waiting time at

the same time. To achieve this goal, the protocol has two key rules as follows:

R1 When a job enters a critical section, preemptions from other jobs within

the same subsystem should be bounded to keep its resource holding time

as small as possible.

R2 When a job wants to enter a critical section, it enters the critical section

at the earliest instant such that it can complete the critical section before

the subsystem-budget expires.

The first rule R1 aims at minimizing a resource holding time so that the

waiting time of other jobs, which want to lock the same resource, can be min-

imized as well. The second rule R2 prevents a job Ji from entering a critical

section cxi,j at any time t when Θ′(t) < hi,j . This rule guarantees that when

the budget of a subsystem expires, no task within the subsystem locks a global

shared resource.
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SIRAP : preemption management The SRP [19] is used to enforce the first

rule R1. Each subsystem will have its own system ceiling and resources ceiling

according to its jobs that share global resources. According to SRP, whenever

a job locks a resource, other jobs within the same subsystem can preempt it

if the jobs have higher preemption levels than the locked resource ceiling, so

as to bound the blocking time of higher-priority jobs. However, such task-

level preemptions generally increase resource holding times and can potentially

increase subsystem utilization. One approach to minimize hi,j is to allow no

task-level preemptions, by assigning the ceiling of global resource equal to

the maximum preemption level. However, increasing the resource ceiling to

the maximum preemption level may affect the schedulability of a subsystem.

A good approach is presented in [20], which increases the ceiling of shared

global resources as much as possible while keeping the schedulability of the

subsystem.

SIRAP : self-blocking When a job Ji tries to enter a critical section, SIRAP

requires each local scheduler to perform the following action. Let t0 denote

the semaphore request instant of Ji and Θ′(t0) denote the subsystem’s budget

at time t0.

• If hi,j ≤ Θ′(t0), the local scheduler executes the job Ji. The job Ji

enters a critical section at time t0.

• Otherwise, i.e., if hi,j > Θ′(t0), the local scheduler delays the critical

section entering of the job Ji until the next subsystem budget replenish-

ment. This is defined as self-blocking. Note that the system ceiling will

be equal to resource ceiling at time t0, which means that the jobs that

have preemption level greater than system ceiling can only execute dur-

ing the self blocking interval1. This guarantees that when the subsystem

of Ji receives the next resource allocation, the subsystem-budget will be

enough to execute job Ji inside the critical section2.

1With simple modifications to the SRP protocol, the execution of tasks can be allowed within

the self blocking interval if they do not access global resources even though their preemption levels

are less than the system ceiling. However this is off the point of this paper.
2The idea of self-blocking has been also considered in different contexts, for example, in CBS-

R [23] and zone based protocol (ZB) [24]. Our work is different from those in the sense that

CBS-R used a similar idea for supporting soft real-time tasks, and ZB used it in a pfair-scheduling

environment, while we use it for hard real-time tasks under hierarchical scheduling. This difference

inherently requires the development of different schedulability analysis, including Eqs. (6.5), (6.6),

and (6.7).
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6.5 Schedulability analysis

6.5.1 Local schedulability analysis

Consider a subsystem Ss that consists of a periodic task set and a fixed-priority

scheduler and receives CPU allocations from a virtual processor model

Γs(Πs, Θs). According to [13], this subsystem is schedulable if

∀τi, 0 < ∃t ≤ Ti dbfFP(i, t) ≤ sbfΓ(t). (6.3)

The goal of this section is to develop the demand bound function dbfFP(i, t)
calculation for the SIRAP protocol. dbfFP(i, t) is computed as follows;

dbfFP(i, t) = Ci + IS(i) + IH(i, t) + IL(i), (6.4)

where Ci is the WCET of τi, IS(i) is the maximum self blocking for τi, IH(i, t)
is the maximum possible interference imposed by a set of higher-priority tasks

to a task τi during an interval of length t, and IL(i) is the maximum possible

interference imposed by a set of lower-priority tasks that share resources with

preemption level (ceiling) greater than or equal to the priority of task τi.

The following lemmas shows how to compute IS(i), IH(i, t) and IL(i).

Lemma 1. Self-blocking imposes to a job Ji an extra processor demand of at

most
∑o

j=1 hi,j if a job access multiple shared resources.

Proof. When the job Ji self-blocks itself, it consumes the processor of at most

hi,j units being idle. If the job access shared resources then the worst case will

happen when the job block itself whenever it tries to enter a critical section.

Lemma 2. A job Ji can be interfered by a higher-priority job Jj that ac-

cess shared resources, at t time units for a duration of at most ⌈ t
Tj
⌉(Cj +∑o

k=1 hj,k) time units.

Proof. Similar to classical response time analysis [25], we add
∑o

k=1 hj,k to

Cj which is the worst case self blocking from higher priority tasks, the lemma

follows.

Lemma 3. A job Ji can be interfered by only one lower-priority job Jj by at

most 2 · max(hj,k), where k=1,...,o.
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Proof. A higher-priority job Ji can be interfered by a lower-priority job Jj .

This occurs only if Ji is released after Jj tries to enter a critical section but

before Jj exits the critical section. When Ji is released, only one job can try to

enter or be inside a critical section. That is, a higher-priority job Ji can then be

interfered by at most a single lower-priority job. The processor demand of Jj

during a critical section period is bounded by 2 ·max(hj,k) for the worst case.

The lemma follows.

From Lemma 1, the self-blocking IS(i) is given by;

IS(i) =
o∑

k=1

hi,k (6.5)

According to Lemma 2 and taking into account the interference from higher

priority tasks, IH(i, t) is computed as follows;

IH(i, t) =

i−1∑

j=1

⌈ t

Tj

⌉
(Cj +

o∑

k=1

hj,k). (6.6)

The maximum interference from lower priority tasks can be evaluated ac-

cording to Lemma 3 according to;

IL(i) = max
j=i+1,...,n

(2 · max
k=1,...,o

(hj,k)). (6.7)

Based on Eq. (6.5) and (6.6) and (6.7), the processor demand bound func-

tion is given by Eq. (6.4).

The resource holding time hi,j of a job Ji that access a global resource is

evaluated as the maximum critical section execution time xi,j+ the maximum

interference from the tasks that have preemption level greater than the ceiling

of the logical resource during the execution xi,j . hi,j is computed [20] using

Wi,j(t) as follows;

Wi,j(t) = xi,j +

u∑

l=ceil(xi,j)+1

⌈
t

Tl

⌉Cl, (6.8)

where ceil(xi,j) is the ceiling of the logical resource accessed within the crit-

ical section xi,j , and Cl, Tl are the worst case execution time and the period

of job that have higher preemption level than ceil(xi,j), and u is the maximum

ceiling within the subsystem.

The resource holding time hi,j is the smallest time t∗i such that Wi,j(t
∗
i ) =

t∗i .
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6.5.2 Global schedulability analysis

Here, issues for global scheduling of multiple subsystems are dealt with. For

a subsystem Ss, it is possible to derive a periodic virtual processor model

Γs(Πs, Θs) that guarantees the schedulability of the subsystem Ss according

to Eq. (6.3).

The local schedulability analysis presented for subsystems is not depen-

dent on any specific global scheduling policy. The requirements for the global

scheduler, are as follows: i) it should schedule all subsystems according to their

virtual processor model Γs(Πs, Θs), ii) it should be able to bound the waiting

time of a task in any subsystem that wants to access global resource.

To achieve those global scheduling requirements, preemptive schedulers

such as EDF and RM together with the SRP [19] synchronization protocol can

be used. So when a subsystem locks a global resource, it will not be pre-

empted by other subsystems that have preemption level less than or equal to

the locked resource ceiling. Each subsystem, for all global resources accessed

by tasks within a subsystem, should specify a list of pairs of all those global re-

sources and their maximum resource holding times {(r1, Hr1
), ..., (rp, Hrp

)}.

However it is possible to minimize the required information that should be

provided for each subsystem by assuming that all global resources have the

same ceiling equal to the maximum preemption level π̂s among all subsys-

tems. Then for the global scheduling, it is enough to provide virtual processor

model Γs(Πs, Θs) and the maximum resource holding times among all global

resources Ĥs = max(HR1
, ..., HRp

) for each subsystem Ss. On the other

hand, assigning the ceiling of all global resources to the maximum preemption

level of the subsystem that access these resources is not as efficient as using

the original SRP protocol, this since we may have resources with lower ceiling

which permit more preemptions from the higher preemption level subsystems.

Under EDF global scheduling, a set of n subsystems is schedulable [19] if

∀kk=1,...,n(

k∑

i=1

Θi

Πi

) +
Bk

Πk

≤ 1, (6.9)

where Bk of subsystem Sk is the duration of the longest resource holding time

among those belonging to subsystems with preemption level lower than πk .

For RM global scheduling, the schedulability test based on tasks’ response

time is
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Wi = Θi + Bk +

i−1∑

j=1

⌈Wi

Πj

⌉
(Cj). (6.10)

It is also possible to use a non-preemptive global scheduler together with

the SIRAP protocol. In this case, no subsystem-level context switch happens

when there is a task inside a critical section. That is, whenever a task tries to

lock a global resource, it is guaranteed that the global resource is not locked by

another task from other subsystems. This way provides a clean separation be-

tween subsystems in accessing global shared resources. Then, we can achieve a

more subsystem abstraction, i.e., subsystems do not have to export information

about their global shared resource accesses, for example, which global shared

resources they access and the maximum resource holding time. In fact, it will

require more system resources to schedule subsystems under non-preemptive

global scheduling rather than under preemptive global scheduling. Hence, we

can see a tradeoff between abstraction and efficiency. Exploring this tradeoff

is a topic of our future work.

6.5.3 Local resource sharing

So far, only the problem of sharing global resource between subsystems has

been considered. However, many real time applications may have local re-

source sharing within subsystem as well. Almeida and Pedreiras [5] showed

that some traditional synchronization protocols such as PCP and SRP can be

used for supporting local resource sharing in a hierarchical scheduling frame-

work by including the effect of local resource sharing in the calculation of

dbfFP. That is, to combine SRP/PCP and the SIRAP protocol for synchro-

nizing both local and global resources sharing, Eq. (6.7) should be modified

to

IL(i) = max(max(2 · xj,k), bi), where j = i + 1, . . . , n. (6.11)

where bi is the maximum duration for which a task i can be blocked by its

lower-priority tasks in critical sections from local resource sharing.

6.6 Protocol evaluation

In this section, the cost of using SIRAP is investigated in terms of extra CPU

utilization (UΓ) required for subsystem schedulability guarantees. We assume
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that all global resource ceilings can be equal to the maximum preemption level,

which means that no tasks within a subsystem preempt a task inside a critical

section, and therefore hi,j = xi,j . Supporting logical resource sharing is ex-

pected to increase subsystem utilizations UΓ. This increment in UΓ depends

on many factors such as the maximum WCET within a critical section xi,j , the

priority of the task sharing a global resource, and the subsystem period Πs.

Sections 6.6.1, 6.6.2, and 6.6.3 investigate the effect of those factors under

the assumption that task i accesses a single critical section. In Section 6.6.4,

this assumption is relaxed so as to investigate the effect of the number of criti-

cal sections. Section 6.5 compares independent and dependent abstractions in

terms of subsystem utilization.

6.6.1 WCET within critical section

One of the main factors that affect the cost of using SIRAP is the value of

xi,j . It is clear from Eqs. (6.4), (6.6), and (6.7) that whenever xi,j (which

equals to hi,j) increases, dbfFP will increase as well, potentially causing UΓ

to increase in order to satisfy the condition in Eq. (6.3). Figure 6.4 shows the

effect of increasing xi on two different task sets. Task set 1 is sensitive for

small changes in xi whilst task set 2 can tolerate the given range of xi without

showing a big change in UΓ. The reason behind the difference is that task set

1 has a task with period very close to Πs while the smallest task period in task

set 2 is greater than Πs by more than 4 times. Hence, SIRAP can be more or

less sensitive to xi depending on the ratio between task and subsystem period.

For the remaining figures (Figure 6.5 and 6.6), simulations are performed

as follows. We randomly generated 100 task sets, each containing 5 tasks.

Each task set has a utilization of 25%, and the period of the generated tasks

range from 40 to 1000. For each task set, a single task accesses a global shared

resource; the task is the highest priority task, the middle priority task, or the

lowest priority task. For each task set, we use 11 different values of xi ranging

from 10% to 50% of the subsystem period.

6.6.2 Task priority

From Eqs. (6.4), (6.6) and (6.7), looking how tasks sharing global logical re-

sources affect the calculations of dbfFP, it is clear that task priority for these

tasks is of importance. The contribution of low priority tasks on dbfFP is fixed

to a specific value of xi (see Eq. (6.7)), while the increase in dbfFP by higher

priority tasks depends on many terms such as higher priority task period Tk and
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Figure 6.4: UΓ as a function of xi for two task sets where only the lowest

priority task share a resource.

execution time Ck (see Eq. (6.6)). It is fairly easy to estimate the behaviour of

a subsystem when lower priority tasks share global resources; on one hand, if

the smallest task period in a subsystem is close to Πs, UΓ will be significantly

increased even for small values of xi. As the value of sbf is small for time

intervals close to Πs, the subsystem needs a lot of extra resources in order to

fulfil subsystem schedulability. On the other hand, if the smallest task period

is much larger than Πs then UΓ will only be affected for large values of xi, as

shown in Figure 6.4.

Figure 6.5 shows UΓ as a function of xi for when the highest, middle and

lowest priority task are sharing global resources, respectively, where Πs =
15. The figure shows that the highest priority task accessing a global shared

resource needs in average more utilization than other tasks with lower priority.

This observation is expected as the interference from higher priority task is

larger than the interference from lower priority tasks (see Eq. (6.6) and (6.7)).

However, note that in the figure this is true for xi within the range of [0,5]. If
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Figure 6.5: Average utilization for 100 task sets as a function of xi, when low,

medium and high priority task share a resource respectively, Πs = 15.

the value of xi is larger than 5, then UΓ keeps increasing rapidly without any

difference among the priorities of tasks accessing the global shared resource.

This can be explained as follows. When using SIRAP, the subsystem budget

Θs should be no smaller than xi to enforce the second rule R2 in Section 6.4.2.

Therefore, when xi ≥ 5, Θs should also become greater than 5 even though

subsystem period is fixed to 15. This essentially results in a rapid increase of

UΓ with the speed of xi/15.

6.6.3 Subsystem period

The subsystem period is one of the most important parameters, both in the con-

text of global scheduling and sbf calculations for a subsystem. As Πs is used

in the sbf calculations, Πs will have significant effect on UΓ (see Eq. (6.3)).

Figure 6.6 compares average subsystem utilization for different values of

subsystem period, i.e., for Πs = 20 and Πs = 40 for the same task sets. Here,
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Figure 6.6: Average utilization for 100 task sets as a function of xi, when only

the highest priority tasks share a resource and the subsystem period is Πs = 20
and Πs = 40.

only the highest priority task accesses a global shared resource. It is interesting

to see that the lower value of Πs, i.e, Πs = 20, results in a lower subsystem

utilization when xi is small, i.e., xi ≤ 6, and then a higher subsystem utiliza-

tion when xi gets larger from xi = 6. That is, xi and Πs are not dominating

factors one to another, but they collectively affect subsystem utilization. It is

also interesting to see in Figure 6.6 that the subsystem utilization of Πs = 40
behaves in a similar way by increasing rapidly from xi = 14.

Hence, in general, Πs should be less than the smallest task period in a sub-

system, as in hierarchical scheduling without resource sharing, the lower value

of Πs gives better results (needs less utilization). However, in the presence of

global resources sharing, the selection of the subsystem period depends also on

the maximum value of xi in the subsystem.
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6.6.4 Multiple critical sections

We compare the case when a task i accesses multiple critical sections (MCS)

with the case when a task j accesses a single critical section (SCS) within

duration xj =
∑o

k=1 xi,k according to the demand bound function calculations

in Eq. (6.4). The following shows the effect of accessing MCS by a task on

itself and on higher and lower priority tasks;

• Self blocking, Eq. (6.5) shows that both accessing MCS and SCS by a

task gives the same result.

• Higher priority task, the effect from higher priority task accessing MCS

or SCS can be evaluated by Eq. (6.6). IH will be the same for both cases

also.

• Lower priority task, Eq. (6.7) shows that IL for MCS is less than SCS

case because in MCS the maximum of xi,j will be less than xi for SCS.

We can conclude that the required subsystem utilization for MCS case will

be always less than or equal to the case of SCS having xj =
∑o

k=1 xi,k, which

means that our proposed protocol is scalable in terms of the number of critical

sections.

6.6.5 Independent abstraction

In this paper, we have proposed a synchronization protocol that supports inde-

pendent abstraction of a subsystem, particularly, for open systems. Indepen-

dent abstraction is desirable since it allows subsystems to be developed and

validated without knowledge about temporal behavior of other subsystems. In

some cases, subsystems can be abstracted dependently of others when some

necessary information about all the other subsystems is available. However,

dependent abstraction has a clear limitation to open systems where such infor-

mation is assumed to be unavailable. In addition, dependent abstraction is not

good for dynamically changing systems, since it may be no longer valid when a

new subsystem is added. Despite of the advantages of independent abstraction

vs. dependent abstraction, however, one may wonder what costs look like in

using independent abstraction in comparison with using dependent abstraction.

In this section, we discuss this issue in terms of resource efficiency (subsystem

resource utilization).



74 Paper A

0,35

0,4

0,45

0,5

0,55

2 4 8 16 32

Task-Subsystem Period Ratio

S
u

b
s
y
s
te

m
 U

ti
li

z
a
ti

o
n

r=1.0

r=0.75

r=0.5

r=0.25

r=0.0

Figure 6.7: Comparison between independent and dependent abstractions in

terms of subsystem utilization.

One of the key differences between independent and dependent abstrac-

tions is how to model a resource supply provided to a subsystem, more specif-

ically, how to characterize the longest blackout duration during which no re-

source supply is provided. Under independent abstraction, the longest blackout

duration is assumed to be the worst-case (maximum) one. Whereas, it can be

exactly identified by some techniques [6, 26] under dependent abstraction. This

difference inherently yields different subsystem resource utilizations, as illus-

trated in Figure 6.7. Before explaining this figure, we need to establish some

notions and explain how to obtain this figure.

We first extend the periodic resource model Γ(Π, Θ) by introducing an ad-

ditional parameter, blackout duration ratio (r). We define r as follows. Let

Lmin and Lmax denote the minimum and maximum possible blackout dura-

tion, and

Lmin = Π − Θ and Lmax = 2(Π − Θ).

When exactly computed, the longest blackout duration can then be represented

as r · (Lmax −Lmin)+Lmin. We generalize the supply bound function of Eq.
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(6.2) with the blackout duration ratio r as follows:

sbfΓ(t) =






t − (k + 1)(Π − Θ) if t ∈ [kΠ − Θ
+r(Π − Θ),
kΠ + r(Π − Θ)],

(k − 1)Θ otherwise,

(6.12)

where k = max
(⌈(

t − (Π − Θ)
)
/Π

⌉
, 1

)
.

We here explain the notion of task-subsystem period ratio, which is the

x-axis of the figure. Suppose a periodic resource model Γ1(Π1, Θ1, r1) is an

abstraction that guarantees the schedulability of a subsystem S. According to

Eq. (6.3), there then exists a time instant t∗i , where 0 < t∗i ≤ Ti, for each task

τi within the subsystem S such that

∀τi, dbfFP(i, t∗i ) ≤ sbfΓ1
(t∗i ). (6.13)

In fact, given the values of subsystem period Π and blackout duration ratio r,

we can find a smallest value of Θ, denoted as Θ∗
i , that can satisfy Eq. (6.13) at

t∗i for each task τi. The value of budget Θ is then finally determined as the max-

imum value among all Θ∗
i . This way makes sure that Θ is large enough to guar-

antee the timing requirements of all tasks. Let T ∗ denote a time instant t∗k such

that Θ∗
k is the maximum among the ones. We can see that T ∗ ∈ [Tmin, Tmax],

where Tmin and Tmax denote the minimum and maximum task periods within

subsystem, respectively. We define the task-subsystem period ratio as T ∗/Π.

Given a periodic abstraction Γ1 of the subsystem S, another periodic re-

source model Γ2(Π2, Θ2, r2) can be also an abstraction of S, if

∀τi, sbfΓ1
(t∗i ) ≤ sbfΓ2

(t∗i ), (6.14)

since Eq. (6.3) can be satisfied with S and Γ2 as well. More specifically,

Γ2(Π2, Θ2, r2) can be an abstraction of S, if

sbfΓ1
(T ∗) ≤ sbfΓ2

(T ∗). (6.15)

That is, given Γ1 and the values of Π2 and r2, we can find the minimum value

of Θ2 that satisfies Eq. (6.15).

Figure 6.7 shows subsystem utilizations of periodic abstractions under dif-

ferent values of blackout duration ratio r, when they have the same subsys-

tem period in abstracting the same subsystem. In general, it shows that de-

pendent abstraction, which can exactly identify the value of r, would pro-
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duce more resource-efficient subsystem abstractions. Specifically, for exam-

ple, when r = 0, i.e., when the subsystem has the highest priority under fixed-

priority global scheduling, a subsystem can be abstracted with 15% less sub-

system utilization than in the case of independent abstraction (r = 1). The

figure also shows that differences in subsystem utilization generally decrease

when the task-subsystem period ratio increases and/or the blackout duration

ratio increases. For example, when r = 0.5, i.e., when the system has a mod-

erately high utilization and subsystems have medium or low priorities under

fixed-priority global scheduling or subsystems are scheduled under global EDF

scheduling, differences are shown to be smaller than 8%.

6.7 Conclusion

In this paper we have presented the novel Subsystem Integration and Resource

Allocation Policy (SIRAP), which provides temporal isolation between subsys-

tems that share logical resources. Each subsystem can be developed, tested and

analyzed without knowledge of the temporal behaviour of other subsystems.

Hence, integration of subsystems, in later phases of product development, will

be smooth and seamless.

We have formally proven key features of SIRAP such as bounds on delays

for accessing shared resources. Further, we have provided schedulability anal-

ysis for tasks executing in the subsystems; allowing for use of hard real-time

application within the SIRAP framework.

Naturally, the flexibility and predictability offered by SIRAP comes with

some costs in terms of overhead. We have evaluated this overhead through a

comprehensive simulation study. From the study we can see that the subsystem

period should be chosen as much smaller than the smallest task period in a

subsystem and take into account the maximum value of hi in the subsystem to

prevent having high subsystem utilization. Future work includes investigating

the effect of context switch overhead on subsystem utilization together with the

subsystem period and the maximum value of hi.
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Abstract

The Hierarchical Scheduling Framework (HSF) has been introduced as a

design-time framework to enable compositional schedulability analysis of em-

bedded software systems with real-time properties. In this paper a software

system consists of a number of semi-independent components called subsys-

tems. Subsystems are developed independently and later integrated to form a

system. To support this design process, in the paper, the proposed methods al-

low non-intrusive configuration and tuning of subsystem timing-behaviour via

subsystem interfaces for selecting scheduling parameters.

This paper considers three methods to handle overruns due to resource shar-

ing between subsystems in the HSF. For each one of these three overrun meth-

ods corresponding scheduling algorithms and associated schedulability analy-

sis are presented together with analysis that shows under what circumstances

one or the other is preferred. The analysis is generalized to allow for both

Fixed Priority Scheduling (FPS) and Earliest Deadline First (EDF) schedul-

ing. Also, a further contribution of the paper is the technique of calculating

resource-holding times within the framework under different scheduling algo-

rithms; the resource holding times being an important parameter in the global

schedulability analysis.
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7.1 Introduction

The Hierarchical Scheduling Framework (HSF) has been introduced to support

hierarchical resource sharing among applications under different scheduling

services. The hierarchical scheduling framework can be generally represented

as a tree of nodes, where each node represents an application with its own

scheduler for scheduling internal workloads (e.g., threads), and resources are

allocated from a parent node to its children nodes.

The HSF provides means for decomposing a complex system into well-

defined parts. In essence, the HSF provides a mechanism for timing-predictable

composition of course-grained components or subsystems. In the HSF a sub-

system provides an interface that specifies the timing properties of the subsys-

tem precisely [1]. This means that subsystems can be independently developed

and tested, and later assembled without introducing unwanted temporal be-

haviour. Also, the HSF facilitates reusability of subsystems in timing-critical

and resource constrained environments, since the well defined interfaces char-

acterize their computational requirements.

Earlier efforts have been made in supporting compositional subsystem in-

tegration in the HSFs, preserving the independently analyzed schedulability of

individual subsystems. One common assumption shared by earlier studies is

that subsystems are independent. This paper relaxes this assumption by ad-

dressing the challenge of enabling efficient compositional integration for inde-

pendently developed semi-independent subsystems interacting through sharing

of mutual exclusion access logical resources. Here, semi-independence means

that subsystems are allowed to synchronize by the sharing of logical resources.

To enable sharing of logical resources in HSFs, Davis and Burns proposed

a synchronization protocol implementing the overrun mechanism, allowing the

subsystem to overrun (its budget) to complete the execution of a critical sec-

tion [2]. Two versions of overrun mechanisms were presented in [2], called

overrun without payback and overrun with payback, and in the remainder of

this paper these overrun mechanisms are called Basic Overrun (BO), and Basic

Overrun with Payback (PO), respectively. The study presented by Davis and

Burns provides schedulability analysis for both overrun mechanisms; however,

the schedulability analysis does not allow independent analysis of individual

subsystems. Hence, the presented schedulability analysis does not naturally

support composability of subsystems.

The schedulability analysis of Davis and Burns’ has been extended assess-

ing composability in [3] for systems running the Earlier Deadline First (EDF)

scheduling algorithm. In addition, in the same paper a new overrun mecha-
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nism has been presented, called Enhanced Overrun (EO), that potentially in-

creases schedulability within a subsystem by providing CPU allocations more

efficiently. Also, in the paper this new mechanism has been evaluated against

PO.

The contributions of this paper are as follows; Firstly, BO, the second ver-

sion of overrun mechanism presented in [2], is included in the comparison

between overrun mechanisms presented in [3] and it is shown under which cir-

cumstances a certain overrun mechanism is the preferred one among all three

(BO, PO and EO) presented mechanisms. In addition, the sechedulability anal-

ysis of local and global schedulers is generalized by including Fixed Priority

Scheduling (FPS) in the schedulability analysis, as the results of [3] were lim-

ited to the EDF scheduling algorithm. Finally, the simplified equation to cal-

culate resource holding time using the EDF scheduling algorithm (presented

in [3]) is proven to be valid also when using the FPS scheduling algorithm.

Hence, using the results of this paper it is possible to use either FPS or EDF.

The outline of the paper is as follows: Section 7.2 presents related work,

while Section 7.3 presents the system model. In Section 7.4 the schedulability

analysis for the system model is presented. Section 7.5 presents the three over-

run mechanisms (BO, PO and EO), and Section 7.6 presents their analytical

comparison. In Section 7.7 it is shown how to calculate the resource holding

times under both FPS and EDF, and finally, Section 7.8 concludes.

7.2 Related work

This section presents related work in the areas of HSFs as well as resource

sharing protocols.

7.2.1 Hierarchical scheduling

The HSF for real-time systems, originating in open systems [4] in the late

1990’s, has been receiving an increasing research attention. Since Deng and

Liu [4] introduced a two-level HSF, its schedulability has been analyzed un-

der fixed-priority global scheduling [5] and under EDF-based global schedul-

ing [6, 7]. Mok et al. [8] proposed the bounded-delay resource model to

achieve a clean separation in a multi-level HSF, and schedulability analysis

techniques [9, 10] have been introduced for this resource model. In addition,

Shin and Lee [1, 11] introduced another periodic resource model (to char-

acterize the periodic resource allocation behaviour), and many studies have
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been proposed on schedulability analysis with this resource model under fixed-

priority scheduling [12, 13, 14] and under EDF scheduling [1]. More recently,

Easwaran et al. [15] introduced the Explicit Deadline Periodic (EDP) resource

model. However, a common assumption shared by all these studies is that tasks

are required to be independent.

7.2.2 Resource sharing

In many real systems, tasks are semi-independent, interacting with each other

through mutually exclusive resource sharing. Many protocols have been in-

troduced to address the priority inversion problem for semi-independent tasks,

including the Priority Inheritance Protocol (PIP) [16], the Priority Ceiling Pro-

tocol (PCP) [17], and Stack Resource Policy (SRP) [18]. Recently, Fisher et

al. addressed the problem of minimizing the resource holding time [19] un-

der SRP. There have been studies on extending SRP for HSFs, for sharing of

logical resources within a subsystem [20, 5] and across subsystems [2, 21, 22].

Davis and Burns [2] proposed the Hierarchical Stack Resource Policy (HSRP)

supporting sharing of logical resources on the basis of an overrun mechanism.

Behnam et al. [21] proposed the Subsystem Integration and Resource Alloca-

tion Policy (SIRAP) protocol that supports subsystem integration in the pres-

ence of shared logical resources, on the basis of skipping. Fisher et al. [22]

proposed the BROE server that extends the Constant Bandwidth Server (CBS)

[23] in order to handle sharing of logical resources in a HSF. Behnam et al. [24]

compared between SIRAP, HSRP and BROE and showed that there is no one

silver bullet solution available today, providing an optimal HSF and synchro-

nization protocol for use in open environments. Lipari et al. proposed the

BandWidth Inheritance protocol (BWI) [25] which extends the resource reser-

vation framework to systems where tasks can share resources. The BWI ap-

proach is based on using the CBS algorithm together with a technique that is

derived from the Priority Inheritance Protocol (PIP). Particularly, BWI is suit-

able for systems where the execution time of a task inside a critical section can

not be evaluated.

7.3 System model and background

7.3.1 Resource sharing in the HSF

The Hierarchical Scheduling Framework (HSF) has been introduced to support

CPU time sharing among applications (subsystems) under different scheduling
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Figure 7.1: Two-level HSF with resource sharing.

policies. In this paper, a two level-hierarchical scheduling framework is con-

sidered, which works as follows: a global (system-level) scheduler allocates

CPU time to subsystems, and a local (subsystem-level) scheduler subsequently

allocates CPU time to its internal tasks.

Having such a HSF also allows for the sharing of logical resources among

tasks in a mutually exclusive manner (see Figure 7.1). Specifically, tasks can

share local logical resources within a subsystem as well as global logical re-

sources across (in-between) subsystems. However, note that this paper focuses

around mechanisms for sharing of global logical resources in a HSF while lo-

cal logical resources can be supported by traditional synchronization protocols

such as SRP (see, e.g., [20, 2, 5]).

7.3.2 Virtual processor models

The notion of real-time virtual processor (resource) model was first introduced

by Mok et al. [8] to characterize the CPU allocations that a parent node pro-

vides to a child node in a HSF. The CPU supply of a virtual processor model

refers to the amounts of CPU allocations that the virtual processor model can

provide. The supply bound function of a virtual processor model calculates its

minimum possible CPU supply for any given time interval of length t.

The periodic virtual processor model Γ(P, Q) was proposed by Shin and

Lee [1] to characterize periodic resource allocations, where P is a period (P >
0) and Q is a periodic allocation time (0 < Q ≤ P ). The capacity UΓ of a
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periodic virtual processor model Γ(P, Q) is defined as Q/P .

The supply bound function sbfΓ(t) of the periodic virtual processor model

Γ(P, Q) was given in [1] to compute the minimum resource supply during an

interval of length t.

sbfΓ(t) =

{
t − (k + 1)(P − Q) if t ∈ W (k)

(k − 1)Q otherwise,
(7.1)

where k = max
(⌈(

t− (P −Q)
)
/P

⌉
, 1

)
and W (k) denotes an interval [(k +

1)P − 2Q, (k + 1)P − Q]. Note that an interval of length t may not begin

synchronously with the beginning of period P ; as shown in Figure 7.2, the

interval of length t can start in the middle of the period of a periodic virtual

processor model Γ(P, Q). Figure 7.2 illustrates the supply bound function

sbfΓ(t) of the periodic virtual processor model. BD represents the longest

possible blackout duration during which the periodic virtual processor model

may provide no resource allocation at all.
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7.3.3 Stack resource policy (SRP)

To be able to use SRP [18] in the HSF1, its associated terms are extended as

follows:

• Preemption level. Each task τi has a preemption level equal to πi =
1/Di, where Di is the relative deadline of the task. Similarly, each sub-

system Ss has an associated preemption level equal to Πs = 1/Ps, where

Ps is the subsystem’s per-period deadline.

• Resource ceiling. Each globally shared resource Rj is associated with

two types of resource ceilings; one internal resource ceiling for local

scheduling rcj = max{πi|τi accesses Rj} and one external resource

ceiling for global scheduling.

• System/subsystem ceilings. System/subsystem ceilings are dynamic pa-

rameters that change during runtime. The system/subsystem ceiling is

equal to the currently locked highest external/internal resource ceiling in

the system/subsystem.

Following the rules of SRP, a job Ji that is generated by a task τi can

preempt the currently executing job Jk within a subsystem only if Ji has a

priority higher than that of job Jk and, at the same time, the preemption level

of τi is greater than the current subsystem ceiling. A similar reasoning is made

for subsystems from a global scheduling point of view.

7.3.4 System model

In this paper a periodic task model τi(Ti, Ci, Di, {ci,j}) is considered, where

Ti, Ci and Di represent the task’s period, worst-case execution time (WCET)

and relative deadline, respectively, where Di ≤ Ti, and {ci,j} is the set of

WCETs within critical sections associated with task τi. Each element ci,j in

{ci,j} represents the WCET of the task τi inside a critical section of the global

shared resource Rj .

Looking at a shared resource Rj , the resource holding time hj,i of a task

τi is defined as the time given by the task’s maximum execution time inside

1One of the reasons of using SRP is that it can be used with both the EDF and the FPS schedul-

ing algorithms while the other synchronization protocols such as PCP and PIP can only be used

with the FPS scheduling algorithm. In addition, Bertogna et al. [26] showed that the resource hold-

ing time will be higher when using PCP since it should include the execution times of the higher

priority tasks that have priorities lower than the ceiling of the shared resource.
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a critical section plus the interference (inside the critical section) of higher

priority tasks having preemption level greater than the internal ceiling of the

locked resource.

A subsystem Ss ∈ S, where S is the whole system of subsystems, is char-

acterized by a task set Ts that contains ns tasks and a set of internal resource

ceilings RCs inherent from internal tasks using the globally shared resources.

Each subsystem Ss is assumed to have an EDF or FPS local scheduler, and

the subsystems are scheduled according to EDF or FPS on a global level. The

collective CPU resource requirements by each subsystem Ss is characterized

by its interface (the subsystem interface) defined as (Ps, Qs, Hs), where Ps

is the subsystem’s period, Qs is it’s execution requirement budget, and Hs is

the subsystem’s maximum resource holding time, i.e., Hs = max{hj,i|τi ∈
Ts accesses Rj}.

7.4 Schedulability analysis

This section presents the schedulability analysis of the HSF, starting with local

schedulability analysis needed to calculate subsystem interfaces, followed by

global schedulability analysis. The analysis presented assumes that SRP is

used for synchronization on the local (within subsystems) level.

7.4.1 Local schedulability analysis

Let dbfEDF(i, t) denote the demand bound function of a task τi under EDF

scheduling [27], i.e.,

dbfEDF(i, t) =

⌊
t + Ti − Di

Ti

⌋
· Ci. (7.2)

The local schedulability condition under EDF scheduling is then (by combining

the results of [28] and [1])

∀t > 0
∑

τi∈Ts

dbfEDF(i, t) + b(t) ≤ sbf(t), (7.3)

where b(t) is the blocking function [28] (according to SRP) that represents the

longest blocking time during which a job Ji with Di ≤ t may be blocked by a

job Jk with Dk > t when both jobs access the same resource. Note that t can
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be selected within a finite set of scheduling points using the same techniques

from [27]2.

For Fixed Priority Scheduling (FPS) [30], let rbfFP(i, t) denote the request

bound function of a task τi, i.e.,

rbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈
t

Tk

⌉
· Ck, (7.4)

where HP(i) is the set of tasks with priorities higher than that of τi. The local

schedulability analysis under FPS can then be extended from the results of

[18, 1] as follows:

∀τi ∃t : 0 < t ≤ Di, rbfFP(i, t) + bi ≤ sbf(t), (7.5)

where bi is the maximum blocking (i.e., extra CPU demand) imposed to a task

τi when τi is blocked by lower priority tasks that are accessing resources with

ceiling greater than or equal to the priority of τi. Note that t can be selected

within a finite set of scheduling points [31].

7.4.2 Subsystem interface calculation

Given a subsystem Ss, RCs, and Ps, let calculateBudget(Ss,RCs, Ps) de-

note a function that calculates the smallest subsystem budget Qs that sat-

isfies Eq. (7.3) for EDF and Eq. (7.5) for FPS scheduling. Hence, Qs =
calculateBudget(Ss, Ps,RCs). Recently Fisher et al. [29] presented an algo-

rithm that finds the exact smallest subsystem budget Qs using EDF as a local

scheduler, called MINIMUMCAPACITY. This work is extended for the FPS

local scheduler with a corresponding new algorithm called FPMINIMUMCA-

PACITY [32]. Both algorithms do not consider resource sharing, however,

they can support resource sharing by using Eq. (7.3) for EDF and Eq. (7.5) for

FPS scheduling. The complexity of both algorithms is pseudo-polynomial with

respect to time.

7.4.3 Global schedulability analysis

Following Theorem 1 of [28], global schedulability analysis under EDF schedul-

ing is given using the system load bound function LBF(t) as follows:

2Note that although the work in [27] does not consider hierarchical scheduling, the same tech-

nique can be used in the context of hierarchical scheduling [22], [29].
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∀t > 0, LBF(t) = B(t) +
∑

Ss∈S

DBFs(t) ≤ t, (7.6)

where

DBFs(t) =

⌊
t

Ps

⌋
· Qs, (7.7)

and the system-level blocking function B(t) represents the maximum block-

ing time (according to SRP) during which a subsystem Ss may be blocked by

another subsystem Sk, where Ps ≤ t and Pk > t. B(t) is defined as

B(t) = max{Hk | Pk > t}. (7.8)

Under global FPS scheduling, the subsystem load bound function is as fol-

lows (on the basis of a similar reasoning of Eq. (7.4)):

LBFs(t) = RBFs(t) + Bs , where (7.9)

RBFs(t) = Qs +
∑

Sk∈HPS(s)

⌈
t

Pk

⌉
· Qk, (7.10)

where HPS(s) is the set of subsystems with priority higher than that of Ss.

Let Bs denote the maximum blocking (i.e., extra CPU demand) imposed to a

subsystem Ss, when it is blocked by lower-priority subsystems,

Bs = max{Hj | Sj ∈ LPS(Ss)}, (7.11)

where LPS(Ss) is the set of subsystems with priority lower than that of Ss.

A global schedulability condition under FPS is then

∀Ss ∃t : 0 < t ≤ Ps, LBFs(t) ≤ t. (7.12)

7.5 Overrun mechanisms

This section explains three overrun mechanisms that can be used to handle

budget expiry during a critical section in the HSF. Consider a global scheduler

that schedules subsystems according to their periodic interfaces (Ps, Qs, Hs).

The subsystem budget Qs is said to expire at the point when one or more in-

ternal (to the subsystem) tasks have executed a total of Qs time units within
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Figure 7.3: Basic and enhanced overrun mechanisms.

the subsystem period Ps. Once the budget is expired, no new task within the

same subsystem can initiate its execution until the subsystem’s budget is re-

plenished. This replenishment takes place in the beginning of each subsystem

period, where the budget is replenished to a value of Qs.

Budget expiration may cause a problem if it happens while a job Ji of a

subsystem Ss is executing within a critical section of a global shared resource

Rj . If another job Jk, belonging to another subsystem, is waiting for the same

resource Rj , this job must wait until Ss is replenished again so Ji can con-

tinue to execute and finally release the lock on resource Rj . This waiting time

exposed to Jk can be potentially very long, causing Jk to miss its deadline.

In this paper, an overrun mechanism is considered as follows; when the

budget of subsystem Ss expires and Ss has a job Ji that is still locking a glob-

ally shared resource, job Ji continues its execution until it releases the locked

resource. The extra time that Ji needs to execute after the budget of Ss ex-

pires is denoted as overrun time θ. The maximum θ occurs when Ji locks a

resource that gives the longest resource holding time just before the budget of
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Ss expires.

Here, two versions of overrun mechanisms [2] are considered;

1. The overrun mechanism with payback, introduced as PO and later EO:

whenever overrun happens, the subsystem Ss pays back θ in its next

execution instant, i.e., the subsystem budget Qs will be decreased by θ
for the subsystem’s execution instant following the overrun (note that

only the instant following the overrun is affected).

2. The overrun mechanism without payback, introduced as BO: in this ver-

sion of the overrun mechanism, no further actions will be taken after the

event of an overrun.

Hereinafter, the overrun mechanism with payback is called PO, and the

overrun mechanism without payback is called BO. Both are versions of the

basic overrun mechanism. Also, an extended mechanism with payback is in-

troduced as EO.

7.5.1 Basic overrun – overrun mechanism 1 and 2

Davis et al. [2] presented schedulability analysis for both (BO and PO) ver-

sions of basic overrun, however, the presented analysis is not suitable for open

environments [4] as it requires detailed information of all tasks in the system in

order to calculate global schedulability. This section discusses how to extend

the existing schedulability analysis for the basic overrun mechanisms, making

them suitable for open environments.

Global analysis with basic overrun

PO – basic overrun with payback Firstly, the demand bound function (and

the request bound function) of a subsystem with the basic overrun mechanism

with payback is extended. Looking at the PO mechanism in a subsystem Ss,

the maximum contribution on DBFs(t) for EDF scheduling and RBFs(t) for FPS

scheduling is Hs. When Ss overruns with its maximum, which is Hs, the sub-

system’s resource demand within the subsystem period Ps will be increased to

Qs + Hs. Following this, the budget of the next period will be decreased to

Qs − Hs due to the payback mechanism. Then, suppose that the subsystem

overruns again. Now, during the next subsystem period, the subsystem’s re-

source demand will be Qs − Hs + Hs = Qs. Here, it is easy to observe that

the subsystem’s resource demand will be at most kQs+Hs during k subsystem
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periods. Hence, the demand bound function DBF◦s(t) of a subsystem Ss with

the basic overrun mechanism using EDF scheduling globally is

DBF◦s(t) =

⌊
t

Ps

⌋
· Q◦

s + Os(t), (7.13)

where Q◦
s is the subsystem budget when using the PO mechanism and,

Os(t) =

{
Hs if t ≥ Ps,
0 otherwise.

(7.14)

The schedulability condition of Eq. (7.6) can then be extended by substituting

DBFs(t) with DBF◦s(t).
When using a global FPS scheduler, the request bound function RBF◦s(t) is

RBF◦s(t) = (Q◦
s + Hs) +

∑

Sk∈HPS(s)

(⌈
t

Pk

⌉
(Q◦

k) + Hk

)
. (7.15)

BO – basic overrun without payback This version of overrun does not pay-

back the budget after overrun happens. This means that the system resource

demands within the period of Ps can be up to Qs + Hs for all periods consid-

ering that the maximum overrun will happen every period, which is the worst

case scenario. Then for EDF global scheduling, the maximum demand bound

function DBF#
s (t) using the BO mechanism is

DBF#
s (t) =

⌊
t

Ps

⌋
· (Q#

s + Hs), (7.16)

where Q#
s is the subsystem budget when using the BO mechanism.

For a global FPS scheduler, the request bound function RBF#
s (t) is

RBF#
s (t) = (Q#

s + Hs) +
∑

Sk∈HPS(s)

⌈
t

Pk

⌉
· (Q#

k + Hk). (7.17)

Independent analysis with basic overrun

Using PO, there is no single worst-case resource supply scenario. In fact, there

are two scenarios that constitute the worst-case scenario; the worst-case sce-

nario is either of those two scenarios, depending on an interval length t. In
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Figure 7.4: sbf◦(t) for the PO mechanism.

the first case (”Case A” shown in Figure 7.4a), the greatest Blackout Duration

(BD) is 2(P − Q) + H assuming that a task is activated upon the subsystem

budget expiration and the given budget was Qs−Hs. While in the second case

(”Case C” shown in Figure 7.4c), the subsystem can not be supplied by more

than Qs − Hs if a task is released upon the subsystem budget expiration and

the subsystem has experienced overrun by Hs in the previous instant. Note that

when a system is feasible from a global scheduling perspective, the latest CPU

resource availability for a subsystem Ss will be Ps − Qs even during the pay-

back period, see Figure 7.4c within the payback period the latest finalization

time of Qs − Hs is guaranteed to be at least Hs before the next activation of

Ss.

Let’s define two functions, function f1(t) for ”Case A” and f2(t) for ”Case

C”, to represent the minimum resource supply for each case. Then, the supply

bound function for PO (sbf◦Γ(t)) is defined accordingly as the minimum of

these two functions (see Figure 7.4). It is defined as follows:
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sbf◦Γ(t) = max
(

min
(
f1(t), f2(t)

)
, 0

)
, (7.18)

where f1(t) is

f1(t) =

{
t − (k + 1)(P − Q) − H if t ∈ W (k)

(k − 1)Q otherwise,
(7.19)

where k = max
(⌈(

t − (P − Q) − H
)
/P

⌉
, 1

)
and W (k) denotes an interval

[(k + 1)P − 2Q + H, (k + 1)P − Q + H ], and f2(t) is

f2(t) =






t − (2)(P − Q) if t ∈ V (k)

t − (k + 1)(P − Q) − H if t ∈ Z(k)

(k − 1)Q − H otherwise,
(7.20)

where k = max
(⌈(

t − (P − Q)
)
/P

⌉
, 1

)
, V (k) denotes an interval [2P −

2Q, 2P −Q−H ], and Z(k) denotes an interval [(k+2)P −2Q, (k+2)P −Q].
The existing schedulability conditions of Eq. (7.3) can then be extended by

substituting sbfΓ(t) with sbf◦Γ(t).
For BO – basic overrun without payback – Eq. (7.1) can still be used with-

out modification to evaluate the supply bound function since the Blackout Du-

ration is 2(P − Q) (as shown in Figure 7.3b), i.e., the supply bound function

using BO sbf
#
Γ (t) will equal to sbf

#
Γ (t) = sbfΓ(t).

7.5.2 Enhanced overrun – overrun mechanism 3

As seen in Section 7.5.1, the PO mechanism works with a modified supply

bound function sbf◦(t) that is less efficient in terms of CPU resource us-

age compared with the original sbf(t), as illustrated in Figure 7.4. While

for the BO mechanism, the request/demand bound function (DBF/RBF) will be

increased by Qs + Hs in all periods which may require more resources as

well. In the following an enhanced overrun mechanism (EO) is proposed. This

new overrun mechanism makes it possible to improve sbf◦(t) and at the same

time the request/demand bound function (DBF/RBF) will be Qs + Hs for the

first instance and then only Qs for the following periods when applying global

schedulability analysis.

The EO mechanism is based on imposing an offset (delaying the budget

replenishment of subsystem) equal to the amount of an overrun (θs = Hs)

to the execution instant that follows a subsystem overrun (at this instant, the
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subsystem budget is Qs − θs). As shown in Figure 7.3c, the execution of the

subsystem will be delayed by θs after a new period followed by overrun even if

that subsystem has the highest priority at that time. By this the maximum BD

will be decreased to 2(P −Q) compared with PO (basic overrun with payback)

shown in Figure 7.3a. By this, the effect of f1(t) is removed from the supply

bound function which makes the supply bound function for EO, better than

when using PO. The supply bound function for EO sbf∗Γ(t) is

sbf∗Γ(t) = max
(
f2(t), 0

)
. (7.21)

Note that the schedulability analysis of both the PO and the EO mecha-

nisms presented in [3] are not accurate since the CPU supply ”Case C” shown

in Figures 7.4 and 7.5 has not been taken into account.
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Global analysis with enhanced overrun

In the following, a demand bound function DBF∗s(t) is presented for EDF global

scheduling of a subsystem Ss that upper-bounds the demand requested by Ss

under the EO mechanism. Now, DBF∗s(t) includes the offset θs = Hs as fol-

lows:

DBF∗s(t) =

⌊
t + Hs

Ps

⌋
· Q∗

s + O∗
s(t), (7.22)

where Q∗
s is the subsystem budget when using the EO mechanism and

O∗
s(t) =

{
Hs if t ≥ Ps − Hs,
0 otherwise.

(7.23)

The schedulability condition of Eq. (7.6) can then be extended by substituting

DBFs(t) with DBF∗s(t).
Using an FPS global scheduler, the offset imposed by the EO mechanism

for each subsystem Ss can be modeled as a release jitter Js with the range of

[0, Hs] so Js = Hs. The upper bound of the request bound function RBF∗s(t)
calculation is as follows;

RBF∗s(t) = (Q∗
s + Hs) +

∑

Sk∈HPS(s)

(⌈
t + Jk

Pk

⌉
(Q∗

k) + Hk

)
. (7.24)

The schedulability analysis then

∀Ss, 0 < ∃t ≤ Ps − Hs, LBF∗s(t) ≤ t, (7.25)

where

LBF∗s(t) = RBF∗s(t) + Bs. (7.26)

7.6 Comparison between the three overrun mech-

anisms

In this section, the efficiency of the three overrun mechanisms (BO, PO and

EO) are compared. First, the effect of using each one of them locally is shown,

i.e., on a subsystem level. Then, their effect globally is shown, i.e., on a system

level.
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7.6.1 Subsystem-level comparison

We will explain the effect of using each of the three overrun mechanisms,

on the minimum subsystem budget Qs. As described in Section 7.4.2, Qs

should be the smallest value that satisfy Eq. (7.3) for EDF and Eq. (7.5) for

FPS scheduling. Note that the demand bound function dbfEDF(i, t) (request

bound function rbfFP(i, t)) will not be changed when using the BO, PO and

EO mechanisms. The only thing that changes when using one of the mecha-

nisms in the subsystem level is the supply bound function as described in the

previous section. Figure 7.6 shows the supply bound function for the three

mechanisms using the same Ps and Qs. We will show in the following lem-

mas that the mechanisms that have higher supply bound function will require

smaller Qs.

The following lemma shows that the minimum required subsystem budget

when using the EO mechanism will be lower than or equal to the minimum

required budget when using the PO mechanism for both FPS and EDF local

schedulers.

Lemma 4. Assuming that the minimum required budget to schedule all tasks

in a subsystem Ss using the PO mechanism is Q◦
s , and that the corresponding

budget when using the EO mechanism is Q∗
s, then Q∗

s ≤ Q◦
s .



100 Paper B

Proof. The proof is split into two parts, proving the case of having an EDF

local scheduler and an FPS local scheduler, respectively.

EDF local scheduler A subsystem Ss is exactly schedulable iff in addition

to Eq. (7.3),
∑n

i dbfEDF(i, t) + b(t) = sbf(t) for ∃t s.t. minn
i Di ≤ t ≤

LCMSs
+ maxn

i Di (see Theorem 2.2 in [15]). This means that if the budget

Qs is the minimum required budget to guarantee the schedulability of tasks in

Ss, then there is a set of times te at which
∑n

i dbfEDF(i, t) + b(t) = sbf(t).
Without loss of generality, assume that te includes one element. If the same

subsystem budget Qs is used when running the PO mechanism and the EO

mechanism, respectively, then from Eq. (7.18) and Eq. (7.21), there are two

cases:

case 1: sbf◦(t) = sbf∗(t) for t ≥ 2Ps − Qs see Figure (7.6). Note that we

have excluded the range when sbf∗(t) = sbf◦(t) = 0 since it is not

interesting.

case 2: sbf◦(t) < sbf∗(t) for t out of the range specified in case 1.

If te in the range given in the case 1 then sbf◦(te) = sbf(te). In turn,∑n

i dbfEDF(i, t
e)+b(te) = sbf◦(te), which means that Q∗

s may be enough to

schedule all tasks in a subsystem Ss using the PO mechanism, so Q∗
s = Q◦

s at

time t = te. However, Eq. (7.3) must be checked if it holds for all other times

t, to be sure that the subsystem Ss is still schedulable.

If te is not in the range given for case 1, then sbf◦(te) < sbf(te). In turn,

sbf◦(te) <
∑n

i dbfEDF(i, t
e) + b(te) which means that the budget Q∗

s will

not satisfy the condition in Eq. (7.3) using the PO mechanism, hence a higher

budget should be provided. In this case Q∗
s < Q◦

s .

FPS local scheduler A subsystem Ss is exactly schedulable iff in addition

to Eq. (7.5), ∀τi, 0 < ∀t ≤ Di, rbfFP(i, t) + bi ≥ sbf(t) (see Theorem 2.3

in [15]). This means that if the budget Q∗
s is the minimum required budget to

guarantee the schedulability of tasks in Ss, then there is a set of times tf at

which rbfFP(i, t) + bi = sbf(t).
If all elements in tf are not in the range given for case 1, then ∀τi, 0 < ∀t ≤

Di, rbfFP(i, t)+bi > sbf(t) which makes the local scheduler unschedulable.

To solve this problem, the budget when using the PO mechanism should be

increased. In this case Q∗
s < Q◦

s.
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Lemma 5. Assuming that the minimum required budget to schedule all tasks

in a subsystem Ss using the BO mechanism is Q#
s , and that the corresponding

budget when using the EO mechanism is Q∗
s, then Q#

s ≤ Q∗
s.

Proof. Comparing Eq. (7.1) and Eq. (7.21), sbf#(t) = sbf∗(t) for t ∈ [2Ps−
2Qs, 2Ps − Qs − Hs] and sbf#(t) > sbf∗(t) otherwise (see Figure (7.6)).

Using the same reasoning as in Lemma 1, we can prove that Q#
s ≥ Q∗

s .

7.6.2 System-level comparison

As shown in the previous section, the minimum required budget when using the

EO mechanism is grater than or equal to the minimum required budget when

using the BO mechanism, and lower than or equal to the minimum required

budget when using the PO mechanism. However, at system level, it is not easy

to see which one of these three approaches that will require minimum overall

system CPU resources in the general case.

In doing a comparison among the three approaches, system load is defined

as a quantitative measure to represent the minimum amount of CPU allocations

necessary to guarantee the schedulability of the system S. Then, the impact of

each overrun mechanism on the system load can be investigated, respectively.

When using EDF as a global scheduler, the system load is computed as

follows:

loadsys = max
t

LBF(t)

t
. (7.27)

Note that α = loadsys is the smallest fraction of the CPU that is required

to schedule all the subsystems in the system S (satisfying Eq. (7.6)) assuming

that the resource supply function (at system level) is αt. This means that αt
is greater than or equal to LBF(t) for all t > 0 and according to Eq. (7.6), the

system is schedulable. As long as αt = LBF(t) at a certain time t, then α is

the minimum value that guarantee the schedulability, otherwise if we select a

lower value than α for the resource supply function, then the system will be

unschedulable.

When using FPS as a global scheduler, the system load is computed as

follows:

loadsys = max
∀Ss∈S

{αs} (7.28)

where
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αs = min
0<t≤Ps

{
LBFs(t)

t
| LBFs(t) ≤ t}. (7.29)

Looking at Eq. (7.27) and Eq. (7.28), loadsys can be decreased by lowering

LBF(t).

EDF global scheduler Comparing between the three overrun mechanisms,

the mechanism that requires the lowest DBF(t) at the time t when LBF(t)/t is

at its maximum will require less system load. Three cases can be distinguished

based on the type of overrun mechanism used and its associated demand bound

function:

1. PO vs BO. Comparing Eq. (7.13) and Eq. (7.16), it can be concluded

that DBF◦s(t) > DBF#
s (t) for 0 ≤ t < 2 · Ps. The reason for this is

that according to Lemma 5 and Lemma 4, Q◦
s > Q#

s . When t is in

the range of 0 ≤ t < 2 · Ps, the floor in Eq. (7.13) and Eq. (7.16) will

equal to 0 or 1, which makes Eq. (7.13) and Eq. (7.16) identical, and

the only difference is the value of the budget. If t is not in this range

then it is not possible to decide which mechanism that can give a lower

demand bound function without knowing the full interface parameters

using both mechanisms. At a certain time instance ts when ts ≫ 2Ps,

DBF◦s(t) < DBF#
s (t) for t ≥ ts.

2. BO vs EO. Comparing Eq. (7.16) and Eq. (7.22), it can be concluded

that DBF∗s(t) ≥ DBF#
s (t) for 0 ≤ t < 2 · Ps. The reason for this is

that according to Lemma 5 Q∗
s ≥ Q#

s , while the floor part in Eq. (7.16)

and Eq. (7.22) is different. Looking at the EO mechanism, the demand

bound function is increased when t = Ps −Hs. For the BO mechanism,

the demand bound function is increased at t = Ps, which means that

DBF∗s(t) > DBF#
s (t) at Ps − Hs ≤ t < Ps. However, if t > 2Ps, then it

is not possible to decide which one of the two mechanisms that will be

better than the other, as in the first case above.

3. PO vs EO. Comparing Eq. (7.13) and Eq. (7.22), it can be concluded

that DBF◦s(t) < DBF∗s(t) when t is in the range kPs −Hs ≥ t < kPs and

DBF◦s(t) ≥ DBF∗s(t) when t is in kPs ≥ t < (k + 1)Ps − Hs, where k is

an integer value greater and k > 0. Note that, at a certain time instance

ts when ts ≫ 2Ps, DBF◦s(t) ≥ DBF∗s(t) for t ≥ ts if Q∗
s < Q◦

s.

The example shown in Figure 7.7 explains the three cases described above.



7.6 Comparison between the three overrun mechanisms 103

DBFI
DBFJ
DBFK

tP 2P 3P2P-HP-H 3P-H

QL+HQM+H2QL+H 2QM+H2QN+2H3QL+H3QM+H3QN+3H QJ< Q* <QI
QN+H
Figure 7.7: Comparing between DBF◦s(t), DBF

#
s (t) and DBF∗s(t).

Defining the time tl as the time at which the system load is evaluated from

Eq. (7.27), then, depending on the value of tl and the type of overrun mech-

anism used, it would be possible to estimate which one of the three overrun

mechanisms that will require the lowest system load. For example, if tl ∈ 2·Pk

and Pk is the shortest subsystem period, then the subsystem load when using

the BO mechanism is less than or equal to the subsystem load when using any

of the other two overrun mechanisms. However, if tl ≫ Pk then the possibility

of having good results when using the BO mechanism is very low. Another

aspect that can be considered is when Q◦
s = Q∗

s for all subsystems, then the

system load using the PO mechanism will always be less than or equal to the

system load when using EO. Otherwise, all subsystem parameters should be

given in order to evaluate which one of the three mechanisms that can give

better results in terms of lowest system load.

FPS global scheduler Looking at Eq. (7.29), in order to minimize the sys-

tem load LBFk(t) of the subsystem Sk that generates the maximum α should be

minimized. The overrun mechanism that generates the lowest request bound

function RBFs(t) for the subsystem Sk, will require the lowest system load.

However, Sk may not be the same subsystem when using different overrun

mechanisms, and also, at a certain time instance t, the value of RBFs(t) when

using one of the overrun mechanisms will be less than when using another
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overrun mechanism, and for another time instance t the value of RBFs(t) might

be less when using the second mechanism. It can be concluded that none of the

three overrun mechanisms can perform better than the other two in the general

case, as it depends directly of the system parameters.

The comparison between the three overrun mechanisms in terms of request

bound function is shown below;

1. PO vs BO. Comparing Eq. (7.15) and Eq. (7.17), it easy to show that

RBF◦s(t) > RBF#
s (t) for 0 ≤ t < Ps. The reason is that the interference

from other higher priority tasks is always Qk + Hk for both cases and

Q◦
s > Q#

s . If t > Ps then the mechanism that requires a lower request

bound function is different depending on the system parameters. It can

be concluded that if the subsystem periods of all subsystems are equal,

then the BO mechanism will require less system load than using the PO

mechanism. Another interesting observation is that if the subsystem that

generates maximum α in Eq. (7.29) has the highest priority, then the

BO mechanism will require less system load compared to using the PO

mechanism. The reason for this is inherent in the subsystem priority; as

the subsystem has higher priority, then there will be no interference from

other lower priority subsystems.

2. BO vs EO. Comparing Eq. (7.17) and Eq. (7.24), it is easy to show that

RBF∗s(t) ≥ RBF#
s (t) for 0 ≤ t < Ps. If t > Ps, then finding the best

mechanism that requires the least system load depends on the system

parameters.

3. PO vs EO. Comparing Eq. (7.15) and Eq. (7.24), it can be concluded

that RBF◦s(t) < RBF∗s(t) when t is in the range kPs −Hs ≥ t < kPs and

RBF◦s(t) ≥ RBF∗s(t) when t is in (k − 1)Ps ≥ t < (k)Ps − Hs where k
is an integer value greater and k > 0.

The following examples show some of the cases discussed above:

Example 1 Suppose that a system S consists of three subsystems with pa-

rameters as shown below;

Subsystem Ps Q◦ Q# Q∗
s Hs

S1 20 4.7 4 4 2

S2 50 15 12 13 4

S3 200 38 34 36 4
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The global scheduler is EDF. Using the PO mechanism loadsys = 0.79
and maximum α is at t = 200, using the BO mechanism loadsys = 0.81 and

maximum α is at t = 200, and for the EO mechanism loadsys = 0.69 and

maximum α is at t = 198.

Example 2 Suppose that a system S consists of three subsystems with pa-

rameters as shown below;

Subsystem Ps Q◦ Q# Q∗
s Hs

S1 12 2 1.5 2 1

S2 15 3.1 2.1 3 2

S3 120 15.2 14.6 15 3

The global scheduler is EDF. Using the PO mechanism loadsys = 0.57
and maximum α is at t = 15, using the BO mechanism loadsys = 0.60 and

maximum α is at t = 120, and for the EO mechanism loadsys = 0.65 and

maximum α is at t = 13.

Example 3 Suppose that a system S consists of three subsystems with pa-

rameters as shown below;

Subsystem Ps Q◦ Q# Q∗
s Hs Priority

S1 40 4.8 4 4.5 1 High

S2 40 1.9 1.5 1.75 1 Middle

S3 40 3.1 2.6 3 2 Low

The global scheduler is FPS. Using the PO mechanism loadsys = 0.34
and maximum α is at t = 40, using the BO mechanism loadsys = 0.30 and

maximum α is at t = 40, and for the EO mechanism loadsys = 0.35 and

maximum α is at t = 38.

7.7 Computing resource holding time

This section explains how to compute the resource holding time hj,i, a very

important parameter in the global analysis. The resource holding time is the

time given by the tasks maximum execution time inside a critical section plus

the interference (inside the critical section) of higher priority tasks having pre-

emption level greater than the internal ceiling of the locked resource. That

means the internal resource ceiling rcj is one of the parameters that can have
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a great effect on resource holding times of the global shared resources (see

Eq. (7.30) and Eq. (7.31)). Setting the value of rcj according to SRP may

make the resource holding times values, very high. One way to handle this

problem is by preventing the preemption inside the subsystem when a task is

accessing a shared resource. However, Fisher et al. [19] showed that prevent-

ing preemption while accessing a global shared resource may violate the local

schedulability of the subsystem and proposed an algorithm based on increasing

the ceiling of all resources in steps as much as possible without violating the

local schedulability. Finally, Shin et al. [33] showed that there is a tradeoff be-

tween decreasing the value of Hs and the minimum subsystem budget required

to guarantee the schedulability of the subsystem. The result of this paper does

not depend on any of the discussed methods to set the internal resource ceiling.

For non-hierarchical scheduling, Bertogna et al. [26] and Fisher et al. [26,

19] presented a method to evaluate the resource holding time assuming FPS

and EDF scheduling algorithms respectively. The resource holding time hj,i of

a shared resource Rj accessed by τi is the smallest positive time t∗ such that

Wj(t
∗) = t∗, with Wj computed as follows;

Wj(t) = cxj +
∑

τk∈U

⌈
t

Tk

⌉
· Ck, (7.30)

where cxj,i = max{ci,j} is the maximum execution time of task τi inside the

critical section of the resource Rj and U is the set of tasks such that U =
{τk|πk > rcj}.

Finally, the resource holding time of a resource Rj is hj = max{hj,i} for

all τi access resource Tj .

Now for a hierarchical scheduling framework that uses the overrun mecha-

nism, the following equation shows how to evaluate the resource holding time

for a task τi that accesses a resource Rj .

hj,i = cxj,i +
∑

τk∈U

Ck (7.31)

The difference between Eq. (7.31) and Eq. (7.30) is that all tasks that can

preempt inside the critical section are assumed to be executed only once. The

reason for why it is safe to assume only one execution of each preempting task

inside the critical section is given in the following lemma, showing that if a

task executes more than one time inside the critical section, the subsystem will

become unschedulable.
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Lemma 6. For a subsystem that uses an overrun mechanism to arbitrate ac-

cess to a global shared resource under the periodic virtual processor model,

each task that is allowed to preempt the execution of another task currently

inside the critical section of a globally shared resource can, in the worst case,

only execute (cause interference) once independent if the local scheduler is

EDF or FPS.

Proof. This lemma will be proved by contradiction to show that if more than

one job of a task preempts a critical section then the system utilization will be

greater than one. The following two cases are considered in the proof:

(1) Ps < Tm (where Tm = min(Ti) for all i = 1, ..n), if the task having

period Tm executes 2 or more times inside the critical section, this means that

the resource will be locked during this period, i.e., hj,i > Tm then hj,i > PS ,

which in turn means that the CPU utilization required by the subsystem Ss will

be Us = (Qs + hj,i)/Ps > 1.

(2) If Ps ≥ Tm , sbfΓ(t) should provide at least Cm at time t = Tm to

ensure the schedulability test in Eq. (7.3) for the EDF scheduler and in Eq. (7.4)

for the FPS scheduler. Note that sbfΓ(t) = 0 during t ∈ [0, 2Ps − 2Qs] so,

2Ps − 2Qs + Cm ≤ Tm which means Qs ≥ Ps − Tm/2 + Cm/2. Then the

minimum subsystem budget is,

Qmin
s = Ps − Tm/2 + Cm/2. (7.32)

Let’s define Gs as the maximum time in which a subsystem may not get

any budget within the subsystem period Ps because of preemptions from other

higher priority subsystems, then Gs = Ps − Qs (see Figure 7.8) and substitut-

ing Qs by the minimum subsystem budget in Eq. (7.32),

Gs = (Tm − Cm)/2. (7.33)

The maximum number of activations (release) of the τm within Ps while

a lower priority task accessing a global shared resource, will happen when τm

is release at the beginning of the subsystem period just after the lower priority

task has locked a global shared resource (see Figure 7.8). Now lets assume that

τm will execute two times while the global shared resource is locked, then the

subsystem budget given to the subsystem within the first period of Tm should

be low enough such that the shared resource will not be released before the

second activation of τm. Let’s define Lm as the minimum subsystem budget

that will be supplied to the subsystem within the first period of Tm, Lm =
Tm − Gs and from Eq. (7.33) we get,
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Ps

Qs
minGs

Lm

Tm

t

Figure 7.8: Resource holding times for the case Ps ≥ Tm.

Lm = (Tm + Cm)/2. (7.34)

The task τm can execute two times while a global shared resource is locked

only if hj,i evaluated from Eq. (7.31) is greater than Lm i.e., hj,i > (Tm +
Cm)/2, otherwise, the shared resource will be released before the new acti-

vation of task τm. Hence, Qmin
s + hj,i > Ps which means Us = (Qmin

s +
hj,i)/Ps > 1.

From Lemma 6, it can be concluded that all tasks that can preempt the

execution of a critical section should do so maximum one time in order to keep

the utilization of a subsystem less than one. If a task preempts the execution of

a critical section more than one time then it will be seen from Eq. (7.31) such

that Qmin
s +hj,i > Ps. This proves the correctness of Eq. (7.31) which is based

on the assumption that all tasks can interfere only once as a worst case while

a task is in the critical section of the resource Rj . If the value of hj,i becomes

greater than min(Tm, Ps) then it can be concluded that the subsystem will not

be schedulable and no further calculation towards finding an exact value of hj,i

is needed.

7.8 Summary

This paper presents three different overrun mechanisms that all can handle the

problem of sharing of logical resources in a hierarchical scheduling framework

while at the same time supporting independent subsystem development (open

environments). Compared to previous work [3], results have been generalized
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by also allowing for the FPS scheduling algorithm for both local and global

schedulers, which is suitable for usage in open environments. In addition, a

third overrun mechanism, basic overrun without payback (BO), is included in

the comparison between the overrun mechanisms. Also, this comparison is

performed considering both FPS and EDF scheduling algorithms. The results

from this comparison show that it is not trivial to evaluate, in the general case,

which overrun method that is better than the other, as their impact on the CPU

utilization is highly dependent on global system parameters such as subsystem

periods and budgets. Finally, the calculation of resource holding times when

using the periodic virtual processor model with both the EDF and FPS schedul-

ing algorithms is presented, as the resource holding time is a very important

parameter in the global schedulability analysis.

Future work includes comparing the enhanced overrun mechanism (EO)

with other synchronization mechanisms such as BWI [25], the BROE server [22]

and SIRAP [21]. In addition, implementing the three overrun mechanisms and

comparing the implementation overhead of each mechanism is important. Fi-

nally, as the global schedulability analysis gives an upper bound for EO, it will

be interesting to find an exact or less pessimistic schedulability analysis.
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Abstract

Recently, two SRP-based synchronization protocols for hierarchically sched-

uled real-time systems based on Fixed-Priority Preemptive Scheduling (FPPS)

have been presented, i.e., HSRP [1] and SIRAP [2]. Preventing depletion of

budget during global resource access, the former implements an overrun mech-

anism, while the later exploits a skipping mechanism. A theoretical compar-

ison of the performance of these mechanisms revealed that none of them was

superior to the other, as their performance is heavily dependent on the system’s

parameters. To better understand the relative strengths and weaknesses of these

mechanisms, this paper presents a comparative evaluation of the depletion pre-

vention mechanisms overrun (with or without payback) and skipping. These

mechanisms are investigated in detail and the corresponding system load im-

posed by these mechanisms is explored in a simulation study. The mechanisms

are evaluated assuming FPPS and a periodic resource model [3]. The periodic

resource model is selected as it supports locality of schedulability analysis,

allowing for a truthful comparison of the mechanisms. Given system charac-

teristics, guiding the design of hierarchically scheduled real-time systems, the

results of this paper indicate when one mechanism is better than the other and

how a system should be configured in order to operate efficiently.
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8.1 Introduction

The Hierarchical Scheduling Framework (HSF) has been introduced as a

scheduling approach to support hierarchical CPU sharing among applications

under different scheduling services [3]. The HSF can be generally represented

as a tree of nodes, where each node represents an application with its own

scheduler for scheduling internal workloads (e.g., tasks), and resources are al-

located from a parent node to its children nodes.

The HSF provides means for decomposing a complex system into well-

defined parts called subsystems. In essence, the HSF provides a mechanism for

timing-predictable composition of coarse-grained subsystems. In the HSF a

subsystem provides an introspective interface that specifies the timing proper-

ties of the subsystem precisely [3]. This means that subsystems can be in-

dependently developed and tested, and later assembled without introducing

unwanted temporal interference. Temporal isolation between subsystems is

provided through budgets which are allocated to subsystems.

Motivation: Research on HSFs started with the assumption that subsys-

tems are independent, i.e., inter-subsystem resource sharing other than the CPU

fell outside their scope. In some cases [4, 5], intra-subsystem resource shar-

ing is addressed using existing synchronization protocols for resource sharing

between tasks, e.g., the Stack Resource Policy (SRP) [6]. Recently, two SRP-

based synchronization protocols for inter-subsystem resource sharing in FPPS

systems have been presented, i.e., HSRP [1] and SIRAP [2]. An initial com-

parative assessment of HSF synchronization protocols, based on five criteria,

revealed that none of them was superior to the others [7], however. In particu-

lar, the performance of the protocol turned out to be heavily dependent on the

system parameters.

One of the main differences between these two synchronization protocols

is the way they deal with inter-subsystem resource sharing and depletion of

budgets. HSRP is based on an overrun mechanism (with or without payback),

i.e., upon depletion of the budget during global resource access, the budget

is temporally increased with a statically determined amount for the duration

of that access, whereas SIRAP is based on a skipping mechanism, preventing

depletion of the budget during global resource access. To better understand

the relative strengths and weaknesses of synchronization protocols for HSFs,

a comparative evaluation of these underlying mechanisms is presented in this

paper.

Although HSRP and SIRAP assume a two-level HSF, it is hard to truthfully

compare these protocols in their original settings, because they assume differ-
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ent virtual processor models and different scheduling mechanisms. Therefore,

the comparison in this paper is performed using a common virtual proces-

sor model, the periodic resource model from [3], and a common local and

global scheduling mechanism; Fixed-Priority Preemptive Scheduling (FPPS).

Schedulability analysis for the overrun mechanism (of HSRP) and the skipping

mechanism (of SIRAP) assuming the periodic resource model and FPPS can

be found in [8] and [2], respectively.

Contributions: In this paper, the efficiency of the mechanisms is shown

by exploring the system load [7] in a simulation study. The theoretical study of

system load shows under which system configuration one mechanism is better

than the other.

Outline: Section 8.2 presents related work, and Section 8.3 presents the

system model and background. Section 8.4 presents a simulation study com-

paring the system load imposed by overrun and skipping. Finally, Section 8.5

concludes the paper.

8.2 Related work

This section presents related work in the areas of hierarchical scheduling and

synchronization protocols.

Hierarchical scheduling Over the years, there has been a growing attention

to hierarchical scheduling of real-time systems [4, 9, 10, 11, 5, 12, 13, 14, 15,

3]. Deng and Liu [10] proposed a two-level hierarchical scheduling framework

for open systems, where subsystems may be developed and validated inde-

pendently in different environments. Kuo and Li [5] presented schedulabil-

ity analysis techniques for such a two-level framework with the Fixed-Priority

Preemptive Scheduling (FPPS) global scheduler. Lipari and Baruah [12, 16]

presented schedulability analysis techniques for Earliest Deadline First (EDF)

global schedulers. Mok et al. [17, 11] proposed the bounded-delay virtual pro-

cessor model to achieve a clean separation in a multi-level HSF. In addition,

Shin and Lee [3] introduced the periodic virtual processor model (to charac-

terize the periodic CPU allocation behaviour), and many studies have been

proposed on schedulability analysis with this model under FPPS [4, 9, 13] and

under EDF scheduling [3, 18]. However, a common assumption shared by all

above studies is that tasks are independent.
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Synchronization In order to allow for dependencies among tasks, many syn-

chronization protocols have been introduced for arbitrating accesses to shared

logical resources, addressing the priority inversion problem, e.g., the Stack

Resource Policy (SRP) [6]. For usage in a HSF, additional protocols have been

proposed, e.g., the Hierarchical Stack Resource Policy (HSRP) [1], the Subsys-

tem Integration and Resource Allocation Policy (SIRAP) [2] and the Bounded-

delay Resource Open Environment (BROE) [19] protocols. The work in this

paper concerns the former two, targeting systems implementing FPPS sched-

ulers. To bound the waiting time of tasks from different subsystems that want

to access the same shared resource, subsystem budget expiration should be pre-

vented while locking a global shared resource. The following two mechanisms

can be used to solve this problem:

(1) the overrun mechanism The problem of subsystem budget depletion in-

side a critical section is handled by adding extra resources to the budget of each

subsystem to prevent the budget expiration inside a critical section. HSRP is

based on an overrun mechanism. HSRP stops task preemption within the sub-

system whenever a task is accessing a global shared resource. SRP is used

at the global level to synchronize the execution of subsystems that have tasks

accessing global shared resources. Two versions of overrun mechanisms have

been presented; 1) with payback; whenever overrun happens in a subsystem

Ss, the budget of the subsystem will, in its next execution instant, be decreased

by the amount of the overrun time. 2) without payback; no further actions will

be taken after the event of an overrun.

(2) the skipping mechanism Skipping is another mechanism that prevents a

task from locking a shared resource by skipping its execution if its subsystem

does not have enough remaining budget at the time when the task tries to lock

the resource1. SIRAP is based on the skipping mechanism. SIRAP uses the

SRP protocol to synchronize the access to global shared resources in both local

and global scheduling. SIRAP checks the remaining budget before granting the

access to the globally shared resources; if there is sufficient remaining budget

then the task enters the critical section, and if there is insufficient remaining

budget, the local scheduler delays the critical section entering of the job until

the next subsystem budget replenishment (assuming that the subsystem budget

1The idea of skipping has been firstly considered in the zone based protocol ZB [20] used in a

pfair-scheduling environment, while we use it for hard real-time tasks under hierarchical schedul-

ing.
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in the next subsystem budget replenishment is enough to access the global

shared resource by the task).

8.3 System model and background

This paper focuses on scheduling of a single node, where each node is modeled

as a system S consisting of one or more subsystems Ss ∈ S. The system is

scheduled by a two-level Hierarchical Scheduling Framework (HSF) as shown

in Figure 8.1. During runtime, the system level scheduler (global scheduler)

selects, at all times, which subsystem will access the common (shared) CPU

resource. The synchronization protocols, SRP and HSRP+SIRAP, will mediate

access to local and global shared logical resources, respectively.
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Figure 8.1: HSF with resource sharing.

Subsystem model A subsystem Ss consists of a task set Ts of ns tasks and a

scheduler. Once a subsystem is assigned the processor (CPU), its local sched-

uler will select which subsystem-internal task will be executed. Each subsys-
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tem Ss is associated with a subsystem timing interface Ss(Ps, Qs, {Xs,j}),
where Qs is the subsystem budget that the subsystem Ss will receive every

subsystem period Ps, and Xs,j is the maximum time that a subsystem internal

task may lock a shared resource Rj . The subsystem interface is used to specify

the collective temporal requirements of a subsystem, and it is used as an inter-

face between the subsystem and the global scheduler. Finally, both the local

scheduler of a subsystem Ss as well as the global scheduler of the system S are

assumed to implement the FPPS scheduling policy. Let HP(s) return the set of

subsystems with priorities higher than that of Ss and let Rs be a set of global

shared resources accessed by Ss. In this paper and for simplicity, Xs is used

instead of {Xs,j} in the subsystem interface. Xs equals to the maximum ele-

ment in {Xs,j}. Hence, the impact of this simplification will make the results

more pessimistic.

Task model The task model considered in this paper is the deadline con-

strained sporadic hard real-time task model τi(Ti, Ci, Di, {ci,j}), where Ti is

a minimum separation time between arrival of successive jobs of τi, Ci is their

worst-case execution-time, and Di is an arrival-relative deadline (0 < Ci ≤
Di ≤ Ti) before which the execution of a job must be completed. Each task

is allowed to access one or more shared logical resources, and ci,j is a critical

section execution time that represents a worst-case execution-time requirement

of task τi within a critical section of a global shared resource Rj (for simplicity

of presentation, we assume that each task accesses a shared resource at most

one time). It is assumed that all tasks belonging to the same subsystem are as-

signed unique static priorities and are sorted according to their priorities in the

order of increasing priority. Without loss of generality, it is assumed that the

priority of a task is equal to the task ID number after sorting, and the greater

a task ID number is, the higher its priority is. The set of shared resources ac-

cessed by τi is denoted {Ri}. Let hp(i) return the set of tasks with priorities

higher than the priority of τi and lp(i) return the set of tasks with priorities

lower than the priority of task τi. For each subsystem, we assume that the sub-

system period is selected such that 2Ps ≤ Tm, where τm is the task with the

shortest period. This restriction is made for reasons of resource efficiency [21].

Moreover, this assumption simplifies the presentation of the paper (evaluating

Xs).

Periodic resource model The CPU supply refers to the amount of CPU al-

location that a virtual processor can provide. Shin and Lee [3] proposed the pe-
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riodic processor resource model Γ(P, Q) to specify periodic CPU allocations,

where P is a period (P > 0) and Q is a periodic allocation time (0 < Q ≤ P ).

The supply bound function sbfΓ(t) of Γ(P, Q) was given in [3] that com-

putes the minimum possible CPU supply for every interval length t as follows:

sbfΓ(t) =

{
t − (k + 1)(P − Q) if t ∈ V (k)

(k − 1)Q otherwise,
(8.1)

where k = max
(⌈(

t − (P − Q)
)
/P

⌉
, 1

)
and V (k) denotes an interval [(k +

1)P − 2Q, (k + 1)P − Q].

8.3.1 Shared resources

The presented HSF allows for sharing of logical resources between arbitrary

tasks, located in arbitrary subsystems, in a mutually exclusive manner. To

access a resource Rj , a task must first lock the resource, and when the task

no longer needs the resource it is unlocked. The time during which a task

holds a lock is called a critical section. At any time, only a single task may

hold its lock. A resource that is used by tasks in more than one subsystem

is denoted a global shared resource. A resource only used within a single

subsystem is denoted a local shared resource. The work in this paper targets

managing global shared resources, and throughout the remainder of the paper

these are simply denoted as shared resources. Management of local shared

logical resources can be done by using one of several existing synchronization

protocols. In this paper, local shared resources are managed by SRP.

To be able to use SRP in a HSF for synchronizing global shared resources,

its associated terms resource, system and subsystem ceilings are extended as

follows:

Resource ceiling Each global shared resource Rj is associated with two

types of resource ceilings; an internal resource ceiling (rcj ) for local schedul-

ing and an external resource ceiling (RXj) for global scheduling. They are

defined as rcj = max{i|τi ∈ Ts accesses Rj} and RXj = max{s|Ss ac-

cesses Rj}. However, assigning an internal resource ceiling according to SRP

makes the value of Xs very high which makes the subsystem require more

CPU resources. Note that HSRP prevents any task preemption locally (within

the subsystem) while accessing shared resources, which can be implemented

using SRP with internal resource ceiling equal to the maximum task priority

rcj = ns. [22] showed that preventing preemption while accessing a global
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shared resource may violate the local schedulability of the subsystem, and pro-

posed an algorithm based on increasing the ceiling of all resources2 in steps as

much as possible without violating the local schedulability.

System/subsystem ceiling The system/subsystem ceilings are dynamic pa-

rameters that change during execution. The system/subsystem ceiling is equal

to the highest external/internal resource ceiling of a currently locked resource

in the system/subsystem.

Under SRP, a task τk can preempt the currently executing task τi (even

inside a critical section) within the same subsystem, only if the priority of τk is

greater than its corresponding subsystem ceiling. The same reasoning can be

made for subsystems from a global scheduling point of view.

8.3.2 Schedulability analysis

In order to be able to compare the overrun and skipping mechanisms when

used by synchronization protocols in a HSF, HSRP and SIRAP have been

implemented in the same HSF allowing for a fair comparison of their per-

formance. HSRP comes in two flavors, with and without payback, denoted

as Overrun With Payback (OWP) and Overrun with No Payback (ONP), re-

spectively. SIRAP implements the Skipping (SKP) mechanism. Central to the

discussions later in the paper, the general local and a global schedulability anal-

ysis, independent on a particular mechanism, is first presented followed by its

modifications for each one of the three mechanisms.

General local schedulability analysis The general local schedulability anal-

ysis under FPPS is as follows [6, 3]:

∀τi ∃t : 0 < t ≤ Di, rbfi(t) ≤ sbf(t), (8.2)

where rbfi(t) denotes the request bound function of a task τi (later it is shown

how to calculate rbfi(t), which is dependent on the synchronization protocol

in use). Note that t can be selected within a finite set of scheduling points [23].

2Lowering the value of Xs may not always decrease the minimum required CPU resources, it

may increase it as shown in [8], however this issue is out of the scope of this paper and left for

future work.
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General global schedulability analysis The general condition for global

schedulability is

∀Ss ∃t : 0 < t ≤ Ps, RBFs(t) + Bs ≤ t, (8.3)

where RBFs(t) denotes the request bound function of a subsystem Ss, and Bs

is the maximum blocking imposed to a subsystem Ss, when it is blocked by

lower-priority subsystems (suppose that Sj imposes the maximum blocking on

Ss then Bs = Xj) . Note that the way of calculating RBFs(t) depends on the

synchronization protocol.

Overrun mechanism without payback rbfi(t) using ONP is calculated as

follows [8];

rbfi(t) = Ci + bi +
∑

τk∈hp(i)

⌈ t

Tk

⌉
· Ck, (8.4)

where bi is the maximum blocking imposed to a task τi by lower priority tasks

that access resources with ceiling greater than or equal to the priority of τi (i.e.,

bi = maxτk∈lp(i)∧rcj≥i(ck,j)).

RBFs(t) can be calculated as follows;

RBFs(t) = (Qs + Xs) +
∑

Sk∈HP(s)

⌈ t

Pk

⌉
(Qk + Xk) (8.5)

Overrun mechanism with payback Eq. (8.4) and Eq. (8.2) can be used for

local schedulability analysis for the OWP mechanism, however, calculating

the supply bound function sbf(t) will be different. Lets sbf∗(t) be the supply

bound function when using the overrun mechanism with payback, then sbf∗(t)
can be evaluated as follows [24];

sbf∗(t) = max(sbf(t) − Xs, 0). (8.6)

Eq. (8.7) is used to calculate RBFs(t).

RBFs(t) = (Qs + Xs) +
∑

Sk∈HP(s)

(⌈ t

Pk

⌉
· Qk + Xk

)
(8.7)
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Skipping mechanism rbfi(t) can be computed for SKP as follows [2];

rbfi(t) = Ci + IS
i + IH

i (t) + bi, (8.8)

where IS
i is the task self blocking, IH

i (t) is the interference from higher priority

tasks and bi is the interference from the lower priority tasks,

IS
i =

∑

Rj∈{Ri}

Xi,j , (8.9)

IH
i (t) =

∑

τk∈hp(i)

⌈ t

Tk

⌉
(Ck +

∑

Rj∈{Rk}

Xk,j), (8.10)

bi = max
τk∈lp(i)∧rcj≥i

(2 · (Xk,j)). (8.11)

Eq. (8.12) is used to evaluate RBFs(t) when using the SKP mechanism:

RBFs(t) = Qs +
∑

Sk∈HP(s)

⌈ t

Pk

⌉
· Qk. (8.12)

Calculating Xs

Given a subsystem Ss, its critical section execution time Xs represents a worst-

case CPU demand that internal tasks of Ss may collectively request while exe-

cuting inside any critical section. Note that any task τi accessing a resource Rj

can be preempted by tasks with priority higher than the internal resource ceil-

ing rcj of Rj . Lets denote the maximum time that an internal task τi locks Rj

within the subsystem by Xi,j . Note that both HSRP and SIRAP prevent sub-

system budget expiration inside a critical section of a global shared resource.

To ensure the global schedulability analysis, Xi,j < Ps and since we assume

that 2Ps ≤ Tm then all tasks that are allowed to preempt while τi accesses Rj

will be activated at most one time. Otherwise, only if Xi,j > Ps, tasks will be

able to execute more than one time while locking a global shared resource and

that means the system is not schedulable globally. Then Xi,j can be computed

as

Xi,j = ci,j +

ns∑

k=rcj+1

Ck. (8.13)

Let Xj = max(Xi,j | for all τi accessing resource Rj), then

Xs = max(Xj | for all Rj ∈ Rs).
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Subsystem budget In this paper, it is assumed that the subsystem period

is given while the minimum subsystem budget should be computed so that

the system will require as little CPU resources as possible. Given a subsys-

tem Ss, and Ps, let calculateBudget(Ss, Ps) denote a function that calcu-

lates the smallest subsystem budget Qs that satisfies Eq. (8.2). Hence, Qs =
calculateBudget(Ss, Ps) (the function is similar to the one presented in [3]).

Note that for both SKP and OWP, the following condition should be satisfied;

Qs ≥ Xs. For SKP, this condition is sufficient to make sure that if τi blocks

itself then it will execute during the next subsystem period since 2Ps ≤ Tm.

8.4 Comparing overrun and skipping

As described in [7], none of the synchronization mechanisms is superior to

the others, because their performance heavily depends on the system parame-

ters. The performance of the mechanisms is measured by the amount of CPU

resource required at system level (globally) in order to guarantee the schedula-

bility of the subsystems and their internal tasks. The mechanism that requires

the lowest CPU resource is considered as the best among all mechanisms. One

way to compare the performance of the mechanisms is by comparing the in-

terfaces of the subsystems using each mechanism. Although this comparison

can be useful at subsystem level, it is not useful at the system level, i.e., when

subsystems are integrated, each of the mechanisms schedule subsystems glob-

ally in a different way. In this section, we therefore compare the mechanisms

using the notion of system load [25] since it provides an indication of the sys-

tem CPU requirement in the presence of shared resources. The comparison

is done by means of simulation experiments. We start this section by briefly

recapitulating the notion of system load. Next, we describe the setup of our

experiments, which is followed by the results.

8.4.1 System load

For comparison purposes, system load is defined as a quantitative measure to

represent the minimum amount of CPU allocations necessary to guarantee the

global schedulability of the system S. System load loadsys is calculated as

follows:

loadsys = max
∀Ss∈S

{αs} (8.14)

where
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αs = min
0<t≤Ps

{
RBFs(t) + Bs

t
| RBFs(t) + Bs ≤ t}. (8.15)

Note that αs is the smallest fraction of the CPU resources that is required

to schedule a subsystem Ss (satisfying Eq. (8.3)) assuming that the global re-

source supply function is αst.
Given a system consisting of more than one subsystem, each subsystem

containing a set of tasks, an efficient synchronization mechanism is the one

that produces the lowest system load loadsys for this system. IF loadsys > 1
then the system is not schedulable.

8.4.2 Experiment definition

The simulation study is performed by applying the synchronization mecha-

nisms ONP, OWP, and SKP on 1000 different randomly generated systems

using the schedulability analysis presented in section 8.3.2, where each sys-

tem consists of 5 subsystems3 and, in turn, each subsystem contains 8 tasks.

Once a system is generated, it is analyzed by applying the three synchroniza-

tion mechanisms. The internal resource ceiling of the globally shared resources

is assumed to be equal to the highest task priority in each subsystem and we

assume that Ti = Di for all tasks. 2-6 tasks access globally shared resources

in each subsystem. The worst-case critical section execution time of a task τi

is set to a value between 0.3Ci and 0.8Ci
4. A task is assumed to access at most

one globally shared resource. For each system, the number of the global shared

resources is two and all subsystems have at least two internal tasks that access

both global shared resources. For each simulation study the following settings

are changed and a new 1000 systems is generated:

1. System utilization – the system utilization, i.e., the summation of the

utilization of all tasks in the system, is specified to a desired value.

2. Subsystem period – the subsystem period is specified as a range with a

lower and upper bound. The simulation program generates a subsystem

period randomly within the specified range, following a uniform distri-

bution.

3. Task period – the task period is specified and generated in the same way

as the period of a subsystem.

3We have tested several scenarios and the number of subsystems does not appear to have a

significant impact on the system load.
4Having a lower range of the critical section execution times does not yield a significant differ-

ence between the mechanisms, which makes it hard to highlight their individual differences.
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The system utilization is divided randomly among the subsystems and the

assigned utilization to each subsystem is in turn divided randomly to the tasks

that belong to that subsystem. Since the task period is generated to a value

within the interval as specified, the execution time is derived from the desired

task utilization. All randomized system parameters are generated following

uniform distributions.

8.4.3 Simulation results

Tables 8.1-8.4 show the results of the 4 different simulation studies performed.

• Study 1 is specified having a task utilization of 15%, task periods be-

tween 400 and 1000, and subsystem periods between 50 and 200.

• Study 2 decrease task periods (compared to Study 1) to the interval of

400-450, and therefore also Xs (a task will have the same utilization

compare to Study 1 and since its period is lower then its execution time

becomes lower).

• Study 3 decrease subsystem periods (compared to Study 1) to the inter-

val of 50-60.

• Study 4 increase task utilization (compared to Study 1) to 30%, and

therefore also Xs (a task utilization will be higher and that increases its

execution time).

In each of these studies, 1000 systems are randomly generated, and for

each generated system all three synchronization mechanisms are applied. For

each case, the loadsys is calculated hence making it possible to determine which

of the three mechanisms requires the lowest loadsys for that particular system.

Keeping track of all calculated loadsys values allow for determining min, max

and average of the set of 1000 systems. Also, looking at the 1000 systems, it

is possible to determine how often a particular mechanism requires less CPU

resource than the other (shown under ”Best” row in Tables 8.1-8.3). For refer-

ence, the same calculation is performed without sharing any global resources

as well, to indicate the cost of running the synchronization protocols, and it is

shown in the tables under HSF.

Skipping vs. overrun

Looking at Table 8.1, the results from using SKP is relatively better than both

other mechanisms. The reason for this is that the range of task periods is much
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ONP OWP SKP HSF

Average 0, 48 0, 48 0, 42 0, 3

Min 0, 36 0, 33 0, 31 0, 24

Max 0, 70 0, 85 0, 61 0, 46

Best 7% 3% 90% -

Table 8.1: Measured results of Study 1

higher than the range of subsystem periods. Decreasing the range of task pe-

riods and keeping the subsystem period range forces SKP to require a higher

loadsys, as show in Table 8.2.

ONP OWP SKP HSF

Average 0, 47 0, 48 0, 46 0, 33

Min 0, 36 0, 34 0, 32 0, 24

Max 0, 62 0, 64 0, 63 0, 43

Best 40% 10% 50% -

Table 8.2: Measured results of Study 2

On the other hand, decreasing the range of subsystem periods and keeping

the range of task periods the same as in Study 1 makes the performance of SKP

much better than the other two mechanisms, as shown in Table 8.3.

ONP OWP SKP HSF

Average 0, 58 0, 74 0, 39 0, 37

Min 0, 41 0, 45 0, 28 0, 23

Max 0, 80 > 1 0, 58 0, 57

Best 0% 0% 100% -

Schedulable 100% 99% 100% 100%

Table 8.3: Measured results of Study 3

To explain the reason, comparing Eq. (8.4) and Eq. (8.8) (local schedula-

bility analysis), rbfi(t) is higher when using SKP compared to when using

ONP and maybe OWP (inherent in the effect of self blocking that is added

in Eq. (8.8)) which makes the minimum required budget higher when using

SKP. However, the difference between the subsystem budget when using SKP

and when using ONP and OWP depends on the following parameters; subsys-

tem period Ps, task period Ti, critical section execution times of the shared
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resources ci,j and Xs for OWP (see Eq. (8.6)). For SKP, if Ti ≫ Ps then

a small increment in the subsystem budget may be enough to cover the ef-

fect of self blocking on the rbfi(t) (to satisfy the schedulability condition

rbfi(t) = sbf(t) at t = Ti).

On the other hand, the effect of using ONP and OWP appears in the calcu-

lation of RBF(t) (global schedulability) as the maximum overrun Xs, added to

RBF(t) (see Eq. (8.5) and Eq. (8.7)). Hence, if the difference between subsys-

tem budget when using SKP, and subsystem budget when using either ONP or

OWP, is much less than Xs, then SKP will require a lower loadsys as the loadsys

depends on RBF(t) (see Eq. (8.14) and Eq. (8.15)).

ONP OWP SKP HSF

Average 0, 92 0, 92 0, 80 0, 60

Min 0, 67 0, 68 0, 60 0, 46

Max > 1 > 1 > 1 0, 91

Best 5% 3% 92% -

Schedulable 71% 76% 99% 100%

Table 8.4: Measured results of Study 4

The results of Study 4 are outlined in Table 8.4. In Study 4 the system

utilization is increased which in turn increases the values of the critical section

execution time and that increases the value of Xs. In this study it is clear that

SKP is performing better than the other two mechanisms. Following the same

reasoning as above, if the maximum execution time inside a critical section

becomes larger, and the range of task periods is much higher than the range of

subsystem periods, then SKP will perform better than ONP and OWP.

No payback vs. payback

Comparing the results of ONP and OWP in Table 8.1 and Table 8.3, both

OWP and ONP gives approximately the same results in Tables 8.1, 8.2 and 8.4.

The reason is that OWP requires larger subsystem budget Qs since sbf∗(t) <
sbf(t) (see section 8.3.2) and in the global schedulability, OWP can perform

better as Xs is added only one time when computing RBFs(t) (see Eq. (8.7)).

We can conclude that the performance of the mechanisms depends on the size

of Xs and the subsystems periods. In Table 8.3 ONP is better than OWP, the

difference between the lowest and the highest subsystem period in Table 8.1

(range is 50-200) is much more than the same difference in Table 8.3 (range

is 50-60). Hence, ONP requires a lower loadsys compared with that of using
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OWP if the subsystem periods are equal or close to each other. The reason for

this is explained as follows; the subsystem budget when using ONP is always

less than the subsystem budget when using OWP because:

1. When using OWP, Xs ≤ Qs should hold and if not then the subsystem

budget should be increased to Qs = Xs, while for ONP, Qs can be less

or greater than Xs without any problem, i.e., the subsystem budget is not

required to be increased.

2. As mentioned previously, OWP requires more subsystem budget than

ONP to guarantee the schedulability of the subsystem.

If the subsystem periods are equal, or close to each other, then Eq. (8.7) and

Eq. (8.5) will have their main difference in the budget inherent in the use of

OWP and ONP, respectively. On the other hand, if the difference in subsystem

period is high then the interference from higher priority subsystems will be

higher in Eq. (8.5) than in Eq. (8.7) which makes OWP perform better than

ONP5.

Number of shared resources

One of the factors that can decrease the performance of SKP is the number of

shared resources accessed by tasks that belong to a subsystem. Increasing the

number of shared resources will increase the rbfi(t) of task τi since it sums

the critical section execution times as shown in Eq. (8.9)-(8.11), while for the

overrun mechanism, calculating rbfi(t) includes only the maximum blocking

from lower priority task. We can conclude that SKP performs better if a low

number of resources are accessed by tasks.

8.5 Summary

In this paper, a simulation study has been performed on two different synchro-

nization mechanisms; the overrun mechanism and the skipping mechanism.

These mechanisms are used to enable the sharing of global logical resources in

a Hierarchical Scheduling Framework (HSF), and the study investigates their

efficiency in terms of CPU resource requirements. The results from the simu-

lation study show that skipping can perform better than the overrun mechanism

if the task periods are much larger than their subsystem period. Otherwise and

for a high difference between subsystems periods, the overrun with payback

5The same conclusion was shown in [1] and it is presented in this paper to show that it is also

valid with the scheduling framework that is used in this paper.
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can give better results, and for equal or close to equal subsystem periods, the

overrun without payback performs better. Future work include implementing

and testing the mechanisms on real industrial systems. Also, it would be in-

teresting to develop an approach that selects different protocols, on subsystem

level, in order to minimize the overall amount of required CPU resources.
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Abstract

In this paper we have developed a new schedulability analysis for hier-

archically scheduled real-time systems executing on a single processor using

SIRAP; a synchronization protocol for inter subsystem task synchronization.

We have shown that it is possible to bound the number of selfblocking occur-

rences that should be taken into consideration in the schedulability analysis

of subsystems, and correspondingly developed and proved correctness of two

novel schedulability analysis approaches for SIRAP. An evaluation suggests

that this new schedulability analysis can decrease the analytical subsystem uti-

lization significantly.



9.1 Introduction 139

9.1 Introduction

The amount of functionality realized by software in modern embedded sys-

tems has steadily increased over the years. More and more software functions

have to be developed, implemented and integrated on a common shared hard-

ware architecture. This often results in very complex software systems, where

the functions both are dependent on each other for proper operation, and are

interfering with each other in terms of, e.g., resource usage and temporal per-

formance.

To remedy this problem inherent in hosting a large number of software

functions on the same hardware, research on platform virtualization has re-

ceived an increased interest. Looking at real-time systems, research has fo-

cused on partitioned scheduling techniques for single processor architectures,

which includes hierarchical scheduling where the CPU is hierarchically shared

and scheduled among software partitions that can be allocated to the system

functions. Hierarchical scheduling can be represented as a tree of nodes, where

each node represents an application with its own scheduler for scheduling in-

ternal workloads (e.g., tasks), and CPU resources are allocated from a parent

node to its children nodes. Hence, using hierarchical scheduling techniques,

a system can be decomposed into well-defined parts called subsystems, each

of which receives a dedicated CPU-budget for execution. These subsystems

may contain tasks and/or other subsystems that are scheduled by a so-called

subsystem internal scheduler. Tasks within a subsystem can be allowed to syn-

chronize on logical resources (for example a data structure, a memory map of

a peripheral device, etc.) requiring mutually exclusive access by the usage of

traditional synchronization protocols such as, e.g., the stack resource policy

(SRP) [1]. More recent research has been conducted towards allowing tasks

to synchronize on logical resources requiring mutual exclusion across subsys-

tem boundaries, i.e., a task resident in one subsystem shall be allowed to get

exclusive access to a logical resource shared with tasks from other subsystems

(global shared resource). To prevent excessive blocking of subsystems due to

budget depletion during global shared resource access, advanced protocols are

needed.

One such synchronization protocol for hierarchically scheduled real-time

systems executing on a single processor is the subsystem integration and re-

source allocation policy (SIRAP) [2], which prevents budget depletion during

global resource access. SIRAP has been developed with a particular focus of

simplifying parallel development of subsystems that require mutually exclu-

sive access to global shared resources. However, a challenge with hierarchical
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scheduling is the complexity of performing (or formulating) a tight (preferably

exact) analysis of the system behavior. Schedulability analysis typically relies

on some simplified assumptions and when the system under analysis is com-

plex, the negative effect of these simplifying assumptions can be significant.

In this paper we look carefully at SIRAP’s exact behavior and we identify

sources of pessimism in its original local schedulability analysis, i.e. the anal-

ysis of the schedulability of tasks of a subsystem. By bounding the number

of self-blocking occurrences1 that are taken into consideration in the analysis,

we develop two new and tighter schedulability analysis approaches for SIRAP

assuming fixed-priority pre-emptive scheduling (FPPS). We present proofs of

correctness for the two approaches, and an evaluation shows that they can de-

crease the analytical subsystem utilization. In addition, the evaluation shows

that neither approach is always better than the other. The efficiency of these

new approaches is shown to be correlated with the nature of the system and in

particular the number of accesses made to logical shared resources.

The outline of this paper is as follows: Section 9.2 outlines related work. In

Section 9.3 we present our system model and background. Section 9.4 outlines

the SIRAP protocol followed by an example motivating the development of

a new schedulability analysis in Section 9.5. Section 9.6 presents our new

analysis, which is evaluated in Section 9.7. Finally, Section 9.8 concludes the

paper.

9.2 Related work

Over the years, there has been a growing attention to hierarchical schedul-

ing of real-time systems. Deng and Liu [4] proposed a two-level Hierarchical

Scheduling Framework (HSF) for open systems, where subsystems may be de-

veloped and validated independently. Kuo and Li [5] presented schedulability

analysis techniques for such an HSF assuming a FPPS system level sched-

uler. Mok et al. [6, 7] proposed the bounded-delay virtual processor model to

achieve a clean separation between applications in a multi-level HSF. In addi-

tion, Shin and Lee [8] introduced the periodic resource model (to characterize

the periodic CPU allocation behavior), and many studies have been proposed

on schedulability analysis with this model under FPPS [9, 10] and under Earli-

est Deadline First (EDF) scheduling [8, 11]. However, a common assumption

1A simpler version of bounding self-blocking was presented in [3]. That paper assumes the

same maximum self-blocking at every budget supply, which in our case may make the results

more pessimistic than the original analysis of SIRAP. In this paper, we consider the maximum

possible self-blocking that may occur at each budget supply.
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shared by all above studies is that tasks are independent.

Recently, three SRP-based synchronization protocols for inter-subsystem

resource sharing have been presented, i.e., HSRP [12], BROE [13],

and SIRAP [2]. Unlike SIRAP, HSRP does not support subsystem level (lo-

cal) schedulability analysis of subsystems, and the system level schedulability

analysis presented for BROE is limited to EDF and can not be generalized to

include other scheduling policies.

9.3 System model and background

We consider a two-level HSF using FPPS at both the system as well as the

subsystem level2, and the system is executed on a single processor.

System model A system contains a set R of M global logical resources

R1, R2, . . . , RM , a set S of N subsystems S1, S2, . . . , SN , and a set B of

N budgets for which we assume a periodic resource model [8]. Each subsys-

tem Ss has a dedicated budget associated to it. In the remainder of the paper,

we leave budgets implicit, i.e. the timing characteristics of budgets are taken

care of in the description of subsystems. Subsystems are scheduled by means

of FPPS and have fixed, unique priorities. For notational convenience, we as-

sume that subsystems are indexed in priority order, i.e. S1 has highest and SN

has lowest priority.

Subsystem model A subsystem Ss contains a set Ts of ns tasks τ1, τ2, . . . , τns

with fixed, unique priorities that are scheduled by means of FPPS. For no-

tational convenience, we assume that tasks are indexed in priority order, i.e.

τ1 has highest and τns
has lowest priority. The set Rs denotes the subset of

global logical resources accessed by Ss. The maximum time that a task of Ss

may lock a resource Rk ∈ Rs is denoted by Xsk. This maximum resource

locking time Xsk includes the critical section execution time of the task that is

accessing the global shared resource Rk and the maximum interference from

higher priority tasks, within the same subsystem, that will not be blocked by

the global shared resource Rk. The timing characteristics of Ss are specified by

means of a subsystem timing interface Ss(Ps, Qs,Xs), where Ps denotes the

2Because the improvements only concern schedulability of subsystems, system level schedul-

ing is not important for this paper. We also assume FPPS at the system level scheduler for ease of

presentation of the model.
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(budget) period, Qs the budget that Ss will receive every subsystem period Ps,

and Xs the set of maximum resource locking times Xs = {Xsk}|∀Rk ∈ Rs.

Task model We consider the deadline-constrained sporadic hard real-time

task model τi(Ti, Ci, Di, {cika})
3, where Ti is a minimum inter-arrival time of

successive jobs of τi, Ci is the worst-case execution-time of a job, and Di is

an arrival-relative deadline (0 < Ci ≤ Di ≤ Ti) before which the execution

of a job must be completed. Each task is allowed to access an arbitrary num-

ber of global shared resources (also nested) and the same resource multiple

times. The set of global shared resources accessed by τi is denoted by {Ri}.

The number of times that τi accesses Rk is denoted by rnik . The worst-case

execution-time of τi during the ath access to Rk is denoted by cika. For each

subsystem Ss, and without loss of generality, we assume that the subsystem

period is selected such that 2Ps ≤ T min
s , where T min

s is the shortest period of

all tasks in Ss. The motivation for this assumption is that it simplifies the eval-

uation of resource locking time and in addition, allowing a higher Ps would

require more CPU resources [14].

Shared resources To access a shared resource Rk, a task must first lock the

shared resource, and the task unlock the shared resource when the task no

longer needs it. The time during which a task holds a lock is called a critical

section. For each logical resource, at any time, only a single task may hold its

lock.

SRP is a synchronization protocol proposed to bound the blocking time of

higher priority tasks sharing logical resources with other lower priority tasks.

SRP can limit the blocking time that a high priority task can face, to the maxi-

mum critical section execution time of a lower priority task that shares the same

resource with τi. SRP associates a resource priority for each shared resource

called resource ceiling which equals to the priority of the highest priority task

(i.e. lowest task index) that accesses the shared resource. In addition, and dur-

ing runtime, SRP uses system ceiling to track the highest resource ceiling (i.e.

lowest task index) of all resources that are currently locked. Under SRP, a task

τi can preempt the currently executing task τj only if i < j and the priority of

τi is greater than the current value of the system ceiling.

To synchronize access to global shared resources in the context of hierar-

chical scheduling, SRP is used in both system and subsystem level scheduling

3Because we only consider local schedulability analysis, we omit the subscript “s” from the

task notation representing the subsystem to which tasks belong.
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and to enable this, SRP’s associated terms resource, system ceiling should be

extended as follows:

Resource ceiling: With each global shared resource Rk, two types of re-

source ceilings are associated; an internal resource ceiling (rcsk) for local

scheduling and an external resource ceiling (RXk) for system level schedul-

ing. They are defined as rcsk = min{i|τi ∈ Ts ∧ Rk ∈ {Ri}} and RXk =
min{s|Ss ∈ S ∧ Rk ∈ Rs}.

System/subsystem ceiling: The system/subsystem ceilings are dynamic pa-

rameters that change during execution. The system/subsystem ceiling is equal

to the highest external/internal resource ceiling (i.e. highest priority) of a cur-

rently locked resource in the system/subsystem.

9.4 SIRAP

SIRAP prevents depletion of CPU capacity during global resource access

through self-blocking of tasks. When a job wants to enter a critical section, it

first checks the remaining budget Qr during the current period. If Qr is suf-

ficient to complete the critical section, then the job is granted entrance, and

otherwise entrance is delayed until the next subsystem budget replenishment,

i.e. the job blocks itself. Conforming to SRP, the subsystem ceiling is immedi-

ately set to the internal resource ceiling rc of the resource R that the job wanted

to access, to prevent the execution of tasks with a priority lower than or equal

to rc until the job releases R. The system ceiling is only set to the external

resource ceiling RX of R when the job is granted entrance.

Figure 9.1 illustrates an example of a self-blocking occurrence during the

execution of subsystem Ss. A job of a task τi ∈ Ts tries to lock a global shared

resource Rk at time t2. It first determines the remaining subsystem budget Qr

(which is equal to Qr = Qs − (Q1 + Q2), i.e., the subsystem budget left after

consuming Q1+Q2). Next, it checks if the remaining budget Qr is greater than

or equal to the maximum resource locking time (Xika)4 of the ath access of

the job to Rk, i.e., if (Qr ≥ Xika). In Figure 9.1, this condition is not satisfied,

so τi blocks itself and is not allowed to execute before the next replenishment

period (t3 in Figure 9.1) and at the same time, the subsystem ceiling is set to

rcsk .

Self-blocking of tasks is exclusively taken into account in the local schedu-

lability analysis. To consider the worst-case scenario during self-blocking, we

assume that the ath request of τi to access a global shared resource Rk always

4How to determine Xika will be explained in the next subsection.
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happens when the remaining budget is less than Xika by a very small value.

Hence, Xika is the maximum amount of budget that τi can not use during self-

blocking (also called the self-blocking of τi). The effect of the interference

from higher priority subsystems is exclusively taken into account in system

level schedulability analysis; see [2] for more details.

Q�P�
t

Q�Q�
t� t� t  t¡

Figure 9.1: An example illustrating self-blocking.

Local schedulability analysis The local schedulability analysis under FPPS

is given by [8]:

∀τi ∃t : 0 < t ≤ Di, rbfFP(i, t) ≤ sbfs(t), (9.1)

where sbfs(t) is the supply bound function that computes the minimum possi-

ble CPU supply to Ss for every time interval length t, and rbfFP(i, t) denotes

the request bound function of a task τi which computes the maximum cumula-

tive execution requests that could be generated from the time that τi is released

up to time t. sbfs(t) is based on the periodic resource model presented in [8]

and is calculated as follows:

sbfs(t) =

{
t − (g(t) + 1)(Ps − Qs) if t ∈ V g(t)

(j − 1)Qs otherwise,
(9.2)

where g(t) = max
(⌈(

t − (Ps − Qs)
)
/Ps

⌉
, 1

)
and V g(t) denotes an interval

[(g(t) + 1)Ps − 2Qs, (g(t) + 1)Ps − Qs] in which the subsystem Ss receives

budget. Figure 9.2 shows sbfs(t). To guarantee a minimum CPU supply, the

worst-case budget provision is considered in Eq. (9.2) assuming that tasks are

released at the same time when the subsystem budget depletes (at time t = 0 in

Figure 9.2) and the budget was supplied as early as possible and all following
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Figure 9.2: Supply bound function sbfs(t).

budgets will be supplied as late as possible due to interference from other,

higher priority subsystems.

For the request bound function rbfFP(i, t) of a task τi and to compute the

maximum execution request up to time t, it is assumed that (i) τi and all its

higher priority tasks are simultaneously released, (ii) each access to a global

shared resource by these tasks will generate a self-blocking, (iii) a task with

priority lower than τi that can cause a maximum blocking has locked a global

shared resource just before the release of τi, and (iv) will also cause a self-

blocking. rbfFP(i, t) is given by [2]:

rbfFP(i, t) = Ci + IS(i) + IH(i, t) + IL(i), (9.3)

where IS(i) is the self-blocking of task τi, IH(i, t) is the interference from
tasks with a priority higher than that of τi, and IL(i) is the interference from
tasks with priority lower than that of τi, that access shared resources, i.e.,

IS(i) =
∑

Rk∈{Ri}

rnik∑

a=1

Xika, (9.4)

IH(i, t) =

i−1∑

h=1

⌈
t

Th

⌉
(Ch +

∑

Rk∈{Rh}

rnhk∑

a=1

Xhka), (9.5)

IL(i) = max{0,
ns

max
l=i+1

max
Rk∈{Rl}∧rcsk≤i

rnlk
max
a=1

(clka + Xlka)}. (9.6)
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Note that we use the outermost max in (9.6) to also define IL(i) in those

situations where τi can not be blocked by lower priority tasks. Looking at

Eqs. (9.4)-(9.6), it is clear that rbfFP(i, t) is a discrete step function that changes

its value at certain time points (t = a×Th where a is an integer number). Then

for Eq. (9.1), t can be selected from a finite set of scheduling points [15].

The term Xjka in these equations represents the self-blocking (resource

locking time) of task τj due to the ath access to resource Rk. Eq. (9.7) can

be used to determine Xika, where the sum in the equation represents the inter-

ference from higher priority tasks that can preempt the execution of τi while

accessing Rj . Since 2Ps ≤ T min
s , tasks with a priority higher than rcsk can

interfere at most once (the proof of Eq. (9.7) is presented in [16]).

Xika = cika +

rcsk−1∑

h=1

Ch. (9.7)

The self-blocking of τi, the higher priority tasks and the maximum self-

blocking of the lower priority tasks are given in Eqs. (9.4)-(9.6). We can re-

arrange these equations by moving all self-blocking terms into one equation

I ′S(i, t), resulting in corresponding equations I ′H(i, t) and I ′L(i):

I ′
S(i, t) =

i−1∑

h=1

⌈
t

Th

⌉
(

∑

Rk∈{Rh}

rnhk∑

a=1

Xhka)

+
∑

Rk∈{Ri}

rnik∑

a=1

Xika

+ max{0,
ns

max
l=i+1

max
Rk∈{Rl}∧rcsk≤i

rnlk
max
a=1

(Xlka)}, (9.8)

I ′
H(i, t) =

∑

1≤h<i

⌈
t

Th

⌉
Ch, (9.9)

I ′
L(i) = max{0,

ns
max
l=i+1

max
Rk∈{Rl}∧rcsk≤i

rnlk
max
a=1

(clka)}. (9.10)

Eqs. (9.8)-(9.10) can be used to evaluate rbfFP(i, t) in Eq. (9.3).

Subsystem timing interface In this paper, it is assumed that the period Ps

of a subsystem Ss is given while the minimum subsystem budget Qs should be

computed. We use calculateBudget(Ss, Ps) to denote a function that calculates
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this minimum budget Qs satisfying Eq. (9.1). This function is similar to the

one presented in [8]. We can determine Xsk for all Rk ∈ Rs by

Xsk = max
τi∈Ts∧Rk∈{Ri}

rnik
max
a=1

(Xika). (9.11)

We define Xs as the maximum resource locking time among all resources ac-

cessed by Ss, i.e.

Xs = max
Rk∈Rs

(Xsk). (9.12)

Finally, when a task experiences self-blocking during a subsystem period

it is guaranteed access to the resource during the next period. To provide this

guarantee, the subsystem budget Qs should satisfy

Qs ≥ Xs. (9.13)

System level scheduling At the system level, each subsystem Ss can be mod-

eled as a simple periodic task. The parameters of such a task are provided by

the subsystem timing interface Ss(Ps, Qs,Xs), i.e. the task period is Ps, the

execution time is Qs, and the set of critical section execution times when ac-

cessing logical shared resources is Xs. To validate the composability of the

system under FPPS and SRP, classical schedulability analysis for periodic tasks

can be applied; please refer to [2] for more details.

9.5 Motivating example

In this section we will show that the schedulability analysis associated with

SIRAP is very pessimistic if multiple resources are accessed by tasks and/or

the same resource is accessed multiple times by tasks. We will show this by

means of the following example.

T Ci Ti Rk cika

τ1 6 100 R1, R1, R2 1, 2, 2

τ2 20 150 R1, R2 2, 1

τ3 3 500 R2 1

Table 9.1: Example task set parameters

Example: Consider a subsystem Ss that has three tasks as shown in Table 9.1.

Note that task τ1 accesses R1 twice, i.e. rn1,1 = 2. Let the subsystem period
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be equal to Ps = 50. Using the original SIRAP analysis, we find a subsys-

tem budget Qs = 23.5. Task τ2 requires this budget in order to guarantee its

schedulability, i.e. the set of points of time t used to determine schedulability

of τ2 is {100, 150} and at time t = 150, rbfFP(2, 150) = sbfs(150) = 47.

To evaluate rbfFP(i, t) for τi, the SIRAP analysis assumes that the maxi-

mum number of self-blocking instances will occur for τi and all its lower and

higher priority tasks. Considering our example, I ′S(2, 150) contains a total

of 9 self-blocking instances; 6 self-blocking instances for task τ1 (X1,1,1 =
1, X1,1,1 = 1, X1,1,2 = 2, X1,1,2 = 2, X1,2,1 = 2, X1,2,1 = 2), 2 for task

τ2 (X2,1,1 = 2, X2,2,1 = 1), and 1 for task τ3 (X3,2,1 = 1) (see Eq. (9.8)),

resulting in I ′S(2, 150) = 14. Because Ps = 50 and Qs = 23.5, we know

that τ2 needs at least two and at most three activations of the subsystem for

its completion. As no self-blocking instance can occur during a subsystem pe-

riod in which a task completes its execution, the analysis should incorporate

at most 2 self-blocking instances for τ2. This means that the SIRAP anal-

ysis adds 7 unnecessary self-blocking instances when calculating rbfFP(i, t)
which makes the analysis pessimistic. If 2 self-blocking instances are con-

sidered and the two largest self-blocking values that may happen are selected

(e.g. X1,1,2 = 2, X1,2,1 = 2), then I ′S(2, 150) = 4 and a subsystem budget

of Qs = 18.5 suffices. For this subsystem budget, we once again find at most

2 self-blocking instances. In other words, the required subsystem utilization

(Qs/Ps) can be decreased by 27% compared with the original SIRAP analysis.

This improvement can be achieved assuming that at most one self-blocking in-

stance needs to be considered every budget period (the budget period is a time

interval from the time when the budget replenished up to the next following

budget replenishment time instant, for example in Figure 9.1, it starts at t1 and

ends at t1 + Ps = t3).

9.6 Improved SIRAP analysis

In the previous section, we have shown that the original analysis of SIRAP can

be very pessimistic. If we assume that at most one self-blocking instance needs

to be considered during every budget period then a significant improvement

in the CPU resource usage can be achieved. Although multiple self-blocking

instances can occur during one budget period, it is sufficient to consider at most

one.

Lemma 7. At most one self-blocking occurrence, i.e. the largest possible,
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needs to be considered during each subsystem period Ps of Ss for the schedu-

lability of τi ∈ Ts.

Proof. Upon self-blocking of an arbitrary task τj of Ss due to an attempt to

access Rk, the subsystem ceiling of Ss becomes at most equal to the internal

resource ceiling rcsk. Once this situation has been established, the subsystem

ceiling may decrease (due to activations of and subsequent attempts to access

resources by tasks with a priority higher than rcsk , i.e. the task index is lower

than rcsk), but will not increase during the current subsystem period. A task

τi experiences blocking/interference due to self-blocking of an arbitrary task

τj trying to access Rk if and only if the internal resource ceiling rcsk of Rk

is at most equal to i (i.e. rcsk ≤ i). Hence, as soon as τi experiences block-

ing/interference due to self-blocking, that situation will last for the remainder

of the budget period, and additional occurrences of self-blocking can at most

overlap with earlier occurrences. It is therefore sufficient to consider at most

one self-blocking instance, i.e. the largest possible, per budget period.

9.6.1 Problem formulation

Lemma 7 proves that at each subsystem period, one maximum self-blocking

can be considered in the schedulability analysis of SIRAP. That means the

number of effective self-blocking occurrences at time instant t, that should be

considered in the schedulability analysis, depends on the maximum number of

subsystem periods that have been repeated up to time instant t. In other words,

the number of self-blocking occurrences is bounded by the number of overlap-

ping budget periods. However, the equations used for the local schedulability

analysis Eqs. (9.2) and (9.3) can not express this bound on self-blocking be-

cause:

• The sbfs(t) of Eq. (9.2) is based on the subsystem budget and period,

but is agnostic of the behavior of the subsystem internal tasks that cause

self-blocking, and therefore also agnostic of self-blocking.

• The rbfFP(i, t) of Eq. (9.3) contains the self-blocking terms, but does

not consider the subsystem period.

We propose two different analysis approaches in order to address the bound

on self-blocking; the first approach is based on using this knowledge (bound

on the self-blocking) in the calculation of rbfFP(i, t) and the second approach

is based on using it in the calculation of sbfs(t).



150 Paper D

As long as we are still in the subsystem level development stage, we have

all internal information including global shared resources, which task(s) access

them and the critical section execution time of each resource access; informa-

tion that is required to optimize the local schedulability analysis in order to

decrease the CPU resources required to be reserved for the subsystem.

Before presenting the two analysis approaches that may decrease the re-

quired subsystem utilization compared to the original SIRAP approach, we will

describe a self-blocking multi-set that will be used by these new approaches.

9.6.2 Self-blocking set

For each task τi, we define a multi-set Gi(t) containing the values of all self-

blocking instances that a task τi may experience in an interval of length t ac-

cording to I ′S(i, t); see Eq. (9.8). Similar to Eq. (9.8), the elements in Gi(t) are

evaluated based on the assumption that task τi and all its higher priority tasks

are simultaneously released.

Note that Gi(t) includes all Xjka that may contribute to the self-blocking.

Depending on the time t, a number of elements will be taken from this list and,

to consider the worst-case scenario, the value of these elements should be the

highest in the multi-set. To provide this, we define a sequence Gsort
i (t) that

contains all elements of Gi(t) sorted in a non-increasing order, i.e. Gsort
i (t) =

sort(Gi(t)). Considering the example presented in Section 9.5, the sequence

Gsort
2 (150) for τ2 and t = 150 equals < X1,1,2, X1,1,2, X1,2,1, X1,2,1, X2,1,1

, X1,1,1, X1,1,1, X2,2,1, X3,2,1 >.

9.6.3 Analysis based on changing rbf

In this section we will present the first approach called IRBF that improves the

local schedulability analysis of SIRAP based on changing rbfFP(i, t). Note

that as long as we are not changing the supply bound function sbfs(t), Eq. (9.2)

and the associated assumption concerning worst-case budget provision can still

be used. As we explained before, the number of self-blocking occurrences is

bounded by the number of overlapping subsystem budget periods. The follow-

ing lemma presents an upper bound on the number of self-blocking occurrences

in an interval of length t.

Lemma 8. Given a subsystem Ss and assuming the worst-case budget provi-

sion, an upper bound on the number of self-blocking occurrences z(t) in an

interval of length t is given by



9.6 Improved SIRAP analysis 151

z(t) =
⌈ t

Ps

⌉
. (9.14)

Proof. Note that z(t) represents an upper bound on the number of subsystem

periods that are entirely contained in an interval of length t. In addition, the

sbfs(t) calculation in Eq. (9.2) is based on the worst-case budget provision,

i.e. task τi under consideration is released at a budget depletion when the bud-

get was supplied as early as possible and all following budget supplies will

be at late as possible. From the release time of τi, if two self-blocking oc-

currences happen, at least one Qs must be fully supplied and another Qs (at

least) partially. Hence, t > Ps − (Qs − X1) + Ps = 2Ps − (Qs − X1) for

0 < X1 ≤ Qs < Ps, where X1 is a (first) self-blocking; see Figure 9.3(a).

This assumption is satisfied for t > Ps. Similarly, we can prove that for b
self-blocking occurrences, t > b × Ps.

Note that Eq. (9.14) accounts for a first self-blocking occurrence just after

the release of τi, i.e. for t an infinitesimal larger than zero. For SIRAP, this

release of τi is assumed at a worst-case budget provision, e.g. at time t = 0
in Figure 9.2. At the end of the first budget supply (at time t = 2Ps − Qs

in Figure 9.2), where one complete self-blocking can occur, Eq. (9.14) has

accounted for a second self-blocking, as shown in Figure 9.3(b). In general, at

any time t, the number of self-blocking occurrences evaluated using Eq. (9.14)

will be one larger than the number of self-blocking occurrences that can happen

in an interval with a worst-case budget provision. This guarantees that we can

safely assume that the worst-case situation for the original analysis for SIRAP

also applies for IRBF.

After evaluating z(t), it is possible to calculate the self-blocking on task

τi from all tasks, i.e. lower priority tasks, higher priority tasks and τi itself.

Eq. (9.8), that computes the self-blocking on τi, can now be replaced by

I∗S(i, t) =

z(t)∑

j=1

Gsort
i (t)[j]. (9.15)

Note that if z(t) is larger than the number of elements in the set Gsort
i (t),

then the values of the extra elements are equal to zero, e.g. if Gsort
i (t∗) has

ki elements (i.e. the number of all possible self-blocking occurrences that may

block τi in an interval of length t∗), then Gsort
i (t∗)[j] = 0 for all j > ki.
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Figure 9.3: A subsystem execution with self-blocking.

Correctness of the analysis The following lemma proves the correctness of

the IRBF approach.

Lemma 9. Using the IRBF approach, rbfFP(i, t) given by

rbfFP(i, t) = Ci + I∗S(i, t) + I ′H(i, t) + I ′L(i) (9.16)

computes an upper bound on the maximum cumulative execution requests that

could be generated from the time that τi is released up to time t.

Proof. We have to prove that Eq. (9.15) computes an upper bound on the maxi-

mum resource request generated from self-blocking. As explained earlier, dur-
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ing a self-blocking, all tasks with priority less than or equal to the resource

ceiling of the resource that caused the self-blocking, are not allowed to exe-

cute until the next budget activation. To consume the remaining budget, an idle

task is executing if there are no tasks, with priority higher than the subsystem

ceiling, released during the self-blocking. To add the effect of self-blocking on

the schedulability analysis of τi, the execution time of the idle task during the

self-blocking can be modeled as an interference from a higher priority task on

τi. The maximum number of times that the idle task executes up to any time

t is equal to the number of self-blocking occurrences during the same time in-

terval and an upper bound is given by z(t). Furthermore, selecting the first

z(t) elements from the Gsort
i (t) gives the maximum execution times of the idle

task.

We also have to prove that a simultaneous release of τi and all its higher

priority tasks at a worst-case budget provision will actually result in an upper

bound for I∗S(i, t). To this end, we show that neither the actual number of self-

blocking terms nor their values in an interval of length t∗ starting at the release

of τi can become larger when a higher priority task τh is either released before

or after τi. We first observe that the number of self-blocking occurrences z(t∗)
in an interval of length t∗ is independent of the release of τh relative to τi.

Next, we consider the values for self-blocking.

A later release of τh will either keep the same (worst-case) value for the

self-blocking during t∗ or reduce it (and may in addition cause a decrease of

the interference in Eq. (9.5)). Releasing τh earlier than τi makes τh receiving

some budget and at the same time a self-blocking happens, before the release

of τi (remember, τi is released at a worst-case budget provision). Furthermore,

and at the end of time interval t∗, new self-blocking caused by earlier releasing

of τh, may be added to the self-blocking set (Gi(t
∗)). However, since an ear-

lier self-blocking happens (before the release of τi) this earlier self-blocking

removes the effect of the additional self-blocking on Gi(t
∗). For instance,

an earlier release of τh may (i) keep the self-blocking the same (if the addi-

tional self-blocking X0 resulting from the earlier release of τh during the last

budget period is less than the one that was considered assuming all tasks are

released simultaneously X0 ≤ Xj; see Figure 9.4(b)) or (ii) add or replace a

self-blocking term in the last complete budget period contained in t∗. For both

cases of (ii), the new term for the additional activation of τh will also imply the

removal of a similar term for τh at the earlier release of τh, effectively rotating

the sequence of blocking terms as illustrated in Figure 9.4(c)-(d). Rotating the

terms does not change the sum of the blocking terms, however, and the amount

of self-blocking in t∗ therefore remains the same.
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Figure 9.4: Critical instant for two tasks.

Example Returning to our example, we find z(150) = 3 and that makes

I∗S(i, t) = 6 according to Eq. (9.15), we find a minimum subsystem budget

Qs = 19.5, which is better than the one obtained using the original SIRAP

equations. The analysis is still pessimistic, however, because z(t) is an upper
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bound on the number of self-blocking occurrences rather than an exact number

and in addition, t is selected from the schedulability test points set of τ2 rather

than the Worst Case Response Time (WCRT) of the task. Note that the WCRT

of τ2 is less than 150 which indicates remaining pessimism on the results.

Remark Based on the new analysis presented in this section, the following

lemma proves that the results obtained from the analysis based on IRBF are

always better than, or the same as, the original SIRAP approach.

Lemma 10. The minimum subsystem budget obtained using IRBF will be al-

ways less than or equal to the subsystem budget obtained using the original

SIRAP approach.

Proof. When evaluating rbf(i, t) for a task τi, the only difference between the

original SIRAP approach and the analysis of IRBF is the calculation of self-

blocking I ′S(i, t) in Eq. (9.8) and I∗S(i, t) in Eq. (9.15). To prove the correctness

of this lemma we have to prove that I∗S(i, t) ≤ I ′S(i, t). Because Gsort
i (t) is

the sorted multi-set Gi(t) of values contained in I ′S(i, t), the sum of all values

contained in Gsort
i (t) is equal to I ′S(i, t), i.e. when ki is equal to the number

of non-zero elements in Gsort
i (t), we have I ′S(i, t) =

∑ki

j=1 Gsort
i (t)[j]. Since

I∗S(i, t) =
∑z(t)

j=1 Gsort
i (t)[j], we get I∗S(i, t) < I ′S(i, t) for z(t) < ki and

I∗S(i, t) = I ′S(i, t) for z(t) ≥ ki, because Gsort
i (t)[j] = 0 for all j > ki.

9.6.4 Analysis based on changing sbf

The effect of self-blocking in SIRAP has historically been considered in the

request bound function (as shown in Sections 9.4 and 9.6.3). Self-blocking is

modeled as additional execution time that is added to rbfFP(i, t) when apply-

ing the analysis for τi. In this section we use a different approach, called ISBF,

based on considering the effect of self-blocking in the supply bound function.

The main idea is to model self-blocking as unavailable budget, which means

that the budget that can be delivered to the subsystem will be decreased by

the amount of self-blocking. Moving the effect of self-blocking from rbf to

sbf has the potential to improve the results, in terms of requiring less CPU

resources, compared to the original SIRAP analysis.

Figure 9.5 shows the supply bound function using the new approach, where

Qs is guaranteed every period Ps, however, only a part (denoted Qj) from

the jth subsystem budget is provided to the subsystem after the release of τi,
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while the other part (denoted Xj) of the jth subsystem budget is considered as

unavailable budget which represents the self-blocking time.

A new supply bound function should be considered taking into account

the effect of self-blocking on the worst-case budget provision. In general, the

worst-case budget provision happens when τi is released at the same time when

the subsystem budget becomes unavailable and the budget was supplied at the

beginning of the budget period and all later budget will be supplied as late

as possible. Note that self-blocking occurs at the end of a subsystem period,

which means that unavailable budget is positioned at the end (last part) of the

subsystem budget. The earliest time that the budget becomes unavailable rela-

tive to the start of a budget period is therefore Qs − X0. Conversely, the latest

time that the budget will become available after a replenishment (starting time

of the next budget period), is Ps−Qs. Hence, the longest time that a subsystem

may not get any budget (called Blackout Duration BD) is 2Ps − 2Qs + X0.

Finally, each task has a specific set of self-blocking occurrences, which means

that each task will have its own supply bound function. The new supply bound

function sbfs(i, t) for τi is given byö÷ öø öù öú ö ûüý
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Figure 9.5: New supply bound function sbfs(i, t).

sbfs(i, t) =






t − (g(t) + 1)Ps + Q0 + Qs

+ Sum(g(t) − 1) if t ∈ V g(t)

Sum(g(t)) if t ∈ W g(t)

Sum(g(t) − 1) otherwise,

(9.17)

where
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g(t) = max
(⌈(

t − (Ps − Q0)
)
/Ps

⌉
, 1

)
, (9.18)

Sum(ℓ) =

ℓ∑

j=1

Qj , (9.19)

and Qj = Qs−Xj , V g(t) denotes an interval [(g(t)+1)Ps−Q0−Qs, (g(t)+
1)Ps − Q0 − Xg(t)] when the subsystem gets budget, and W g(t) denotes an

interval [(g(t) + 1)Ps − Q0 − Xg(t), (g(t) + 1)Ps − Q0] during the g(t)th

self-blocking. The intuition for g(t) in Eq. (9.17) is the number of periods of

the periodic model that can actually provide budget in an interval of length t, as

shown in Figure 9.5. To explain Eq. (9.17) let us consider the case for g(t) = 3.

If t ∈ W 3, i.e. during the 3rd self-blocking time interval of length X3, then

the amount of budget supplied to the subsystem will by Q1 + Q2 + Q3, i.e.

Sum(3). If t ∈ V 3, then the resource supply will equal to Q1 + Q2 plus

the value from the linearly increasing region (see Figure 9.5), otherwise, the

budget supply is Q1 + Q2, i.e. Sum(3 − 1).

Since we consider the effect of self-blocking in the supply bound function,

we can now remove all self-blocking from rbfFP(i, t), i.e. I ′S(i, t) = 0 in

Eq. (9.8) and only Eqs. (9.9) and (9.10) are used to evaluate rbfFP(i, t). Hence,

the local schedulability analysis is

∀τi ∃t : 0 < t ≤ Di, rbfFP(i, t) ≤ sbfs(i, t). (9.20)

The final step on evaluating sbfs(i, t
∗) is to set the values of self-blocking

Xj for 0 ≤ j ≤ g(t) such that the supply bound function gives the minimum

possible CPU supply for interval length t∗. To achieve this, Xj is evaluated as

follows

Xj = Gsort
i (t∗)[j], (9.21)

where 0 < j ≤ g and X0 = X1 which is the largest self-blocking.

Correctness of the analysis The following lemma proves that setting the

self-blocking according to Eq. (9.21) and X0 = X1 will make the supply

bound function giving the the minimum possible CPU supply.

Lemma 11. sbfs(i, t) will give the minimum possible CPU supply for every

interval length t if Eq. (9.21) and X0 = X1 are used to set the values of Xj .
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Proof. To proof the lemma, we have to prove that the amount of budget sup-

plied to a subsystem using Eq. (9.17) is the minimum and also the budget is

supplied as late as possible. Using Eq. (9.21) will set the largest possible values

of self-blocking at time t to X1, X2, . . . . , Xj and that will make the function

Sum(i) in Eq. (9.19) return the minimum possible value (Qj = Qs − Xj),

which in turn will give the minimum sbfs(i, t).

On the other hand, the blackout duration BD should be maximized to guar-

antee the minimum CPU supply. Since BD = 2Ps −2Qs +X0 = 2Ps −Q0−
Qs (which equals to the starting time of the interval V (1)), BD is maximized

if X0 = X1 = Gsort
i (t∗)[1]. This setting of X0 will also maximize the start-

ing time of the interval V j |j = 1, .., g(t∗) (time interval when new budget is

supplied) which delays the budget supply and decreases sbfs(i, t) at any time

instant t. Considering the two mentioned factors will guarantee that Eq. (9.17)

gives the minimum possible CPU resource supply.

Note that Eq. (9.21) uses the set Gsort
i (t), and the elements of the set are

evaluated assuming that τi and all tasks with priority higher than τi are released

simultaneously. In the previous section, we have shown that this assumption

is correct considering the IRBF approach. For ISBF, setting X0 = X1 =
Gsort

i (t)[1] makes the analysis more pessimistic than the actual execution since

the first element in the set Gsort
i (t)[1] can only happen once before or after the

release of τi. So the additional self-blocking X0 is considered to maximize

the time that tasks will not get any CPU budget, as proven in Lemma 11. If

τi or any of its higher priority tasks is released earlier than the beginning of

the self-blocking X0 then that task will directly get some budget and since

we use X1 self-blocking after the first budget consumption then X0 should be

removed (similar scenario is shown in Figure 9.4(c) but τ2 should be released

at the time when self-blocking X1 begins). As a result, and similar to the IRBF

approach, same elements taken from Gsort
i (t∗) can at most be rotated if tasks

are not released at the same time and that means the supply bound function at

time t∗ will not be decreased.

The pessimistic assumption X0 = X1 = Gsort
i (t)[1] may affect the results

of ISBF and the effect depends on the tasks and the subsystem parameters as

shown in the following examples.

Example Returning to our example, based on the new supply bound func-

tion, we find a minimum subsystem budget Qs = 18.5, since two instances

of self-blocking can happen at t = 150. This is better than IRBF yielding
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Qs = 19.5 and the original SIRAP where Qs = 23.5. Note that assigning

X0 = 2 did not affect the results of ISBF.

However, it is not always the case that ISBF can give better results than

the other approaches, as will be shown in the following example. Suppose a

subsystem Ss with Ps = 100 and n tasks. The highest priority task τ1 is the

task that requires the highest subsystem budget. τ1 has the following parame-

ters, T1 = 230, C1 = 29.5, the maximum blocking from lower priority tasks

that accesses a global shared resource R1 is B1 = 6 and τ1 accesses R1 two

times with critical section execution time c1,1,1 = 1 and c1,1,2 = 1. Using

ISBF, the minimum subsystem budget is Qs = 39.2 while using the other two

approaches then Qs = 37.85.

The reason that ISBF will require more subsystem budget than the other

two approaches in the second example is that using ISBF, the maximum block-

ing B1 = 6 is considered twice, i.e. X0 = X1 = 6, whereas the other ap-

proaches use the actual possible self-blocking {6, 1, 1}. Because the difference

between the largest and the other self-blocking terms is high, ISBF requires a

higher budget.

9.7 Evaluation

In this section, we evaluate the performance of the two presented approaches

ISBF and IRBF, in terms of the required subsystem utilization, compared to

the original SIRAP approach. Looking at the scheduliability analysis of both

IRBF and ISBF, the following parameters can directly affect the improvements

that both new approaches can achieve:

• The number of global shared resource accesses made by a subsystem

(including the number of shared resources and the number of times that

each resource is accessed).

• The difference between the subsystem period and its corresponding task

periods.

• The length of the critical section execution time, that affects the self-

blocking time.

We will explain the effect of the mentioned parameters by means of simulation

in the following section.



160 Paper D

9.7.1 Simulation settings

The simulation is performed by applying the two new analysis approaches in

addition to the original SIRAP approach on 1000 different randomly generated

subsystems where each subsystem consists of 8 tasks. The internal resource

ceilings of the globally shared resources are assumed to be equal to the highest

task priority in each subsystem (i.e. rcsk = 1) and we assume Ti = Di for

all tasks. The worst-case critical section execution time of a task τi is set to

a value between 0.1Ci and 0.25Ci, the subsystem period Ps = 100 and the

task set utilization is 25%. For each simulation study one of the mentioned

parameters is changed and a new set of 1000 subsystems is generated (except

when changing Ps; in that case the same subsystems are used). The task set

utilization is divided randomly among the tasks that belong to a subsystem.

Task periods are selected within the range of 200 to 1000. The execution time is

derived from the desired task utilization. All randomized subsystem parameters

are generated following uniform distributions.

9.7.2 Simulation results

Tables 9.2-9.4 show the results of 3 different simulation studies performed to

measure the performance of the two new analysis approaches.

In these tables, “U IRBF
s < UOrig

s ” denotes the percentage of subsystems

where their subsystem utilization Us = Qs/Ps using IRBF is less than the

subsystem utilization using the original SIRAP approach, out of 1000 ran-

domly generated subsystems, and “Max I (U IRBF
s /UOrig

s )” is the maximum

improvement that the analysis based on IRBF can achieve compared with the

original SIRAP approach, which is computed as (UOrig
s − U IRBF

s )/U IRBF
s .

Finally, “Max D (U ISBF
s /UOrig

s )” is the maximum degradation in the subsys-

tem utilization as a result of using the analysis based on ISBF compared to the

analysis using the original SIRAP approach. As we explained in the previous

section, in some cases ISBF may require more CPU resources than the other

two approaches.

• Study 1 is specified having the number of shared resource accesses equal

to 2, 4, 8, and 12, critical section execution time cijk is (0.1−0.25)×Ci

and subsystem period Ps is 100. The intention of this study is to show the

effect of changing the number of shared resources on the performance of

the three approaches.

• Study 2 changes the subsystem period (compared to Study 1) to 75 and
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50 and keeps the number of shared resources to 12. As mentioned previ-

ously we use the same 1000 subsystems as in Study 1 and only change

the subsystem period. The intention of this study is to show the effect

of decreasing the subsystem period on the performance of the three ap-

proaches.

• Study 3 decreases the critical section execution time to (0.01−0.05)×Ci

(compared to Study 1) and keeps the number of shared resources to 12.

The intention of this study is to show the effect of decreasing the critical

section execution times on the performance of the three approaches.

Number of shared resources 2 4 8 12

(U IRBF
s < UOrig

s ) 0.2% 23.1% 98.7% 100%
(U ISBF

s < UOrig
s ) 2.0% 33.3% 99.5% 100%

(U ISBF
s = UOrig

s ) 50.0% 29.0% 0.2% 0%
(U ISBF

s < U IRBF
s ) 2.0% 31.0% 80.0% 90.0%

(U IRBF
s < U ISBF

s ) 50.0% 40.0% 18.0% 8.0%
Median (UOrig

s ) 35.6 37.0 40.8 43.6
Median (U IRBF

s ) 35.6 36.9 38.8 39.3
Median (U ISBF

s ) 35.8 36.9 38.4 38.7
Max I (U IRBF

s /UOrig
s ) 3.1% 5.7% 16.4% 30.6%

Max I (U ISBF
s /UOrig

s ) 7.3% 14.4% 22.7% 36.7%
Max D (U ISBF

s /UOrig
s ) 5.5% 3.9% 1.2% 0%

Max I (U ISBF
s /U IRBF

s ) 7.3% 8.8% 22.1% 17.2%
Max I (U IRBF

s /U ISBF
s ) 5.5% 4.0% 2.0% 1.7%

Table 9.2: Measured results of Study 1

Looking at the results in Table 9.2 (Study 1), it is clear that the improve-

ments that both ISBF and IRBF can achieve become more significant when

the number of shared resource accesses is increased. This is also clear in Fig-

ure 9.6 and Figure 9.7 that show the number of subsystems that have subsystem

utilization within the ranges shown in the x-axis (the lines that connect points

are only used for illustration) for 8 and 12 shared resource accesses, respec-

tively. The reason is that the self-blocking I ′S(i, t) in Eq. (9.8), used by the

original SIRAP approach, will increase significantly which will require more

subsystem utilization. Comparing the values in the table, when the number of

shared resources is 12 the analysis based on ISBF can decrease the subsystem
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Ps 50 75 100

(U IRBF
s < UOrig

s ) 87.0% 100% 100%
(U ISBF

s < UOrig
s ) 83.0% 99.7% 100%

(U ISBF
s = UOrig

s ) 6.0% 0.1% 0%
(U ISBF

s < U IRBF
s ) 55.0% 82.0% 90.0%

(U IRBF
s < U ISBF

s ) 36.0% 14.0% 8.0%
Median (UOrig

s ) 41.0% 42.3% 43.6%
Median (U IRBF

s ) 39.7% 39.3% 39.3%
Median (U ISBF

s ) 39.6% 38.9% 38.7%
Max I (U IRBF

s /UOrig
s ) 16.8% 30.3% 30.6%

Max I (U ISBF
s /UOrig

s ) 17.3% 36.5% 36.7%
Max D (U ISBF

s /UOrig
s ) 2.7% 0.7% 0%

Max I (U ISBF
s /U IRBF

s ) 4.4% 12.1% 17.2%
Max I (U IRBF

s /U ISBF
s ) 2.7% 1.9% 1.7%

Table 9.3: Measured results of Study 2

cijk (1 − 5)% × Ci (10 − 25)% × Ci

(U IRBF
s < UOrig

s ) 100% 100%
(U ISBF

s < UOrig
s ) 100% 100%

(U ISBF
s < U IRBF

s ) 78.0% 90.0%
(U IRBF

s < U ISBF
s ) 8.0% 8.0%

Median (UOrig
s ) 35.0% 43.6%

Median (U IRBF
s ) 34.4% 39.3%

Median (U ISBF
s ) 34.3% 38.7%

Max I (U IRBF
s /UOrig

s ) 5.0% 30.6%
Max I (U ISBF

s /UOrig
s ) 7.0% 36.7%

Max I (U ISBF
s /U IRBF

s ) 2.1% 17.2%
Max I (U IRBF

s /U ISBF
s ) 0.4% 1.7%

Table 9.4: Measured results of Study 3

utilization by 36% compared with the original SIRAP approach and the im-

provement in the median of subsystem utilization is about 12.5%. IRBF can

achieve slightly less improvement than ISBF because the number of the con-

sidered self-blocking z(t) is an upper bound. However, when the number of
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shared resources is low, e.g. 2, ISBF and IRBF can achieve some improvement

compared with the original SIRAP, and in many cases ISBF requires higher

subsystem utilization compared with the original SIRAP (about 48%). It is in-

teresting to see that even if the number of shared resource access is low, ISBF

and IRBF can achieve some improvements. Note that IRBF will never re-

quire more subsystem utilization than using the original SIRAP approach (see

Lemma 10). Now, comparing the results of using ISBF and IRBF, we can see

from the table that ISBF gives relatively better results, in terms of the number

of subsystems that require less subsystem utilization, median and maximum

improvement compared with IRBF if the number of shared resources accesses

is high. The reason is that the possibility of having many large self-blocking

will be higher which can decrease the effect of X0 on ISBF.
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Figure 9.6: Results of Study 1 for 8 global shared resources access.

Looking at Table 9.3 (Study 2), it is clear that when the subsystem pe-

riod is decreased, the improvement that ISBF and IRBF can achieve compared

with original SIRAP is also decreased. Comparing the median of the subsys-

tem utilization of the 1000 generated subsystems when changing the subsystem

period, we can see that for the original SIRAP analysis the subsystem utiliza-

tion is decreasing when decreasing the subsystem period. However, using the

other two approaches, the subsystem utilization is increasing when decreasing

the subsystem period. The reason for this behavior is that the number of self-
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Figure 9.7: Results of Study 1 for 12 global shared resources access.

blocking occurrences will increase when decreasing the subsystem period and

in turn it will increase z(t) using IRBF, i.e. the number of Xj for ISBF. This

will increase rbfFP(i, t) using IRBF, and decrease sbfs(i, t) using ISBF, at

time t compared with the case when the subsystem period is higher, and that

will in turn require more subsystem utilization. Note that this case can happen

when the number of shared resource accesses is high. So for a high number of

global shared resource accesses, it is recommended to use larger subsystem pe-

riods that can decrease the subsystem utilization and at the same time decrease

the number of subsystem context switches. Another interesting observation

from this table is that the percentage of subsystems that require less subsystem

utilization using ISBF compared with IRBF, is decreasing when decreasing the

subsystem period. The reason is that more self-blocking occurrences will be

considered in both ISBF and IRBF and that will increase the possibility of hav-

ing a large difference between the considered self-blocking which will increase

the effect of X0 for ISBF.

In Study 3 we have decreased the range of the critical section execution

times which will, in turn, decrease the self-blocking execution times. The re-

sults in Table 9.4 show that the improvements that ISBF and IRBF can achieve

in terms of subsystem utilization compared with the original SIRAP approach,

are decreased. The improvement in the subsystem utilization median using
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ISBF is decreased from 12.6% to 2% when decreasing the critical section ex-

ecution time, and using IRBF it is decreased from 10.9% to 1.7%. The reason

for this is that the total self-blocking I ′S(i, t) in Eq. (9.8) used by the original

SIRAP approach, depends not only on the number of shared resource accesses

but also on the size of the self-blocking Xika.

9.8 Summary

In this paper, we have presented new schedulability analysis for SIRAP; a

synchronization protocol for hierarchically scheduled real-time systems. We

have shown that the original local schedulability analysis for SIRAP is pes-

simistic when the tasks of a subsystem make a high number of accesses to

global shared resources. This pessimism is inherent in the fact that the original

SIRAP schedulability analysis does not take the maximum number of self-

blocking instances into account, when in fact this number is bounded by the

maximum number of subsystem period intervals in which these resource ac-

cessing tasks execute. We have presented two new analysis approaches that

take this bounded number of self-blocking instances into account; the first ap-

proach based on changing rbf and second approach based on changing sbf.

We have identified the parameters that have effect on the improvement that

these new approaches can achieve over the original SIRAP schedulability anal-

ysis and we have explored and explained the effect of these parameters by

means of simulation analysis. The results of the simulation show that signif-

icant improvements can be achieved by the new approaches compared to the

original SIRAP approach, if the number of accesses to global shared resources

made by the tasks of a subsystem is high. Generalizing the analysis of this

paper to include other scheduling algorithms, e.g. EDF, as a subsystem level

scheduler, is a topic of future work.
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Abstract

In this paper, we show that both global as well as local schedulability anal-

ysis of synchronization protocols based on the stack resource protocol (SRP)

and overrun without payback for hierarchical scheduling frameworks based on

fixed-priority pre-emptive scheduling (FPPS) are pessimistic. We present im-

proved global and local schedulability analysis, illustrate the improvements by

means of examples, and show that the improved global analysis is both uniform

and sustainable. We evaluate the improved global and local schedulability anal-

ysis based on an extensive simulation study and compare the results with the

existing analysis.
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10.1 Introduction

10.1.1 Background

Over the years, there has been a growing attention on hierarchical scheduling of

real-time systems due to its ability to provide temporal isolation between mul-

tiple real-time subsystems executing upon a common processing platform. The

Hierarchical Scheduling Framework (HSF) provides means for decomposing a

complex system into well-defined parts called subsystems, and a subsystem

provides an introspective interface that specifies the timing properties of the

subsystem precisely. This implies that subsystems can be independently devel-

oped, analyzed and tested, and later assembled without introducing unwanted

temporal interference.

Supporting global resource sharing among subsystems is a major challenge,

however, since it increases the complexity of the analysis of a system consider-

ably. Due to this complexity, most of the proposed techniques (such as those in

[1] and [2]) are based on some simplifying assumptions which make the analy-

sis easier. The consequence of these assumptions is that they add pessimism in

the analysis which increases the required CPU resources of systems. For some

systems, the pessimism in the analysis is not significant and can be ignored,

but for others it may be significant.

As large extents of embedded systems are resource constrained, a tight

analysis is instrumental in a successful deployment of HSF techniques in real

applications. We therefore aim at reducing potential pessimism in existing

schedulability analysis for HSFs that support sharing of global shared resources.

Looking further at existing industrial real-time systems, Fixed Priority Pre-

emptive Scheduling (FPPS) is the de facto standard of task scheduling, hence

we focus on an HSF with support for FPPS for tasks within a subsystem. Hav-

ing such support will simplify migration to and integration of existing legacy

applications into the HSF, avoiding a too big technology revolution for engi-

neers.

Our current research efforts are directed towards the conception and real-

ization of a two-level HSF that is based on (i) FPPS for both global scheduling

of budgets (allocated to subsystems) and local scheduling of tasks (within a

subsystem), (ii) the periodic resource model [3] for budgets, and (iii) the Stack

Resource Policy (SRP) [4] for both inter- and intra-subsystem resource sharing.

For such an HSF, two mechanisms have been studied that prevent depletion of

a budget during global resource access, i.e. skipping [1] and overrun [2]. The

overrun mechanism comes in two flavors, i.e. with payback and without pay-
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back.

In this paper, we aim at tighter analysis for the overrun mechanism with-

out payback, assuming the same introspective interface for subsystems as the

existing analysis.

10.1.2 Contributions

We show that existing global and local schedulability analysis of synchroniza-

tion protocols based on SRP and overrun without payback for two-level hier-

archical scheduling based on FPPS is pessimistic. We present improved global

and local analysis assuming that the deadline of a subsystem holds for the sum

of its normal budget and its overrun budget, and illustrate the improvements by

means of examples. We identify the system parameters that have a great effect

on the improvement that the proposed global and local analysis can achieve.

In addition we evaluate the improvements that both global and local improved

analysis can achieve compared with the traditional analysis, in terms of requir-

ing less CPU resources, by exploring the system load [2] in a simulation study.

10.1.3 Overview

This paper has the following structure. In Section 10.2 we present related work.

A real-time scheduling model is the topic of Section 10.3. The existing global

and local schedulability analysis is recapitulated in Section 10.4, and improved

global and local analysis is presented in Sections 10.5 and 10.6, respectively.

Section 10.7 presents a simulation study evaluating the improvement that both

global and local improved analysis can achieve. The paper is concluded in

Section 10.8.

10.2 Related work

During the past decade, there has been considerable interest on hierarchical

scheduling of real-time systems [5, 6, 7, 3].Deng and Liu [5] proposed a two-

level HSF for open systems, where subsystems may be developed and validated

independently. Kuo and Li [6] and Lipari and Baruah [7] presented schedula-

bility analysis techniques for such a two-level framework with the FPPS global

scheduler and the Earliest Deadline First (EDF) global scheduler, respectively.

Shin and Lee [3] proposed the periodic resource model Γ(Π, Θ) to specify

guaranteed periodic CPU allocations, where Π ∈ R
+ is a period and Θ ∈ R

+
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is a periodic allocation time (0 < Θ ≤ Π). Easwaran, Anand, and Lee [8] pro-

posed the explicit deadline periodic (EDP) resource model Ω(Π, Θ, ∆) that ex-

tends the periodic resource model by explicitly distinguishing a relative dead-

line ∆ ∈ R
+ for the allocation time Θ (0 < Θ ≤ ∆ ≤ Π).

For synchronization protocols in HSFs, two mechanisms have been studied

to prevent depletion of a budget during global resource access, i.e. overrun

(with payback and without payback) and skipping. Overrun with payback was

first introduced in the context of aperiodic servers in [9]. The mechanism was

later (re-) used for a synchronization protocol in the context of two-level hier-

archical scheduling in [10] and extended with overrun without payback. The

analysis presented in [10] does not allow analysis of individual subsystems,

however an analysis supporting composability was described in [2, 11]. The

idea of skipping in the context of HSFs, was used by the SIRAP protocol [1],

and its associated analysis supports composability.

10.3 Real-time scheduling model

We consider a two-level hierarchical FPPS model using the periodic resource

model to specify guaranteed CPU allocations to tasks of subsystems and us-

ing a synchronization protocol for mutual exclusive resource access to global

logical resources based on SRP1 and overrun without payback.

10.3.1 System model

A system Sys contains a set R of M global logical resources R1, R2, . . ., RM ,

a set S of N subsystems S1, S2, . . ., SN , a set B of N budgets for which we

assume a periodic resource model [3], and a single processor. Each subsystem

Ss has a dedicated budget associated to it. In the remainder of this paper, we

leave budgets implicit, i.e. the timing characteristics of budgets are taken care

of in the description of subsystems. Subsystems are scheduled by means of

FPPS and have fixed, unique priorities. For notational convenience, we assume

that subsystems are given in order of decreasing priorities, i.e. S1 has highest

priority and SN has lowest priority.

1The focus of this paper is on synchronization protocols for global logical resources. We do

therefore not consider local logical resources.



174 Paper E

10.3.2 Subsystem model

Each subsystem Ss contains a set Ts of ns periodic tasks τs,1, τs,2, . . ., τs,ns

with fixed, unique priorities, which are scheduled by means of FPPS. For no-

tational convenience, we assume that tasks are given in order of decreasing

priorities, i.e. τ1 has highest priority and τns
has lowest priority. The set Rs

denotes the subset of Ms global resources accessed by subsystem Ss. The

maximum time that a subsystem Ss executes while accessing resource Rl ∈ R
is denoted by Xsl, where Xsl ∈ R

+ ∪ {0} and Xsl > 0 ⇔ Rl ∈ Rs. The

timing characteristics of Ss are specified by means of a triple < Ps, Qs,Xs >,

where Ps ∈ R
+ denotes its (budget) period, Qs ∈ R

+ its (normal) budget, and

Xs the set of maximum execution access times of Ss to global resources. The

maximum value in Xs (or zero when Xs is empty) is denoted by Xs.

10.3.3 Task model

The timing characteristics of a task τsi ∈ Ts are specified by means of a quartet

< Tsi, Csi, Dsi, Csi >, where Tsi ∈ R
+ denotes its minimum inter-arrival

time, Csi ∈ R
+ its worst-case computation time, Dsi ∈ R

+ its (relative)

deadline, Csi a set of maximum execution times of τsi to global resources,

where Csi ≤ Dsi ≤ Tsi. The set Rsi denotes the subset of Rs accessed by

task τsi. The maximum time that a task τsi executes while accessing resource

Rl ∈ R is denoted by csil, where csil ∈ R
+ ∪{0}, Csi ≥ csil, and csil > 0 ⇔

Rl ∈ Rsi.
2

10.3.4 Resource model

The CPU supply refers to the amount of CPU allocation that a virtual pro-

cessor can provide. The supply bound function sbfΩ(t) of the EDP resource

model Ω(Π, Θ, ∆) that computes the minimum possible CPU supply for every

interval length t is given by

sbfΩ(t) =

{
t − (k + 1)(Π − Θ) + (Π − ∆) if t ∈ V (k)

(k − 1)Θ otherwise,
(10.1)

where k = max
(⌈(

t− (∆−Θ)
)
/Π

⌉
, 1

)
and V (k) denotes an interval [kΠ +

∆ − 2Θ, kΠ + ∆ − Θ].

2In [10], it is required that csil < Csi and csil < Qs. Moreover, it is observed that csil will

typically be much smaller than both Csi and Qs.
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The supply bound function sbfΓ(t) of the periodic resource model Γ(Π, Θ)
is a special case of (10.1), i.e. with ∆ = Π.

10.3.5 Synchronization protocol

Overrun without payback prevents depletion of a budget of a subsystem Ss

during access to a global resource Rl by temporarily increasing the budget of

Ss with Xsl, the maximum time that Ss executes while accessing Rl. To be

able to use SRP in an HSF for synchronizing global resources, its associated

ceiling terms needs to be extended.

Resource ceiling

With every global resource Rl, two types of resource ceilings are associated; an

external resource ceiling RC l for global scheduling and an internal resource

ceiling rcsl for local scheduling. According to SRP, these ceilings are defined

as

RC l = min(N, min{s | Xsl > 0}), (10.2)

rcsl = min(ns, min{i | csil > 0}). (10.3)

Note that we use the outermost min in (10.2) and (10.3) to define RC l and rcsl

also in those situations where no subsystem uses Rl and no task of Ts uses Rl,

respectively.

System/subsystem ceiling

The system/subsystem ceilings are dynamic parameters that change during

the execution. The system/subsystem ceiling is equal to the lowest exter-

nal/internal resource ceiling of a currently locked resource in the system/ sub-

system.

Under SRP, a task τsi can only preempt the currently executing task τsj

(even when accessing a global resource) if the priority of τsi is greater (i.e.

the index i is lower) than Ss its subsystem ceiling. A similar condition for

preemption holds for subsystems.

Concluding remarks

The maximum time Xsl that Ss executes while accessing Rl can be reduced by

assigning a value to rcsl that is smaller than the value according to SRP. For
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HSRP [10], the internal resource ceiling is therefore set to the highest priority,

i.e. rcHSRP
sl = 1. Decreasing rcsl may cause a subsystem to become unfeasible

for a given budget [12], however, because the tasks with a priority higher than

the old ceiling and at most equal to the new ceiling may no longer be feasible.

The results in this paper apply for any internal resource ceiling rc′sl where

rcsl ≥ rc′sl ≥ rcHSRP
sl = 1.3

10.4 Recap of existing schedulability analysis

In this section, we briefly recapitulate the global schedulability analysis pre-

sented in [10] and the local schedulability analysis described in [2, 11]. Al-

though the global schedulability analysis presented in [2, 11] looks different, it

is based on the analysis described in [10] and therefore yields the same result.

For illustration purposes, we will use an example system Sys10.1 contain-

ing two subsystems S1 and S2 sharing a global resource R1. The characteristics

of the subsystems are given in Table 10.1.

subsystem Ps Qs + Xs

S1 5 2

S2 7 Q2 + X2

Table 10.1: Subsystem characteristics of Sys10.1.

10.4.1 Global analysis

The worst-case response time WRs of subsystem Ss is given by the smallest

x ∈ R
+ satisfying4

x = Bs + (Qs + Xs) +
∑

t<s

⌈
x

Pt

⌉
(Qt + Xt), (10.4)

3Because rcHSRP
sl

= 1 for Rl ∈ Rs, Xsl = maxi csil. Hence, from csil < Qs we derive

Xs < Qs. Without the constraint on the internal resource ceiling, Xs may be larger than Qs. For

illustration purposes, we also allow Xs > Qs in this paper.
4Strictly spoken, [10] uses (10.4) excluding Xs for WRs. The smallest positive solution of

(10.4) is required to be at most equal to Ps to prevent additional interference of the next activation

of (the budget of) Ss.
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where Bs is the maximum blocking time of Ss by lower priority subsystems,

i.e.

Bs = max(0, max{Xtl | t > s ∧ Xtl > 0 ∧ RC l ≤ s}). (10.5)

Note that we use the outermost max in (10.5) to define Bs also in those sit-

uations where the set of values of the innermost max is empty. To calculate

WRs, we can use an iterative procedure based on recurrence relationships,

starting with a lower bound, e.g. Bs +
∑

t≤s(Qt + Xt). The condition for

global schedulability is given by

∀
1≤s≤N

WRs ≤ Ps. (10.6)

We merely observe that the global analysis is similar to basic analysis for FPPS

with resource sharing, where the period Ps of a subsystem Ss serves as dead-

line for the sum of the normal budget Qs and the overrun budget Xs, and the

interference of higher priority subsystems St is based on the sum Qt +Xt. We

will therefore use a superscript P to refer to this basic analysis for subsystems,

e.g. WR
P
s .

In the sequel, we are not only interested in the worst-case response time of

a subsystem Ss for particular values of Bs, Qs, and Xs, but in the value as a

function of the sum of these three values. We will therefore use a functional

notation when needed, e.g. WRs(Bs + Qs + Xs).
The global feasibility area of the existing analysis is illustrated for our ex-

ample system Sys10.1 in Figure 10.1(a). Note that the y-axis is excluded, be-

cause we assume the capacity of subsystems to be positive, i.e. Q2 > 0.
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X2

1

2

3
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X2
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(a) (b)

Figure 10.1: Global feasibility area assuming (a) FPPS and (b) improved global

analysis.
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10.4.2 Local analysis

The existing condition for local schedulability of a subsystem Ss [2] is given

by

∀
1≤i≤ns

∃
0<x≤Dsi

bsi + Csi +
∑

j<i

⌈
x

Tsj

⌉
· Csj ≤ sbfΓs

(x), (10.7)

where bsi is the maximum blocking time of τsi by lower priority tasks, i.e.

bsi = max(0, max{csjl | j > i ∧ csjl > 0 ∧ rcsl ≤ i}), (10.8)

and sbfΓs
(x) is the supply bound function of the periodic resource model

Γs(Ps, Qs) for the subsystem Ss under consideration. Note that we use the

outermost max in (10.8) to define bsi also in those situations where the set of

values of the innermost max is empty.

The value for Xsl depends on the local scheduler and the synchronization

protocol. The maximum time that subsystem Ss executes while task τsi ac-

cesses resource Rl ∈ R is denoted by Xsil, where Xsil ∈ R
+ ∪ {0} and

Xsil > 0 ⇔ csil > 0. For csil > 0, Xsil is given by [2]

Xsil = csil +
∑

j<rcsl

Csj . (10.9)

The value for Xsl is given by

Xsl = max
1≤i≤ns

Xsil. (10.10)

10.5 Improved global analysis

As described in Section 10.4.1, the existing global schedulability analysis is

based on FPPS, where the period Ps serves as deadline for the sum of the

normal budget Qs and overrun budget Xs.

10.5.1 Illustrating the improvement

The improvement of the global analysis is based on two observations:

1. Limited pre-emption of overrun budget Xs: while Ss is accessing Rl

using Xs, it can only be pre-empted by subsystems with a priority higher

than RC l.
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2. Blocking starts before the execution based on the overrun budget Xs

starts: to use its overrun budget Xs, Ss needs to first lock a global re-

source.

From the first observation, we conclude that subsystem S1 can not preempt S2

during those intervals of time when S2 is accessing resource R1 in general, and

when S2 is executing based on its overrun budget X2 in particular.

From the second observation, we conclude that whenever S2 uses its over-

run budget X2, it must have locked R1 already during the consumption of its

normal budget Q2, i.e. before it starts consuming its overrun budget X2. Hence,

the system ceiling is already set to the priority of S1 before S2 starts consum-

ing X2, preventing S1 to preempt. The resulting improvement is illustrated in

Figure 10.1(b).

10.5.2 Improving the global analysis

The improved global analysis is similar to the analysis for FPDS [13, 14] and

FPPS with preemption thresholds [15] in the sense that we have to consider all

jobs in a so-called level-s active period to determine the worst-case response

time WRs of subsystem Ss. Unlike the analysis described in [13, 14, 15],

subsystems Ss−1 till SRCl
cannot preempt Ss at the finalization time of Qs

when Ss is accessing Rl.

In the remainder of this section, we first recapitulate the notion of a level-

s active period. Next, we derive analysis for the worst-case finalization time

WF
Q
sk of the normal budget Qs of job ιsk of subsystem Ss relative to start

of the constituting level-s active period. Finally, we derive analysis for the

worst-case response time WRs of Ss.

Level-s active period

The worst-case length WLs of a level-s active period with s ≤ N is given by

the smallest x ∈ R
+ that satisfies

x = Bs +
∑

t≤s

⌈
x

Pt

⌉
(Qt + Xt). (10.11)

To calculate WLs, we can use an iterative procedure based on recurrence rela-

tionships, starting with a lower bound, e.g. Bs +
∑

t≤s(Qt + Xt). The maxi-

mum number wls of jobs of Ss in a level-s active period is given by

wls =

⌈
WLs

Ps

⌉
. (10.12)
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Worst-case finalization time

For a job ιsk of Ss with 0 ≤ k < wls, we split the interval from the start of the

level-s active period to the finalization of job ιsk in two sub-intervals: a first

sub-interval including the execution of the normal budget Qs by job ιsk and

a second sub-interval from the finalization of Qs by ιsk till the finalization of

ιsk, i.e. constituting the execution of the overrun budget Xs.

Let WF
Q
sk denote the worst-case finalization time of the normal budget Qs

of job ιsk with 0 ≤ k < wls relative to the start of the constituting level-s active

period. To determine WF
Q
sk, we have to consider up to three suprema. First,

the sequence of jobs ιs0 till ιsk experience a blocking Bs ≥ 0 by lower priority

subsystems in the worst-case situation. Similar to FPDS [13, 14], the worst-

case blocking is a supremum for Bs > 0 rather than a maximum. Second, the

jobs ιs0 till ιs,k−1 need their overrun budget Xs to access global resources. Be-

cause the access to a global resource starts during the execution of the normal

budget, the actual amount X of overrun budget used is a supremum rather than

a maximum. Finally, the access to the global resource also starts “as late as

possible” during the execution of job ιsk in a worst-case situation, to maximize

the interference of higher priority subsystems. This “as late as possible” also

gives rise to a supremum rather than a maximum. The worst-case finalization

time WF
Q
sk can therefore be described as

WF
Q
sk = lim

Q↑Qs

lim
X↑Xs

lim
B↑Bs

WR
P
s (B + k(Qs + X) + Q),

where WR
P
s is the worst-case response time of a fictive subsystem S′

s with a

period P ′
s = (k+1)Ts, a normal budget Q′

s = k(Qs+X)+Q, and a maximum

blocking time B. Using the following equation from [14]

lim
x↑C

WR
P
i (x) = WR

P
i (C) (10.13)

we derive

WF
Q
sk = WR

P
s (Bs + (k + 1)Qs + kXs). (10.14)

Worst-case response time

Let job ιsk of Ss access Rl ∈ R. When ιsk starts to consume its overrun bud-

get, the subsystems Ss−1 till SRCl
are already blocked, and only subsystems

with a priority higher than RC l can therefore still pre-empt Xs. To determine

the worst-case response time WRskl of job ιsk of Ss, we now introduce a

fictive subsystem S′
RCl

, i.e. a subsystem that can only be pre-empted by tasks
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with a priority higher than RC l. The preemptions during WF
Q
sk by subsystems

Ss−1 till SRCl
are treated as additional blocking of S′

RCl
. The worst-case in-

terference of the subsystems Ss−1 till SRCl
in the interval of length WF

Q
sk is

denoted by WI
s−1
RCl,k

and given by

WI
s−1
RCl,k

=
∑

s−1≤t≤RCl

⌈
WF

Q
sk

Pt

⌉
(Qt + Xt). (10.15)

The worst-case response time WRskl of job ιsk of subsystem Ss when it ac-

cesses Rl is now given by

WRskl = lim
X↑Xsl

WR
P
RCl

(B′
RCl

+ (k + 1)Qs + kXs + X)) − kPs

= WR
P
RCl

(B′
RCl

+ (k + 1)Qs + kXs + Xsl)) − kPs, (10.16)

where WR
P
RCl

represents the worst-case response time of a fictive subsystem

S′
RCl

with a (budget) period P ′
RCl

and a deadline equal to (k + 1)Ps, a normal

budget Q′
s equal to (k + 1)Qs + kXs, an overrun budget X ′

s equal to Xsl, and

a maximum blocking time B′
RCl

given by

B′
RCl

= Bs + WI
s−1
RCl,k

. (10.17)

When a subsystem uses multiple global resources, we have to be very care-

ful. In particular, when the resource ceiling RC sl of resource Rl ∈ Rs is

larger than RC sl′ of resource Rl′ ∈ Rs, i.e. more subsystems can pre-empt

Ss during its access to Rl than to Rl′ , and the maximum execution access time

Xsl of Ss to Rl is smaller than Xsl′ , the system may be schedulable for Rl′ but

not for Rl. As an example consider a system containing 2 global resources R1

and R2 and 3 subsystems S1, S2, and S3, where the subsystems have timing

characteristics as given in Table 10.2.

subsystem Ps Qs Xs,1 Xs,2

S1 5 1 0.6 0

S2 5 0.2 0 0.2

S3 7 3 1 0.4

Table 10.2: Subsystem characteristics of Sys10.2.

The schedulability of S3 for X3,1 follows immediately from the similar-

ity of systems Sys10.1 and Sys10.2, and the feasibility area shown in Fig-

ure 10.1(b). Subsystem S3 just meets its deadline at t = 7 for its overrun
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budget X3,2 = 0.4 under worst-case conditions, i.e. a simultaneous release of

all three subsystems at time t = 0 and resources accessed by both S1 and S2 re-

quiring the usage of their overrun budgets at every activation; see Figure 10.2.

Note that subsystem S3 will miss its deadline at time t = 7 for an infinitesimal

increase ǫ > 0 of X3,2. The worst-case response time for job ιsk is therefore

0 5

S2

S3

time

2.0 2.4

5.0

S1

1.6

7.0

Figure 10.2: Subsystem S3 just meets it deadline at t = 7 for X3,2 = 0.4.

the maximum for all global resources accessed by Ss, i.e.

WRsk = max
l

WRskl. (10.18)

Finally, the worst-case response time WRs of subsystem Ss is given by 5

WRs = max
0≤k<wls

WRsk. (10.19)

10.5.3 Concluding remarks

In this section, we briefly discuss three aspects of the global analysis, i.e. the

global analysis is uniform and sustainable and it will never give worst result

than the original analysis.

The analysis for FPDS [13, 14] is not uniform for all tasks, i.e. the analysis

for the lowest priority task differs from the analysis of the other tasks. This

anomaly is caused by the fact that the lowest priority task cannot be blocked,

i.e. its blocking time is zero, and the blocking time of all other tasks is a supre-

mum rather than a maximum. Unlike the analysis for FPDS [13, 14], the global

analysis presented in this section is uniform. This is an immediate consequence

of the fact that blocking of a global resource Rl by a subsystem Ss is already

done during the execution of the normal budget, i.e. before the execution based

5The interested reader is referred to [16], which explains the improvement in detail by means

of a variety of timelines.
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on the overrun budget starts. As a result, subsystems Ss−1 till SRCl
cannot

preempt Ss at the finalization time of Qs, irrespective of s.

As described in [17], a schedulability test is sustainable if any task system

deemed schedulable by the test remains so if it behaves ‘better’ than mandated

by its system specifications, i.e. sustainability requires that schedulability be

preserved in situations in which it should be ‘easier’ to ensure schedulability.

Given our scheduling model, we use the following definition for sustainability

of our improved global schedulability test.

Definition 1. A schedulability test for our real-time scheduling model for sub-

systems is sustainable if any system deemed schedulable by the schedulability

test remains schedulable when the parameters of one or more individual job[s]

are changed in any, some, or all of the following ways: (i) decreased nor-

mal budgets; (ii) decreased overrun budgets, (iii) later arrival times; and (iv)

larger relative deadlines.

With this definition, sustainability of our global schedulability test imme-

diately follows from (10.6), i.e. WRs ≤ Ps = Ds and the fact that

• the maximum number wls of jobs of subsystem Ss in a level-s active

period, and

• the worst-case finalization time WF
Q
sk in (10.14), the worst-case inter-

ference WI
s−1
RCl,k

in (10.15), and the worst-case response time WRskl in

(10.16)

are strictly non-increasing for decreasing normal budgets, decreasing overrun

budgets, and increasing budget periods of subsystems.

Finally, we will prove that the improved global analysis will never give

worse results than the original analysis i.e., it will give better results or in the

worst case the same results as the original analysis. Looking at (10.12), if

wls > 1, then the system will be unschedulable using the original analysis

because the first job will miss its deadline according to the original analysis.

While using the modified analysis, the same systems can be schedulable. If

wls = 1 then k = 0 and Xs will not have any effect in (10.14) since k =
0. For modified analysis, only the subsystems with a higher priority than the

resource ceiling of the resource being locked are able to preempt. Taking this

into account can reduce the amount of interference considered due to higher

priority subsystems in general and for k = 0 in particular. Which in turn can

improve the results in terms of response time, schedulability and the CPU-

resource requirement.
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10.6 Improved local analysis

Both the existing global schedulability analysis and the improved global schedu-

lability analysis assume a deadline for a subsystem Ss equal to its period Ps

for the sum of the normal budget Qs and the overrun budget Xs. The existing

local schedulability analysis for the tasks of Ss is exclusively based on Qs,

however. Hence, when a system is feasible from a global scheduling perspec-

tive, the latest finalization time of Qs is guaranteed to be at least Xs before the

next activation of Ss. Hence, we can use the supply bound function sbfΩ(t)
of the EDP resource model Ωs(Ps, Qs, ∆s) for overrun without payback rather

than sbfΓs
(t) of Γs(Ps, Qs) in (10.7), where ∆s = Ps−Xs. Because Xs ≥ 0

for all subsystems (by definition), sbfΓs
(t) ≤ sbfΩs

(t) for all subsystems. As

a result, a subsystem may be schedulable according to the local analysis based

on sbfΩs
(t), but not be schedulable based on sbfΓs

(t).

Figure 10.3 shows an example of the supply bound functions sbfΩ(t) and

sbfΓ(t) for subsystem S2 of system Sys10.1 with Q2 = 1.8 and X2 = 2.4.

0 105
time

P2−Q2 P2−Q2

P2−Q2− X2 Q2

Q2

Q2

X2

Legend:

sbf
Ω
(t)

sbf
Γ
(t)

P2

Figure 10.3: Supply bound functions sbfΩ(t) and sbfΓ(t) for S2 with Q2 =
1.8 and X2 = 2.4.

10.7 Evaluation

In this section, we evaluate the modified overrun without payback analysis

(MONP), including both local and global improved analysis, with respect to

CPU resource. We compare MONP with the traditional overrun without pay-

back mechanism (ONP) using the notion of system load [2], as system load

provides an indication of the system CPU requirement in the presence of shared

resources. The comparison is carried out by means of simulation experiments.

To show the performance of MONP relative to alternative approaches.
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We start this section by briefly explaining the notion of system load and

how it should be adapted for MONP.

10.7.1 System load

System load is defined as a quantitative measure to represent the minimum

amount of CPU allocations necessary to guarantee the global schedulability of

the system S.

For ONP, system load loadsys is calculated as follows:

loadsys = max
∀Ss∈S

{αs} (10.20)

where

αs = min
0<x≤Ps

{
RBFs(x)

x
| RBFs(x) ≤ x} (10.21)

and

RBFs(x) = Bs + (Qs + Xs) +
∑

t<s

⌈
x

Pt

⌉
(Qt + Xt). (10.22)

Note that x can be selected within a finite set of scheduling points [18], and that

αs is the smallest fraction of the CPU resource, required to schedule a subsys-

tem Ss (satisfying the schedulability condition presented in Section 10.4.1),

assuming that the global resource supply function is αsx.

One can think of system load as decreasing the speed of the processor by

the factor loadsys, which will increase the subsystems’ normal budgets, the

overrun budgets, and blocking times by a factor 1/loadsys.

For MONP, evaluating system load is more complex than e.g., for ONP,

because it has more than one response time equation for global schedulability

analysis (see Section 10.5), unlike the case for ONP which has only one equa-

tion. To perform the schedulability analysis for MONP, firstly, the value of wls
should be evaluated in order to evaluate the range of k that is used by the other

equations. However, we can not evaluate the value of wls in (10.12) without

having the value of system load known. Without having the range of k, we can

not use the equations (10.14) - (10.19) that are required in the calculation of

system load. We solve this problem by using a binary search algorithm, such

that the system load is selected by the search algorithm and corresponding sys-

tem schedulability is checked. To do this we mutiply all subsystems normal

budgets, maximum overrun budgets, and blocking times in equations (10.12) -

(10.19) by a factor 1/loadsys. If the system is schedulable then the algorithm
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will select a lower system load and try again. If the system is unschedulable

then the algorithm will select a higher system load. The algorithm terminates

if the selected system load loadsys > 1 and the system is unschedulable, or

when the difference between the previous and the current system load is less

than a given acceptance limit. Since we have used a binary search algorithm

for MONP, the complexity of evaluating the system load is higher compared

with ONP. However, note that we use the system load for comparison pur-

poses only, hence it does not have any relationship with the complexity of the

schedulability analysis.

The efficiency of MONP is measured by the amount of system load re-

quired for schedulability, relative to ONP.

Both the local and global improved analysis in MONP can decrease the

system load. For the improved local analysis, it has the potential to decrease

the subsystem normal budget for certain subsystems, which in turn, can de-

crease the system load since it decreases the effect of the interference from

higher priority subsystems and the required normal budget of the subsystem

itself, in equations (10.12) - (10.19). However, there is no guarantee that

the improved local analysis can decrease the subsystem normal budget. Note

that sbfΓs
(x) < sbfΩs

(x) for APs − 2Qs − Xs < x < APs − Qs where

A ∈ N|A ≥ 2, and sbfΓs
(x) = sbfΩs

(x) otherwise. So looking at (10.7),

the improved local analysis depends on where the value of x (that makes the

left hand side of the equation, which represent the resource demand, equal to

the right hand side, which is the supply bound function) is located in the above

mentioned ranges. If that value of x is in the range that makes sbfΓs
(x) <

sbfΩs
(x) then it will decrease the subsystem normal budget, otherwise, it will

not. The amount of improvement when using the improved local analysis com-

pared with the original analysis, on the system load, depends on many factors

such as the size of Xs, the subsystem period, and the difference between the

subsystem period and tasks’ deadlines. The higher the value of Xs, the more

improvement can be achieved. Also, if the difference between the subsys-

tem period and tasks’ deadlines is low then the improvement in system load

becomes higher. If the difference between the subsystem period and tasks’

deadlines is high then the x that makes the left and right hand side of (10.7) to

be equal, becomes very far from the subsystem period and in this case a small

increment in the subsystem normal budget will be enough to cover the differ-

ence between sbfΓs
(x) and sbfΩs

(x) which also affect the improvement in

the system load.

Now we will explain the impact of the improved global analysis on the sys-

tem load, and we will use Figure 10.4 for illustration. When the Xs/loadsys
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part in Figure 10.4 is as large as possible, the improved global analysis con-

tributes with a greater improvement. The reason for this is that during this

part there will be no (or limited) preemptions from higher priority subsystems.

Hence, the difference between this part and the other part (I + Qs)/loadsys

should be low to achieve a greater improvement, where I is the interference

from higher priority subsystems (including the sum of Qt + Xt of the higher

priority subsystems) and also the blocking from lower priority subsystems. We

can distinguish some cases that the improved global analysis can not reduce

the system load. First, if the subsystem period of all subsystems are equal

then there will be no preemptions from higher priority subsystems during the

overrun time. Since the improved global analysis is based on removing the in-

terference from higher priority subsystems during the overrun from the global

analysis, then using the improved global analysis can not decrease the system

load. Another case that the improved global analysis can not decrease the sys-

tem load, is when the subsystem that requires the maximum CPU resource (i.e.,

the system load was computed based on its CPU requirement), is the highest

priority subsystem or it does not access a global shared resource.

Finally, combining both the local improvement and the global improve-

ment can require lower system load. As mentioned previously, the improved

local analysis has a potential to decrease the subsystem budget which will de-

crease the interference from higher priority subsystems and the budget of the

subsystem itself (I + Qs).

PsXs /loadsys

(I+Qs)/loadsys

Figure 10.4: Considering MONP analysis for Ss.

10.7.2 Simulation setting

The simulation is performed by applying the modified overrun without pay-

back analysis (MONP), including the improved local and global analysis, on

1000 different randomly generated systems. Initially, we assumed that each
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system consists of 5 subsystems and each subsystem contains 4 tasks. A task

is assumed to access at most one globally shared resource and 2 tasks in each

subsystem access globally shared resources and we assume that there is only

one global shared resource.

For simplicity, we assume that the internal resource ceilings of the globally

shared resources are equal to the highest task priority in each subsystem (i.e.,

rcsl = 1), and Ti = Di for all tasks. For each simulation study the following

settings are changed and a new 1000 systems is generated:

1. Critical section execution time CSs. It specifies the maximum absolute

time that a task may access a global shared resource. Changing this

parameter does not require to generate new 1000 system, since changing

only this parameter will not have effect on the other task parameters as

we will show later.

2. Subsystem period Ps and task period Tsi. The subsystem/task period is

specified as a range with a lower and upper bound. The simulation pro-

gram generates a subsystem/task period randomly within the specified

range, following a uniform distribution.

3. Number of subsystems N .

4. System utilization US . The sum of the utilization of all tasks in the

system, is specified to a desired value.

The given system utilization is divided randomly among the subsystems, and

the assigned utilization to each subsystem is in turn divided randomly to the

tasks that belong to that subsystem. Since the task period is generated to a

value within the interval as specified, the execution time is derived from the

desired task utilization. The critical section execution time is given as an input

parameter, however, its value can not be greater than the execution time of its

task. Therefore the critical section is set to be equal to the minimum value of

the task execution time and the given critical section execution time, i.e., csil =
min(CSs, Csi). All randomized system parameters are generated following

uniform distributions.

10.7.3 Simulation results

We have performed 4 different simulation studies as described below;
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• Study 1 is specified having critical section execution time CSs ∈
{2, 4, 6, 8}, task periods Tsi ∈ [140, 1000], subsystem periods Ps ∈
[40, 70], US = 20% and N = 5.

• Study 2 increase the range of the subsystem periods Ps and task periods

Tsi (compared to Study 1) to

A.) Ps ∈ [50, 200] and Tsi ∈ [400, 1000],
B.) Ps ∈ [100, 200] and Tsi ∈ [400, 1000].

• Study 3 change the number of subsystems (compared to Study 1) to

N ∈ {4, 6, 8}.

• Study 4 change the system utilization (compared to Study 1) to US ∈
{10%, 30%} with CSs = 2.

CSs 2 4 6 8

Q1 loadsys ONP 0.505 0.664 0.763 0.836

Median loadsys ONP 0.532 0.717 0.849 0.940

Q3 loadsys ONP 0.560 0.771 0.929 > 1

schedulable ONP 100% 100% 89.1% 67%

Q1 loadsys MONP 0.475 0.613 0.702 0.760

Median loadsys MONP 0.495 0.655 0.770 0.845

Q3 loadsys MONP 0.516 0.696 0.837 0.940

schedulable MONP 100% 100% 98.3% 84.7%

MONP/ONP med. improv. 7.4% 9.4% 10.2% 11.1%

MONP/ONP max. improv. 13.2% 19.6% 25.7% 30.0%

Table 10.3: Measured results of Study 1
Table 10.3 shows results of Study 1. The results of each method (ONP

and MONP) are shown using the median, lower quartile (Q1) and the higher

quartile (Q3) of the system load values of the 1000 generated systems. The per-

centage of schedulable systems, out of the 1000 generated systems, is shown.

In addition, it shows the percentage of improvement in the system load based

on the evaluated median (explained above) and the maximum improvement

when using MONP compared with ONP. It is calculated as 100 ∗ (loadONP
sys −

loadMONP
sys )/loadMONP

sys , where loadONP
sys is the median or maximum system

load, depending on what is required to be evaluated, using ONP analysis. Fig-

ure 10.5 shows the number of systems that have system load within the ranges

shown in the x-axis (the lines that connect points are only used for illustration)

for CSs = 2, while Figure 10.6 shows the results for the case when CSs = 8.

Note that for the case of CSs = 8, some of the systems are unschedulable

(i.e., having loadsys > 1) using both ONP and MONP, and they are shown in
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Figure 10.6 as the systems that have loadsys > 100% as it is not important to

find the actual system load for unschedulable systems.

Looking at the results in Table 10.3, it is clear that MONP can give better

results compared with traditional ONP, in terms of a lower system load and

more schedulable systems when increasing CSs (same results are shown in

Tables 10.4 and 10.5). In this study, the ratio CSs/Ps is relatively high and

that is the reason why MONP performs significantly better than ONP, which is

the characteristics that we are looking for.
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Figure 10.5: Results of Study 1 for CSs = 2.

In Study 2, we decrease the ratio CSs/Ps by increasing the range of

subsystem period. In Table 10.4, the subsystem period is selected as Ps =
[50, 200]. In this case, the improvement that MONP can achieve is less than

the case in Study 1 because Xs/loadsys becomes less significant within the

subsystem period Ps (see Figure 10.4). In Table 10.5, we change the range of

subsystem period to Ps = [100, 200], and that cause MONP to give better re-

sults compared with the results in Table 10.4. The reason for this improvement

is that when the difference between the minimum and maximum subsystem

period is decreased, then also the maximum number of interference (preemp-

tions) from higher priority subsystems is decreased. This will decrease the

contribution of the higher priority subsystems in equations (10.12) - (10.19)

which in turn decreases the required subsystem load when using MONP.
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Figure 10.6: Results of Study 1 for CSs = 8.

Looking at the MONP/ONP med. improv. line in Table 10.4 and Ta-

ble 10.5, the rate of the improvement when increasing CSs from 2 to 4 is

lower when increasing CSs from 4 to 6 and when increasing CSs from 6 to

8 (for example in Table 10.4, the difference between 4.9% − 3.1% is higher

than 5.6% − 4.9% ). The reason for this is that increasing CSs of tasks will

increase the required subsystems normal budgets for their subsystems (see

(10.7)) which, in turn, will increase the interference from higher priority sub-

systems in (10.12) - (10.19) and that limits the improvement that MONP can

achieve.

CSs 2 4 6 8

Q1 loadsys ONP 0.444 0.538 0.607 0.659

Median loadsys ONP 0.462 0.562 0.644 0.704

Q3 loadsys ONP 0.481 0.589 0.683 0.755

schedulable ONP 100% 100% 100% 99.8%

Q1 loadsys MONP 0.430 0.512 0.573 0.620

Median loadsys MONP 0.448 0.536 0.609 0.661

Q3 loadsys MONP 0.467 0.563 0.643 0.708

schedulable MONP 100% 100% 100% 100%

MONP/ONP med. improv. 3.1% 4.9% 5.6% 6.2%

MONP/ONP max. improv. 8.1% 12.3% 16.2% 16.8%

Table 10.4: Measured results of Study 2A, i.e. Ps ∈ [50, 200]
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Figure 10.7: Results of Study 2 for Ps ∈ [100, 200] and CSs = 2.

CSs 2 4 6 8

Q1 loadsys ONP 0.446 0.522 0.579 0.623

Median loadsys ONP 0.468 0.548 0.611 0.662

Q3 loadsys ONP 0.488 0.572 0.643 0.699

schedulable ONP 100% 100% 100% 100%

Q1 loadsys MONP 0.432 0.497 0.545 0.583

Median loadsys MONP 0.454 0.518 0.573 0.616

Q3 loadsys MONP 0.473 0.543 0.604 0.651

schedulable MONP 100% 100% 100% 100%

MONP/ONP med. improv. 3, 1% 5.8% 6, 6% 7.5%

MONP/ONP max. improv. 6.4% 11.9% 16.5% 17.2%

Table 10.5: Measured results of Study 2B, i.e. Ps ∈ [100, 200]

In Study 3, we investigate the effect of changing the number of subsystems,

and the results are shown in Table 10.6. We can see that increasing N will

decrease the improvement that MONP can achieve over ONP. The reason for

this is that increasing the number of subsystems will increase the interference I
of the higher priority subsystems which, in turn, will decrease the improvement

as explained in the previous section.

Finally, in Study 4 we investigate the effect of changing the system utiliza-

tion on the performance of MONP. The results in Table 10.7 show that increas-

ing the value of US will decrease the improvement that MONP can achieve

over ONP. The reason for this is that increasing the value of US will increase

the subsystem normal budget for all subsystems which increases the contribu-

tion of the higher priority subsystems in (10.12) - (10.19) and will limit the
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N 4 5 6 8

Q1 loadsys ONP 0.459 0.505 0.560 0.674

Median loadsys ONP 0.483 0.531 0.590 0.708

Q3 loadsys ONP 0.506 0.560 0.617 0.743

schedulable ONP 100% 100% 100% 100%

Q1 loadsys MONP 0.430 0.475 0.526 0.637

Median loadsys MONP 0.448 0.495 0.549 0.669

Q3 loadsys MONP 0.467 0.516 0.575 0.702

schedulable MONP 100% 100% 100% 100%

MONP/ONP med. improv. 7.8% 7.4% 7.3% 5.9%

Table 10.6: Measured results of Study 3 for CSs = 2

potential improvement of MONP as explained previously.

US 10% 20% 30%

Q1 loadsys ONP 0.348 0.505 0.661

Median loadsys ONP 0.376 0.531 0.690

Q3 loadsys ONP 0.402 0.560 0.718

schedulable ONP 100% 100% 100%

Q1 loadsys MONP 0.323 0.475 0.625

Median loadsys MONP 0.344 0.495 0.649

Q3 loadsys MONP 0.368 0.516 0.674

schedulable MONP 100% 100% 100%

MONP/ONP med. improv. 9.3% 7.4% 6.2%

Table 10.7: Measured results of Study 4 for CSs = 2

10.8 Conclusion

In this paper we have showed that existing global and local schedulability anal-

ysis of synchronization protocols based on SRP and overrun without payback

for two-level hierarchical scheduling based on FPPS is pessimistic. We have

presented an improved global and local analysis assuming that the deadline

of a subsystem holds for the sum of its normal budget and its overrun bud-

get, and showed that the global analysis is both uniform and sustainable. We

have illustrated the improvements by means of examples, and have evaluated

the improvement through an extensive simulation study. The evaluation results

show that MONP can improve the CPU requirement significantly for certain

cases especially when the ration between Xs/Ps is high which makes the per-

formance of the traditional ONP, very low.
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Abstract

In recent years, several synchronization protocols for re- source sharing

have been presented for use in a Hierarchical Scheduling Framework (HSF).

An initial comparative assess- ment of existing protocols revealed that none of

the proto- cols is superior to the others and that the performance of a protocol

heavily depends on system parameters. In this paper, we aim at efficiency im-

provements of the synchro- nization protocol SIRAP and its associated schedu-

lability analysis, where efficiency refers to calculated CPU resource needs.

The contribution of the paper is threefold. Firstly, we present an improvement

of the schedulability analysis for SIRAP, which makes SIRAP more efficient.

Secondly, we generalize SIRAP by distinguishing separate resource ceil- ings

for self-blocking and resource access. Using a separate resource ceiling for

self-blocking enables a reduction of the interference from lower priority tasks,

which can result in ef- ficiency improvements. The efficiency improvement

depends on both subsystem characteristics and the value selected for the re-

source ceiling for self-blocking, however. The third contribution of this paper

is therefore an algorithm that given a subsystem selects for each globally shared

resource an optimal value in terms of efficiency for its resource ceil- ing for

self-blocking. The efficiency improvement gained by the algorithm compared

to the original SIRAP approach is evaluated by means of simulation.
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11.1 Introduction

The Hierarchical Scheduling Framework (HSF) has been introduced to sup-

port hierarchical CPU sharing among applications under different scheduling

services [1]. The HSF can be represented as a tree of nodes, where each node

represents an application with its own scheduler for scheduling internal work-

loads (e.g., tasks), and resources are allocated from a parent node to its children

nodes.

The HSF provides means for decomposing a complex system into well-

defined parts called subsystems. In essence, the HSF provides a mechanism for

timing-predictable composition of course-grained subsystems. In the HSF a

subsystem provides an introspective interface that specifies the timing proper-

ties of the subsystem precisely [1]. This means that subsystems can be in-

dependently developed and tested, and later assembled without introducing

unwanted temporal interference. Temporal isolation between subsystems is

provided through budgets which are allocated to subsystems.

Motivation: Research on HSFs started with the assumption that subsys-

tems are independent, i.e., inter-subsystem resource sharing other than the CPU

fell outside their scope. In some cases [2, 3], intra-subsystem resource shar-

ing is addressed using existing synchronization protocols for resource sharing

between tasks, e.g., the Stack Resource Policy (SRP) [4]. Recently, three SRP-

based synchronization protocols for inter-subsystem resource sharing have been

presented, i.e., HSRP [5], BROE [6], and SIRAP [7]. Although all three pro-

tocols are SRP-based, they rely on different mechanisms to deal with inter-

subsystem resource sharing and depletion of budgets. In particular, HSRP is

based on a so-called overrun mechanism, whereas both BROE and SIRAP are

based on a so-called skipping approach. Moreover, their constituting frame-

works are based on different assumptions. As an example, scheduling (of sub-

systems as well as of tasks) in the frameworks of HSRP and SIRAP is based on

FPPS, whereas it is based on EDF for BROE. Finally, unlike BROE and SIRAP,

HSRP does not support local schedulability analysis, and the local schedulabil-

ity analysis in BROE as described in [6] is incomplete. An initial comparative

assessment of these three synchronization protocols [8] revealed that none of

them was superior to the others and that the performance of a protocol heavily

depends on the system parameters. A comparative evaluation of the mech-

anisms overrun and skipping using a single framework can be found in [9].

In this paper, we focus on SIRAP and aim at improving the efficiency of the

protocol and its associated schedulability analysis, where efficiency refers to

calculated CPU resource needs of a subsystem.
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SIRAP is based on a skipping mechanism to prevent depletion of a sub-

system budget during global shared resource access. That is, whenever a task

tries to lock a global shared resource and the remaining budget is insufficient

to complete the access, the task experiences self-blocking during the remainder

of the current budget period and is guaranteed to access the resource during the

next budget period. The contribution of this paper is threefold. Firstly, we re-

move some pessimism from SIRAP by improving its associated schedulability

analysis. Secondly, we generalize SIRAP by distinguishing separate resource

ceilings for self-blocking and resource access. Using a dedicated resource ceil-

ing for self-blocking enables a reduction of the interference from lower priority

tasks which may reduce the calculated resource needs of the subsystem whilst

guaranteeing the schedulability of all its internal tasks. Thirdly, we propose

an algorithm to select the optimal value per global shared resource for this

novel resource ceiling for a subsystem with given characteristics, resulting in

the lowest calculated resource needs for that subsystem. The efficiency of the

algorithm is evaluated by comparing its calculated resource needs with those

of the original SIRAP protocol in a simulation.

11.2 Related work

Over the years, there has been a growing attention to hierarchical scheduling of

real-time systems [2, 10, 11, 12, 3, 13, 14, 15, 16, 1]. Deng and Liu [11] pro-

posed a two-level HSF for open systems, where subsystems may be developed

and validated independently. Kuo and Li [3] presented schedulability analysis

techniques for such a two-level framework with the Fixed-Priority Scheduling

(FPS) global scheduler. Lipari and Baruah [13, 17] presented schedulability

analysis techniques for Earliest Deadline First (EDF) global schedulers. Mok

et al. [18, 12] proposed the bounded-delay virtual processor model to achieve a

clean separation in a multi-level HSF. In addition, Shin and Lee [1] introduced

the periodic virtual processor model (to characterize the periodic CPU alloca-

tion behaviour), and many studies have been proposed on schedulability anal-

ysis with this model under FPS [2, 14, 10] and under EDF scheduling [1, 19].

However, a common assumption shared by all above studies is that tasks are

independent.

Recently, three SRP-based synchronization protocols for inter-subsystem

resource sharing have been presented, i.e., HSRP [5], BROE [6], and SIRAP [7].

A comparative assessment of these three synchronization protocols [8] revealed

that none of them was superior to the others and that the performance of a pro-
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tocol heavily depends on system parameters.

11.3 System model and background

This paper focuses on scheduling of a single node or a single network link,

where each node (or link) is modeled as a system S consisting of one or more

subsystems Ss ∈ S. The system is scheduled by a two-level HSF as shown

in Figure 11.1. During runtime, the system level scheduler (global scheduler)

selects, at all times, which subsystem will access the common (shared) CPU

resource.

ÜÝÞßàßáâã ä ÜÝÞßàßáâã å ÜÝÞßàßáâã æçèéêëìíî ïéççìðñòóîñô
SIRAP

Global FPS Scheduler

õö÷øùúûüýþöÿ ù�ö�ú��ú÷ý��þú÷ çèéêëìíî ïéççìðñòóîñôõö÷øùúûüýþöÿ ù�ö�ú��ú÷ý��þú÷ çèéêëìíî ïéççìðñòóîñôõö÷øùúûüýþöÿ ù�ö�ú��ú÷ý��þú÷
CPU

Global Shared Resources
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Figure 11.1: HSF with resource sharing.
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Subsystem model A subsystem Ss consists of a set Ts of ns tasks and a

local scheduler. Once a subsystem is assigned the processor (CPU), its sched-

uler will select which of its tasks will be executed. With each subsystem Ss,

a subsystem timing interface Ss(Ps, Qs, Xs) is associated, where Qs is the

subsystem budget that the subsystem Ss will receive every subsystem period

Ps, and Xs is the maximum time that a subsystem internal task may lock a

shared resource. Finally, both the local scheduler of a subsystem Ss as well as

the global scheduler of the system S is assumed to implement the fixed priority

preemptive scheduling policy. Let Rs be the set of ms global shared resources

accessed by Ss.

Task model The task model considered in this paper is the deadline con-

strained sporadic hard real-time task model τi(Ti, Ci, Di, {ci,j}), where Ti is

a minimum separation time between arrival of successive jobs of τi, Ci is their

worst-case execution-time, and Di is an arrival-relative deadline (0 < Ci ≤
Di ≤ Ti) before which the execution of a job must be completed. Each task

is allowed to access one or more shared logical resources, and each element

ci,j ∈ {ci,j} is a critical section execution time that represents a worst-case

execution-time requirement within a critical section of a global shared resource

Rj . It is assumed that all tasks belonging to the same subsystem are assigned

unique static priorities and are sorted according to their priorities in the order

of increasing priority. Without loss of generality, it is assumed that the priority

of a task is equal to the task ID number after sorting, and the greater a task ID

number is, the higher its priority is. The same assumption is made for the sub-

systems. The set of shared resources accessed by τi is denoted {Ri}. Let hp(i)
return the set of local tasks that belong to a subsystem with priorities higher

than that of τi and lp(i) return the set of local tasks with priorities lower than

that of task τi. Table 11.1 shows the summary of the notations used in this pa-

per. For each subsystem, we assume that the subsystem period is selected such

that 2Ps ≤ Tmin, where τmin is the task with the shortest period. The motiva-

tion for this assumption is that higher Ps will require more CPU resources [20].

In addition, this assumption simplifies the presentation of the paper (evaluating

Xs).

Shared resources The presented HSF allows for sharing of logical resources

between arbitrary tasks, located in arbitrary subsystems, in a mutually exclu-

sive manner. To access a resource Rj , a task must first lock the resource, and

when the task no longer needs the resource it is unlocked. The time during

which a task holds a lock is called a critical section.
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Notation Description

S System

Ss Subsystem

Ts Sporadic task set

ns Number of local tasks.

Ps Subsystem period

Qs Subsystem budget

Xs Maximum time that Ss locks a global

shared resource.

Rs Set of global shared resources accessed

by Ss

Rj Global shared resource

ms Cardinality of Rs

τi Sporadic task

Ti Period of τi

Ci Worst case execution time of τi

Di Relative deadline of τi

ci,j Critical section execution times of τi

accessing Rj

{ci,j} Set of critical section execution times

of τi accessing Rj

{Ri} Set of shared resources accessed by τi

hp(i) Set of local tasks with priorities higher

than that of τi

lp(i) Set of local tasks with priorities lower

than that of τi

rcj Internal resource ceiling of Rj

RXj External resource ceiling

SC System ceiling

scs Subsystem ceiling

rcLWB
j Lower bounds for rcj

RXLWB
j Lower bound for RXj

sbfs(t) Supply bound function

rbfFP(i, t) Request bound function of τi

IS(i) Self blocking of τi

IH(i, t) Interference from tasks with priority higher

than that of τi

IL(i) Interference from tasks, with priority lower

than that of τi

srcj Self blocking ceiling of Rj

Table 11.1: Summary of notations.
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A resource that is used by tasks in more than one subsystem is denoted a

global shared resource. The work in this paper targets managing global shared

resources, and throughout the remainder of the paper these are simply denoted

as shared resources.

To be able to use SRP in a HSF for synchronizing global shared resources,

its associated terms resource, system and subsystem ceilings are extended as

follows:

Resource ceiling: Each global shared resource Rj is associated with two

types of resource ceilings; an internal resource ceiling (rcj ) for local schedul-

ing and an external resource ceiling (RXj) for global scheduling. Lower

bounds for rcj and RXj are defined as rcLWB
j = max{i|τi ∈ Ts accesses Rj}

and RXLWB
j = max{s|Ss accesses Rj}, respectively.

System/subsystem ceiling: The system/subsystem ceilings (SC/scs) are dy-

namic parameters that change during execution. The system/subsystem ceiling

is equal to the highest external/internal resource ceiling of a currently locked

resource in the system/subsystem.

Under SRP, a task τk can preempt the currently executing task τi (even

inside a critical section) within the same subsystem, only if the priority of τk is

greater than its corresponding subsystem ceiling. The same reasoning applies

for subsystems from a global scheduling point of view. An attractive property

of SRP is that it allows tasks within a subsystem to share a common stack.

11.4 SIRAP

The SIRAP [7] protocol can be used for independent development of subsys-

tems and it supports subsystem integration in the presence of globally shared

logical resources. It uses a periodic resource model [1] to abstract the timing

requirements of each subsystem. SIRAP uses the SRP protocol to synchronize

access to global shared resources in both local and global scheduling. SIRAP

applies a skipping approach to prevent the budget expiration inside critical sec-

tion problem. The mechanism works as follows; when a job wants to enter a

critical section, it enters the critical section at the earliest instant such that it

can complete the critical section execution before the subsystem budget ex-

pires. This can be achieved by checking the remaining budget before granting

the access to globally shared resources; if there is sufficient remaining budget

then the job enters the critical section, and if there is insufficient remaining

budget, the local scheduler delays the critical section entering of the job (i.e.,

the job blocks itself and its state becomes self blocking) until the next sub-
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system budget replenishment and guarantees access to the resource during the

next subsystem budget period. In addition, it sets the subsystem ceiling equal

to the internal resource ceiling of the resource that the self blocked job wanted

to access, to prevent the execution of all tasks that have a priority at most equal

to the ceiling of the resource until the job releases the resource.

Local schedulability analysis The local schedulability analysis under FPS

is as follows [7, 1]:

∀τi ∃t : 0 < t ≤ Di, rbfFP(i, t) ≤ sbfs(t), (11.1)

where sbfs(t) is the supply bound function based on the periodic resource

model presented in [1] that computes the minimum possible CPU supply to Ss

for every interval length t, and rbfFP(i, t) denotes the request bound function

of a task τi. sbfs(t) can be calculated as follows:

sbfs(t) =

{
t − (k + 1)(Ps − Qs) if t ∈ V (k)

(k − 1)Qs otherwise,
(11.2)

where k = max
(⌈(

t − (Ps − Qs)
)
/Ps

⌉
, 1

)
and V (k) denotes an interval

[(k + 1)Ps − 2Qs, (k + 1)Ps − Qs].

Note that, for Eq. (11.1), t can be selected within a finite set of scheduling

points [21]. The request bound function rbfFP(i, t) of a task τi is given by:

rbfFP(i, t) = Ci + IS(i) + IH(i, t) + IL(i), (11.3)

IS(i) =
∑

Rk∈{Ri}

Xi,k, (11.4)

IH(i, t) =
∑

τj∈hp(i)

⌈ t

Tj

⌉
(Cj +

∑

Rk∈{Rj}

Xj,k), (11.5)

IL(i) = max
τf∈lp(i)

(2 · max
∀Rj |rcj≥i

(Xf,j)), (11.6)

where IS(i) is the self blocking of task τi, IH(i, t) is the interference from

tasks with priority higher than that of τi, and IL(i) is the interference from

tasks, with priority lower than that of τi, that access shared resources.
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Subsystem budget In this paper, it is assumed that the subsystem period is

given while the minimum subsystem budget should be computed so that the

system will require lower CPU resources. Given a subsystem Ss, and Ps, let

calculateBudget(Ss, Ps) denote a function that calculates the smallest subsys-

tem budget Qs that satisfies Eq. (11.1) (the function is similar to the one pre-

sented in [1]). Hence,

Qs = calculateBudget(Ss, Ps). (11.7)

Calculating Xs Given a subsystem Ss, its critical section execution time Xs

represents the maximum time that a subsystem internal task may lock a shared

resource. Note that any task τi accessing a resource Rj can be preempted by

tasks with priority higher than rcj . Note that SIRAP prevents subsystem bud-

get expiration inside a critical section of a global shared resource. When a task

experiences self-blocking during a subsystem budget period it is guaranteed

access to the resource during the next period. A sufficient condition to provide

this guarantee is

Qs ≥ Xs. (11.8)

We now derive Xs ≤ Qs < Ps and since we assume that 2Ps ≤ Tmin then

all tasks that are allowed to preempt while τi accesses Rj will be activated at

most one time from the time that self blocking happens until the end of the next

subsystem period. Then Xi,j which represents the maximum time that τi locks

Rj , can be computed as follows,

Xi,j = ci,j +

ns∑

k=rcj+1

Ck. (11.9)

Let Xj = max{Xi,j| for all τi ∈ Ts accessing Rj}, then

Xs = max{Xj | for all Rj ∈ Rs}.

Internal resource ceiling Looking at Eq. (11.9), assigning internal resource

ceilings according to SRP may make the value of Xs very high which causes

the subsystem to require more CPU resources. One way to handle this problem

is by preventing the preemption inside the subsystem when a task is accessing a

shared resource as proposed in [5] so Xi,j = ci,j . It can be implemented using

SRP by assigning the resource ceiling of all resources equal to the maximum

task priority rcj = ns where ns is the task ID number of the highest priority

task. However, Bertogna et al. [22] showed that preventing preemption while
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accessing a global shared resource may violate the local schedulability of the

subsystem and proposed an algorithm based on increasing the ceiling of all

resources in steps as much as possible without violating the local schedulabil-

ity. Finally, Shin et al. [23] showed that there is a tradeoff between decreasing

the value of Xs and the minimum subsystem budget required to guarantee the

schedulability of the subsystem.

The result of this paper does not depend on any of the discussed methods

to set the internal resource ceiling. So we assume that the internal ceiling of

resource Rj can be selected within the following range ns ≥ rcj ≥ rcLWB
j .

11.5 Improved SIRAP analysis

In this section we will show that Eq. (11.6) is pessimistic and can be improved

such that the subsystem budget may decrease. Each task τi that shares a global

resource Rj with a lower priority task τf can be blocked by τf due to (i) self

blocking of τf and in addition due to (ii) access of Rj by τf . The maximum

blocking times of (i) and (ii) are given by the self blocking time Xf,j , and

the maximum execution time cf,j of τf inside a critical section of Rj , respec-

tively. Note that preemption of tasks with priority higher than rcj can be ex-

cluded from the resource access of Rj by τf , because those preemptions are

already incorporated in IH(i, t) (in Eq. (11.5)). The worst-case blocking is the

summation of the blocking from these two scenarios, as shown in Eq. (11.10).

IL(i) = max
τf∈lp(i)

( max
∀Rj |rcj≥i

(Xf,j + cf,j)). (11.10)

Since cf,j ≤ Xf,j , the interference IL(i) of tasks with a priority lower than that

of task τi, based on (8), is at most equal to that of (6). As a result, rbfFP(i, t)
may decrease, and the corresponding subsystem budget Qs may therefore de-

crease as well.

11.6 Improved SIRAP protocol

In this section, we present a generalization of SIRAP, providing options for

efficiency improvements of the protocol. First, we consider a dedicated set-

ting for the subsystem ceiling during self-blocking. Next, we show that the

efficiency of the protocol depends on both that setting and the subsystem pa-

rameters. Selecting an optimal setting is the topic of the next section.
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11.6.1 Subsystem ceiling for self-blocking

Looking at Eq. (11.1), one way to reduce the subsystem budget Qs is by de-

creasing rbfFP(i, t) for tasks that require highest subsystem budget. In Section

11.5, we have described one way to decrease rbfFP(i, t) for higher priority

tasks that share resources by decreasing IL(i). In this section we propose a

method that allows for a further reduction of IL(i). According to SIRAP, when

a task τi wants to enter a critical section of Rj it first checks if the remaining

budget is enough to release the shared resource before the budget expiration. If

there is not enough budget remaining, then the task τi blocks itself and changes

only the subsystem ceiling to be equal to rcj . This prevents the execution of

all tasks {τk} that have priority higher than that of τi and at most equal to the

ceiling of Rj (i.e., rcj ≥ k > i) that will be released after the self blocking

instance.

The new method called E-SIRAP is based on allowing tasks in {τk} to

execute during the self blocking time of τi. This can be achieved by setting

the subsystem ceiling equal to the priority of τi upon self blocking of task

τi and raising the subsystem ceiling to the resource ceiling when τi actually

accesses the resource. The main difference between SIRAP and E-SIRAP is

the setting of subsystem ceiling when a task τi enters self blocking (wants to

access a shared resource Rj and there is not enough budget left). In SIRAP,

the subsystem ceiling is set to rcj , i.e., the resource ceiling of Rj (the resource

that caused the self blocking). While using E-SIRAP the subsystem ceiling is

set to i, i.e., the priority of τi, which is at most equal to rcj . By choosing i
during self-blocking, we allow a maximum number of tasks to execute while

preserving the attractive property of SRP that we can use a single stack for all

tasks of a subsystem.

When using E-SIRAP, the maximum interference from lower priority tasks

IL(i) will be decreased compared to Eq. (11.10), and can be calculated as;

IL(i) = max
τf∈lp(i)

( max
∀Rj|rcj≥i

(cf,j)). (11.11)

According to the original SIRAP approach, if τi blocks itself, it should

enter the critical section at the next subsystem budget replenishment. However,

using E-SIRAP there is no guarantee that τi will enter the critical section at

the next subsystem activation, since tasks with priority higher than that of τi

and less than or equal to the ceiling of Rj are also allowed to execute in the

next subsystem activation. To guarantee that τi will enter its critical sections

at the next subsystem budget replenishment, the subsystem budget should be



11.6 Improved SIRAP protocol 211

big enough to include the execution of those tasks. When using E-SIRAP, the

sufficient condition (11.8) has to be revised to:

Qs ≥ Xi,j +
∑

k∈{i+1,...,rcj}

Ck. (11.12)

Hence, the minimum amount of budget needed for E-SIRAP may increase

compared to SIRAP.

Since we assume that 2Ps ≤ Tmin then all higher priority tasks will be

activated at most one time during the time t ∈ [trep, trep + Ps] where trep is

the subsystem replenishment time after self blocking of task τi.

Note that to evaluate Xi,j , Eq. (11.9) can be used without modification

since E-SIRAP changes the behavior of SIRAP only within the self blocking

time, and during the self blocking the task that caused self blocking is not

allowed to access the shared resource. The only effect of using E-SIRAP is on

the subsystem budget, hence efficiency can be defined exclusively in terms of

Qs.

Comparing Eq. (11.11) with Eq. (11.10), IL(i) may decrease significantly

and that may decrease the subsystem budget. However, Eq. (11.12) is a stronger

condition than Eq. (11.8), which may require a higher subsystem budget. Given

these opposite forces, we conclude that E-SIRAP will not always decrease the

minimum subsystem budget and therefore will not always give better results

than the original SIRAP. We will illustrate this by the following example.

Example 1: Consider a subsystem Ss that has three tasks and two of them

share resource R1 as shown in Table 11.2.

T Ci Ti Rj ci,j

τ3 2 30 - 0

τ2 1 32 R1 1

τ1 4 80 R1 4

Table 11.2: Task set parameters of Example 1.

Let the subsystem period be equal to Ps = 15. Using the original SIRAP,

we derive Xs = X1,1 = 6 and Qs = 9.34. Using E-SIRAP, we derive Xs =
X1,1 = 6 and Qs = 7. This latter value satisfies Eq. (11.12), i.e., Qs ≥ X1,1 +
C2 = 7. In this case, E-SIRAP decreases the subsystem budget, hence requires

less CPU resources. Conversely, for C2 = 5, we derive Qs = 10.67 for the

original SIRAP and derive Qs ≥ X1,1 + C2 = 11 by applying Eq. (11.12) for

E-SIRAP. In this case, the original SIRAP outperforms E-SIRAP.
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11.6.2 Subsystem ceiling upon self-blocking

As described in the previous section, the subsystem ceiling using E-SIRAP is

equal to the priority of the task that enters self blocking state during the self

blocking time. However, using this setting for all shared resources during the

self blocking of tasks may limit the performance improvement of E-SIRAP in

terms of decreasing the subsystem budget as shown in the following example.

Example 2: Consider a subsystem Ss that has four tasks as shown in Ta-

ble 11.3 and the subsystem period Ps = 50.

T Ci Ti Rj ci,j

τ4 14.7 100 R1, R2, R3 0.1, 0.1, 0.1

τ3 5 250 R3 4

τ2 5 300 R2 3

τ1 10 500 R1 0.1

Table 11.3: Task set parameters of Example 2.

Using original SIRAP, Qs = 23, Xs = X3 = 4 and rc1 = rc2 = rc3 = 4.

Using E-SIRAP the minimum budget that satisfies Eq. (11.1) is Qs = 19 ,

however, to satisfy the condition in Eq. (11.12) when τ1 access R1, the subsys-

tem budget should be Qs ≥ X1,1 + C2 + C3 + C4 = 24.8, when τ2 access

R2 then Qs ≥ 22.7 and for τ3 access R3 then Qs ≥ 18.7. This means that the

subsystem budget should be Qs = 24.8.

If we use SIRAP setting for R1 and E-SIRAP setting for the other shared

resources then Qs = 19 to satisfy Eq. (11.1), and to satisfy the condition in

Eq. (11.12) for τ1 access R1, then Qs ≥= 0.1, when τ2 access R2 then Qs ≥
22.7 and for τ3 access R3 then Qs ≥ 18.7. This means that the subsystem

budget should be Qs = 22.7.

Finally, if we set the subsystem ceiling equal to 3 when τ2 block itself

after trying to lock R2 then Qs = 19 to satisfy Eq. (11.1), and to satisfy the

condition in Eq. (11.12) for for τ3 access R3 should be Qs ≥ 18.7 and τ2 the

subsystem budget should be Qs ≥ 17.7. The subsystem budget for this case

should be Qs = 19.

It is clear that combining SIRAP and E-SIRAP gives better results than

each alone but the last setting gives even better results (lowest subsystem bud-

get) which is the combination of SIRAP (for τ1 access R1) and E-SIRAP (for

τ3 access R3) and in between (for τ2 access R2). However, there are two prob-

lems associated with this approach. First, each task access a shared resource

should have its own setting for subsystem ceiling during the self blocking time



11.6 Improved SIRAP protocol 213

and that means we need ns ×ms extra memory space to save these values as a

worst case. The second problem is finding the best setting of subsystem ceiling

for each task access a global shared resource. In Section 11.7 we present an

algorithm that finds the best setting of the subsystem ceiling to decrease the

subsystem budget Qs.

To solve the first problem, we introduce self blocking ceiling srcj as the

ceiling of a global shared resource Rj during the self blocking time of all tasks

that access this resource. The value of the self blocking ceiling should be within

srcj ∈ [k, rcj ] where k is the index of the lowest priority task that access

Rj i.e., k = min{v|τv ∈ Ts accesses Rj}. The self blocking ceiling will be

used in assigning the subsystem ceiling scs value during the self blocking, e.g.,

when τi blocks itself after failing to lock Rj , the following assignment takes

place:

scs = max(srcj , i). (11.13)

The max function in Eq. (11.13) is used to prevent all lower priority tasks

τk that have srcj ≤ k < i, from being executed during the self blocking of

τi. One of the advantages of using self blocking ceiling is that it decreases the

memory space required to save the setting during the self blocking of tasks to

ms, however, it increases the runtime overhead since it uses the max function.

Note that if it is required to use SIRAP setting for Rj then it is simply

achieved by setting srcj = rcj and if it is required to use E-SIRAP instead

then srcj = k, so using self blocking ceiling generalizes this version of SIRAP

to include original SIRAP, first E-SIRAP and in between.

Eq. (11.11) and (11.12) should be changed to include the self blocking

ceiling which has a great effect on them. The interference from lower priority

tasks on τi depends on srcj . During self-blocking of a lower priority task τf

that tried to access Rj , task τi is allowed to execute if srcj < i. Hence, τi

will not be blocked during the self blocking of τf on Rj when srcj < i. The

interference from lower priority tasks can be calculated as follows;

IL(i) = max
τf∈lp(i)

( max
∀Rj |rcj≥i

(A(i, j) × Xf,j + cf,j)), (11.14)

where

A(i, j) =

{
0 if srcj < i
1 otherwise.

(11.15)

srcj should also be included in Eq. (11.12) as shown below;
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Qs ≥ Xi,j +
∑

k∈{max(i,srcj)+1,...,rcj}

Ck. (11.16)

11.7 Selection algorithm

In this section, we will present an algorithm that finds the best setting of the

self blocking ceilings that minimize the subsystem budget Qs. The algorithm

searches for the best values for {srcj}, ∀Rj ∈ Rs through iteration steps (see

Figure 11.2). The algorithm is explained as follows;

Input and output Ss, Rs and {rcj}, ∀Rj ∈ Rs are the inputs to the algo-

rithm, and the outputs from the algorithm are Qs and {srcj}.

Initialization In the beginning, the algorithm sets the self blocking ceiling

of resources equal to the resource ceiling (line 1 in Figure (11.2)) which is

equivalent to SIRAP. In this case, the interference from lower priority tasks

will be the highest and is counted using Eq (11.10).

Iteration step In line 4, the algorithm calculates the subsystem budget Qs

and it checks the condition in Eq. (11.16) to guarantee the correctness of SIRAP/

E-SIRAP (lines 5 − 6). In line 14 it finds the task τh that requires the highest

CPU resource, that the value of Qs was selected according to the CPU resource

demand of this task. Then the algorithm finds the resource Rb that cause the

maximum blocking on task τh (line 15). Finally, it sets the srcb to be less

than the priority of τh in line 19 (srcb = h − 1). The interference from lower

priority tasks that access Rb, on task τh will be lower and will be computed

according to Eq. (11.14) (with A(h, b) = 0) which decreases rbfFP(h, t) and

can decrease the subsystem budget Qs. Finally, the algorithm computes the

subsystem budget after the changes of the self blocking ceiling and repeat the

operation.

Iteration termination The algorithm terminates if one of the following con-

ditions becomes true:

1. The self blocking ceiling of the resource Rb is lower than the priority

of the task τh (line 16). In this case, lowering the self blocking ceiling
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will not decrease Qs because the maximum blocking on τh can not be

decreased, i.e., maximum does not contain the term Xh,b in Eq. (11.14).

2. If there is not a resource that block the task τh, i.e., IL(h) = 0 in

Eq. (11.14) (for example the lowest priority task).

3. If the current budget is greater than the one that is evaluated in the pre-

vious iteration (lines 8, 12). Note that the budget may increase only due

to the condition in Eq. (11.16). The reason is that in each iteration the

self blocking ceiling of Rb is decreased which can decrease the required

Qs that schedule τh. On the other hand, decreasing srcb will increase

the right hand side of Eq. (11.16) which may require higher Qs, and

continuing to decrease srcb will increase Qs even more.

Complexity and runtime overhead During an i-th iteration, the algorithm

only decreases the self blocking ceiling of Rb. Then, it can repeat at most

O(ns × ms) iterations for a subsystem that its lowest priority task accesses all

shared resources and the algorithm decreased the self blocking ceiling of the

shared resources to the priority of that task.

During runtime, the improved E-SIRAP adds some runtime overhead com-

pared with the original SIRAP since it uses a max function in Eq. (11.13) when

assigning the value of the subsystem ceiling when entering self blocking state.

In addition, it requires more memory to save the self blocking ceiling of shared

resources compared with SIRAP as explained in section 11.6.1.

Improvement compared to SIRAP The resulting Qs when using this al-

gorithm is always less than or equal to the subsystem budget when using the

original SIRAP. The algorithm initializes the self blocking ceiling according

to SIRAP (i.e., srcj = rcj ) and it will continue iterating as long as there is a

possibility to decrease Qs. It stops if the value of Qs starts to increase or the al-

gorithm can not decrease it anymore. Then we can conclude that the algorithm

will give same or better results compared with SIRAP.

Algorithm’s functions

• The findTaskMaxQ function returns the index of one task. In case there

are more than one task that require at least Qs then the algorithm will

handle one subsystem at each iteration and the order of handling them

does not affect the results of the algorithm. The same holds for the func-

tion findResourceMaxB where it returns the index of one resource and
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it might happen that more than one shared resource cause the maximum

blocking.

• We will explain the function ”findTaskMaxQ”; for each task τi, lets de-

fine slacki as the maximum positive difference between the supply bound

function and the request bound function of τi,

slacki = maxt∈[0,Di](sbfs(t) − rbfFP(i, t)) where t can be selected

within a finite set of points [21].

Then the function findTaskMaxQ = i such that

slacki = minτk∈ Ts
(slackk).

Example We will explain the operation of the algorithm using the example

in Table 11.3.

1. First, the algorithm initializes the values of self blocking such that src1 =
src2 = src3 = 4, then it finds the minimum budget required to guar-

antee the schedulability Qs = 23. At line 14, it finds the task that re-

quires maximum CPU resources which is τ4. It tries to decrease the

rbfFP(4, t) by decreasing the interference from lower priority tasks,

looking at Eq. (11.14) at this step, A(4, 1) = A(4, 2) = A(4, 3) = 1,

i.e., the maximum blocking from each shared resource. At line 15 the

algorithm finds R3 as the shared resource that imposes the maximum

blocking on τ4 so it decreases the self blocking ceiling of R3 such that

src3 = 3 which makes A(4, 3) = 0.

2. The algorithm calculates the new budget Qs = 21 and check the condi-

tion in Eq. (11.16) which is Qs ≥ 18.7 so finalQs = 21. It finds the task

that requires maximum CPU resources, and it is task τ4. After that its

finds the resource that imposes maximum blocking which is R2. Then it

sets src2 = 3 and by this A(4, 2) = 0 in Eq. (11.14).

3. The new subsystem budget will be Qs = 19 and the condition in

Eq. (11.16) then Qs ≥ 18.7, finalQs = 19. After that the algorithm finds

the task that requires maximum CPU, and it is still task τ4, and it finds

that R3 is imposing the maximum blocking. But src3 < 4 (at line 16) the

blocking from this resource is the minimum and can not be minimized

more (case 1 in the iteration termination). So the algorithm stops and

returns the subsystem budget finalQs = 19 and the self blocking ceilings

of the shared resources src1 = 4, src2 = 3, src3 = 3.
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- calculateBudget(Ss, Ps, RCs, SRCs) returns the smallest

subsystem budget that satisfy (11.1).

- findTaskMaxQ(Ss, Ps, Qs, RCs) returns the task index of

the task that requires at least Qs to be scheduled.

- findResourceMaxB(Ss, Ps, RCs, h) returns the resource

number that imposes the maximum blocking on τh

- SIRAPCondition(Ss, SRCs) returns the value of budget

that satisfy Eq. (11.16).

- Pri(τh) returns the priority of the task τh.

1: RCs = finalSRCs = SRCs = {rc1, · · · , rcms
}

2: finalQs = calculateBudget(Ss, Ps, RCs, SRCs)
3: do

4: Qs = calculateBudget(Ss, Ps, RCs, SRCs)
5: if (SIRAPCondition(Ss, SRCs) > Qs)

6: Qs = SIRAPCondition(Ss, SRCs)
7: end if

8: if (Qs ≤ finalQs)

9: finalQs = Qs

10: finalSRCs = SRCs

11: else

12: return finalQs, finalSRCs

13: end if

14: h = findTaskMaxQ(Ss, Ps, Qs, RCs)
15: b = findResourceMaxB(Ss, Ps, RCs, h)
16: if (Rb /∈ Rs ) OR (SRCs[b] < Pri(τh))
17: return finalQs, finalSRCs

18: else

19: SRCs[b] = Pri(τh) − 1
20: end if

21: while (true)

Figure 11.2: The selection algorithm.
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11.8 Algorithm evaluation

In this section, we evaluate the performance of the presented algorithm, in

terms of requiring less CPU resource than using original SIRAP.

Based on Eqs. (11.1), (11.2), (11.14) and (11.16), we can distinguish two

parameters that have great effect on the performance of the algorithm:

• Xi,j – since the algorithm decreases the interference of the lower priority

tasks by Xi,j compared with SIRAP (see Eq. (11.16)) then higher values

of Xi,j can decrease the subsystem budget more.

• The difference between Ps and Tmin – the lower the difference is the

better results the algorithm will give. The reason behind this is that if Ps

is much lower than Tmin, then the subsystem budget using SIRAP will

be lower and because of the condition in Eq. (11.16) the algorithm may

not be able to decrease the subsystem budget.

We will explain the effect of the mentioned parameters by means of the

simulation in the following section.

11.8.1 Simulation settings

The simulation is performed by applying the algorithm on 1000 different ran-

domly generated subsystems where each subsystem consists of 5 tasks, and

then we have increased the number of tasks to 8 tasks to investigate the effect

of changing the number of task on the algorithm performance. The internal

resource ceilings of the globally shared resources are assumed to be equal to

the highest task priority in each subsystem (i.e., rcj = ns) and we assume that

Ti = Di for all tasks. For the subsystems that contain 8 tasks, 2-6 tasks ac-

cess globally shared resources and 1-4 tasks access global shared resources for

the subsystems that contains 5 tasks. The worst-case critical section execution

time of a task τi is set to a value between 0.3Ci and 0.8Ci. A task is assumed

to access at most one globally shared resource. For each simulation study the

following settings are changed and a new 1000 subsystems is generated except

when changing the subsystem period where the same subsystems are used:

1. Number of tasks – the number of tasks in subsystems.

2. Task set utilization UTs – the task set utilization is the summation of the

utilization of all tasks in the subsystem, is specified to a desired value.
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3. The subsystem period – the subsystem period is specified to a desired

value.

The task set utilization is divided randomly among the tasks that belong

to that subsystem. Task periods are selected within the range of 200 to 1000.

Since the task period is generated to a value within the interval as specified,

the execution time is derived from the desired task utilization. All randomized

subsystem parameters are generated following uniform distributions.

11.8.2 Simulation results

Tables 11.4-11.6 show the results of 3 different simulation studies performed to

measure the performance of the algorithm. The tables present four main mea-

sures. Firstly, the percentage of subsystems for which the subsystem budget

decreased when the algorithm was applied is presented in the row labeled by

”Improve”. Secondly, the absolute improvement, i.e. decrement, QDec
s of the

subsystem budget is computed, which is defined as QDec
s = QSIRAP

s − Qalg
s ,

where QSIRAP
s and Qalg

s are the subsystem budget using SIRAP and using the

selection algorithm, respectively. The tables present both the average decre-

ment and the maximum decrement in rows labeled by ”Avg. QDec
s ” and ”Max.

QDec
s ”, respectively. Thirdly, the relative improvement of the subsystem uti-

lization U Imp
s is computed, which is defined as

U Imp
s = (USIRAP

s − Ualg
s )/USIRAP

s , (11.17)

where USIRAP
s = QSIRAP

s /Ps and Ualg
s = Qalg

s /Ps denote the subsystem

utilization using SIRAP and using the selection algorithm, respectively. Sim-

ilar to the improvement of the subsystem budget, the tables present both the

average decrement (”Avg. U Imp
s ”) and maximum decrement (”Max. U Imp

s ”)

of the subsystem utilization. Finally, the maximum number of iterations that

the algorithm needed to find the lowest subsystem budget is determined and

presented in the row labeled by ”Max. iterations”.

• Study 1 is specified having task utilizations UTs of 5%, 10% and 20%,

number of tasks ns equals to 5, task periods between 200 and 1000, and

subsystem period Ps is 100.

• Study 2 changes the subsystem period Ps (compared to Study 1) to 75,

70 and 65 and keeps UTs = 5%. As mentioned previously we use the

same 1000 subsystems in Study 1 that have UTs = 5% and only change

the subsystem period.
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• Study 3 increase the number of tasks (compared to Study 1) to 8 tasks.

Looking at the results in Table 11.4, it is clear that for some subsystems the

algorithm can decrease the required budget significantly (a maximum decrease

”Max. QDec
s of 17,4 and maximum relative subsystem utilization improvement

Max.U Imp
s of 35%). It also shows that increasing UTs decreases the number

of subsystems for which the algorithm can improve their budgets compared

with SIRAP. The reason is that increasing UTs will increase Ci of the tasks

and will increase the required budget that satisfy Eq. (11.16). However, it will

also increase ci,j which is clear from observing the ”Avg.” and ”Max.” rows in

the table.

Looking at Table 11.5, it is clear that when the subsystem period is de-

creased, the number of the subsystems that the algorithm can improve will

be decreased. However, the decrement in the subsystem budget will be more

significant for the subsystem utilization when the subsystem period is lower

since Us = Qs/Ps (see the ”Ave.” and ”Max.” rows in Table 11.5 for the case

Ps = 75). When Ps = 65 ≤ Tmin/3 then the algorithm can not improve

any subsystem as explained in the beginning of this section. This can be seen

as a limitation of the algorithm and it could be better to decrease the subsys-

tem period instead of using the algorithm to decrease the subsystem utilization

Us = Qs/Ps. However, this is not always true, first, from the simulation

results we have compared the subsystem utilization Us when Ps = 100 and

Ps = 65 and we have found that when Ps = 100, 97 out of 410 subsystems

that the algorithm improved, require less or equal subsystem Us than when

using only SIRAP with Ps = 65. The reason is that when the algorithm is

able to improve the subsystem budget, then the request bound function of the

task that needs maximum CPU resources will be lower than the case when us-

ing original SIRAP with lower subsystem period, and this affects Eq. (11.1).

The second issue of reducing the subsystem budget is that it increases the con-

text switch overhead because the subsystem budget will be lower. Finally, as

showed in [7] decreasing the subsystem period may increase Us to satisfy the

condition Qs ≥ Xs of SIRAP.

In Study 3 we have increased the number of tasks to 8 tasks in each sub-

system, and the results in Table 11.6 shows that increasing the number of tasks

does not change the effect of UTs . However, increasing the number of tasks

will increase the number of subsystems that the algorithm can improve (com-

pare the ”Improve” row in Table 11.4 and Table 11.6). The reason is that there

are more task and more shared resources in each subsystem so the algorithm

can improve the subsystem more before it stops. The maximum number of
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iterations for 8 tasks is 6 iterations while for 5 tasks it is 4. In addition, increas-

ing the number of tasks and keeping UTs the same, decreases the utilization of

each task which improves the algorithm performance in terms of the number

of the subsystems that the algorithm can improve as explained previously.

UTs=5% UTs=10% UTs=20%

Improve 41% 34, 1% 26%
Avg. QDec

s 2 3, 70 5, 3
Avg. U Imp

s 16, 4% 15, 3% 12, 4%
Max. QDec

s 5 10 17, 4
Max. U Imp

s 36, 6% 37, 2% 35%
Max. iterations 4 4 4

Table 11.4: Measured results of Study 1.

Ps=75 Ps=70 Ps=65

Improve 19, 5% 5, 4% 0%

Avg. QDec
s 1, 9 0, 55 0

Avg. U Imp
s 20% 8% 0%

Max. QDec
s 5 1, 2 0

Max. U Imp
s 41, 9% 16, 6% 0%

Max. iterations 4 4 0

Table 11.5: Measured results of Study 2.

UTs=5% UTs=10% UTs=20%

Improve 47, 6% 43, 4% 32, 3%
Avg. QDec

s 2 3, 3 5
Avg. U Imp

s 14, 3% 13, 6% 11%
Max. QDec

s 5 10 14, 6
Max. U Imp

s 34, 5% 35, 4% 33, 5%
Max. iterations 6 6 6

Table 11.6: Measured results of Study 3.
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11.9 Summary

In this paper, we presented an improved schedulability analysis for the synchro-

nization protocol SIRAP. The improved analysis may decrease the minimum

subsystem budget while still guaranteeing the schedulability of all tasks in a

subsystem. We also presented a generalization of SIRAP, which distinguishes

separate resource ceilings for self blocking and for actual resource access, with

the aim to reduce the required CPU resource for each subsystem by reducing

the interference from lower priority tasks. Because the efficiency of the pro-

tocol depends on both the setting of the resource ceilings and the subsystem

parameters, we presented an algorithm that finds the best settings for resource

ceilings during the self blocking for each shared resource in order to minimize

the required subsystem budget. The simulation results shows that the algorithm

can significantly reduce the CPU resource needs of a subsystem, but that the

effectiveness of the algorithm heavily depends on the tasks parameters and the

subsystem period.

Our future work includes further improvements of SIRAP in two direc-

tions: I) Applying runtime mechanisms to decrease the value of Xi,j that is

used to check if there is enough remaining budget before accessing a shared

resource, based on the arrival time of the higher priority tasks, in order to im-

prove the average response time of tasks. II) Investigating the case of allowing

lower priority tasks to execute during the self blocking in order to reduce the

interference from higher priority tasks. For this improvement, a runtime mech-

anism may be required to decide the correct execution order of tasks during the

next activation subsystem period. III) Finally, showing the advantages of the

proposed algorithm on real industrial systems.
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Abstract

This paper presents algorithms that (1) facilitate system-independent syn-

thesis of timing-interfaces for subsystems and (2) system-level selection of in-

terfaces to minimize CPU load. The results presented are developed for hierar-

chical fixed-priority scheduling of subsystems that may share logical recourses

(i.e., semaphores). We show that the use of shared resources results in a trade-

off problem, where resource locking times can be traded for CPU allocation,

complicating the problem of finding the optimal interface configuration subject

to scheduability.

This paper presents a methodology where such a tradeoff can be effec-

tively explored. It first synthesizes a bounded set of interface-candidates for

each subsystem, independently of the final system, such that the set contains

the interface that minimizes system load for any given system. Then, integrat-

ing subsystems into a system, it finds the optimal selection of interfaces. Our

algorithms have linear complexity to the number of tasks involved. Thus, our

approach is also suitable for adaptable and reconfigurable systems.
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12.1 Introduction

Hierarchical scheduling has emerged as a promising vehicle for simplifying the

development of complex real-time software systems. Hierarchical scheduling

frameworks (HSFs) provide an effective mechanism for achieving temporal

partitioning, making it easier to enforce the principle of separation of concerns

in the design and analysis of real-time systems. HSFs allow hierarchical CPU

sharing among subsystems (applications). The whole CPU is available and

shared among subsystems. Subsequently, each subsystem’s allocated CPU-

share is divided among its internal tasks by the usage of an internal scheduler.

Substantial studies [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] have been intro-

duced for the schedulability analysis of HSFs, where subsystems are indepen-

dent. For dependent subsystems, synchronization protocols [14, 15, 16] have

been proposed for arbitrating accesses to logical resources (i.e., semaphore)

across subsystems in HSFs. There have been a few studies [11, 5] on the sys-

tem load minimization problem, which finds the minimum collective CPU re-

quirement (i.e., system load) necessary to guarantee the schedulability of an

entire HSF. However, this problem has not been addressed taking into account

global (logical) resource sharing (across subsystems).

The difficulty of finding the minimum system load substantially grows with

the presence of global sharing of logical resources, in comparison to without it.

Without it, it is a straightforward bottom-up process; individual subsystems de-

velop their timing-interfaces [11, 17], describing their minimum CPU require-

ments needed to ensure schedulability, and individual subsystem interfaces can

easily be combined to determine the minimum system load that guarantees the

schedulability of an entire HSF. However, global resource sharing produces in-

terference among subsystems, complicating the process of finding subsystem

interfaces that impose the minimum CPU requirements into the system load.

An inherent feature with global resource sharing is that a subsystem can

be blocked in accessing a global shared resource, if there is another subsys-

tem locking the resource at the moment. Such blocking imposes more CPU

demands, resulting in an increase of the system load. Therefore, subsystems

can reduce their resource locking time, for example, using the mechanism pre-

sented in [18], in order to potentially reduce the blocking of other subsystems

towards decrease of the system load. However, in doing so, we present in

this paper an unexpected consequence of reducing resource locking time; it

can increase the CPU demands of the subsystem itself (locking the resource),

subsequently increasing the system load. Hence, this paper introduces a po-

tentially contradicting effect of reducing resource locking time on the system
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load, and it entails methods that can effectively explore such a tradeoff.

In this paper, we consider a two-step approach towards the system load

minimization problem. In the first step, each subsystem generates its own in-

terface candidates in isolation, investigating the intra-subsystem aspect of the

tradeoff. In the second step, putting all subsystems together on system-level,

interfaces of all subsystems are selected from their own candidates to find the

minimum resulting system load, examining the inter-subsystem aspect of the

tradeoff. For the first step, we present an algorithm that derives a bounded

number of interface candidates for each subsystem such that it is guaranteed

to carry an interface candidate that constitutes the minimum system load no

matter which other subsystems it will be later integrated with. The first step

allows the interface candidates of subsystems to be developed independently,

making it also suitable for open environments [3], requiring no knowledge of

other subsystems. For the second step, we present another algorithm that de-

termines optimal interface selection to find the minimum system load. The

complexity of both algorithms is very low (O(n)), making the approach good

for execution during run-time, e.g., suitable for adaptable and reconfigurable

systems.

In the remainder of the paper, Section 12.2 presents related work, fol-

lowed by system model and background in Section 12.3. Section 12.4 presents

schedulability analysis in our HSF, followed by problem formulation and solu-

tion outline in Section 12.5. Section 12.6 addresses the first step of the two-step

approach; efficiently generating interface candidates, and Section 12.7 resolves

the second step finding an optimal solution out of the candidates. Finally, Sec-

tion 12.8 concludes.

12.2 Related work

This section presents related work in the areas of HSFs as well as synchroniza-

tion protocols.

Hierarchical scheduling. The HSF for real-time systems, originating in

open systems [3] in the late 1990’s, has been receiving an increasing research

attention. Since Deng and Liu [3] introduced a two-level HSF, its schedula-

bility has been analyzed under fixed-priority global scheduling [7] and under

Earliest Deadline First (EDF) based global scheduling [8]. Mok et al. [10] pro-

posed the bounded-delay virtual processor model to achieve a clean separation

in a multi-level HSF, and schedulability analysis techniques [6, 12] have been

introduced for this resource model. In addition, Shin and Lee [11, 17] intro-
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duced the periodic virtual processor model (to characterize the periodic CPU

allocation behaviour), and many studies have been proposed on schedulability

analysis with this model under fixed-priority scheduling [1, 9, 2] and under

EDF scheduling [11, 13]. More recently, Easwaran et al. [4] introduced Ex-

plicit Deadline Periodic (EDP) virtual processor model. However, a common

assumption shared by all above studies is that tasks are independent.

Synchronization. Many synchronization protocols have been introduced

for arbitrating accesses to shared logical resources addressing the priority in-

version problem, including Priority Inheritance Protocol (PIP) [19], Priority

Ceiling Protocol (PCP) [20], and Stack Resource Policy (SRP) [21]. There

have been studies on supporting resource sharing within subsystems [1, 7] in

HSFs. For supporting global resource sharing across subsystems, two protocols

have been proposed for periodic virtual processor model (or periodic server)

based HSFs on the basis of an overrun mechanism [15] and skipping [14], and

another protocol [16] for bounded-delay virtual processor model based HSFs.

Bertogna et al. [18] addressed the problem of minimizing the resource hold-

ing time under SRP. In summary, compared to the work in this paper, none of

the above approaches have addressed the tradeoff between how long subsys-

tems can lock shared resources and the resulting CPU requirement required in

guaranteeing schedulability.

12.3 System model and background

A Hierarchical Scheduling Framework (HSF) is introduced to support CPU

resource sharing among applications (subsystems) under different scheduling

services. In this paper, we are considering a two-level HSF, where the system-

level global scheduler allocates CPU resources to subsystems, and the

subsystem-level local schedulers subsequently schedule CPU resources to their

internal tasks. This framework also allows logical resource sharing between

tasks in a mutually exclusive manner.

12.3.1 Virtual processor models

The notion of real-time virtual processor model was first introduced by Mok

et al. [10] to characterize the CPU allocations that a parent node provides to a

child node in a HSF. The CPU supply refers to the amounts of CPU allocations

that a virtual processor can provide. Shin and Lee [11] proposed the periodic

processor model Γ(P, Q) to specify periodic CPU allocations, where P is a
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period (P > 0) and Q is a periodic allocation time (0 < Q ≤ P ). The

supply bound function sbfΓ(t) of Γ(P, Q) was given in [11] that computes the

minimum possible CPU supply for every interval length t as follows:

sbfΓ(t) =






t − (k + 1)(P − Q) if t ∈ [(k + 1)P − 2Q,
(k + 1)P − Q],

(k − 1)Q otherwise,

where k = max
(⌈(

t − (P − Q)
)
/P

⌉
, 1

)
.

12.3.2 System model

We consider a deadline-constrained sporadic task model τi(Ti, Ci, Di, {ci,j})
where Ti is a minimum separation time between its successive jobs, Ci is a

worst-case execution time requirement, Di is a relative deadline (Ci ≤ Di ≤
Ti), and each element ci,j in {ci,j} is a critical section execution time that

represents a worst-case execution time requirement within a critical section of

a global shared resource Rj . We assume that all tasks, that belong to same

subsystem, are assigned unique static priorities and are sorted according to

their priorities in the order of increasing priority. Without loss of generality, we

assume that the priority of a task is equal to the task ID number after sorting,

and the greater a task ID number is, the higher its priority is. Let HP(i) returns

the set of tasks with higher priorities than that of τi.

A subsystem Ss ∈ S, where S is the set representing the whole system of

subsystems, is characterized by 〈Ts,RCs〉, where Ts is a task set and RCs is a

set of internal resource ceilings of the global shared logical resources. We will

explain the resource ceilings in Section 12.3.3. We assume that each subsystem

has a unique static priority and subsystems are sorted in an increasing order of

priority, as is the case with tasks. We also assume that each subsystem Ss has

a local Fixed-Priority Scheduler (FPS) and the system has a global FPS. Let

HPS(s) returns the set of subsystems with higher priority than that of Ss.

Let us define a timing-interface of a subsystem Ss such that it specifies the

collective real-time requirements of Ss. The subsystem interface is defined as

(Ps, Qs, Xs), where Ps is a period, Qs is a budget that represents an execu-

tion time requirement, and Xs is a maximum critical section execution time

of all global logical resources accessed by Ss. We note that Xs is similar to

the concept of resource holding time (RHT) in [18], however, developed for

a different virtual-processor model. RHT in [18] is developed for a dedicated
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processor model1 (or a fractional processor model [10]), where subsystems do

not preempt each other. However, our HSF is based on a time-shared (par-

titioned) processor model [11], where subsystem-level preemptions can take

place. Therefore, Xs does not represent RHT in our HSF2, but indicates the

worst-case execution time requirement that Ss demands inside a critical sec-

tion. We will explain later how to derive the values of Ps, Qs and Xs for a

given subsystem Ss.

12.3.3 Stack resource policy (SRP)

In this paper, we consider the SRP protocol [21] for arbitrating accesses to

shared logical resources. Considering that the protocol was developed without

taking hierarchical scheduling into account, we generalize its terminologies for

hierarchical scheduling.

• Resource ceiling. Each global shared resource Rj is associated with two

types of resource ceilings; an internal resource ceiling (rcj) for local

scheduling and an external resource ceiling (RXs) for global schedul-

ing. They are defined as rcj = max{i|τi ∈ Ts accesses Rj} and

RXs = max{s|Ss accesses Rj}.

• System/subsystem ceiling. The system/subsystem ceilings are dynamic pa-

rameters that change during execution. The system/subsystem ceiling is equal

to the highest external/internal resource ceiling of a currently locked resource

in the system/subsystem.

Under SRP, a task τk can preempt the currently executing task τi (even

inside a critical section) within the same subsystem, only if the priority of τk is

greater than its corresponding subsystem ceiling. The same reasoning can be

made for subsystems from a global scheduling point of view.

Given a subsystem Ss, let us consider how to derive the value of its crit-

ical section execution time (Xs). Basically, Xs represents a worst-case CPU

demand that internal tasks of Ss may collectively request inside any critical

section. Note that any task τi accessing a resource Rj can be preempted by

tasks with priority higher than the internal ceiling of Rj . From the viewpoint

of Ss, let wj denote the maximum collective CPU demand necessary to com-

plete an access of any internal task to Rj . Then, wj can be computed through

iterative process as follows (similarly to [18]):

1A processor is said to be dedicated to a subsystem, if the subsystem exclusively utilizes the

processor with no other subsystems.
2As the computation of RHT is not main focus of this paper, we refer to our technical report [22]

for its computation in our HSF.
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w
(m+1)
j = cxj +

n∑

k=rcj+1

⌈
w

(m)
j

Tk

⌉ · Ck, (12.1)

where cxj = max{ci,j} for all tasks τi accessing resource Rj and n is the num-

ber of tasks within the subsystem. The recurrence relation given by Eq. (12.1)

starts with w
(0)
j = cxj and ends when w

(m+1)
j = w

(m)
j or when w

(m+1)
j > D∗

i ,

where D∗
i is the smallest deadline of tasks τi accessing Rj . If w

(m+1)
j > D∗

i ,

no task τi is guaranteed to be schedulable, and subsequently neither is its sub-

system Ss.

Then, Xs = max{wj | for all Rj ∈ Rs}, where Rs is a set of global shared

resources accessed by Ss.

12.4 Resource sharing in the HSF

12.4.1 Overrun mechanism

This section explains overrun mechanisms that can be used to handle bud-

get expiry during a critical section in a HSF. Consider a global scheduler that

schedules subsystems according to their periodic interfaces (Ps, Qs, Xs). The

subsystem budget Qs is said to expire at the point when one or more internal (to

the subsystem) tasks have executed a total of Qs time units within the subsys-

tem period Ps. Once the budget is expired, no new tasks within the same sub-

system can initiate execution until the subsystem’s budget is replenished. This

replenishment takes place in the beginning of each subsystem period, where

the budget is replenished to a value of Qs.

Budget expiration can cause a problem, if it happens while a task τi of a

subsystem Ss is executing within the critical section of a global shared resource

Rj . If another task τk, belonging to another subsystem, is waiting for the same

resource Rj , this task must wait until Ss is replenished so τi can continue to

execute and finally release the lock on resource Rj . This waiting time exposed

to τk can be potentially very long, causing τk to miss its deadline.

In this paper, we consider a mechanism based on overrun [15] that works

as follows; when the budget of the subsystem Ss expires and Ss has a task τi

that is still locking a global shared resource, the task τi continues its execution

until it releases the locked resource. The extra time that τi needs to execute

after the budget of Ss expires is denoted as overrun time θs. The maximum
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θs occurs when τi locks a resource such that Ss requests a maximum critical

section execution time (Xs) just before its budget (Qs) expires.

12.4.2 Schedulability analysis

In this paper, we use HSRP [15] for resource synchronization in HSF. Schedu-

lability analysis under global and local FPS with the overrun mechanism is

presented in [15]. However, the presented approach is not suitable for open

environments because the schedulability analysis of an internal task within a

subsystem requires information of all the other subsystems. Hence, this section

presents the schedulability analysis of local and global FPS using subsystem

interfaces, which is suitable for open environments.

Local schedulability analysis. Let rbfFP(i, t) denote the request bound

function of a task τi under FPS [23], i.e.,

rbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
· Ck, (12.2)

The local schedulability analysis under FPS can be then easily extended

from the results of [21, 11] as follows:

∀τi, 0 < ∃t ≤ Di rbfFP(i, t) + bi ≤ sbf(t), (12.3)

where bi is the maximum blocking (i.e., extra CPU demand) imposed to a task

τi when τi is blocked by lower priority tasks that are accessing resources with

ceiling greater than or equal to the priority of τi, and sbf(t) is the supply

bound function. Note that t can be selected within a finite set of scheduling

points [24].

Subsystem interface. We now explain how to derive the budget Qs of the

subsystem interface. Given Ss, RCs, and Ps, let calculateBudget(Ss, Ps,RCs)
denote a function that calculates the smallest subsystem budget that satisfies

Eq. (12.3) depending on the local scheduler of Ss. Such a function is similar

to the one in [11]. Then, Qs = calculateBudget(Ss, Ps,RCs).

Global schedulability analysis. Under global FPS scheduling, we present

the subsystem load bound function as follows (on the basis of a similar reason-

ing of Eq. (12.2)):

LBFs(t) = RBFs(t) + Bs , where (12.4)
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RBFs(t) = (Qs + Os(t)) +
∑

Sk∈HPS(s)

⌈ t

Pk

⌉
(Qk + Ok(t)), (12.5)

where Ok(t) = Xk and Os(t) = Xs for t ≥ 0. Let Bs denote the maxi-

mum blocking (i.e., extra CPU demand) imposed to a subsystem Ss, when it is

blocked by lower-priority subsystems,

Bs = max{Xj| Sj ∈ LPS(Ss)}, (12.6)

where LPS(Ss) = {Sj|j < s}.

A global schedulability condition under FPS is then

∀Ss, 0 < ∃t ≤ Ps LBFs(t) ≤ t (12.7)

System load. As a quantitative measure to represent the minimum amount

of processor allocations necessary to guarantee the schedulability of a subsys-

tem Ss, let us define processor request bound (αs) as

αs = min
0<t≤Ps

{
LBFs(t)

t
| LBFs(t) ≤ t}. (12.8)

In addition, let us define the system load loadsys of the system under global FPS

as follows:

loadsys = max
∀Ss∈S

{αs}. (12.9)

Note that αs is the smallest fraction of the CPU resources that is required

to schedule a subsystem Ss (satisfying Eq. (12.7)) assuming that the global re-

source supply function is αt. For example, consider a system S that consists

of two subsystems; S1 that has interface (10, 1, 0.5) and S2 (48, 1, 1). To guar-

antee the schedulability of S1 and S2 then α1 = 0.25 and α2 = 0.198. Then

loadsys = α1 = 0.25, which can schedule both S1 and S2.

12.5 Problem formulation and solution outline

In this paper, we aim at maintaining the system load as low as possible while

satisfying the real-time requirements of all subsystems in the presence of global

resource sharing. To achieve this, we address the problem of developing the in-

terfaces (Ps, Qs, Xs) of all subsystems Ss. In particular, assuming Ps is given,
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we focus on determing Qs and Xs such that a resulting system load (loadsys) is

minimized subject to the schedulability of all subsystems. It is suggested from

Eqs. (12.4) and (12.9) that loadsys can be minimized by reducing Qs and Xs

for all subsystem Ss.

A recent study [18] introduced a method to reduce Xi. According to

Eq. (12.1), the value of Xs can decrease, when it has less interference (i.e.,

the summation part of Eq. (12.1)) from the tasks τk with priorities greater than

the ceiling of a resource Rj (i.e., k > rcj ). Such interference can be reduced

by allowing fewer tasks to preempt inside the critical section of Rj . As pro-

posed by [18], the ceiling of Rj can be increased to its greatest possible value

in order to allow no preemption inside the critical section. This way, Xs can

be minimized.

In this paper, we show that achieving the minimum Xs of all subsystems

Ss does not simply produce the minimum system load, since minimizing Xs

may end up with a larger Qs. To explain why this happens, let us assume that

for a resource Rj , its ceiling rcj is i − 1. In this case, a task τi can preempt

any job that is executing inside the critical section of Rj . Now, suppose rcj is

increased to i. Then, τi is no longer able to preempt any job that is accessing

Rj , and it needs to be blocked. Then, the blocking (bi) of τi can potentially

increase, and, according to Eq. (12.3), this may require more CPU supply (i.e.,

Qs). Figure 12.1 illustrates a tradeoff between decreasing Xs and increasing

Qs with an example subsystem Ss, where Ss includes 7 internal tasks and

accesses 3 global resources. In the figure, each point represents a possible pair

of (Xs, Qs), and the line shows the tradeoff.

In addition to such a tradeoff, there is another factor that complicates the

system load minimization problem further. It is not straightforward to deter-

mine Qs and Xs of Ss such that they contribute to loadsys in a minimal way.

According to Eq. (12.6), Xs can serve as the blocking of its higher-priority

subsystem Sk depending on the value of Xj of other lower-priority subsys-

tems Sj . Hence, it is impossible to determine Xs and Qs in an optimal way,

without knowledge of other subsystems’ interfaces.

We consider a two-step approach to the system load minimization prob-

lem. In the first step, each subsystem generates a set of interface candidates

independently (with no information about other subsystems), which is suit-

able for subsystems to be developed in open environments. The second step

is performed when subsystems are integrated to form a system. During this

integration of subsystems, being aware of all interface candidates of all sub-

systems, only one out of all interface candidates for each subsystem is selected

(that will be used by the system-level scheduler later on) such that a resulting
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Figure 12.1: Tradeoff between Qs and Xs.

system load can be minimized.

12.6 Interface candidate generation

We define the interface candidate generation problem as follows. Given a

subsystem Ss and a set of global resources, the problem is to generate a set

of interface candidates ICs such that there must exist an element of ICs that

constitutes an optimal solution to the system load problem.

Suppose Ss contains n internal tasks that access m global shared resources.

Note that as explained in Section 12.5, each global resource may have up to n
different internal resource ceilings, and one interface candidate can be gener-

ated from each combination of m resource ceilings. A brute-force solution to

the interface generation problem is then to generate all possible mn interface

candidates. However, not all of these mn candidates have the potential to con-

stitute the optimal solution; those that require more CPU demand and impose

greater blocking on other subsystems can be considered as replicate candidates.

Hence, we present the ICG (Interface Candidate Generation) algorithm that

is not only computationally efficient, but also produces a bounded number of

interface candidates. We first provide some notions and properties on which

our algorithm is based. We then explain our algorithm and illustrate it. Here-

inafter, we assume that Ps is given by the system designer and is fixed during
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the whole process of generating a set of interface candidates. Therefore an

interface candidate can be denoted as (Qs,j , Xs,j) where j indicates interface

candidate index.

Definition 2. An interface candidate (Qs,k, Xs,k) is said to be redundant if

there exists (Qs,i, Xs,i) such that Xs,i ≤ Xs,k and Qs,i ≤ Qs,k, where k < i
(denoted as (Qs,i, Xs,i) ≤ (Qs,k, Xs,k)). In addition, (Qs,i, Xs,i) is said to

be non-redundant if it is not redundant.

Suppose (Q′
s, X

′
s) ≤ (Q∗

s, X
∗
s ). Then, the former candidate will never

yield a larger RBFs(t) than the latter does. This immediately follows from

Eqs. (12.4) and (12.5). That is, a subsystem Ss will never impose more CPU

requirement to the system load with (Q′
s, X

′
s) than with (Q∗

s , X
∗
s ). The fol-

lowing lemma records this property.

Lemma 12. If (Q′
s, X

′
s) ≤ (Q∗

s, X
∗
s ), (Q′

s, X
′
s) will never contribute more to

loadsys than (Q∗
s, X

∗
s ) does.

Proof. Suppose an interface candidate (Qs,a, Xs,a) is redundant. By defini-

tion, there exists another candidate (Qs,b, Xs,b) such that

• Xs,b ≤ Xs,a and Qs,b ≤ Qs,a. So (Qs,b + Xs,b) <= (Qs,a + Xs,a).
Using a redundant interface candidate will never decrease RBFs(t) (see

Eq. (12.5)) and the blocking Bs, respectively, compared to a non

redundant candidate. It means that using a redundant candidate can in-

creases LBFs(t) and thereby loads (see Eq. (12.8)). That is, a redundant

candidate only has a potential to increase loadsys (see Eq. (12.9)).

• both interfaces are equivalent then system load for both is the same.

Lemma 12 suggests that redundant candidates be excluded from a solution,

and it reduces the number of interface candidates significantly. However, a

brute-force approach to reduce redundant candidates is still computationally

intractable, since the complexity of an exhaustive search is very high O(mn).
We now present important properties that serve as the basis for the development

of a computationally efficient algorithm.

In order to discuss some subtle properties in detail, let us further refine

some of our notations with additional parameters. Firstly, the maximum block-

ing (bi) imposed to a task τi can vary depending on which resource τi accesses.

Hence, let bi,j denote the maximum blocking that a task with priority higher
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than i can experience in accessing a resource Rj , i.e., bi,j = max{ck,j} for

all τk ≤ τi. Secondly, the maximum CPU demand (wj) imposed to any task

accessing a resource Rj can also be different depending on the internal ceiling

(rcj) of Rj . So let wj,k particularly represent wj when rcj = k.

The following two lemmas show the properties of redundant interfaces,

suggesting insights for how to effectively exclude them.

Lemma 13. Let Ri denote a set of resources whose resource ceilings are i.
Suppose a resource Rk ∈ Ri yields the greatest blocking among all the ele-

ments of Ri. Then, it is the resource Rk that requires the greatest CPU demand

to complete any task’s execution inside a critical section among all elements of

Ri, i.e.,

(
bi,k = max

∀Rj∈Ri
{bi,j}

)
→

(
wk,i = max

∀Rj∈Ri
{wj,i}

)
. (12.10)

Proof. The wj,i depends on two parameters (see Eq. (12.1)); cxj , which is

equal to (bi,j) since rcj = i, and the interference from tasks with higher pri-

ority (the summation part denoted as I). Note that I in invariant to difference

resources Rj ∈ Ri, since it considers only the tasks with priority greater than i
in the summation. Then, it is clear that wj,i depends only on bi,j , and it follows

that the resource with the maximum bi,j , will be consequently associated with

the maximum wi,j .

Using Lemma 13, the following lemma particularly shows how we can

effectively exclude redundant candidates.

Lemma 14. Consider a resource Ry of a ceiling k (rcy = k) and another

resource Rz of a ceiling i (rcz = i), where k < i. Suppose bk,y < bk,z

and rcy < rcz . Then, an interface candidate generated by having the ceiling

rcy = k + 1, .., i is redundant. Hence it is possible to increase the ceiling of

Ry to that of Rz directly (i.e., rcy = rcz = i).

Proof. Let (Q′, X ′) denote an interface candidate generated when rcy = k
and rcz = i, where k < i. Let (Q∗, X∗) denote another interface candidate

generated when rcy = rcz = i. We wish to show that (Q∗, X∗) ≤ (Q′, X ′),
i.e., Q∗ ≤ Q′ and X∗ ≤ X ′.

Given bi,y < bi,z , it follows from Lemma 13 that wy,i < wz,i. This means

that even though the ceiling of Ry increases to i, it does not change the maxi-

mum blocking (bi) of tasks τi. Therefore, it does not change the request bound

function either. As a result, Q∗ = Q′.
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We wish to show that X∗ ≤ X ′. When the ceiling of Ry increases to i
from k, its resulting wy,i becomes smaller than wk

y because there will be less

interference from higher priority tasks, (i.e., wy,i < wy,k). In fact, this is the

only change that occurs to the subsystem critical section execution time of all

shared resources when rcy increases. Hence, the maximum subsystem critical

section execution time X can remain the same (if wy,k < X ′) or decrease (if

wy,k = X ′) after rcy increases. That is, X∗ ≤ X ′.

- calculateBudget(Ss, Ps,RCs) returns the smallest subsy-

stem budget that satisfies Eq. (12.2).

- increaseCeilingX∗(RCs) returns whether or not the ceil-

ing of the resource associated with X∗ can be increased

by one. If so, it increases the ceiling of the selected

resource as well as the ceiling of all resources that have

the same ceiling as the selected resource (Lemma 14).

- Interface is an array of interface candidates; each candidate

is (Q, X , RC).

- addInterface(Interface, Q∗, X∗,RCs) adds new

interface in the interface list array.

- removeRedundant(Interface) removes all redundant

interfaces from the interface list.

1: RCs = {rc1, · · · , rcm} // rcj=initial ceiling of Rj using SRP

2: num = 0

3: do

4: Q∗ = calculateBudget(Ss, Ps,RCs)
5: X∗ = max{w1,rc1

, · · · , wm,rcm
)}

6: addInterface(Interface, Q∗, X∗,RCs)
7: num=removeRedundant(Interface)
8: while (increaseCeilingX∗(RCs))
9: return (Interface, num)

Figure 12.2: The ICG algorithm.
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T Ci Ti Rj ci,j T Ci Ti Rj ci,j

τ1 8 750 R2 4 τ2 50 650 R1 5

τ3 10 600 - 0 τ4 35 500 R1 10

τ5 1 160 - 0 τ6 2 150 - 0

Table 12.1: Example task set parameters

12.6.1 ICG algorithm

Description. Using Lemmas 12, 13, and 14, we can reduce the complexity

of a search algorithm. The algorithm shown in Figure 12.2 is based on these

lemmas. In the beginning (at line 1), each resource ceiling rcj is set to its initial

ceiling value according to SRP (without applying the technique in [18]). The

algorithm then generates an interface candidate (Q∗, X∗) based on the current

resource ceilings (line 4 and 5). This new interface candidate is added into a

list (line 6). Such addition can make some candidate redundant according to

Lemma 1, and those redundant candidates are removed (line 7). Let R∗ denote

the resource that determines X∗ in line 5, and v∗ denote the value of the ceiling

(rc∗) of R∗ at that moment. In line 8, the algorithm 1) increases the ceiling rc∗

by one 2) checks the conditions given in Lemma 14 to further increase rc∗ if

possible, and 3) increases the ceiling of all other resources that have the same

ceiling as v∗ + 1, to the current value of rc∗. This way, we can further reduce

redundant interface candidates.

Example. We illustrate the ICG algorithm with the following example.

Consider a subsystem Ss that has six tasks as shown in Table 12.1. The local

scheduler for the subsystem Ss is Rate-Monotonic (RM) and we choose sub-

system period Ps = 125. The algorithm works as shown in Table 12.2. The

results from step 1 are (Qs,1 = 51, Xs,1 = 102), at step 2 (Qs,1, Xs,1) >
(Qs,2, Xs,2). So (Qs,1, Xs,1) is redundant (see Definition 2). That is, this in-

terface can be removed according to Lemma 12. For the same reason, (Qs,2,

Xs,2) can be removed after step 3. At step 3, the rc2 is increased directly to 4
according to Lemma 14 since rc1 > rc2 and b2,1 > b2,2. At both steps 4 and 5,

the ceiling rc1 is increased by one since Xs,i = w1 but we increase the ceiling

of rc2 according to Lemma 14. The algorithm selects the interface candidates

from steps 3, 4 and 5.

Correctness. The following lemma proves the correctness of the ICG al-

gorithm.

Lemma 15. Let IC denote a set of up to n interface candidates that are gen-

erated by the ICG algorithm of Figure 12.2. There exists no non-redundant
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Step rc1 rc2 w1 w2 Qs,i Xs,i

1 4 1 13 102 51 102

2 4 2 13 52 51 52

3 4 4 13 7 51 13

4 5 5 12 6 52.5 12

5 6 6 10 4 56 10

Table 12.2: Example algorithm

interface candidate (Qs,y, Xs,y) such that (Qs,y, Xs,y) 6∈ IC.

Proof. Assume that (Qs,y, Xs,y) is a non-redundant interface candidate and

that Xs,y = wk,i, i.e., the subsystem critical section execution time of Rk is

the maximum among all global shared resources when rck = i. Then we shall

prove that

1. There is no Rj such that bi,j > bi,k for all rcj > i. Otherwise we

could change the ceiling rck = rcj according to Lemma 14, and by this

wk,i 6= Xs,y.

2. There is no Rj such that bt,j > bi,k for all rcj < i, t < i. Otherwise

wj,t > wk,i because when we compute the wk and wj , the interference

from higher priority tasks as well as blocking is higher for Rj , and then

wk,i 6= Xs,y . If we increase the ceiling rcj = i, it will not give other

non-redundant interface candidates (see Lemma 13 and 14).

We can conclude that there is only one resource Rk that may generate a

non-redundant interface at resource ceiling i, and this is the one that imposes

the highest blocking at that level. The initial ceiling of Rk is v, where v ∈
[1, i]. From Lemma 13, bf,k (where f ∈ [v, i]) is the maximum blocking

at resource ceiling rck ∈ [v, i]. Since the presented algorithm increases the

ceiling of the global resource that generate the maximum subsystem critical

section execution time, it will increase the ceiling of Rk when rck = v up to

i. Hence, we can guarantee that the algorithm will include the interface when

Xs,y = wk,i.

The proof of the previous property also shows that the complexity of the

proposed algorithm is O(n) since we have n tasks (which equals to the number

of possible resource ceilings) and there is either 0 or 1 non-redundant interface

for each resource ceiling level, and the algorithm will only traverse these non-

redundant interfaces. Moreover, the proposed algorithm thereby produce at

most n interface candidates.
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Post-processing. The ICG algorithm generates non-redundant interface

candidates on the basis of Lemma 12. The notion of redundant candidate is

so general that the ICG algorithm can be applicable to many synchroniza-

tion protocols. In some cases, however, a set of interface candidates can be

further refined, for instance, when the overrun mechanism described in Sec-

tion 12.4.1 is used. Consider two candidates (Q′
s, X

′
s) and (Q∗

s, X
∗
s ) such that

Q′
s + X ′

s <= Q∗
s + X∗

s and X ′
s <= X∗

s . Then, (Q′
s, X

′
s) will never produce

not only a larger RBFs(t) for the subsystem Ss itself, but also a larger blocking

Bj for other subsystems Sj , than (Q∗
s, X

∗
s ) does. This immediately follows

from Eqs. (12.4)-(12.6). Then, the following lemma directly follows:

Lemma 16. Consider two candidates (Q′
s, X

′
s) and (Q∗

s, X
∗
s ) such that Q′

s +
X ′

s <= Q∗
s + X∗

s and X ′
s <= X∗

s . Then, (Q′
s, X

′
s) will never impose more

CPU requirement to loadsys in any way than (Q∗
s, X

∗
s ) does.

Proof. Looking at Eq. (12.4), we can decrease LBFs(t) to decrease the system

load by decreasing the blocking Bs and/or RBFs(t). For the blocking, using

the interface Qs,i, Xs,i may increase the blocking on the higher priority sub-

systems because Xs,i > Xs,j . For RBFs(t), it will be increased if we use

Qs,i, Xs,i because (Qs,i + Xs,i) > (Qs,j + Xs,j) see Eq. (12.5). For this

we can conclude that we can remove the interface (Qs,i, Xs,i) since it will not

reduce the system load compared with the other interfaces.

According to Lemma 16, a set of interface candidates generated by the

ICG algorithm goes through its post-processing for further refinement, and this

is very useful for the second step of our approach.

12.7 Interface selection

In this section, we consider a problem, called the optimal interface selection

problem, that selects a system configuration consisting of a set of subsystem

interfaces, one from each subsystem that together minimize the system load

subject to the schedulability of system. We present the ICS (Interface Candi-

date Selection) algorithm, an algorithm that finds an optimal solution to this

problem through a finite number of iterative steps.

12.7.1 Description of the ICS algorithm

The ICS algorithm assumes that each set of interface candidates (Qs, Xs) is

sorted in a decreasing order of Xs. In other words, each set is sorted in an
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1, 1, 1

1, 1, 21, 2, 12, 1, 1

2, 1, 21, 2, 22, 2, 13, 1, 1

2, 2, 23, 2, 13, 1, 2

3, 2, 2

1, 1, 1

1, 1, 21, 2, 12, 1, 1

2, 1, 21, 2, 22, 2, 13, 1, 1

2, 2, 23, 2, 13, 1, 2

3, 2, 2

Figure 12.3: Search space for a system consisting of 3 subsystems.

increasing order of collective demands (Qs + Xs) (see Lemma 16). Then, the

first candidate (Qs,1, Xs,1) has the largest critical section execution time but

the smallest collective demands.

The ICS algorithm generates a finite number of system configurations

through iteration steps. Each configuration is a set of individual interface can-

didates of all subsystems. Let CFi denote a configuration that ICS generates

at an i-th iteration step. For notational convenience, we introduce a variable

f i
k to denote an element of CFi, i.e., CFi = {f i

1, . . . , f
i
N}. The variable f i

k

represents the interface candidate index of a subsystem Sk, indicating that the

configuration in the i-th step includes (Qk,f i
k
, Xk,f i

k
).

Figure 12.3 shows an example to illustrate the ICS algorithm, where the

system contains 3 subsystems such that subsystem S1 has 3 interface candi-

dates, and two other subsystems S2 and S3 have 2 candidates, respectively.

Each node in the graph represents a possible configuration, and each number

in the node corresponds to an interface candidate index in the order of S1, S2,

and S3. The arrows show the possible transitions between nodes at i-th itera-

tion step, by increasing f i
k by 1 for each subsystem Sk one by one. We describe
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the ICS algorithm with this example.

Initialization. In the beginning, this algorithm generates an initial config-

uration CF0 such that it consists of the first interface candidates of all subsys-

tems. In Figure 12.3, CF0 = {1, 1, 1} (see line 2 of Figure 12.4).

Iteration step. The ICS algorithm transits from (i− 1)-th step to i-th step,

increasing only one element of CFi−1 in value by one. In Figure 12.3, the

arrows with bold lines illustrate the path that ICS can take. For instance, ICS

moves from the initialization step (CF0 = {1, 1, 1}) to the first step (CF1 =
{2, 1, 1}). Then, the ICS algorithm excludes the two sibling nodes of CF1 in

the figure (i.e., {1, 2, 1} and {1, 1, 2}) from the remaining search space; the

algorithm will never visit those nodes from this step on. This way, ICS can

efficiently explore the search space. Let us describe how ICS behaves at each

iteration step more formally.

Firstly, let δi denote the only single element whose value increases by one

between CFi−1 and CFi, i.e.,

f i
k =

{
f i−1

k + 1 if k = δi,
f i−1

k otherwise.
(12.11)

In the example shown in Figure 12.3, δ1 = 1.

Let us explain how to determine δi at an i-th step. We can potentially

increase every elements of CFi−1, and thereby we have at most N candidates

for the value of δi. Here, we choose one out of at most N candidates such that

a resulting CFi can cause the system load to be minimized.

Let loadsys(i) denote the value of loadsys when a configuration CFi is used

as a system interface. We are now interested in reducing the value of loadsys(i−
1). Let s∗ denote the subsystem Ss∗ that has the largest processor request

bound among all subsystems. That is, loadsys(i−1) = αs∗ (see Eq. (12.9)). We

can find such Ss∗ by evaluating the processor request bound’s of all subsystems

(in line 5 of Figure 12.4).

By the definition of s∗, we can reduce the value of loadsys(i− 1) by reduc-

ing the value of LBFs∗(t). There are two potential ways to reduce the value

of LBFs∗(t). From the definition of LBFs(t) in Eq. (12.4), one is to reduce its

maximum blocking Bs∗ and the other is to reduce the subsystem CPU demands

(RBFs∗(t)). A key aspect of this algorithm is that it always reduces the blocking

part, but does not reduce the request bound function part. An intuition behind

is as follows: this algorithm starts from the interface candidates that have the

smallest demands but the largest subsystem critical section execution times,

respectively. Hence, for each interface candidate, there is no room to further
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reduce its demand. However, there is a chance to reduce the maximum block-

ing Bs∗ of Ss∗ . It can be reduced by decreasing the Xk∗ of a subsystem Sk∗

that imposes the largest blocking to the subsystem Ss∗ . We define k∗ in a more

detail.

Let k∗ denote the subsystem sk∗ that imposes the largest blocking to the

subsystem Ss∗ , i.e., Bs∗ = Xk∗ = max{Xj | for allXs ∈ LPS(s∗)}3, where

LPS(i) is a set of lower-priority subsystems of Ss∗ . We can find such Sk∗

easily by looking at the subsystem critical section execution times of all lower-

priority subsystems of Ss∗ (in line 6 of Figure 12.4).

When such Sk∗ is found, it then checks whether the Xk∗ can be further

reduced (in line 7 of Figure 12.4). If so, it is reduced (in line 8), and CFi−1

becomes to CFi (in line 9). That is, δi = k∗.

Iteration termination. The above iteration process terminates when the

blocking Bs∗ of subsystem Ss∗ cannot be reduced further. The algorithm then

finds the smallest value of loadsys out of the values saved during the iteration,

and it returns a set of interfaces corresponding to the smallest value.

Complexity of the algorithm. During an i-th iteration, the algorithm only

increases the interface candidate index of a subsystem Sδi
. Then, it can repeat

O(N ∗ m′) iterations, where N is the number of subsystems and m′ is the

greatest number of interface candidates of a subsystem among all.

12.7.2 Correctness of the ICS algorithm

In this section, we show that the ICS algorithm produces a set of system con-

figurations that contains an optimal solution. We first present notations that are

useful to prove the correctness of the algorithm.

• AS We consider the entire search space of the optimal interface selection

problem. It contains all possible subsystem interfaces comprising a system

configuration, and let AS denote it, i.e.,

AS = IC1 × · · · × ICn. (12.12)

In the example shown in Figure 12.3, the entire solution space (AS) has 12

elements.

We present some notations to denote the properties of the ICS algorithm at

an arbitrary i-th iteration step.

3If more than one lower priority subsystem impose the same maximum blocking on Ss∗, then

we select the one with lowest priority.
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- ICs is an array of interface candidates of subsystem Ss,

sorted in a decreasing order of Xs.

- icis is an index to ICs of subsystem Ss.

- I is a set of interfaces {Is}, each of which indicated by icis.

- subsystemWithMaxLoad() returns the subsystem Ss∗

that has the greatest processor request bound among

all subsystems, i.e., loadsys = αs∗ .

- maxBlockingSubsystemToSysload(s∗) returns a subsystem

Sk∗ that produces the greatest blocking to a subsystem Ss∗ .

Note that Ss∗ determines the system load.

1: for all Ss ∈ S
2: icis = 1; Is = ICs[icis]
3: load∗sys = 1.0; I∗ = I
4: do

5: s∗ = subsystemWithMaxLoad()
6: k∗ = maxBlockingSubsystemToSysload(s∗)
7: if (icik∗ can increase by one)

8: icik∗ = icik∗ + 1
9: Ik∗ = ICk∗ [icik∗ ]
10: compute loadsys according to Eq. (12.9)

11: if (loadsys < load∗sys)

12: load∗sys = loadsys

13: I∗ = I
14: else

15: return I∗ (that determines load∗sys)

16: until (true)

Figure 12.4: The ICS algorithm.

• ÎC
i

k In the beginning, the ICS algorithm has the entire search space (AS)

to explore. Basically, this algorithm gradually reduces a remaining search

space to explore during iteration. For notation convenience, we introduce a

variable (ÎC
i

k) to indicate the remaining interface candidates of a subsystem
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Sk to explore. By definition, f i
k indicates which interface candidate of a sub-

system Sk is selected by CFi. This algorithm continues exploration from the

interface candidate indicated by f i
k from the end of an i-th step. Then, ÎC

i

k is

defined as

ÎC
i

k = {f i
k, . . . , maxk} for all k = 1, . . . , n, (12.13)

where maxk is the number of interface. In the example shown in Figure 12.3,

ÎC
1

1 = {2, 3}.

• XPi Let us define XPi to denote the search space remaining to explore

after the end of an i-th iteration step. Note that such a remaining search space

does not have to include the solution candidate CFi chosen at the i-th step.

Then, XPi is defined as

XPi = (ÎC
i

1 × · · · × ÎC
i

n) \ CFi. (12.14)

• RMi In essence, the ICS algorithm gradually decreases a remaining search

space during iteration. That is, at an i-th step, it keeps reducing XPi−1 to XPi,

where XPi ⊂ XPi−1. Let RMi denote a set of interface settings that is ex-

cluded from XPi−1 at the i-th step. Note that at the i-th step, the interface

candidate of a subsystem Sδi
changes from f i−1

δi
to f i

δi
. Then, a subset of XPi

that contains the value of f i−1
δi

, is excluded at the i-th step. RMi is defined as

RMi = (ÎC
(i−1)∗

1 × · · · × ÎC
(i−1)∗

n ) \ {CFi−1}, where (12.15)

ÎC
(i−1)∗

k =

{
{f i−1

k } if k = δi,

ÎC
i

k otherwise.
(12.16)

In the example shown in Figure 12.3, RM1 = {{1, 2, 1}, {1, 2, 2}, {1, 1, 2}}.

• AHi Let AHi represent a set of system configurations that the ICS algo-

rithm selects from the first step through to an i-th step, i.e.,

AHi = {CF1, . . . , CFi}. (12.17)

• ARi Let ARi represent a set of interface candidates that the ICS algorithm

excludes from the first step through to an i-th step, i.e.,

ARi = RM(i−1) ∪ RMi, where AR0 = φ. (12.18)

We define partial ordering between interface candidates as follows:
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Definition 3. A interface candidate sc = {c1, . . . , cn} is said to be strictly

precedent of another interface candidate sc′ = {c′1, . . . , c
′
n} (denoted as sc ≺

sc′) if cj < c′j for some j and ck ≤ c′k for all k, where 1 ≤ (j, k) ≤ n.

As an example, {1, 1, 1} ≺ {1, 2, 1}.

The following lemma states that when the algorithm excludes a set of inter-

face candidates from further exploration at an arbitrary i-th step, a set of such

excluded interface candidates does not contain an optimal solution.

Lemma 17. At an arbitrary i-th iteration step, the ICS algorithm excludes a set

of interface candidates (RMi), and any excluded solution candidate r ∈ RMi

does not yield a smaller system load than that by CFi−1.

Proof. As explained in Section 12.7.1, there are two potential ways to reduce

the value of loadsys(CFi−1) at the i-th step. One is to reduce the CPU resource

demand of the subsystem Ss∗

i
(i.e., RBFs∗

i
(t)), and the other is to reduce its

maximum blocking Bs∗

i
.

Firstly, we wish to show that RBFs∗
i
(t) does not decrease when we trans-

form CFi−1 to any interface candidate r ∈ RMi. Note that each interface

candidate set is sorted in an increasing order of resource requirement budget

(Q). One can easily see that CFi−1 ≺ r. Then, it follows that RBFs∗
i
(t) never

decreases when CFi−1 changes to r.

Secondly, we wish to show that when we change CFi−1 to any interface

candidate r ∈ RMi, Bs∗

i
does not decrease. As shown in line 6 in Figure 12.4,

the ICS algorithm finds the subsystem Sδi
that generates the maximum block-

ing to for subsystem Ss∗

i
. Then, the algorithm increases f i−1

δi
by one, if pos-

sible, to decrease Bs∗

i
. However, by definition, for all elements r of RMi, the

element for the subsystem Sδi
has the value of f i−1

δi
, rather than the value of

f i
δi

. This means that Bs∗

i
never decreases when we change CFi−1 to r.

The following lemma states that when the algorithm terminates at an ar-

bitrary f -th step, a set of remaining interface candidates does not contain an

optimal solution.

Lemma 18. When the ICS algorithm terminates at an arbitrary f -th step, any

remaining interface candidate (xp ∈ XPf ) does not yield a smaller system load

than CFf does.

Proof. As explained in the proof of Lemma 17, there are two ways to reduce

loadsys (i.e., LBFs∗
f
(t)).
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One is to reduce RBFs∗
f
(t) in Eq. (12.5) . However, it does not decrease,

since CFf ≺ xp for all xp ∈ XPf .

The other is to reduce the maximum blocking (Bs∗

f
). In fact, the ICS algo-

rithm terminates at the f -th step because there is no way to decrease Bs∗

f
. That

is, Bf does not decrease when CFf changes to any xp.

The following lemma states that at i-th step, the remaining search space to

explore decreases by (RMi ∪ {CFi}).

Lemma 19. At an arbitrary i-th iteration step,

XPi = XPi−1 \ (RMi ∪ {CFi}). (12.19)

Proof. The ICS algorithm transforms CFi−1 to CFi at an i-th step by increasing

the value of its δi-th element. Then, we have

ÎC
i

k =

{
ÎC

i−1

k \ {f i−1
k } if k = δi,

ÎC
i−1

k otherwise.
(12.20)

Without loss of generality, we assume that δi = 1. For notational convenience,

let XP∗
i = XPi ∪ {CFi}, and RM∗

i = RMi ∪ {CFi}. Then, we have

XP∗
i = ÎC

i

1 × ÎC
i

2 × · · · × ÎC
i

n

=
(
ÎC

i−1

1 \ {f i−1
1 }

)
× ÎC

i

2 × · · · × ÎC
i

n

=
(
ÎC

i−1

1 × ÎC
i−1

2 × · · · × ÎC
i−1

n

)
\

(
{f i−1

1 } × ÎC
i

2 × · · · × ÎC
i

n

)

= XP∗
i−1 \ RM∗

i

=
(
XPi−1 ∪ {CFi−1}

)
\

(
RMi ∪ {CFi−1}

)

= XPi−1 \ RMi . (12.21)

That is, considering XP ∗
i = XPi ∪ {CFi}, it follows

XPi = XPi−1 \ (RMi ∪ {CFi}) . (12.22)
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The following lemma states that at any i-th iteration step, the entire search

space can be divided into a set of explored candidates (AHi), a set of excluded

candidates (ARi), and a set of remaining candidates to explore (XPi).

Lemma 20. At an arbitrary i-th step, the sets of ARi, AHi, and XPi include

all possible interface candidates.

ARi ∪ AHi ∪ XPi = AS (12.23)

Proof. We will prove this lemma by using mathematical induction. As a base

step, we wish to show Eq. (12.23) is true, when i = 1. Note that AR0 = φ and

AH0 = {CF0}. In addition, XP0 = AS \ CF0, according to Eq. (12.14). It

follows that AR0 ∪ AH0 ∪ XP0 = AP .

We assume that Eq. (12.23) is true at the i-th iteration step of the ICS

algorithm. We then wish to prove that it also holds at the (i + 1)-th step, i.e.,

ARi ∪ AHi ∪ XPi = ARi+1 ∪ AHi+1 ∪ XPi+1. (12.24)

According to the definitions AHi+1, ARi+1, and XPi+1 (see Eq. (12.17),

(12.18) and (12.19)), we can rewrite the right-hand side of Eq. (12.24) as

follows:

ARi+1 ∪ AHi+1 ∪ XPi+1

=
(
ARi ∪ RMi+1

)
∪

(
AHi ∪ {CFi+1}

)
∪

(
XPi \ (RMi+1 ∪ {CFi+1})

)

= ARi ∪ AHi ∪ XPi .

The following theorem states that the ICS algorithm produces a set of sys-

tem configurations, which must contain an optimal solution.

Theorem 21. When the ICS algorithm terminates at the f -th step, a set of

system configurations (AHf ) includes an optimal solution.

Proof. Let opt denote an optimal solution. We prove this theorem by contra-

diction, i.e., by showing that opt 6∈ ARf and opt 6∈ XPf .

Suppose opt ∈ ARf . Then, by definition, there should exist RMi such that

opt ∈ RMi for an arbitrary i ≤ f . According to Lemma 17, loadsys(CFi−1) <
loadsys(opt), which contradicts the definition of opt. Hence, opt 6∈ ARf .
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Suppose opt ∈ XPf . Then, according to Lemma 18, it should be

loadsys(CFf ) < loadsys(opt), which contradicts the definition of opt as well.

Hence, opt 6∈ ARf .

According to Lemma 20, it follows that opt ∈ CFf .

12.8 Conclusion

When subsystems share logical resources in a hierarchical scheduling frame-

work, they can block each other. In particular, when a budget expiry problem

exists, such blocking can impose extra CPU demands. However, simply re-

ducing the blocking of subsystems does not monotonically decrease the sys-

tem load, since imposing less blocking to other subsystems can impose more

CPU requirements of the subsystems themselves. This paper introduced such

a tradeoff and presented a two-step approach to explore the intra- and inter-

subsystem aspects of the tradeoff efficiently, towards determining optimal sub-

system interfaces constituting the minimum system load.

In this paper, we considered only fixed-priority scheduling, and we plan to

extend our framework to EDF scheduling. Furthermore, our future work in-

cludes generalizing our framework to other synchronization protocols. For ex-

ample, this paper considered only the overrun mechanism without payback [15],

and we are extending towards another overrun mechanism (with-payback ver-

sion) [15]. Unlike with the former overrun mechanism, the intra- and inter-

subsystem aspects of the tradeoff are not clearly separated with the latter mech-

anism. The latter mechanism changes the way of a subsystem’s own contribut-

ing to the system load (i.e., Eq. (12.5)), and this requires appropriate changes

to the post-processing part of the ICG algorithm. We are investigating how to

make changes to the post-processing part in ways that require less subsequent

changes to the ICS algorithm.





Bibliography

[1] L. Almeida and P. Pedreiras. Scheduling within temporal partitions:

response-time analysis and server design. In Proceedings of the 4th ACM

International Conference on Embedded Software (EMSOFT’04), pages

95–103, September 2004.

[2] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-

ing. In Proceedings of the 26th IEEE International Real-Time Systems

Symposium (RTSS’05), pages 389–398, December 2005.

[3] Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open

environment. In Proceedings of the 18th IEEE International Real-Time

Systems Symposium (RTSS’97), pages 308–319, December 1997.

[4] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework

using edp resource models. In Proceedings of the 28th IEEE Interna-

tional Real-Time Systems Symposium (RTSS’07), pages 129–138, Decem-

ber 2007.

[5] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental schedulability

analysis of hieararchical real-time components. In Proceedings of the 6th

ACM Conference on Embedded Software, September 2006.

[6] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.

In Proceedings of the 23th IEEE International Real-Time Systems Sym-

posium (RTSS’02), pages 26–35, December 2002.

[7] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for

real-time applications. In Proceedings of the 20th IEEE International

Real-Time Systems Symposium (RTSS’99), pages 256–267, December

1999.

255



256 Bibliography

[8] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task

applications in dynamic systems. In Proceedings of the 6th IEEE Real-

Time Technology and Applications Symposium (RTAS’00), pages 166–

175, May-June 2000.

[9] G. Lipari and E. Bini. Resource partitioning among real-time applica-

tions. In Proceedings of the 15th Euromicro Conference on Real-Time

Systems (ECRTS’03), pages 151–158, July 2003.

[10] A. Mok, X. Feng, and D. Chen. Resource partition for real-time systems.

In Proceedings of the 7th IEEE Real-Time Technology and Applications

Symposium (RTAS’01), pages 75–84, May 2001.

[11] I. Shin and I. Lee. Periodic resource model for compositional real-time

guarantees. In Proceedings of the 24th IEEE International Real-Time

Systems Symposium (RTSS’03), pages 2–13, December 2003.

[12] I. Shin and I. Lee. Compositional real-time scheduling framework. In

Proceedings of the 25th IEEE International Real-Time Systems Sympo-

sium (RTSS’04), pages 57–67, December 2004.

[13] F. Zhang and A. Burns. Analysis of hierarchical EDF pre-emptive

scheduling. In Proceedings of the 28th IEEE International Real-Time

Systems Symposium (RTSS’07), pages 423–434, December 2007.

[14] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: A synchronization

protocol for hierarchical resource sharing in real-time open systems. In

Proceedings of the 7th ACM & IEEE International Conference on Em-

bedded Software (EMSOFT’07), pages 279–288, October 2007.

[15] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed pri-

ority pre-emptive systems. In Proceedings of the 27th IEEE Interna-

tional Real-Time Systems Symposium (RTSS’06), pages 389–398, Decem-

ber 2006.

[16] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-scheduled

resource-sharing open environment. In Proceedings of the 28th IEEE In-

ternational Real-Time Systems Symposium (RTSS’07), pages 83–92, De-

cember 2007.

[17] I. Shin and I. Lee. Compositional real-time scheduling framework with

periodic model. ACM Transactions on Embedded Computing Systems,

7(3):(30)1–39, April 2008.



[18] M. Bertogna, N. Fisher, and S. Baruah. Static-priority scheduling and

resource hold times. In Proceedings of the 15th International Workshop

on Parallel and Distributed Real-Time Systems (WPDRTS’07), pages 1–

8, March 2007.

[19] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task scheduling in distributed

real-time systems. In Proceedings of the IEEE International Conference

on Industrial Electronics, Control, and Instrumentation (IECON’87),

pages 909–916, November 1987.

[20] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization

protocols for multiprocessors. In Proceedings of the 9th IEEE Interna-

tional Real-Time Systems Symposium (RTSS’88), pages 259–269, Decem-

ber 1988.

[21] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time

Systems, 3(1):67–99, March 1991.

[22] Insik Shin, Moris Behnam, Thomas Nolte, and Mikael Nolin. On optimal

hierarchical resource sharing in open environments. Technical report,

2008. Available at http://www.idt.mdh.se/∼tnt/rtss08long.pdf.

[23] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-

rithm: exact characterization and average case behavior. In Proceedings

of the 10th IEEE International Real-Time Systems Symposium (RTSS’89),

pages 166–171, December 1989.

[24] G. Lipari and E. Bini. A methodology for designing hierarchical schedul-

ing systems. Journal Embedded Computing, 1(2):257–269, 2005.








