
Mälardalen University Press Dissertations
No. 85

PREDICTABILITY BY CONSTRUCTION
WORKING THE ARCHITECTURE/PROGRAM SEAM

Kurt C. Wallnau

2010

	

	

	

	

	

School of Innovation, Design and Engineering

Copyright © Kurt C. Wallnau, 2010
ISSN 1651-4238
ISBN 978-91-86135-80-5
Printed by Mälardalen University, Västerås, Sweden

Mälardalen University Press Dissertations
No. 85

PREDICTABILITY BY CONSTRUCTION
WORKING THE ARCHITECTURE/PROGRAM SEAM

Kurt C. Wallnau

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid Akademin för
innovation, design och teknik kommer att offentligen försvaras torsdagen den 30

september, 2010, 14.00 i Alpha, Mälardalens högskola, Västerås.

Fakultetsopponent: Dr. Clemens Szyperski, Microsoft

Akademin för innovation, design och teknik

Abstract

Contemporary software engineering practice overemphasizes the distinction of software design from
software implementation, and designer (“software architect”) from implementer (“computer programmer”).

In this contemporary meme, software architects are concerned with large-grained system structures, the
quality attributes that arise from these structures (security, availability, performance, etc.) and with tradeoffs
among quality attributes; programmers are concerned with low--level algorithms and data structures,
program functionality, and with satisfying architectural intent. However, software design and
implementation are not cleanly separable. While architect and programmer may have many different design
concerns, they also have many complementary concerns; their respective design practices must be better
integrated than is the case in contemporary practice.

The research reported here defines the Architecture/Program Seam (“the Seam”), a region of overlap in
software architecture and programming practice. The Seam emphasizes design concerns centered on
predictable runtime behaviour. For behaviour to be predictable it must be described by a computational
theory, and each such theory must provide objective evidence to demonstrate that theory predictions
correspond to system observations. The validity of a theory will likely depend on invariants that can be
expressed, and enforced, by means of design rules. A system that satisfies the design rules of a theory is then
regarded as having behaviour that is predictable by construction with respect to that theory.

The research reported here also introduces and defines prediction--enabled component technology (PECT) as a
foundation technology to support the Seam, and demonstrates a prototype PECT on industrial problems in
electric grid substation control, industrial robot control, and desktop streaming audio. The prototype PECT
extends a basic component technology of pure assembly (Pin) with theory extension points (reasoning
frameworks) that are used to achieve predictability by construction. Reasoning frameworks for real--time
performance and temporal--logic model checking are described, with statistical confidence intervals
providing evidence of predictive quality for the former, and code--embeddable proof certificates providing
evidence for the latter.

Finally, the research reported here defines the Seam itself as inducing a new kind of evolutionary design
problem, whose solutions require the integration of programming language theory, design theory,
specialized theories of system behaviour and deep systems expertise.

ISSN 1651-4238

ISBN 978-91-86135-80-5

Predictability By Construction:
Working the Architecture/Program Seam

Kurt C. Wallnau,
Mälardalen University

School of Innovation, Design and Technology.
Software Engineering Division

Västerås, Sweden
and

Software Engineering Institute,
Carnegie Mellon University

Pittsburgh, USA

September 15, 2010

2

Acknowledgements

I am grateful for the contributions of many colleagues, without which this
research would not have succeeded, and perhaps would not have been un-
dertaken in the first place. Scott Hissam, Daniel Plakosh, Gabriel Moreno,
James Ivers, Magnus Larsson and Sagar Chaki made fundamental contribu-
tions to the work reported here—to the theory of predictability by construc-
tion, the development of a prototype prediction–enabled component tech-
nology, and to its demonstration on non–trivial industrial problems. Judy
Stafford, Mark Klein, Len Bass and Paul Clements provided early guidance
on this research, gently steering it towards what was later recognized to be
called the architecture/program seam. Mark Klein deserves special credit for
also bringing his deep expertise in real–time scheduling theory to bear in the
development of the λ∗ reasoning framework. My acknowledgement of each
of your specific technical contributions in Chapter 2 is no doubt inadequate,
but to each of you I offer my sincerest personal thanks, for whatever that is
worth.

I also owe a great debt of gratitude to the Software Engineering Institute,
Carnegie Mellon University, for supporting this research. In particular, I wish
to express my enduring thanks to Linda Northrop, my mentor and supervisor
at the SEI, for supporting and encouraging me to pursue doctoral studies at
MDH as an adjunct to my research tasks at the SEI, even when my academic
pursuits impinged on those tasks.

Of course, as with every other PhD candidate, I owe a special debt to my
faculty advisor, Ivica Crnkovic. I am sure that I have caused Prof. Crnkovic
more than a little anxiety over the past few years; it is a great mystery how
he managed to maintain his faith in me all this time (even when I did not).

Lastly, and most importantly, I owe more than can be expressed to my
wife and best friend forever, Jeannemarie. It has been a long and circuitous
road from Providence to Västerås, a journey that would not have been com-
pleted without your patience and support.

Contents

1 Introduction 13
1.1 Software Engineering’s Genetic Defect 15

1.1.1 Consequences of the Defect 16
1.1.2 Recent Symptoms of the Defect 17

1.2 Repairing the Defect . 18
1.2.1 Programmers Are Designers 19
1.2.2 The Architecture/Program Seam 20
1.2.3 Technology and Practice on the Seam 21

1.3 Key Questions . 23
1.4 Contribution . 24
1.5 Related Work . 26
1.6 Research Method . 27
1.7 Key Assumptions . 28
1.8 Organization of this Thesis 29

2 Personal Research Contribution 31
2.1 Context of the Work . 32
2.2 My Contribution . 33
2.3 My Collaborators . 34
2.4 Description of Key Publications 35
2.5 Books . 40
2.6 Journal Articles and Book Chapters 41
2.7 Conference and Workshop Contributions 42
2.8 Technical Reports . 43

I Foundations 45

3 Rational Design 47
3.1 Metaphorical Design . 48
3.2 Rational Software Design . 49
3.3 Architecture and Programs 51
3.4 Technical Definitions . 52

3

4 CONTENTS

3.4.1 Operational and Developmental Systems 52
3.4.2 Architecture, Components and Interfaces 53
3.4.3 Predictable Behavior 55
3.4.4 Formally Predictable Behavior 58
3.4.5 Standards of Fit . 58

4 The Seam 61
4.1 Design Concerns . 63
4.2 Design Theories . 64
4.3 Design Rules . 66
4.4 Design Explanations . 67
4.5 Design Abstractions . 70

II Technologies 73

5 PECT 75
5.1 Pin Component Language (PCL) 78

5.1.1 Components and Connectors 78
5.1.2 Reactions and Interactions 79
5.1.3 Reactions and Pincharts 79
5.1.4 Constructive and Analytic Interfaces 80
5.1.5 Composition and Assembly 81
5.1.6 PCL in Action . 82

5.2 Pin Component Technology 83
5.2.1 Pin runtime environment in Action 85

5.3 Performance Reasoning Framework (λ∗) 86
5.3.1 Theory . 87
5.3.2 Interpretation . 87
5.3.3 Validation . 88
5.3.4 λ∗ in Action . 89

5.4 Model-Checking Framework (ComFoRT) 90
5.4.1 Theory . 91
5.4.2 Interpretation . 92
5.4.3 Validation . 93
5.4.4 ComFoRT In Action 93

5.5 Summary of Key Points . 95

6 Pin Component Language 97
6.1 Notational Conventions . 99
6.2 Basic Elements . 99

6.2.1 Lexical Structure . 99
6.2.2 Types . 100
6.2.3 Expressions . 101

CONTENTS 5

6.2.4 Declarations . 101
6.2.5 Statements . 104
6.2.6 Annotations . 104
6.2.7 Verbatim . 105

6.3 Structural Elements . 105
6.3.1 Components . 106
6.3.2 Assemblies . 107
6.3.3 Environments . 111
6.3.4 Instantiation . 112

6.4 Reactions . 113
6.4.1 Pin Events . 114
6.4.2 PinCharts . 114
6.4.3 Other Event Types . 118
6.4.4 Controller Alerts . 119

6.5 Semantics . 119
6.5.1 Interaction Semantics 119
6.5.2 Reaction Semantics . 121

6.6 Pragmatics . 121
6.6.1 Reactivity and Immediacy 122
6.6.2 Coordination Expressiveness 123

6.7 Summary . 127

7 The Pin Component Technology 129
7.1 Pin Design Objectives . 130
7.2 Pin Architecture . 131
7.3 Pin Component Model . 132

7.3.1 Components and Containers 133
7.3.2 Assembly Controllers 138

7.4 Pin Runtime Environment . 141
7.5 Summary of Pin . 143

8 Reasoning Frameworks 147
8.1 The Structure of Reasoning Frameworks 148
8.2 λ∗ Reasoning Framework . 149

8.2.1 λ∗ Preliminaries . 149
8.2.2 λ∗ Common Theory 150
8.2.3 λ∗ Common Behavioral Model 151
8.2.4 λ∗ Common Constraints 151

8.3 λ-WBA Reasoning Framework 153
8.3.1 λ-WBA Questions and Answers 153
8.3.2 λ-WBA Theory . 153
8.3.3 λ-WBA Constraints 154
8.3.4 λ-WBA Decision Procedure 154

8.4 λ-ABA Reasoning Framework 154

6 CONTENTS

8.4.1 λ-ABA Questions and Answers 154
8.4.2 λ-ABA Theory . 155
8.4.3 λ-ABA Constraints 155
8.4.4 λ-ABA Decision Procedure 155

8.5 λ-SS Reasoning Framework 156
8.5.1 λ-SS Questions and Answers 156
8.5.2 λ-SS Preliminaries . 156
8.5.3 λ-SS Theory . 158
8.5.4 λ-SS Constraints . 160
8.5.5 λ-SS Decision Procedure 161

8.6 ComFoRT Reasoning Framework 161
8.6.1 ComFoRT: Preliminaries 161
8.6.2 ComFoRT: Questions and Answers 163
8.6.3 ComFoRT: Theory . 164
8.6.4 ComFoRT Constraints 169
8.6.5 ComFoRT Decision Procedure 169

III Experiences 171

9 Industrial Cases 173
9.1 Preliminaries . 174

9.1.1 Model Problems . 174
9.1.2 Statistical Labels . 175

9.2 Substation Automation Systems: Soft P&C 177
9.2.1 SAS Problem Setting 177
9.2.2 Preliminaries on IEC–61850 178
9.2.3 Stage–1: Developing the Basic PECT 180
9.2.4 Stage–2: Distributed Soft P&C 187
9.2.5 Summary of SAS Case Study Results 189

9.3 Industrial Robotic Control Systems 192
9.3.1 Open Robot Controller Problem Setting 192
9.3.2 Safe Extension of Open Controllers 193
9.3.3 Model Checking Industrial Robot Code 197
9.3.4 Summary of Robotics Case Study Results 202

9.4 Summary of Key Results . 203

10 Theories and Co-Refinement 205
10.1 Seam as Theory Design . 206

10.1.1 Pragmatic Concerns of Theories 207
10.1.2 Theories, Observations and Decision Procedures 208
10.1.3 Preconditions, Predictions and Specifications 208
10.1.4 Direct and Indirect Observations 210
10.1.5 Correctness, Preference and Tactics 210

CONTENTS 7

10.1.6 Implementable Sets . 211
10.1.7 Incremental Theory Refinement 212

10.2 Seam as Language Design: Co-Refinement 213
10.2.1 Background on Co-Refinement of λ∗ 214
10.2.2 Step 0: Starting Points 216
10.2.3 Step 1: Establish λ1 Worst Case Non-Blocking Latency 217
10.2.4 Step 2: Generalize λ1 to Average Case Latency 219
10.2.5 Step 3: Generalize λ2 for Blocking 219
10.2.6 Step 4: Generalize λ3 for Average Case 221
10.2.7 Step 5: Generalize λ4 to Asynchronous Pins 223

10.3 Learning from Co-Refinement 224
10.3.1 Co-Refinement Design Forces 224
10.3.2 Engineering Roles in Co–Refinement 225

IV Conclusions 229

11 Summary of Results 231
11.1 Results in Support of the Theses 232
11.2 Answers to Key Research Questions 234
11.3 Limitations and Future Work 235

V Appendixes 239

A PCL Semantics 241
A.1 Interaction Semantics . 242

A.1.1 Preliminaries . 242
A.1.2 A Simple Example . 242
A.1.3 Top–Level Process . 245
A.1.4 Component Instance Processes 246
A.1.5 Interacting Processes 248
A.1.6 PCL Interaction Semantics (Final) 252

A.2 Reaction Semantics . 255
A.2.1 Preliminaries . 255
A.2.2 Reaction Handler . 257
A.2.3 Reaction Handler Description 258

B Examples from Soft P&C Case Study 261
B.1 PCL Assembly Specification for SoftPC–A 262
B.2 PCL Component Specification for PTRC 277

C Acronyms 301

8 CONTENTS

List of Figures

1.1 Parody Reflects Reality . 16
1.2 Logical Structure of Seam Technology and Practice 22

3.1 Satisfying, Predictably Satisfying, and Satisficing Designs . . 59

4.1 Prediction-Enabled Component Technology in Context 71

5.1 The PSK: A Prototype PECT 76
5.2 Audio Mixing Assembly . 81
5.3 Audio Mixing (Generated Code) 83
5.4 Pin Components and Containers 84
5.5 Audio Mixing (Pin Runtime) 86
5.6 λ∗ Robot Controller . 88
5.7 λ∗ Interpretation of Robot Assembly 90
5.8 Certified Code . 94

6.1 Interaction Semantics: Schema 120

7.1 Pin Architecture (Logical View) 131
7.2 Pin Component Interfaces . 134
7.3 Assembly Controller Pattern 138
7.4 Pin Kernel (Layered View) . 142

8.1 Reasoning Framework Structure 148
8.2 λ∗ Metamodel . 152
8.3 Example Sporadic Server Task Timeline 157
8.4 λ-SS Performance Envelope 159
8.5 Predicate Abstraction . 166
8.6 CEGAR Loop . 167
8.7 ComFoRT Workflow . 170

9.1 Structure of a Model Problem 174
9.2 λ-ABA Confidence Interval 176
9.3 Relevant IEC 61850 Concepts 179
9.4 Initial SAS Model Problems 181

9

10 LIST OF FIGURES

9.5 Concrete 61850-Based Controller Assembly 181
9.6 Model Checking Interpretation of CSWI 185
9.7 Soft P&C Top–Level Logical View 188
9.8 Soft P&C Experimental Setup 190
9.9 Simplified S4 Task Structure 194
9.11 A Simple Coordination Protocol 199
9.12 Workflow for Using ObjectCheck Reasoning Framework . . . 200
9.13 Verifiable Counterexample . 201

10.1 Measurement Infrastructure and Workflow 222
10.2 Effects of Execution Jitter on Latency 223
10.3 Reasoning Framework Design Forces 226

A.1 Interaction Semantics: Schema (Redux) 244
A.2 Basic Interaction Patterns . 248

List of Tables

1.1 Symptoms of the Defect . 17
1.2 The Architecture/Program Seam 21

4.1 Overlapping Jurisdictions and Seam Consolidation 62
4.2 Seam Scenario using PECT 72

7.1 Container, ContainerService and ComponentCore Interfaces . 135
7.2 PinComponent and ComponentInstance Interfaces 139

9.1 IEC 61850 Components Implemented in Pin 183
9.2 ORC Task Details . 194

10.1 Five Stepwise Iterations to λ-ABA 215

11.1 Seam Results . 233

A.1 Pseudo–Classes for Reaction Semantics 256

C.1 Acronyms . 302

11

12 LIST OF TABLES

Chapter 1

Introduction

13

14 CHAPTER 1. INTRODUCTION

All engineering disciplines use “divide and conquer” as a fundamental
problem solving strategy—to decompose large problems into smaller (compo-
nent) problems, and to compose (component) solutions of smaller problems
into larger solutions. To the extent that software engineering is concerned
with software problems and software solutions, it will also be concerned with
software components. Although a more specific interpretation of software
component is developed later in this thesis, for the present it is sufficient to
note that by “software” I mean computer programs; and by “components” I
mean the constituent parts of those programs.

It may seem obvious that computer programs are of essence to the
discipline of software engineering. There is, however, an unfortunate and
widespread tendency in software engineering theory and practice to regard
programming as a routine production activity, and programmers (at best) as
the equivalent of a skilled shop foremen or machinists, but nonetheless mostly
concerned with filling in the details of some software engineer’s design.

This research argues that disassociating programming practice from soft-
ware engineering practice, and in particular from software architecture prac-
tice, is both artificial and a self-defeating. It is artificial because there are
no criteria that usefully distinguish the design of computer programs from
their implementation. It is self–defeating because architects and program-
mers, to the extent that they do have different design concerns, also have
complementary concerns. If software engineers expect to produce software
that has predictable and acceptable quality, then software architecture and
computer programming practices must exhibit an overall integrity.

This research also provides a sound but practical demonstration that:

• A region of shared and reciprocal concerns between architectural design
and program design, the architecture/program seam can be exposed
and formalized.

• The seam can be substantially automated with prediction-enabled com-
ponent technology.

• An automated seam permits the development of systems whose behav-
ior is predictable by construction.

The remainder of this introduction is structured as follows. Section 1.1
traces the disassociation of software engineering from programming to the
origins of software engineering, and discusses the symptoms of this defect in
engineering practice. Section 1.2 postulates the Seam, Prediction–Enabled
Component Technology, and Predictability By Construction as a way of
repairing the defect (or at worst, gradually mitigating its worst symptoms).
The questions addressed by this research are identified in Section 1.3, the
main contributions are outlined in Section 1.4, and related work is described
in Section 1.5. The approach taken to conduct the research is described in

1.1. SOFTWARE ENGINEERING’S GENETIC DEFECT 15

Section 1.6, and key assumptions of the approach are detailed in Section
1.7. Finally, the structure of the remainder of the dissertation is outlined in
Section 1.8.

1.1 Software Engineering’s Genetic Defect

The birth of software engineering can be traced to the 1968 NATO-sponsored
working conference on software engineering [114]. Given the earlier com-
ments about divide and conquer, it is not surprising that the birth of soft-
ware components can also be traced to this conference, and in particular to
M.D. Mcilroy’s keynote, “ ‘Mass Produced’ Software Components.” Mcil-
roy’s remarks are interesting as an historical marker in the development
of component-based approaches to software development, and also because
they anticipate a number of topics that are pertinent even today on compo-
nent variability, quality, testing, standardization, markets, and distribution.
However, it is his remarks about the role of programmers in software engi-
neering that are of particular interest to this thesis, because they reveal at
this earliest “genetic” stage of the development of software engineering the
workings of a faulty premise:

“What I have just asked for is simply industrialism, with pro-
gramming terms substituted for some of the more mechanically
oriented terms appropriate to mass production.”1

In Mcilroy’s vision of industrialized software component factories, a term he
also coined in his remarks, programming occupies a niche somewhere between
skilled craft and unskilled assembly-line work—a connotation reinforced by
his association of programming with mechanization and mass production. He
argued that industrial–scale production processes, and by implication Tay-
loresque theories of scientific industrial management [163, 162] that attend
industrial-scale production, are the only viable way to achieve the persistent
increases in programmer productivity and software quality that are needed to
meet ever-increasing societal demands for software. Indeed, some have come
to identify industrial software–engineering process improvement initiatives
with software engineering as a whole.

The factory metaphor is without doubt compelling, and has survived and
been adapted well beyond Mcilroy’s original vision, as can be seen not only
from Cusamano’s now dated survey [47] but also by more recent publica-
tions [164, 100]. However, these most recent works on software factories are
far more respectful of programming practice than Mcilroy, and bear little
resemblance to the factories found in the pages of the NATO workshop pro-
ceedings. Yet the genetic defect is not located in Mcilroy’s factory metaphor
per se; that is just one symptom of the defect. Rather, the defect lies in

1Emphasis added.

16 CHAPTER 1. INTRODUCTION

Figure 1.1: Parody Reflects Reality

the implicit and yet wholly artificial distinction between the design of soft-
ware and its implementation, and, by natural progression, programmers as
implementors rather than as designers.

1.1.1 Consequences of the Defect

There are social as well as a technical aspects of all engineering disciplines,
and software engineering’s genetic defect has adverse impact on both.

Modern society, with its increasing dependence on digital technology,
cannot be well served by a software engineering practice that incorrectly
regards programming as a menial task best delegated (or relegated) to low-
skilled assembly line workers. This artificial class structure, parodied in
a widely-circulated Dilbert comic strip (Figure 1.1, reproduced with per-
mission), risks creating an engineering culture that will lose contact with
the fast-evolving software technologies that society depends upon, at which
point software engineering will become an engineering discipline in name
only. Conversely, the same class structure risks creating a programming cul-
ture (which arguably already exists) that regards the ethos of discipline and
social responsibility that attends any engineering discipline as irrelevant and
foreign. Perhaps it was just such consequences that led Edsger Dijkstra,
another luminary of the NATO conference, to later disown the engineering
discipline that he helped midwife:

“Software engineering, of course, presents itself as another worthy
cause, but that is eyewash: if you carefully read its literature
and analyze what its devotees actually do, you will discover that
software engineering has accepted as its charter ‘how to program
if you cannot’.”[48].

Today, technologies that support architecting and programming exist in
isolation of one another, with architecture description languages continuing
to evolve, but without widespread impact on programming practice; the
converse is true for programming languages and environments.

1.1. SOFTWARE ENGINEERING’S GENETIC DEFECT 17

Table 1.1: Recent Manifestations of Software Engineering’s Genetic Defect

Misconception Seam Conception
The use of system models is the hallmark of
engineering disciplines, and mature
software engineering practice is concerned
with models, not with computer programs.
Models encode abstracted essence and their
use reflects rigor and discipline; programs
encode myriad fussy details, undisciplined
hacks, and are generally “wrong.”

All functional and non-functional runtime
behavior is a consequence of computational
processes, therefore all models of
non-functional behavior must be an
interpretation of some computer program.
Computer programs are models, and
language semantics provide interpretations
of programs to computational models.

Architects design software systems;
programmers implement those designs.
Architects are concerned with design
processes; programmers are concerned with
production processes. Architects are
polymaths and possess renaissance skills;
programmers are unidimensional and
possess readily substitutable skills.

Programming is fundamentally a design
activity. Architects and programmers
operate on a design continuum; they differ
in their concerns, the criteria and theories
they use to address these concerns, the
design artifacts they manipulate, and the
strictures they follow to maintain
intellectual control of design problems.

1.1.2 Recent Symptoms of the Defect

Many attempts have been made to link software architecture to computer
program; however, they have done so in a way that is generally “one-sided,”
i.e., in ways that tend to perpetuate the genetic defect because of the tacit
devaluation of programming and programmers. Model–based engineering
(MBE) is one widely known contemporary attempt; the emergence of “pro-
fessional” software architects is another. While both attempts have merits,
each is limited by the false dichotomy of “design” and “implementation.”

Table 1.1 highlights, in exaggerated form, the philosophical positions
adopted by advocates of MBE and architecture primacy, along with parallel
concepts found in the results reported here. It is not the purpose of this
research to engage in polemics, and the positions staked out in Table 1.1 are
exaggerated (though not, I claim, to the point of reductio ad absurdum).
Rather, the positions are constructed to highlight the “slippery slope” that
leads from model–based software engineering and architecture primacy to
the mythical software factory.

Automated model transformation is quite central to the research reported
here, and so a few words about the first row in Table 1.1 are in order. Part
of what makes this slope especially slippery is that model transformation is
the essence of software development. What is sometimes forgotten is that
computer programs written in any language other than bare machine code
are themselves models, and on this ground alone the term “model–based”
seems quite redundant.

However, the idea of regarding programs as “low–level” models to be

18 CHAPTER 1. INTRODUCTION

automatically generated from “high–level” models is itself quite reasonable,
though of course different forms of high–level model lead to different what
constitutes “high–level.” Application–specific languages (also known as do-
main specific languages) are clearly one form that MBE can take, although
the success of these approaches requires a well–defined and often quite narrow
“domain of discourse.” Using design notations such as UML as “high–level”
models is less well motivated because the model–to–code transformations in
these cases are largely a matter of syntax.

One justification for MBE is that the vast majority of programming
decisions are routine, and further that a substantial and possibly grow-
ing portion of these routine programming decisions are also mundane to
the point where they can be mechanized. Automated garbage collection in
place of programmer-controlled memory management is but one of many
well-established examples; the advent of multi-core architecture is leading to
analogous mechanization of concurrency management.

However, such arguments do not challenge the assertion of programming
as a design activity. After all, a growing collection of architectural styles and
patterns is evidence of routinization of architectural decisions, and adaptive
middleware technologies [102] suggest that even routine architecture deci-
sions can prove to be mundane to the point where they, too, can be mecha-
nized. Indeed, routinization and mechanization are essential contributors to
improving software engineering practice; such improvements do not reduce
design to fabrication, but they do allow an incrementally sharper focus on
essential rather than accidental software engineering design problems [23].

MBE approaches that use architectural design notations such as AADL
[58] as syntactic scaffolding for analysis models are, in principle, quite consis-
tent with the work reported here. Also consistent with the research reported
here are approaches that extend programming languages with specialized an-
notations and associated static analysis tools [159], or through “first–class”
extensions of the programming language syntax and semantics to incorpo-
rate architectural structures [5]. Both approaches may provide a basis for
adopting the results of the work reported here, which favors neither the archi-
tecture nor program abstractions but instead seeks to find common ground
for both.

1.2 Repairing the Defect

To properly motivate the research reported in this thesis, it is first necessary
to justify why software design can not be cleanly distinguished from software
implementation, or software designers from programmers. This, in turn,
leads to notions of the Architecture/Program Seam and the technologies
and practices that operate within the Seam.

1.2. REPAIRING THE DEFECT 19

1.2.1 Programmers Are Designers

Programming is problem solving, and from the initial empty edit buffer to
the final compilation, successive changes to a computer program—the design
artifact—require a programmer to choose from among many possible conse-
quent solutions (the programs). For non-trivial programming tasks, the total
set of choices that must be made—the design space—is vast and therefore
effectively unbounded. Each choice is made to maximize the program’s fit-
ness for use with respect to various qualities desired of the program solution,
such as functionality, efficiency and modifiability. Interactions among these
qualities can be subtle, and choices have consequences on a solution’s fitness
that can be difficult for even the most experienced programmer to appre-
ciate, let alone anticipate. Experienced programmers therefore employ an
iterative generate and test problem solving strategy, generating new versions
of a program and testing the fitness of these with respect to desired solution
qualities. Versions that exhibit adequate fitness become the starting point
for the subsequent iteration, or they (or preceding versions) may be aban-
doned in favor of a new approach to the problem. In effect, programmers
search a fitness landscape. Writing computer programs, even small ones, is
a design activity in every sense of the word.

To argue that programming is design is not the same as arguing that
the techniques of computer programming are sufficient to address the design
challenges posed at the scale of systems. By “system” I mean a design artifact
that composes many computer programs, and that in the aggregate must
meet the needs of many end-users and their institutions, each of which will
seek different, quite possibly competing and almost certainly evolving end
objectives. The traditional, and quite concrete techniques of programming
are not sufficient to tackle design problems at this scale. Therefore, this
research takes as one of its foundations the discipline of software architecture.
Perry and Wolf [135] and Shaw and Garlan [150] are deservedly credited
with laying the foundations for research in software architecture and in the
architectural design of systems, and they largely agreed on several key points:

• Architects are concerned with the large-grained structure and organi-
zation of systems.

• Global system properties, variously referred to as non-functional or
extra-functional qualities, or sometimes as quality attributes, are es-
tablished by this architectural structure.

• Architecture description languages (ADLs) are required to express these
structures and to reason about quality attributes.

• ADL abstractions must be formally linked to programming language
abstractions.

20 CHAPTER 1. INTRODUCTION

Thus, the “founders” of software architecture research regarded architectural
design and program design as attending to different regions of an overall
shared design space. It should not be controversial to observe that these
different regions require different design techniques, and that some degree
of professional specialization among designers will naturally arise for these
regions (as we have seen, architects and programmers, respectively), and
even niches within regions (e.g., security, safety, performance experts). The
image of software development that arises from this discussion is that of a
design activity involving the coordination of many specialized design skills—
and this is far from factory automation.

1.2.2 The Architecture/Program Seam

As previously established, architects and programmers have distinct and
therefore separable concerns. However, repairing software engineering’s ge-
netic defect requires an examination of architecture and programming prac-
tice from a design-theoretic frame of reference. From this, a more detailed
understanding of these distinction concerns can be obtained. Of particular
interest are those design concerns that are complementar or dual architecture
and program concern, because these imply a basis on which to establish com-
mon ground for architects and programmers. This common ground is called
the Architecture/Program Seam (hereafter: “the Seam”), which is compactly
summarized in Table 1.2.

To illustrate the seam, consider the first Concerns row of Table 1.2.
Architects are primarily (though not exclusively) concerned with achieving
satisficing non-functional effects. Satisficing is a portmanteau of “sufficient”
and “satisfy” coined by Herb Simon; the term reflects uncertainty in the de-
sign process arising from limitations in the designer’s understanding of the
problem or the effect of design decisions on solutions. Programmers are pri-
marily (though not exclusively) concerned with achieving correct functional
effects. While “correct” can be interpreted as satisfying a specification that
might also include non-functional concerns such as performance (as an arbi-
trary example), programmers are likely to approach the problem in terms of
first achieving correct functionality, and only then ensuring that the function
completes in required time. The Seam defines common ground by emphasiz-
ing predictable rather than satisficing or correct effects, and by restricting its
focus to computational results, which are any observable runtime behavior
however one chooses to classify them (as functional, non–functional, extra–
functional, etc.).

This research offers no formal criteria with which to demonstrate that
the Seam constitutes an optimal common ground for architects and pro-
grammers, i.e., in the way it reconciles each complementary architecture and
programming concern, or in the overall selection of those concerns. The
demonstration is, like engineering itself, pragmatic: it is grounded in practi-

1.2. REPAIRING THE DEFECT 21

Table 1.2: The Architecture/Program Seam

satisficing results for
all attributes in all
environments of use

correct computational
results in the operational
environment

predictable computational
results in the operational
environment

many attribute criteria,
theories span rules of
thumb to formal bases

one dominant attribute
criterion, established
theory of computation

extensible theories of
runtime behavior that are
statistically or formally
validated

open-ended policy-
enforced design rules;
tacit or asserted intent

pre-defined language
syntax and semantics;
functional behavior by
construction

extensible computer-
enforced design rules;
predictable runtime
behavior by construction

explain the "why" to
external stakeholders:
persuasively justify
major design tradeoffs

explain the "how" to
internal stakeholders:
concisely explain
program behavior

justify significant design
decisions in terms of their
impact on actual or
predicted runtime behavior

software components and
component models that
have dual (architecture
and program) meaning

components and
connectors, styles,
"4+1" views, analysis
and simulation models

procedures, interfaces,
classes and modules;
idioms, patterns and
component models

A
bs

tr
ac

ts
Ex

pl
ai

ns
R

ul
es

Th
eo

rie
s

C
on

ce
rn

s

Architect Programmer THE SEAM

cal experiences in solving non-trivial engineering design problems that clearly
span architecture and program design activities.

1.2.3 Technology and Practice on the Seam

As mentioned earlier, routinization and mechanization are not antithetical to
engineering design, but rather make it possible for designers to obtain more
reliable outcomes as well as to focus their attention on those aspects of design
that depend heavily on intuition and judgement. The Seam exposes the
potential for routinizing and mechanizing a range of design activities centered
on achieving predictable program runtime behavior. This research uses a
software component model to provide a syntax of design, and programming
language technology to provide a semantics for automated reasoning about
designs. Figure 1.2 depicts in summary form how these technologies are
combined. The following elaboration of the figure introduces terms that
are defined and extensively used in the main body of this thesis; the first
occurrence of terms appearing in the figure are highlighted in boldface to
simplify the correlation of text to graphic.

The principal design artifacts are components and component assem-
blies (upper left quadrant in Figure 1.2) that conform to a component model;

22 CHAPTER 1. INTRODUCTION

Key:

Executable Relation

Specification

Theory

Witness

Predictive RangeModel

Component
Assemblies

Executable
Programs

Confirmable
Evidence

Reasoning
Frameworks

a1

a2

Generate Predict

Interpret

Validate

T

T'

Well-Formed/Predictable in T

Justifiable
Confidence
in T

Figure 1.2: Logical Structure of Seam Technology and Practice

the Pin component technology (Chapters 6–7) defines such a component
model. PCL is a specification language that formalizes the Pin component
model. Component assemblies that are well-formed in PCL (i.e., that
conform to the Pin component model) can be automatically translated
into fully executable programs (lower left quadrant in the figure). The
functional behavior of assemblies is defined by a traditional functional se-
mantics (Appendix A). Every assembly that is well-formed to Pin has an
interpretation in this semantics, and its functional (i.e., runtime) behavior
is therefore predictable with respect to this semantics, by construction, i.e.,
by the syntactic rules that define the component model.

The functional semantics of Pin assemblies is part of the underlying Pin
infrastructure. In contrast, non–traditional semantics are packaged as a new
class of component called reasoning framework that are independently de-
ployable extensions of a new kind of “prediction–enabled” component technol-
ogy (Chapters 5). Reasoning frameworks will likely make assumptions about
the environment in which component assemblies will execute beyond those
made by the Pin functional semantics, for example about the Pin runtime
or the computing or networking platforms on which Pin is hosted, or even
about the way that component assemblies are used. Where practical, these
assumptions are made explicit as design rules; when enforced, design rules
establish runtime invariants that satisfy reasoning framework assumptions.
A component assembly that satisfies the design rules of a reasoning frame-

1.3. KEY QUESTIONS 23

work is regarded as well-formed to that reasoning framework, and its runtime
behavior is therefore predictable with respect to that reasoning framework,
by construction.

Reasoning frameworks are used to make predictions about future run-
time behaviors of component assemblies. The predictions of a sound seman-
tics will correspond with the observed runtime behavior of assemblies, and
independently confirmable evidence of this soundness is required if en-
gineers are to have justifiable confidence in predicted behavior. Evidence
can take the form of mathematical demonstrations (e.g., a formal proof), or
statistical demonstrations (e.g., a confidence interval); the kind of evidence
used determines the confidence basis for a reasoning framework. The con-
firmation of predictions made by reasoning frameworks that have a “weak”
basis will require more effort than for those that have a “strong” basis; at the
extremes this effort reduces to traditional testing practices for the weakest
bases, to mechanical proof-checking for the strongest bases, with statistical
evidence lying somewhere between these extremes.

Prediction-enabled component technology (or “PECT”) is a component
technology that supports semantic extensions by reasoning frameworks (or
their equivalent), makes explicit and enforces the design rules (or their equiv-
alent) of reasoning frameworks, and produces confirmable evidence of the
predictive strength of reasoning frameworks.

Predictability by construction is an engineering practice that exploits rea-
soning frameworks, design rules, and confirmable evidence to improve the
quality of architecture and program design, and to reduce the time and
effort required to obtain justifiable confidence that programs exhibit their
required functional and non-functional behaviors.

1.3 Key Questions

The research questions directly correlate to the seam structure summarized
in Table 1.2.

1. What makes a runtime behavior “predictable” and what constitutes
“sufficiently predictable” behavior?

2. How are theories program behavior packaged as “non–traditional se-
mantics” of programs?

3. How are “design rules” that lead to predictable behavior identified and
enforced?

4. How is justifiable confidence in program behavior established, and how
is it used?

5. How is software component technology used to provide substantial au-
tomation of the seam?

24 CHAPTER 1. INTRODUCTION

The main aim of this research is to demonstrate the feasibility and practi-
cality of a substantially automated architecture/program seam. The novelty
of the research arises from integration of existing technologies, rather than
the development of new theories. New theories were developed in some areas,
but this was not the main aim of the research.

1.4 Contribution

The key contributions made by this research are

1. It defines a region of overlapping jurisdiction between architects and
programmers, called the Seam, and an engineering capability called
predictability by construction that arises from the Seam.

2. It defines prediction-enabled component technology (PECT) as a means
of achieving predictability by construction, and demonstrates its via-
bility on non–trivial industrial engineering case studies in industrial
robot control and electric grid substation automation control, as well
as for desktop streaming audio manipulation.

3. It demonstrates that the Seam itself constitutes a new class of evo-
lutionary design problem, whose solutions require the integration of
programming language theory, design theory, specialized theories of
system behavior and deep systems expertise, and whose outcome is
substantially–improved software engineering practice.

Specific contributions are linked to the questions posed in Section 1.3:

• Predictable Runtime Behavior. This research demonstrates that
predictability of program runtime behavior is stronger than what soft-
ware architects can routinely achieve today, and better reflects what
programmers can achieve today. The focus on observable runtime be-
havior is itself a significant step towards finding common ground for
software architects and programmers; although it is a narrowing of
design concern, it adds needed concreteness to architectural design
practice, and expands the range of concerns that programmers can
effectively address.

• Theories of runtime behavior can be packaged as non–tradition-
al semantics of architecture and program descriptions. This
research demonstrates that reasoning frameworks can be developed
and independently deployed as “prediction-enabling” components of a
PECT. Reasoning frameworks provide a semantic interpretation from
specifications of component assemblies to models in a theory of runtime
behavior, and a decision procedure to automate analysis. As such, a
reasoning framework is a direct analogue to the traditional functional

1.4. CONTRIBUTION 25

semantics of programming languages. It is not a claim of this research,
however, that reasoning frameworks are themselves freely composable;
the achievement of a modular or compositional semantics of arbitrary
program behavior is left for others.

• Design rules can be systematically defined and enforced. This
research demonstrates a co-refinement process for designing reasoning
frameworks as a way to make explicit the assumptions of a reason-
ing framework theory, the observations made by that theory, and with
the strength of evidence produced by that theory; and as a way of
trading among observations, assumptions, and strength of evidence.
Assumptions must be established as invariants, and an important part
of tradeoff analysis is the cost associated with establishing these invari-
ants, in terms of implementing the reasoning framework and in terms
of the impact of the strictures imposed by reasoning frameworks on
architects and programmers. The research demonstrates several ways
of enforcing constraints, such as extending the component technology
runtime, syntactic stricture enforced by interpretation, and the use of
specialized component containers.

• Objective evidence of program and predicted system behav-
ior can be obtained and packaged. This research demonstrates
that sound and objective (empirical and formal) evidence of program
behavior can be obtained and confirmed by disinterested third parties.
The research demonstrates a principled way of deciding which run-
time behaviors of software components require objective evidence, as
well as the requisite strength of that evidence. This demonstrates the
(non-circular) co-dependence of architectural analysis and grounded
evidence: a theory of runtime behavior defines the evidence that is
required of software components, and the evidence that can be ob-
tained from software components constrains the theories, and hence
architectural analysis, that are practicable.

• Familiar component-based abstractions and implementation
techniques can be used to implement the seam. This research
provides a proof-of-existence demonstration of the Seam. A prototype
prediction-enabled component technology demonstrates all key claims
made in this thesis, and is freely available for internet download.2 The
capabilities of the prototype are illustrated on challenging industrial
problems described in Chapter 9.

2See http://www.sei.cmu.edu/predictability/tools/starterkit/index.cfm.

26 CHAPTER 1. INTRODUCTION

1.5 Related Work

The main contributions of this research result from integrating the results
of two areas of prior research, software architecture technology and software
component technology, with adaptation only as required to achieve a suitably
transparent “Seam.” Accordingly, the most pertinent related work can be
found in these two areas of research.

Work in formal software architecture description languages (ADL) pro-
vide key foundations for this work, in particular those that emphasize com-
ponent and connector abstractions. Wright [9] influenced this research in its
use of a process algebra to specify the semantics of component interaction
independent of the functional behavior of the components themselves. In
Wright, interaction semantics are keyed to connector types, and treatment
of connector types as “first class” abstractions is consistent with the goal of
maximizing the expressiveness of architectural models to describe patterns
of interaction [117]. In contrast, the research reported here uses a small
collection of pre-defined connector types that are directly supported by fa-
miliar programming models and by Pin, although for this limited repertoire
a process-theoretic semantics is also given [82]. Wright was also used to for-
malize architectural style [3, 8, 53]. However, these formalizations established
only weak invariants and therefore provided insufficient grounds for the kinds
of analysis required to achieve predictability by construction. In contrast,
attribute-based architectural styles (ABAS) make use of structural invariants
of more specialized architectural styles to support analysis of non-functional
properties of systems [87, 88]. However, these styles were highly localized
with no accommodation for their composition. The research reported here
recasts Wright’s global styles as a key element of a component model, and
generalizes the structural invariants of an ABAS to “design rules” that can
be enforced in several ways. The term “style” in ABAS is really a misnomer;
more accurate would be “pattern,” an idea that gained prominence with
the success of design patterns for programs [52]. A number of architectural
patterns were documented [25, 144], and their emphasis on software imple-
mentation is an early recognition of the Seam. However, pattern-oriented
software architecture hewed too closely to programming concerns and failed
to connect the structural invariants of a pattern with explicit analysis theo-
ries. The architecture analysis and description language (AADL) is a recent
attempt to gain widespread adoption of a standard architecture representa-
tion, but although the notation has been used to support analysis [58], there
are no provisions for extensible design rules or objective evidence.

Composition languages are intermediate between ADL and software com-
ponents, and as such are candidate Seam technologies. Both Darwin [108,
109] (which is variously described even by its creators as ADL and composi-
tion language) and especially Piccola [106, 4] are representative composition
languages: both use a process-algebraic approach to specify component be-

1.6. RESEARCH METHOD 27

havior, and both use the composition operators of the process algebra to
compose components into larger systems. Composition operators with nice
algebraic properties are elegant and do capture the intuition of inductive
composition; unfortunately theories for non-functional behavior are seldom
so neat and clean. The research reported here distinguishes constructive and
analytic composition, and does not provide for inductive (algebraic) con-
structive composition; reasoning frameworks are free to define composition
as they choose, providing there is an interpretation from a constructively-
composed assembly of components.

Szyperski’s seminal work on component-oriented programming remains
the authoritative and most comprehensive description of software component–
oriented programming available[160]. His notion of component framework
applies to Pin, and a PECT can be regarded as a tiered framework built
from Pin; his notion of component markets corresponds to “implementable
sets” used to define the scope of reasoning frameworks (which are components
of a PECT and therefore of a tiered framework). Szyperski also addresses
questions of how extra–functional behavior is specified (or at least, identi-
fies a component’s “contractual interface” as one locus of such specification).
Szyperski does not, however, address the way extra–functional specifications
are verified, or how they are used to reason about system–wide behavior. A
number of software component technologies have been developed, however,
that are strongly (if not primarily) motivated by one or more non-functional
concerns [17, 18, 146, 86]. While each of these contribute to our understand-
ing of the Seam, none of these have addressed issues of evidence described
in this research, the use of design rules, or other stricture to enforce an-
alytic assumptions, or have addressed analytic extensibility of component
technology.

The research reported here also builds on related work in software model
checking and real-time performance analysis. These areas of related work
are themselves quite extensive, but are of secondary importance to the re-
search reported here, which is more concerned with the way model checking
and performance analysis can be packaged in reasoning frameworks of a
prediction-enabled component technology. Chapter 8 provides appropriate
details on related work.

1.6 Research Method

The overall research method relied on a series of existence proofs to demon-
stration that a sound and effective practice of predictability by construction
can be established; and that a prediction-enabled component technology pro-
vides substantial automation and transparency to this practice.

Each existence proof is motivated by an engineering challenge that is
thematic to (hence pervasive in) several industries and is situated in a con-

28 CHAPTER 1. INTRODUCTION

crete industrial setting. The combination of pervasiveness and situatedness
helps to ensure that the research results are broadly applicable and suitably
challenging to be of interest to researchers and practitioners alike. The es-
sential structure of each situated engineering problem is expressed as a model
problem, the solution of which can reasonably be argued is transferrable to
the original situated problem, but generalized to a broader class of problem
of which the original problem is an instance. The prototype PECT was de-
veloped to meet the demands of these situated engineering problems. The
usability of the technology is also demonstrated through its packaging and
free distribution as a “starter kit,” the hands-on use of the starter kit by
students in tutorials [72] and educators [77, 76].

Finally, the technical concepts of predictability by construction and its
technology constituents are documented in refereed publications (workshops,
conferences and journals), as technical reports of the Software Engineering
Institute, and as tutorials.

1.7 Key Assumptions

This research makes several strong assumptions about the social, organiza-
tional, and economic context of the engineering design enterprise.

• There is a unitary design authority that can impose constraints on
the design and implementation of software. Although this authority is
personified as “the architect” in the work reported here, the authority
might be distributed among several designers and several organizations.
The important point is that an authority exists that can impose design
rules, and can make the appropriate tradeoff decisions in the design of
reasoning frameworks.

• There is economic value in having objective evidence of program and
system behavior, and economic value in having objective evidence of
the quality of architectural analysis undertaken prior to the implement-
ing or acquiring the software components used to implement an archi-
tecture. This assumption is likely to be satisfied in safety-conscious
engineering cultures, but should not be unquestionably assumed for all
cultures.

• The software architecture of systems is described, at least in part, in a
component and connector style of representation, and software compo-
nent technology is used to implement systems specified in a component
and connector style.

The first two assumptions are almost certainly necessary conditions of pre-
dictability by construction; the last is a consequence of the research ap-
proach, and no such necessity is claimed (although sufficiency is demon-
strated).

1.8. ORGANIZATION OF THIS THESIS 29

1.8 Organization of this Thesis

The work reported here is the product of substantial collaboration among
several researchers and research organizations. Chapter 2 provides the con-
text for the research described here, identifies my role and contributions,
as well as the contributions of several of research collaborators. Following
chapter 2, the dissertation is organized in 4 major parts, plus appendixes.

Part I Foundations. Part I defines the domain of discourse for predictable
assembly and prediction-enabled component technology. Chapter 3 describes
an idealized rational software design process and defines key concepts used
to describe the Seam, predictability by construction, and prediction–enabled
component technology. Chapter 4 provides a closer look at the Seam, and
motivates how architecture and component technologies are combined, in a
prediction-enabled component technology, to provide substantial automation
of the seam.

Part II A Prototype Prediction-Enabled Component Technology.
Part II describes in some detail the prediction-enabled component technology
(PECT) developed by this research. Chapter 5 describes the key technical
features, architecture and implementation of prototype PECT. Chapters 6-8
examine the major components of the prediction-enabled component tech-
nology in turn: Chapter 6 describes the Pin Component Language, which
formalizes the Pin component model and extends it in ways that make it
more suitable for the Seam. Chapter 7 describes the Pin component tech-
nology itself. Chapter 8 describes the reasoning frameworks developed for
this research to support real-time performance analysis and temporal–logic
model checking analysis, respectively.

PART III Experiences in Use. Part III describes concrete experiences
with predictability by construction and prediction-enabled component tech-
nology. Chapter 9 describes industrial case studies for electric grid substation
soft protection and control applications and industrial robot control.

Chapter 10 steps back from technology of predictability by construction
to consider how the engineering practices supported by this technology might
be incrementally adopted. It describes how the seam presents a new class of
design problem that requires new design strategies, and discusses how these
challenges and strategies influenced the design of the prediction-enabled com-
ponent technology described in this research, and how this technology might
evolve in the future.

PART IV Conclusions. The main results of this research are summarized
in Chapter 11.

30 CHAPTER 1. INTRODUCTION

PART V Appendices. Appendix A provides a closer look at PCL’s inter-
action and reaction semantics. Appendix B is an assembly and component
specification excerpted from the soft protection and control case study as
a representative sample of scale in the prototype developed using a proto-
type PECT. Appendix ?? provides a list of acronyms frequently used in this
dissertation.

Chapter 2

Personal Research
Contribution

31

32 CHAPTER 2. PERSONAL RESEARCH CONTRIBUTION

The contribution of this research is integrative: it draws on concepts
and technologies from software architecture and software component tech-
nologies, program analysis, model checking, and performance analysis tech-
nologies, real-time operating systems, and language design and language
semantics. Drawing on such a wide range of topics necessarily required the
contributions of experts in these topics. Moreover, the research approach—
building and testing prototype technologies in practical settings—required
significant software engineering effort, far more beyond what any individ-
ual could accomplish. Indeed, the engineering effort itself provided great
illumination on the kind of design and engineering tradeoffs and other such
pragmatics that are implied by prediction-enabled component technology.

Accordingly, I have chosen to begin with some historical context for re-
search in Section 2.1, and then to present my personal contribution to work
in Section 2.2, as well as the contributions of collaborators in this research
in Section 2.3. This allows me to place my own contributions into an appro-
priate context, and also gives a sense of the many and varied research results
that have sprung from this work. This latter point is particularly important
since an important subtext of the research is that the Seam is a locus for
significant future work that will contribute to maturing software engineering
practice.

2.1 Context of the Work

Software components have been a prominent area of research at Carnegie
Mellon University’s Software Engineering Institute (SEI). For each of the
research efforts described below, I was the principal investigator (PI), a role
which at the SEI is technical, not managerial. In all cases I was solely
responsible for defining the overall technical vision, identifying main research
questions and areas of investigation, and for carrying out the work.

The main results of the work reported here were produced by the Pre-
dictable Assembly from Certifiable Components (PACC) initiative (2002-
2008), which involved 5-7 full-time research staff. A preliminary and smaller-
scale investigation of the Technical Concepts of Software Component Tech-
nology (2000-2002) involved 2-3 full time research staff, and ultimately led
to the outlines of PACC. My work in PACC was itself instigated by the
results of the COTS-Based Systems (CBS) research initiative (1996-2000)1,
also involving 5-7 full-time research staff. The main results of CBS work are
documented in Building Systems from Commercial Components [170].

PACC and CBS addressed, in different ways, fundamental questions
about the role software components play in software engineering, how soft-
ware components alter the software design process, and what can and cannot
be predicted about systems constructed substantially from software compo-

1“COTS” is an acronym for commercial-off-the-shelf

2.2. MY CONTRIBUTION 33

nents. While my research in PACC and CBS share these common themes,
PACC—and therefore the research reported here—can also be regarded as a
response to the disruptions of engineering predictability that arise from us-
ing large-grained COTS software components of the sort dealt with in CBS
research. The critical assumption (previously noted in Chapter 1, Section
1.7) of a unitary design authority in place of the many “invisible hands” at
work in the commercial market is one part of this response. The research
reported in this thesis demonstrates that, given a unitary design author-
ity, predictability by construction can be achieved using prediction-enabled
component technology.

Mälardalen University (MDH) has had a significant impact on the re-
ported work. As part of his MdH PhD studies, Dr. Magnus Larsson made
fundamental contributions in how we generated evidence for observed com-
ponent execution time and predicted assembly latency. The industrial cases
developed with ABB were also strongly informed by prior collaborations be-
tween MDH and ABB, and, not incidentally, by Dr. Larsson’s association
with ABB. In 2006 I also provided several lectures and used early versions
of the technology reported here in student projects at MDH, and the results
were independently used elsewhere [77, 76]. The research reported here has
also had impact on several MDH research initiatives, in particular SAVE and
PROGRESS in which component models for resource-constrained embedded
systems were developed; Their component models were inspired by PACC
notions of predictability and analytic interfaces of components.

2.2 My Contribution

I was the principal investigator and defined the overall vision and research
objectives for all the work reported in this dissertation. While developing
and demonstrating PECT required the contributions of many, the following
contributions were uniquely mine:

• the idea and definition of the architecture/program seam as an overlap-
ping jurisdiction of architecture and program design, which is described
in Chapter 4 and which motivated all of the research reported here;

• the idea and definition of predictability by construction as a conse-
quence of the Seam, and its basis in notions of “formal predictability,”
is described in Chapter 3;

• the idea and definition of PECT and its basis in Pin–like component
technologies and language semantics, is described in Chapter 5;

• the idea, definition and structure of reasoning frameworks, and their
role in providing non–standard semantics of component and system

34 CHAPTER 2. PERSONAL RESEARCH CONTRIBUTION

behavior, and are described in the introduction to Chapter 8 and in
Chapter 3;

• the idea, definition and use of co–refinement as a way to incremen-
tally develop reasoning frameworks, and as a way of “fitting” a reason-
ing framework to a class of recurring design problems, is described in
Chapter 10.

While I defined the overall vision for the Seam, predicability by construc-
tion and PECT, I also made concrete contributions to the PECT prototype.
I defined the syntax and semantics of PCL, described in Chapter 6 and Ap-
pendix A, respectively. I also implemented the PCL frontend and various
backends used by the λ∗ and ComFoRT reasoning frameworks described
in Chapter 8, and contributed a substantial portion of the prototype proof–
carrying code prototype, alsodescribed in Chapter 8, §8.6.3) ComFoRT Rea-
soning Framework).

2.3 My Collaborators

This research has benefitted enormously from the contributions of others,
and in fact could not have been undertaken, and certainly would not have
succeeded, without their strong contributions, the most significant of which
are noted here, in alphabetical order.

• Jeff Hansen, Ph.D. Dr. Hansen developed simulation models for queu-
ing theories associated with the sporadic server container and its rea-
soning framework.

• Scott Hissam. Mr. Hissam was chief engineer and release manager for
PECT prototypes, developed thread scheduler extensions to support
UML statecharts, and developed instrumentation harnesses and other
tools to validate performance reasoning frameworks.

• James Ivers. Mr. Ivers worked closely with me to develop formal
semantics of PCL, and to specify thread scheduler extensions to sup-
port UML statecharts. Mr. Ivers also was the lead integrator of the
certifying software model checking reasoning framework.

• Mark Klein. Mr. Klein leads SEI research in software architecture tech-
nology and has provided valuable guidance on the relationship between
structural invariants in architecture patterns and their associated ana-
lytical theories. Mr. Klein also developed various average-case latency
theories found in the performance reasoning framework.

• Magnus Larsson, PhD. Dr. Larsson developed the measurement and
sampling tools and techniques used to validate the average-case latency

2.4. DESCRIPTION OF KEY PUBLICATIONS 35

theories found in the performance reasoning framework. These tools
and techniques formed the basis for all future empirical/statistical val-
idation of performance reasoning frameworks, and were the focus of his
PhD dissertation [98].

• Gabriel Moreno. Mr. Moreno extended the Pin component technol-
ogy to support containerized components, and was also the lead in-
tegrator of the performance reasoning framework. Mr. Moreno also
demonstrated advanced C++ meta-programming techniques to sim-
plify compile-time deployment of components into their containers.

• Daniel Plakosh. Mr. Plakosh developed the WaterBeans component
technology, a precursor of Pin, later extended to develop the first proof-
of-concept PECT. Mr. Plakosh also developed the initial prototype of
the Pin component technology and its underlying real-time operating
system.

• Sagar Chaki, PhD. Dr. Chaki developed the model checker used by the
performance reasoning framework, and also developed the techniques
used by the model checking reasoning framework to generate proof
certificates for satisfied claims.

• Natasha Sharygina, PhD. Dr. Sharygina used a model checking rea-
soning framework using an off-the-shelf model checker (COSPAN) to
falsify behavior claims made for message-passing software used in an
industrial robot controller.

• Judith Stafford, PhD. Dr. Stafford was an early and key contributor
to the PECT concept, and worked closely with me to identify a use-
ful correlation of the concepts of software architecture and software
components.

• Chuck Weinstock, PhD., and John Goodenough, PhD. Drs. Good-
enough and Weinstock were not directly associated with PACC re-
search, but made valuable contributions in the use of assurance cases
to construct defeasible arguments about the quality of evidence, and
in particular about formal evidence; these ideas were applied to the
PACC certifying code generator.

2.4 Description of Key Publications

The following publications are the basis for the thesis.

• Volume II: Technical Concepts of Component Based Software Engi-
neering, 2nd Edition Bachmann, F., Bass, L., Buhman, C., Comella-
Dorda, S., Long, F., Seacord, R., Wallnau, K., Technical Report

36 CHAPTER 2. PERSONAL RESEARCH CONTRIBUTION

CMU/SEI-2000-TR-008, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, PA, September 2002. Originally published
in 2000, this report describes the key terminology and paradigmatic
architecture of an important genre of component technology. The
report also discusses the fundamental limitations of conventional ap-
proaches to component interface specification for reasoning about sys-
tem level quality attributes. The description of the component technol-
ogy genre is now somewhat dated, especially in comparison with recent
surveys[46]), but the discussions on reasoning about quality attributes
remains valid. The conclusions of this report led to the creation of the
PACC research initiative. I was the lead author of this report, and
defined all of the main technical concepts.

• On the Relationship of Software Architecture to Software Component
Technology, Kurt Wallnau, Judith Stafford, Scott Hissam, Mark Klein,
in Proceedings of the 6th ECOOP Workshop on Component-Oriented
Programming, Budapest, Hungary, 2001. This paper identifies, and
proposes a means for closing the gap between the dominant research
agendas in the software architecture and software component research
communities. The paper outlines criteria for successful integration
of software architecture and software component technology. A four-
level reference model that subsumes software architecture and software
component technology (assembly, specification, types, metatypes) is
described. Using this reference model, two paths to close the gap are
detailed, one using software component technology and the other using
software architecture technology as a springboard. It was sometime
later that we chose a “component first” approach, leading to PECT. I
was lead author of this paper, and I defined the gap, the approaches
to closing the gap, and the illustrating examples.

• Hissam, S., Moreno, G., Stafford, J., Wallnau, K., Enabling Predictable
Assembly, Journal of Systems and Software, Vol. 65, No. 3, 15 March
2003, pg. 185-198, North Holland. This article introduced the PECT
concept, and described an initial prototype implementation based on
the (non-real time) WaterBeans component model [137], extended with
a performance reasoning framework for predicting worst-case latency
of audio streaming and mixing applications. A shorter version of this
article appeared as Packaging Predictable Assembly in the First Inter-
national IFIP/ACM Working Conference on Component Deployment,
June 20-21, 2002, Berlin, Germany, as a Springer-Verlag LNCS. I was
the lead author of this article and paper, and defined the overall con-
cept of prediction-enabled component technology.

• Volume III: A Technology for Predictable Assembly from Certifiable
Components, Kurt Wallnau, Technical Report CMU/SEI-2003-TR-

2.4. DESCRIPTION OF KEY PUBLICATIONS 37

009, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, April 2003. This report described in detail the architecture
of prediction-enabled component technology (PECT), and the role of
PECT in achieving (what was later to be called) predictability by con-
struction. The report anticipated many of the practical and theoret-
ical challenges of developing truly compositional theories of system-
level quality attributes, and (properly) identified composition of these
theories as a fundamental challenge—one that remains an important
area of future work beyond the research reported in this thesis. I
was sole author of this report, which defined the technical concepts of
prediction-enabled component technology that governed PACC.

• Sagar Chaki, James Ivers, Peter Lee, Kurt Wallnau, Noam Zeilberger.
Certified Binaries for Software Components (CMU/SEI-2007-TR-001).
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, April 2007. This report demonstrated the use of a PECT to
achieve end-to-end automation of proof-carrying code (details described
in Chapter 8). A shorter version of this technical report appeared as
Model-Driven Construction of Certified Binaries in the proceedings
of the ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MODELS), LNCS 4735, pages
666-681, September 30-October 5, 2007. I was co-author of this report
and paper. I developed the front-end (from PCL to model checker) and
backends (from model checker to PCL, and then from PCL to generated
code) transformations that demonstrated the end-to-end automation.

• Bass, L., Ivers, J., Klein, M., Merson, P., and Wallnau, K. 2005. En-
capsulating Quality Attribute Knowledge. In Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture (November
06 - 10, 2005). WICSA. IEEE Computer Society, Washington, DC,
193-194. This paper describes the concept and structure of quality at-
tribute reasoning frameworks, and generalizes the concept of reasoning
framework described originally by me in [169] but here generalized for
use in architecture technologies that are not bound by the strictures
of evidence, or the need to define a theory semantics in an underlying
component technology. I was a co-author of this paper, and defined all
of the basic underlying technical concepts of reasoning framework.

• Sagar Chaki, James Ivers, Natasha Sharygina, Kurt Wallnau. The
ComFoRT Reasoning Framework, LNCS 3576, pages 164-169, 2005.
This paper provides, in terms that are familiar to researchers in model
checking and software model checking community, a summary descrip-
tion of the ComFoRT (forComponent FormalReasoningTechnology)
model checking reasoning framework. The paper was accompanied by a
tool demonstration, one that by nature of this expert audience marked

38 CHAPTER 2. PERSONAL RESEARCH CONTRIBUTION

an important milestone in the development of PECT. I was a co-author
of this paper, and defined the use of software components as a link be-
tween the automata- (or process-)theoretic notion of component extant
in software model checking literature, and the computer programs that
software model checkers purport to verify.

• Statistical Models for Empirical Component Properties and Assembly-
Level Property Predictions: Toward Standard Labeling, Gabriel
Moreno, Scott Hissam, Kurt Wallnau, in the Fifth ICSE Workshop on
Component-Based Software Engineering, Orlando, Florida, May 2002.
This paper describes various kinds of statistical models and how they
can be used to provide evidence (i.e., labels) of component-level and
system-level behavior. I was co-author of this paper, and defined the
different forms of certification (e.g., assembly, component, normative,
descriptive) to which statistical labels might apply.

• The potential for synergy between certification and insurance, Paul Luo
Li, Mary Shaw, Kevin Stolarick, and Kurt Wallnau, in the First Inter-
national Workshop on Software Reuse Economics, held in conjunction
with the Seventh International Conference on Software Reuse, Austin,
Texas, April 16, 2002. This paper describes the use of empirical, in-
dependently confirmable (and refutable) evidence of software behavior
to quantify software-related risk, and how this relates to the models
used in the insurance industry to define its product offerings. I was
co-author of this paper, and defined aspects of statistical evidence of
software pertinent to insurance and insurance underwriters; expertise
in the insurance industry was provided by Dr. Stolarick, and expertise
on the economics of software architecture was provided by Dr. Shaw.

• Scott Hissam, James Ivers, Daniel Plakosh, Kurt Wallnau. Pin Compo-
nent Technology (V1.0) and Its C Interface (CMU/SEI-2005-TN-001).
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, April 2005. This report describes the Pin component model as seen
by programmers (i.e., through its application programming interface)
who choose to bypass the program generation tools provided by the
PECT prototypes. I was co-author of this report, and contributed my
expertise as the primary user of the technology as a target language
for program generation.

• Snapshot of CCL: A Language for Predictable Assembly, Kurt Wall-
nau, James Ivers, Technical Note CMU/SEI-2003-TN-025, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
June 2003. This report provides a high-level language description of
the Pin component model as seen by PECT users, i.e., by architects
of Pin applications and by developers of Pin components. The main

2.4. DESCRIPTION OF KEY PUBLICATIONS 39

structural features of PCL are described, such as components, asyn-
chronous and synchronous interaction via component pins, component
assemblies, and the assembly environment. I was the lead author of
this report, and the principal designer of PCL syntax and semantics.

• A Basis for Composition Language CL, James Ivers, Nishant Sinha,
and Kurt Wallnau, SEI Technical Note CMU/SEI-2002-TN-026, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA., 2002. There are two distinct but complementary formal seman-
tics for PCL, one that describes the semantics of component interaction
(this paper), and one that describes the semantics of component be-
havior (this thesis, Appendix A). These are distinct from the seman-
tics assigned to PCL by each reasoning framework. The interaction
semantics is specified using Hoare’s algebraic specification language,
Communicating Sequential Processes (CSP), and describes the mean-
ing of different types of pin (synchronous, mutex synchronous, and
asynchronous) in terms of the composed behavior of components that
interact on pins of those types. I was co-author of this report, and
defined how reaction differs from composition, and an informal seman-
tics for a repertoire of connector types used to enable reactions among
components; Mr. Ivers provided expertise in CSP and formalized the
semantics of interaction using CSP.

• Preserving Real Concurrency, James Ivers, Kurt Wallnau, Proceedings
of the 2003 ECOOP Workshop on Correctness of Model-Based Soft-
ware Composition (CMC), Technical Report 2003-13 at Universitat
Karlsruhe, July, 2003. This paper motivates the interaction semantics
of PCL, described in detail in [82], by showing that the semantics most
frequently encountered in architecture description languages overesti-
mates concurrency, while faithfully modeling interaction semantics in
terms of an underlying software component technology produces more
accurate models. I was co-author of this paper, and described the im-
pact of over- and under-approximations of concurrency on the quality
of predicted software behavior.

• Scott A. Hissam, Gabriel A. Moreno, Kurt C. Wallnau. Using Contain-
ers to Enforce Smart Constraints for Performance in Industrial Systems
(CMU/SEI-2005-TN-040), Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, April 2005. This report describes
the use of PECT and a specialized component container to enable
safe third-party extension of a hard real-time platform, and specifi-
cally without risking scheduling deadlines. A container was developed
to preserve scheduling deadlines in the platform, using the application-
level sporadic server protocol. A new analysis theory was developed
to provide performance guarantees to the developers of third party

40 CHAPTER 2. PERSONAL RESEARCH CONTRIBUTION

components, so that they in turn could be assured adequate compu-
tational resources for their extensions. I was co-author of the report,
and defined the overall concept of analytic sandboxing with component
containers.

• Scott Hissam, Mark Klein, John Lehoczky, Paulo Merson, Gabriel
Moreno, Kurt Wallnau. Performance Property Theories for Predict-
able Assembly from Certifiable Components (PACC) (CMU/SEI-2004-
TR-017),Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, April 2004. This report provides an in-depth descrip-
tion of a performance theory that can be used to bound the average
case latency of tasks managed by a sporadic server. The theory was
developed to provide performance guarantees to the developers of third
party components, where those components are expected to execute in
hard real-time environments. Various assumptions made by the the-
ory, such as replenishment intervals, were later to be enforced by a
type of Pin component container. I was co-author of this report, serv-
ing mostly in a review of details about the performance theory, while
contributing basic concepts for how the design rules of these theories
are enforced by containers.

• Predictable Assembly of Substation Automation Systems: An Exper-
iment Report, 2nd Edition, Scott Hissam, John Hudak, James Ivers,
Mark Klein, Marnus Larsson (ABB), Gabriel Moreno, Linda Northrop,
Daniel Plakosh, Judith Stafford, Kurt Wallnau, WilliamWood, Techni-
cal Report CMU/SEI-2002-TR-031, revised July 2003, Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, PA, Septem-
ber 2002. This report describes an initial experience in developing a
PECT in an industrial setting (electric grid substation automation).
We demonstrated, on a model problem, assembly of substation au-
tomation functionality from components that implement IEC-61850
functions, with well–formed assemblies exhibiting average case latency
within a validated statistical confidence interval. The results of subse-
quent work on using PECT to demonstrate “soft protection and con-
trol” are described in this thesis (Chapter 9). I was the lead author of
this report, and described the basic methods of co-refinement used to
incrementally develop a performance reasoning framework.

2.5 Books

• Gorton, I., Heinemann, G. T., Crnkovic, I., Schmidt, H. W., Stafford,
J. A., Szyperski, C., and Wallnau, K. 2006 Component-Based Software
Engineering: 9th International Symposium, CBSE 2006, Västerås,

2.6. JOURNAL ARTICLES AND BOOK CHAPTERS 41

Sweden, June 29 - July 1, 2006, Proceedings (Lecture Notes in Com-
puter Science). Springer-Verlag New York, Inc.

• Wallnau, K., Hissam, S. A., and Seacord, R. C. 2002 Building Systems
from Commerical Components. Addison-Wesley Longman Publishing
Co., Inc.

2.6 Journal Articles and Book Chapters

• Crnkovic, I., Heineman, G. T., Schmidt, H. W., Stafford, J., and Wall-
nau, K. 2007. Guest Editorial. J. Syst. Softw. 80, 5 (May. 2007),
641-642.

• Crnkovic, I., Schmidt, H. W., Stafford, J., and Wallnau, K. Auto-
mated component-based software engineering. Journal of Systems and
Software 74, 1 (2005), 1Ű3. Automated Component-Based Software
Engineering.

• Crnkovic, I., Reussner, R., Schmidt, H., Simons, K., Stafford, J.,
and Wallnau, K. 2005. Report of the International Symposium on
Component-Based Software Engineering. SIGSOFT Softw. Eng. Notes
30, 3 (May. 2005), 1-9.

• Magnus Larsson, Anders Wall, Kurt Wallnau, Predictable Assembly -
The Crystal Ball to Software, ABB Review, Journal, p49-54, Issue 2,
2005

• Crnkovic, I., Schmidt, H., Stafford, J., and Wallnau, K. 2004. 6th
ICSE Workshop on Component-Based Software Engineering: auto-
mated reasoning and prediction. SIGSOFT Softw. Eng. Notes 29,
3 (May. 2004), 1-7.

• Kurt Wallnau, Judith Stafford, Dispelling the Myth of Component
Evaluation, chapter 8 in Building Reliable Component-Based Software
Systems, Ivica Crnkovic, Magnus Larsson, Artech House publisher,
ISBN: ISBN 1-58053-327-2, 2002

• Seacord, R. C., Hissam, S. A., and Wallnau, K. C. 2000. Component
Web search engines. In Handbook of internet Computing, B. Furht,
Ed. CRC Press, Boca Raton, FL, 183-203.

• Alan W. Brown, Kurt C. Wallnau, "The Current State of CBSE,"
IEEE Software, vol. 15, no. 5, pp. 37-46, Sep./Oct. 1998.

• David Carney, Kurt Wallnau, A Basis for the Evaluation of Commer-
cial Software, in the Journal of Information and Software Technology,
Elsevier publishing, U.K., November, 1998.

42 CHAPTER 2. PERSONAL RESEARCH CONTRIBUTION

• Robert C. Seacord, Scott A. Hissam, Kurt C. Wallnau, "Agora: A
Search Engine for Software Components," IEEE Internet Computing,
vol. 2, no. 6, pp. 62-70, Nov./Dec. 1998.

2.7 Conference and Workshop Contributions

• Stafford, J., Wallnau, K., Is Third Party Certification Necessary? ,
Proceedings of the 4th ICSE Workshop on Component-Based Software
Engineering, Toronto, Canada, May, 2001, pp. 13-17.

• Wallnau, K., Stafford, J., Ensembles: Abstractions for a New Class of
Design Problem, Proceedings of the IEEE 27th Euromicro Conference
(Euromicro 2001), Warsaw, Poland, September 2001.

• Polze, A., Plakosh, D., and Wallnau, K. 1998. CORBA in Real-Time
Settings: A Problem from the Manufacturing Domain. In Proceedings
of the the 1st IEEE international Symposium on Object-Oriented Real-
Time Distributed Computing (April 20 - 22, 1998). ISORC. IEEE
Computer Society, Washington, DC, 403.

• Andreas Polze, Daniel Plakosh, Kurt Wallnau, Real Time Computing
on Off-The-Shelf Components–A Case for CORBA, in Proceedings of
the International Conference on Integrated Design and Process Tech-
nology, Berlin, Germany, June 1998.

• Andreas Polze, Daniel Plakosh, Kurt Wallnau, CORBA in Real-Time
Settings: A Problem from the Manufacturing Domain, in Proceedings
of the 1st International Conference on Object-Oriented Real-Time Dis-
tributed Computing (ISORC98), Kyoto, Japan, 1998.

• Wallnau, K. C. 1997. Repairing coordination mismatches among legacy
components. In Proceedings of the international Conference on Soft-
ware Maintenance (October 01 - 03, 1997). ICSM. IEEE Computer
Society, Washington, DC, 302.

• Wallace, E. and Wallnau, K. C. 1996. A situated evaluation of the
Object Management Group’s (OMG) Object Management Architec-
ture (OMA). In Proceedings of the 11th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (San Jose, California, United States, October 06 - 10, 1996).
OOPSLA ’96. ACM, New York, NY, 168-178.

• Kurt Wallnau, Fred Long, Anthony Earl, Toward a Distributed, Me-
diated Architecture for Workflow Management, in Proceedings of the
NSF Workshop on Workflow and Process Automation in Information
Systems: State of the Art and Future Directions, 1996.

2.8. TECHNICAL REPORTS 43

2.8 Technical Reports

• Kurt C. Wallnau. Software Component Certification: 10 Useful Dis-
tinctions (CMU/SEI-2004-TN-031)., Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, April 2004

• Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred Long John
Robert, Robert Seacord, Kurt Wallnau. Volume I: Market Assessment
of Component-Based Software Engineering Assessments (CMU/SEI-
2001-TN-007).Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA. , 2001

• Daniel Plakosh, Dennis Smith, Kurt Wallnau. Builder’s Guide for Wa-
terBeans Components (CMU/SEI-99-TR-024)., Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA., 1999

44 CHAPTER 2. PERSONAL RESEARCH CONTRIBUTION

Part I

Foundations

45

Chapter 3

Rational Design

47

48 CHAPTER 3. RATIONAL DESIGN

To reiterate the central theme of this research:

• Software architect and programmer are distinguished only in their re-
spective jurisdictions of a jointly-held design problem, and by the ap-
proaches they take to address design problems within their respective
jurisdictions;

• These jurisdictions overlap, and shared design problems within this
overlap are approached by characteristic (but often inconsistent) ways
by architects and programmers;

• This overlap is consolidated in the Seam, wherein discontinuities or
inconsistencies in the approaches taken by architects and programmers
can be repaired or reconciled;

• Prediction-enabled software component technology defines abstractions
for the Seam that permit the same software artifacts to have simulta-
neous and complementary meaning to architects and programmers;

• Software designed using Seam technology will exhibit runtime behavior
that is predictable by construction, for runtime qualities of practical
interest to architects and programmers.

This chapter lays the foundation for the Seam by establishing a basic
metaphor of rational software design, and by defining terminology that situ-
ates predictability by construction in rational design. The metaphor is also
used in the design of prediction–enabled component technology. Chapter 4
The Seam uses this foundation to characterize rational design from the ar-
chitect and programmer perspectives, and to identify complements in these
perspectives that can be served by the Seam.

The rest of this chapter is organized as follows. The basic “design as
search” metaphor is described in §3.1; this is then made more concrete for
software design in §3.2. §3.3 motivates an ideal separation of architecture
and program concern, not as something that is obtainable in practice, but as
a reflection of the ideals of current software engineering practice—not all of
which are without merit. §3.4 then defines key terminology used throughout
the remainder of this dissertation.

3.1 Metaphorical Design

Metaphor is the means by which humans extend language and thought to
new and unfamiliar concepts [96]. Metaphor is expressed in poetic terms,
but is a basis for highly technical concepts in for example mathematics [97]
and, more to present purposes, for design [107]. Here the basic metaphor
of design as a search of a fitness landscape for forms that are most fit for
use is summarized, and the practices of software design are grounded in the

3.2. RATIONAL SOFTWARE DESIGN 49

metaphor and therefore in the practices addressed by the Seam. The “design
as search” metaphor is widely used in design literature, and will likely be
familiar to the reader, and as such no attempt is made here to justify the
validity of the metaphor or to exhaust the literature that has made use of
it, but to simply use it to set the stage for the Seam concepts that follow.

Herb Simon formalized “design as search” in terms of two functions, gen-
erate and test :

“The task of the generator is to produce variety, new forms that
have not existed previously, whereas the task of the test is to cull
out the newly generated forms so that only those that are well
fitted to the environment will survive” [152].

Simon’s use of the language of biological evolution aptly expresses “fitness
for use” (“fitness,” or “fit,” etc.) as the defining characteristic of an under-
lying relation of form and environment. Moreover, the relation induces an
ordering on forms that permits us to objectively distinguish better and worse
forms; in biological terms, “survival of the fittest” is an objective reality,
not a subjective judgement. The ordering relation is readily expressed (and
often is, in practice) as the objective function F of a multi-attribute opti-
mization process, where F quantifies “fitness” as a function of interacting
design qualities.

The metaphorical search for forms is conducted on a fitness landscape
defined by the objective function, with better-fit forms residing on peaks,
worse-fit forms in valleys [20, 168], and hill climbing (i.e., seek higher ground)
a principal design heuristic. In a rational design process each design decision
(equivalently, choice of form, choice of search path) is made to maximize “fit.”

It is also possible that designers will seek forms that are least misfit to
their environments. In a mathematical sense, minimizing misfit or maximiz-
ing fit can both be expressed as objective function and optimization process;
for convenience we will assume the latter case applies.1

3.2 Rational Software Design

Simon’s “rational design” ideal can be expressed in more concrete terms of
software design. Without loss of generality, the following concretization as-
sumes that the design activity will produce a single form Pf , called the
final program that will be used to compute some function φ in some end-use
environment Ef , and moreover that Pf has an explicit symbolic represen-
tation that is stored on a digital computer. Almost any reasonably savvy
interpretation of “end-use environment,” and “program” will serve; these are

1Christopher Alexander did, however, observe important pragmatic differences between
minimizing misfit and maximizing fit [6], and this observation inspired the “Risk/Misfit”
method of evaluating software components [170].

50 CHAPTER 3. RATIONAL DESIGN

explicitly defined in subsequent sections. We will allow P and E to represent
the set of all possible programs and environments, respectively, with Pj ∈ P ,
Ej ∈ E, etc.

The program artifact can be encoded as its potential change history
H =< P0,∆ >, where P0 represents the initial and possibly empty pro-
gram, ∆ = {δ(Pi, Pj) • i ≥ j} represents a set of changes (“diffs”), such
that ∀δ(Pm, Pn) ∈ ∆ • Pn = Pm ◦ δ(Pm, Pn) for some ‘◦’ transform oper-
ator.2 With a slight abuse of notation, we will say that Pk ∈ H ⇔ Pk =
P0 ∨ ∃δ(Px, Pk) ∈ ∆. That is, a program is in the design space if it is the
initial program or can be derived from the initial program. Notationally,
Pm ↪→ Pn ≡ Pm ◦ δ(Pm, Pn). Any sequence Pm

∗
↪→ Pm′ ↪→ Pn defines a path

from Pm to Pn, where Pm
∗
↪→ Pm′ is the (possibly empty) prefix of Pn. P0

has no prefix, and every other program Pk 6=0 has at least one prefix. Πm,n

is the set of paths in that lead from Pm to Pn, with each πm,n ∈ Πmn ⊆ ∆.
It is assumed that each program Pj is “well-formed” in some programming

language. The intuition is that each change δ(Pm, Pn) corresponds to a
design decision that leads the programmer meaningfully closer to achieving
some ultimate design objective. The addition of “potential” to change history
emphasizes that what is being described is not change history in the usual
“configuration management” sense of the term, but in the “design as search”
sense of the term. Hence, H may be regarded as a design space of all
possible solutions.

Criteria of fit (other than functional correctness3) can be represented
by the preference structure S =< F,�>, for an objective function F and
preference relation �. The objective function quantifies “fit” and is defined
F : P × E × ~QP,E → R, where ~QP,E is a vector of quality attribute mea-
sures with each dimension a measure of “fit,” and where R is the domain of
real numbers. The preference relation � is defined {(Pi, Pj 6=i) • F (Pi, E) ≤
F (Pj , E)} as the partial order on programs induced by F , such that Pi � Pj
means that Pj is at least as fit as Pi, or equivalently that Pj is weakly pre-
ferred to Pi. As a notational convenience, if F (Pi, E) < F (Pj , E) then
Pi ≺ Pj , or Pj is strictly more fit than Pi, or Pj is strictly preferred to Pi.4

Informally, S can be regarded as an objective statement of designer intent,
and applying S to each Pj ∈ H (i.e., to the design space) induces a fitness
landscape.

The set Φ ∈ H of candidate solutions of the design problem is defined
by all programs that correctly implement the intended function φ. Here
the meaning of “correctness” is restricted to “computes the right answer”

2Note that j ≥ i in ∆ induces a directed acyclic change history and also allows a
program to be its own δ.

3This exclusion is useful for later discussions, but is not an intrinsic feature of preference
structures.

4A more expressive relation can be defined (for example [143]) but the present definition
is sufficient for the discussion that follows.

3.3. ARCHITECTURE AND PROGRAMS 51

independent of all other considerations such as time and memory. H may
contain zero or more candidate solutions; however, for present purposes we
will assume that if Pj is a candidate solution, then ¬∃δ(Pj , Px) ∈ ∆, i.e.,
candidate solutions reside on the frontiers ofH, but not every program on the
frontier of H is a candidate solution. The design solution is a distinguished
path π0,f ∈ Π0,f such that Pf ∈ Φ. Thus, functional correctness is necessary
but not sufficient condition of a design solution.

A rational designer (equivalently, a rational design process) always
finds a design solution π0,f that is at least as fit as any other program in
the fitness landscape, i.e, ¬∃Px ∈ ΦH • Pf ≺ Px.

3.3 Architecture and Programs

In a “theory of computation” sense it makes no difference whether the de-
signer seeks one, two, or hundreds of computer programs in that two pro-
grams can not compute any functions that are not computable by one, and
our conventional notion of “program” is a matter of packaging, or extra-
functional structuring, much like the choice of how to present a proof in a
paper is extra-logical to the formal subject or validity of the proof itself.

We know, however, that these structuring decisions have enormous prac-
tical impact on various qualities of systems composed from many program
components, such as performance, modifiability and so forth.5 This is re-
flected by the differentiation of the functional correctness of programs (candi-
date solutions) from the extra-functional attributes of programs (preference
structure) in the ideal rational design process.

We can justify on practical grounds a further differentiation of the de-
signers whose concerns are achieving functional correctness in programs—
programmers—from designers whose concerns are achieving extra-func-
tional attributes—software architects. Architects and therefore concerned
with the extra-functional structures that give rise to extra-functional at-
tributes (i.e., software architectures), which in turn define the functional
scope of programs and their respective criteria of correctness.

The design space H can be suitable modified to accommodate an addi-
tional (and not unreasonable) assumption that software architectures can be
formally encoded (i.e., there is a formal notion of well-formed architecture).
For, example H ′ =< A0,∆A, H

+ > for a new design space that is par-
titioned by an architecture subspace and one or more program subspaces.

5In fact, there are good reasons to suspect that systems at different scales will exhibit
different kinds of phenomena (the above qualities, for example), for which different kinds of
explanation are in order even if they can be explained in other ways from more fundamental
theories [11]. However, nettlesome issues of “emergent behavior” vis–à–vis “predictability”
seem to arise naturally in predictability by construction, and are intentionally sidestepped
in this research by grounding theories of predictable behavior in theory of computation
(See Defs. 3.9, 3.10, and 3.12, on or near page 58).

52 CHAPTER 3. RATIONAL DESIGN

Stipulating that each program design solution in H+ has Af as a prefix
results in a continuous design space, i.e., one in which architectural deci-
sions “come first,” but where both regions of the design space meet in some
software artifact that formally belongs to both A and P , for example an in-
terface specification that defines each P0 ∈ H+. A and P define a syntactic
language of well-formed architecture and program artifacts, respectively; the
intersection of these languages defines a syntactic language of seam artifacts.

Terminology: Software architecture, architecture, design. Here-
after, “software architect” and “architect” will be used interchangeably,
and similarly “software architecture” and “architecture”; “software de-
signer” or simply “designer” will be used to refer to architects and pro-
grammers as a class; and, “software artifact,” “software” and “design arti-
fact” will all be used interchangeably to denote formally-encoded archi-
tecture and program descriptions.

Practitioners will rebel at this ideal partitioning just described, and
would do so fully aware that contemporary software engineering practice
salutes the ideal. Nonetheless, the ideal separation of concerns outlined
above are all well motivated: distinguishing functional correctness from
extra-functional quality, attributing extra-functional quality (in non-trivial
software systems) to architectural structures, distinguishing architecture de-
sign from program design, and assuming that architecture “comes first.”

3.4 Technical Definitions

Before turning to the Seam, several key concepts are defined: §3.4.1 describes
different kinds of environments E that Seam designers will use to assess “fit.”
§3.4.2 makes more explicit the notions of architecture, program and interface
used in place of the schematic program artifact P . §3.4.3 describes what it
means for design qualities in the Seam to be predictable, and then more
precisely what it means to be formally predictable in §3.4.4. The question
of how predictability is related to bounded rationality is taken up in §3.4.5,
and serves as a segue to Chapter 4 The Architecture/Program Seam.

3.4.1 Operational and Developmental Systems

Software systems are developed for many purposes, and for different kinds
of stakeholder, each of whom perceives their own needs relative to what they
also perceive to be some system that defines their own context of use. Decid-
ing where to draw the boundaries among the various stakeholder systems is
therefore not a trivial undertaking. Clearly, the designer needs a convention-
alized way to classify environments in terms of typical stakeholder percep-

3.4. TECHNICAL DEFINITIONS 53

tions. One conventional classification defines operational systems (Def.3.1)
and developmental systems (Def.3.2):

Definition 3.1 (Operational System) A system that relies on software
to achieve one or more prescribed business objectives.

Definition 3.2 (Developmental System) A system that produces soft-
ware for use in operational and developmental systems.

The apparent circularity in Def. 3.2 (i.e., the use of “developmental system”
to define itself) is not problematic. Indeed, a distinguishing characteristic
of software design is the strong emphasis placed on the impact that the
design of software has on its own design processes. In contrast, industrial
design processes will strongly emphasize the impact of design artifacts on
manufacturing (vis fabrication, production) processes.6

3.4.2 Architecture, Components and Interfaces

Definition 3.3 (Software Architecture) The structure or structures of
the system, which comprise software elements, the externally visible proper-
ties of those elements, and the relationships among them.

This definition is adopted “whole cloth” from a standard reference on software
architecture [16].7 Of course, the definition leaves much room for possible
interpretations of “structure or structures” and “software elements.” How-
ever, for the purpose of this research “software element” will be interpreted
as meaning “component program”:

Definition 3.4 (Component Program) A sequence of program statements
that can be executed by an abstract or real computing device, having specified
interfaces and explicit context dependencies only.

This definition is an amalgam of those provided by Szyperski [160] and Heine-
man and Council [65]. The purpose is not to define software component, but
to use the definition of component program to build a bridge from the ideas
of rational design, which does not depend on software component technol-
ogy, to prediction–enabled component technology, which exploits software
component technology in very specific ways.

Including “abstract or real” in the definition allows latitude in classifying
as programs any data that is executable on a real device, such as a desktop
computer, on a virtual device, such as the Java Virtual Machine, or on an

6Once again shining a bright light on the software engineering’s genetic defect. To
reiterate: programming is a design process, not a production process.

7The actual definition in [16] begins “The software architecture of a program or com-
puting system” etc., which however is consistent with its use in this thesis.

54 CHAPTER 3. RATIONAL DESIGN

ideal or abstract device, such as a Turing Machine. Note that Def. 3.4 does
not require that computing devices and the symbolic languages they execute
be “Turing Complete,” and indeed the use of ideal computing devices that are
formally weaker that Turing Machines (i.e., can compute fewer functions) is
quite important for the analysis of program and system behavior. However,
unless otherwise stated, “computer program” and its synonyms will assume
the usual “Turing Complete” sense of the term.

Def. 3.4 relaxes Szyperski’s criterion that components have contractually-
specified interfaces to simply having specified interfaces. The work reported
in this thesis does not strictly conform to Meyer’s notion of interface contract
[119], so that criterion is not included in the definition. In contemporary
programming practice, a criterion of good program design is that whatever
a client program needs to interact with a program is defined by its interface,
and that is what is intended by “specified interfaces” in the definition.

An interface defines program invariants both by what is—and is not—
specified on the interface. Parnas introduced information hiding as a crite-
rion for interface design, i.e., what is not specified should not be assumed
[133]. Liskov developed developed formal foundations for data abstraction
[103], and later with Wing extended these notions to behavioral subtypes
[104]. Meyer’s more general notion of contract [119], which he situtated in
a strongly-typed object oriented programming language, and also within an
overall object-oriented software design, has become the dominant metaphor
for designing software interfaces.8

However, a profound and highly pertinent insight of Robin Milner’s was
to link the concepts of observation and interaction [121] by defining interac-
tion as mutual, simultaneous observation. Perhaps one should not read too
much ontological meaning into what is after all a mathematical contrivance,
but there is something quite significant in recognizing that to observe a sys-
tem is to interact with it, and to interact with a system is to observe it.
Nonetheless, it is clear that the notions of observation and interface, as well
as notions of system (and component) boundary, and what is internal and
external to systems (and components), are all closely related.

Concretely, any observable phenomenon of a system is a source of (in-
tended or unintended) coupling between that system and any other system
that interacts with it. It is useful to theory and practice that we distinguish
between the defined and potential interfaces of software.

Definition 3.5 (Defined Interface) A software artifact that specifies syn-
tactic and behavioral invariants of a component program that govern permis-
sible interactions with that component.

8It should be observed that the term “contract” has become diluted, and in the literature
frequently means something much weaker than Meyer intended.

3.4. TECHNICAL DEFINITIONS 55

This definition is more specialized than might be expected,9 but it is con-
sistent with the discussion about contracts, etc., above. Syntactic invariants
refer to anything that can be expressed as syntactic criteria of well-formed
artifacts, for example as might be expressed by the type system in a language
such as Java; and behavioral invariants refer to any observable behavior of
a computational process that results from executing a component program,
and is not restricted to only those behaviors that can be syntactically checked
and enforced.

Definition 3.6 (Potential Interface) The set of all externally-observable
phenomena of component programs when executing in some (not necessarily
intended) computing environment.

The point to note about the definition of potential interface is that it does
not describe a design artifact, but rather gives a name to a real but at
least to some extent inscrutable interface that is only approximated by a
defined interface. Shaw’s notion of software credentials [149] is one way to
progressively improve the fidelity of a defined interface to a “real” interface;
the notions of analytic interface introduced in Chapter 5 is another way that
is grounded in predictability by construction.

3.4.3 Predictable Behavior

Fitness can be formally expressed as a distance measure between what stake-
holders of a system require, and what the artifact delivers. Designers choose
from among alternative paths in the design search based on the anticipated
(predicted) effect that decision will have on optimizing (minimizing or max-
imizing) this distance. The fitness function F described in §3.2 encodes the
subjective, or “evaluative judgements” of the designer, but “test” in Simon’s
“generate and test” requires a basis in objective, observable phenomena. Ac-
cordingly, we separate the phenomenology of “fit” (here) from its evaluation
(in §3.4.5).

Documented taxonomies of system phenomena and measures of these
phenomena vary considerably in terminology and emphasis. For example,
one ISO standard [156] describes six “characteristics” (functionality, reliabil-
ity, usability, efficiency, maintainability, and portability), each of which has
a number of “sub-characteristics” (for reliability these are: maturity, fault tol-
erance and recoverability), numbering over twenty-seven (sub-)characteristics
in total. Not to be outdone, one Wikipedia entry describes a bestiary that
includes over seventy “system quality attributes.”10 In brief, there are many
taxonomies; perhaps some have theoretical and practical utility.

9For example, “Software interface: A boundary across which two independent en-
tities meet, and interact or communicate with each other” (http://www.sei.cmu.edu/
architecture/start/glossary.)

10http://en.wikipedia.org/wiki/List_of_System_Quality_Attributes

56 CHAPTER 3. RATIONAL DESIGN

For the purpose of this research, however, these are all simultaneously too
elaborate in the phenomena they differentiate, and too vague in the criteria
of their differentiation. Here, two classes of phenomena are distinguished,
system phenomena (3.7) and computational phenomena (3.8):

Definition 3.7 (System Phenomena) Any externally observable phenom-
ena of an operational system or developmental system.

Examples of system phenomena include: the elapsed time between the arrival
of some stimulus to the system and the response generated by the system,
and the total human effort required to produce that response.

Definition 3.8 (Computational Phenomena) Any externally observable
phenomena of an executing program.

Examples of computational phenomena include: the displayed prime factors
of a natural number, and the elapsed time between the start and end of that
computation. The terms computational phenomena and runtime phenomena
are regarded as synonyms.

Terminology: Phenomena and Behavior. To avoid cumbersome
phrasing, unless otherwise stated “phenomena” will hereafter be taken to
mean computational phenomena, and in the interest of style the terms
“phenomena” and “behaviors” will be used interchangeably, with prefer-
ence for the former in definitions, and the latter in prose.

Theories of system behavior must account for the behavior of people.
Examples of these include game theory and mechanism design, which how-
ever are outside the scope of the work reported here. Theories of compu-
tational phenomena, on the other hand, need account only for the behavior
of computers and the real–world effects generated by computation on other
(non-human) parts of the system. It is this class of phenomena that are of
interest to the research reported here. Of specific interest are behaviors that
are predictable, and for this purpose all behavior will be defined in terms of
some underlying computational model.

Definition 3.9 (Functional Phenomena) All phenomena Pf that are (in
principle) observable on a Turing Machine.

The reference to Turing Machine in Def. 3.9 is to be understood as a reference
to the strongly conjectured equivalence class of abstract computing devices
of which Turing Machine is but one well-known member. Also, the phrase
“in principle” will be taken to be implied in all further definitions of behavior.

3.4. TECHNICAL DEFINITIONS 57

Definition 3.10 (Extra-Functional Phenomena) All phenomena Pxf
that are observable on a suitably enhanced Turing Machine, or on some ab-
stract computing device that a) can be appropriately demonstrated to be an
augmentation of, or an abstraction of a Turing Machine, and b) can itself be
simulated on a Turing Machine.

The terms “appropriately demonstrated” and “augmentation or abstraction
of” are intentionally suggestive of the wider latitude granted to a discipline
of engineering than would be appropriate to a discipline of mathematics.

To give a concrete example, the theory that supports generalized rate
monotonic analysis (RMA) [89] is used as a foundation to reason about time
in many “hard real-time” systems. RMA’s underlying abstract machine is
not Turing complete—it describes computational states (schedulable units)
in terms of the time they consume, and transitions between states in terms
of an underlying fixed-priority scheduling discipline. For example, concur-
rent synchronizing pipelines of component programs can (in some cases) be
given an interpretation as independently–scheduled sequences of RMA tasks
[62]. The behavior of the “RMA task programs” that run on RMA abstract
machines is expressed in terms of non–blocking execution time, and is quite
orthogonal to the functional behavior of component programs of the original
(uninterpreted) program. However, the abstraction of functional behavior
to execution time, combined with formally demonstrated theorems internal
to RMA theory and empirical evidence of the predictive strength of RMA
for real programs, provides an appropriate basis to have confidence that
there exists some encoding of the RMA abstract machine on, say, a Turing
machine.

Definition 3.11 (Predictable Phenomena) Given a set A of artifacts
defined by some formal invariant inv, and a set O of observations of some
phenomena Pf ∪ Pxf of programs a ∈ A; the set of inductively predictable
phenomena Oi ⊆ O is defined by a statistically-significant correlation C(A,O).

The term “formal” in Def. 3.11 makes clear that the invariants are on
the syntactic structure of the software artifacts, and as such define criteria
of “well-formed artifacts.” Also, the term “correlation” should be interpreted
broadly as any descriptive or inferential statistical measure of correspondence
between structure and phenomena [156, 155, 124]. Previous research by
Magnus Larsson has demonstrated that the “predictive strength” of a theory
for some analytically-predictable behavior can be established as an objective
property of that theory [98].

Predictable phenomena includes as a degenerate case any behavior that
can be inferred as a consequence of software testing, since there is only one
artifact in the set A. It excludes, however, so-called “quality metrics” such
as cohesion and coupling [157] and many others, most of which purport

58 CHAPTER 3. RATIONAL DESIGN

to be predictive of how difficult it will be for programmers to understand
the measured programs but lack grounding in any computational theory.
It also excludes formalizable architectural styles [3] or other formalizable
patterns that have a demonstrated effect on software behavior, but also lack
a computational theory to express those effects.

3.4.4 Formally Predictable Behavior

Predictability is defined using terms used in the theory of programming
languages, in particular the cluster theories, models, semantics and inter-
pretations.

Definition 3.12 (Theories and Semantics) The abstract computing de-
vices that simulate functional and extra-functional behavior, and the collec-
tion of theorems that observe these simulated behaviors, constitute theories
of those behaviors. The (abstract) programs that are executed on (simulated
by) these abstract devices are models of those behaviors. A formal corre-
spondence between a component programming language L and some theory
T defines a semantics of L with respect to T . Component programs in
L are said to have interpretations in T , and any such model of a program
is said to be an interpretation of that program.

As a convenient shorthand, “theories” and “semantics” will be used inter-
changeably despite the difference in their formal definitions. This is justified
because in the research reported here, theories without an accompanying
semantics are of little practical interest. Similarly, the terms “(extra-) func-
tional semantics” and “(extra-) functional theories” will be used as synonyms.
The terms “behavioral semantics” and “behavioral theories” will be used when
the distinction between functional and extra-functional is neither useful nor
required.

Definition 3.13 (Formally Predictable Behavior) A phenomenon is
predictable if it has a defined semantics.

3.4.5 Standards of Fit

It is significant that even as Simon was developing theories of rational design
(§3.1) he was simultaneously questioning the ability of humans to make ra-
tional decisions in the first place. His arguments were based on known limits
of human cognition, on the computational complexity of linear programmed
multi–attribute optimization, for the corresponding need for heuristics, and
on the necessarily co-evolving solution and the designer’s understanding of
the problem itself. In the latter situation, the fitness landscape is co-created

3.4. TECHNICAL DEFINITIONS 59

Satisfying

Predictable

Satisficing

Correct

Satisfying

Predictable

Satisficing

Correct

Case A: Insufficiently Predictable Case B: Sufficiently Predictable

Figure 3.1: Satisfying, Predictably Satisfying, and Satisficing Designs

along with the search. There are many reasons, then, to assume that de-
signers can not be fully rational, and that even if they could be, the design
process can not be regarded as rational overall.11

Simon’s solution was to relax the assumption of rationality to bounded
rationality. This shifts the focus from a search for designs that maximize
a measure of satisfaction of stakeholder need, to a search for designs that
are sufficiently satisfy stakeholder needs, for which Simon coined the term
“satisficing” [151]. The bounds of rationality manifest as the gap between
designs that are maximally fit with respect to some criterion, and those that
are sufficiently fit.

It is clearly desirable that the predictive strength for any behavioral se-
mantics for this criterion (i.e., its correlation C(A,O), Def. 3.11) lies some-
where within these bounds. This might seem like a contradiction in terms,
in that (by definition) the upper–limit of predictive strength for a theory of
some behavior would define a new bounds on rational design for that be-
havior. In strictly definitional terms this would be the case. However, while
predictability is an objective measure of a behavioral semantics, sufficiency
(as with trust) is situationally- and socially-dependent [120, 84]. Software
engineers and their customers are likely to regard all design predictions with
healthy skepticism, as they should.

Figure 3.1 provides a Venn diagram interpretation of sufficiently satisfy-
ing designs vis–à–vis predictably satisfying designs. Case A) represents the
practical reality, where some designs that were predicted to satisfy stake-
holder needs will turn out to not do so, while Case B) represents the (likely
unobtainable) ideal that all designs predicted to satisfy needs do so. In Case
A, testing, expert review and other means must be used to “close the gap”
between the objective measure of a theory’s predictability and the perceived

11Parnas and Clements argued from much less fundamental grounds but reached the
same conclusion and offered a range of practical remediations, many of which remain
pertinent to contemporary software engineering practice [134].

60 CHAPTER 3. RATIONAL DESIGN

sufficiency of that theory in some social context.

While the gap between the predictive strength of a theory and its sufficiency
as a definitive basis for design decisions will more than likely never be com-
pletely eliminated, we can hope to establish sufficient trust in engineering
theories to justify a significant reduction of overall effort to close the gap, and
it is in this way that the practical viability of predictability by construction
will be established.

Chapter 4

The Seam

61

62 CHAPTER 4. THE SEAM

Previous chapters have discussed the distinct but overlapping design ju-
risdictions of architects and programmers. This chapter describes the nature
of these overlaps in closer detail, from the perspective of architects and pro-
grammers, and then from the perspective of the Seam, an area of common
ground. The Seam is defined in such a way that architects and programmers
can have joint custody over a collection of design artifacts, each of which
has dual significance—one that is pertinent to the architect’s interests, and
one that is pertinent to the programmer’s interests. The result is (as will be
demonstrated in the case studies of Chapter 9) better integration of archi-
tecture and program in systems, and a significant enhancement of rationality
in software design that is enabled by predictability by construction.

Table 4.1: Overlapping Jurisdictions and Seam Consolidation

satisficing results for
all attributes in all
environments of use

correct computational
results in the operational
environment

predictable computational
results in the operational
environment

many attribute criteria,
theories span rules of
thumb to formal bases

one dominant attribute
criterion, established
theory of computation

extensible theories of
runtime behavior that are
statistically or formally
validated

open-ended policy-
enforced design rules;
tacit or asserted intent

pre-defined language
syntax and semantics;
functional behavior by
construction

extensible computer-
enforced design rules;
predictable runtime
behavior by construction

explain the "why" to
external stakeholders:
persuasively justify
major design tradeoffs

explain the "how" to
internal stakeholders:
concisely explain
program behavior

justify significant design
decisions in terms of their
impact on actual or
predicted runtime behavior

software components and
component models that
have dual (architecture
and program) meaning

components and
connectors, styles,
"4+1" views, analysis
and simulation models

procedures, interfaces,
classes and modules;
idioms, patterns and
component models

A
bs

tr
ac

ts
Ex

pl
ai

ns
R

ul
es

Th
eo

rie
s

C
on

ce
rn

s

Architect Programmer THE SEAM

Table 4.1 provides a concise summary of the overlapping jurisdictions,
and interests, of architects and programmers, and their consolidations in
the Seam. The chapter is organized by the structure depicted in Table 4.1,
with each area of overlapping jurisdiction represented by each of the rows
in the table described in its own section: Design Concerns (§4.1), Design
Theories (§4.2), Design Rules (§4.3), Design Explanations (§4.4), and Design
Abstractions (§4.5).

4.1. DESIGN CONCERNS 63

4.1 Design Concerns

In “design as search,” what is it that software designers seek to obtain? What
benchmark measure of obtainment, or confidence in future obtainment, is
required by the designer to commit to the search of one part of the design
space in preference to all others? These questions pertain to design concerns.

The Seam I (Design Concerns). Designers in the Seam seek soft-
ware systems that exhibit predictable computational behavior in the
operational environment.

The emergence of structured programming in the 1970’s demonstrates
that programmers have always been concerned with design qualities beyond
functional behavior. For structured programs: analyzability and understand-
ability; for object-oriented programs: modifiability and extensibility; for de-
sign patterns: reusability and composeability; for functional programming
and logic programming there are others. We might argue about which qual-
ities apply to which style of programming or to which paradigm, but the
principle is surely established.

Similarly, architects are concerned with functional behavior, not only as
a necessary criterion for design solutions, but as a way to define functional
specifications for quality attributes. For example, for program P the archi-
tect may define safety properties (X will never hold), e.g., robot arm never
moves past a certain point, unencrypted messages are never sent; or liveness
properties (Y will always eventually hold), e.g., robot always eventually
halts after receiving kill signal, message sends are aways eventually logged.
Each of these examples is expressible in a temporal logic that verifies prop-
erties on infinite program traces—a purely functional concept.

Architects and programmers have the same overall goal of developing
software systems that are most fit for use; they may differ in the attributes
of fit they seek, and in the evaluative standards of fit they apply. Architects
and programmers share quality concerns, the scope of these qualities vary—
system scope for architects, and program scope for programmers, although
these differences in scope are not fixed rules. Similarly, architects and pro-
grammers differ in their interests in fitness environments—operational envi-
ronments for architects, developmental environments for programmers (with
the same caveat about no fixed rules). Lastly, the benchmark measures of
obtainment also vary, with architects concerned primarily with sufficiently
satisfying customer needs and programmers concerned primarily with cor-
rectly achieving functional correctness (same caveats).

The key points worth noting about design concerns in the Seam are:

a) fitness attributes are restricted to computational behavior (Def. 3.8,
pp.56) of operational systems (Def. 3.1, pp.53).

64 CHAPTER 4. THE SEAM

b) the standard of fit is predictability of behavior (Def. 3.11, pp.57).

There is nothing intrinsic to software design, or to the differing concerns of
architects and programmers, that requires the Seam to be limited in its focus
to only computational phenomena or to operational systems. This narrower
focus adopted by the Seam reflects the particular research objectives of pre-
dictability by construction, and in this sense is quite arbitrary. On the other
hand, Chapter 10 takes up the issue of how a technology infrastructure for
the seam is itself designed, and the novel challenges posed by that under-
taking. In that case, the more general class of system phenomena within
developmental systems (as well as the more nebulous concerns for satisficing
results, discussed next) become dominant concerns.

On the subject of predictability, a discipline of engineering design requires
that the role of intuition and subjective judgement replaced wherever possi-
ble by objective and measurable quantities of fit. The Seam therefore relies
on definitions of predictability that are based in the objective and observable
runtime behaviors of software; and this in turn serves to increase the level of
“rationality” in the design process. Predictability is also defined in a way that
reflects common ground for the architect’s native interest in sufficiently sat-
isfying behavior and the programmer’s native interest in correctly satisfying
behavior. These respective interests reflect the more situational standards
of fit used by architects, and the more sharply defined standards of fit im-
posed on programmers by the formally-defined structure and interpretation
of component programs.

4.2 Design Theories

Each of the designer’s navigation decisions through the design space is made
with the expectation that it moves the artifact closer to the design goal—by
producing a candidate solution, or by improving fit. What analyses support
these judgements? What is the objective basis for these analyses? What
confidence bounds or other caveats attend the use of these analyses? These
questions pertain to design theories.

The Seam II (Design Theories). Designers in the Seam use theories of
computation that can predict the runtime behavior of software systems
and that have demonstrated validity.

Programmers work with highly refined symbol systems called a program-
ming languages, each of which defines a syntax of well-formed programs, and
a semantics that defines the functional behavior of well-formed programs,
although extra-functional behavior of programs also results from semantics,

4.2. DESIGN THEORIES 65

for example on type systems that support memory safety.1 Semantics assigns
to each well-formed program an interpretation as an ideal program that exe-
cutes on an ideal computing device (e.g., Chemical Abstract Machine [19]).2

For general-purpose programming languages, these ideal devices belong to
an equivalence class that defines a theory of computation.

As discussed under design concerns, architects also rely on well–defined
programming language semantics. However, architects also make use of their
own languages; the class commonly referred to as architecture description
language (ADL) does not, however, require of its members a semantics in
any theory of computation. Indeed, it might be argued that such a re-
quirement would simply result in yet another general-purpose programming
language. Instead, ADLs as a general rule tend to represent structure with-
out behavior, with the objective of being suitable (in principle) to many
theories and analyses, for any design qualities in ~QP,E of a design objective
function F (see §3.2, pp.49). Unlike programmers, then, architects must deal
with an open-ended set of theories, the vast majority of which have not been
formalized as a semantics of any ADL.

To give one concrete illustration, consider real-time queuing theory
(RTQT) [49] and rate-monotonic scheduling theory (RMA) [89], just two
of many real-time performance theories for just one “performance” quality in
~QP,E . RTQT and RMA are distinguished by the kinds of guarantees they
provide (statistical and absolute, respectively), assumed scheduling discipline
(earliest deadline first, fixed–priority), and design objectives (maximize uti-
lization, guarantee deadlines). These are substantial theories that have not
in general been used to supply ADLs with formal semantics (with the per-
formance reasoning framework described in Chapter 8 being one exception).
In addition to these and other substantial theories there are also heuristics
and various “rules of thumb” that architects and even programmers on as
well, for example when to use a two-tier rather than three-tier client/server
pattern, when it is appropriate to use model–view–controller.

The key points worth noting about design theories in the Seam are:

a) theories of computation narrow the focus of the seam to formally pre-
dictable behavior (Def. 3.13, pp.58).

b) the behavioral theories that predict these behaviors should have an
accompanying demonstration of validity (see discussion of Larsson’s
work in the context of Def. 3.11, pp.57).

1Very few programming languages are defined with the precision and completeness
implied by this discussion.

2The Chemical Abstract Machine (CHAM) is “based on the chemical metaphor” (Ger-
ard), and was used by Milner to define a semantics of π−calculus [122], which indi-
rectly served as a basis for programming languages [136] and composition languages
[106].Inverardi and Wolf made direct use of CHAM for architecture analysis [79].

66 CHAPTER 4. THE SEAM

The emphasis on formally predictable behaviors invites the use of “non-
standard” semantics of languages.3 The goal is not to achieve an equivalent
level of formalization of functional and extra-functional behavior, but to lay
the groundwork for a systematic treatment of how new theories of extra-
functional behavior are developed, and how new theories are integrated into
architecture and program abstractions. The additional stipulation that de-
sign theories be validated serves the early-stated purpose of improving the
overall level of “rationality” in the software design process.

4.3 Design Rules

The rational design process sketched in §3.2, pp. 49 casually asserts the ex-
istence of a design space, but where does this come from in the first place?
The use of genetic algorithms as a meta-heuristic to construct a design space
(and simultaneously a fitness landscape) is certainly a possibility [141, 132],
but it is not yet to be recommended as a general approach to software en-
gineering design. This begs as questions: What heuristics do designers use
to identify a set of successor software artifacts of any given software arti-
fact Pm (at least two must be possible for Pm to be worth including in a
design space)? How do these heuristics correspond to design theories, i.e.,
what quality attributes do designers believe are maximized (minimized) by
the successor forms, and what design theories (if any) justify these beliefs?
In what ways (if any) do heuristic-generated successors expand or restrict
downstream design choices, i.e., the design space that can be constructed
from each successor? If there are restrictions, how are they enforced? These
and similar questions pertain to design rules.

The Seam III (Design Rules). Designers in the Seam define design
rules that, when enforced by a computer, satisfy the assumptions of
analysis theories, and as a consequence software systems exhibit be-
havior that is predictable for these theories, by construction.

If there is a nexus of creativity, invention, codification and automation in
design, it resides in design rules. Contemporary architects and programmers
use remarkably similar language to talk about design rules—chiefly in terms
of architectural styles [135, 2, 116, 51] and design patterns [52, 45, 25, 144];
these however differ more in terminology than in substance, and for this
reason the term “pattern” will be preferred. Generally speaking, patterns
codify best practice rather than invention, and accordingly are sometimes

3A core functional semantics of imperative programming languages is sufficiently com-
mon that it can been referred to as standard semantics[128].

4.4. DESIGN EXPLANATIONS 67

justified by the heuristic that a pattern must have been used in three distinct
contexts to qualify as a pattern.

However, with few exceptions (for example attribute-based architectural
styles [88]) there has been little overt emphasis on grounding specific patterns
in any specific theory of program behavior. This is not surprising given the
number of possible design theories that might give rise to specialized pat-
terns, with each < theory, pattern > pair based in different and possibly
inconsistent assumptions. The potential for inconsistency is especially prob-
lematic to achieving the “Alexandrian” [7] ideal of pattern composition that
inspired much of the early work in object-oriented design patterns (which
is also one of the few genuine differences between architectural styles and
design patterns).

Architects and programmers differ in rules they use to achieve desired ef-
fect on attributes of fit, how strongly correlated these rules are to the desired
attribute effects, and how the rules are enforced, but the Seam provides a
consistent theme to consolidate the treatment of design rules:

a) design rules satisfy assumptions of theories of runtime behavior

b) from this predictability of behavior follows by construction

Programmers make good use of the formal strictures of modern program-
ming languages, such as Java and C#. They might not appreciate, however,
that the unforgiving syntax of these languages is defined in large part to
permit an automated theorem prover called “the type checker” to prove the-
orems in a higher-order logic called a type theory, and that language syntax,
type theory, and type checker combine to form what the programmer sees
as the type system of the programming language. The type system’s sole
purpose is to establish invariants on program executions; from these vari-
ous important and useful behavioral properties can be proven, for example
memory safety. Type theories establish strong but quite specific properties
of program behavior; semantic theories establish weaker but more general
properties of program behavior, and in addition make various assumptions
about the runtime environment of programs, about heap store, thread sched-
uler, etc. The same principle applies to programming language type theories
and semantics: well-formed programs have predictable functional behavior
(for type systems: provable behavior), by construction.

The Seam anticipates that the analogous principle applies also to extra-
functional behavior, such that type systems or semantics of extra-functional
behavior can be made predictable by construction.

4.4 Design Explanations

The success of the design depends on more than the qualities of the software
(its correctness and its fit)—it depends as well on the explanation to stake-

68 CHAPTER 4. THE SEAM

holders of the software design, as well as of the software design process. Why
does the software exhibit one structure and not another? What is the ob-
jective basis for designer’s belief that the software satisfies its requirements?
Why does the software exhibit more of one quality attribute Q0 and less of
another Q1 in ~QP,E , and might some other tradeoff have been made, possi-
bly involving some other quality attribute Q2? These and similar questions
pertain to design explanations.

The Seam IV (Design Explanations). Designers in the Seam provide
their stakeholders with objective justification for significant design de-
cisions, based on confirmable evidence of actual or predicted software
runtime behavior.

Without elaborating a theory of stakeholder, we observe that a software
design process has internal stakeholders (architects and programmers) and
external stakeholders (end customers). Both classes (and we can define many
such classes) have need for explanations. External stakeholders are generally
interested in explanations of the design process, and in particular answers
to “why” questions, as in “why this design (or this design decision) and not
some other?”; answers to these questions are sometimes referred to as de-
sign rationale, and there are various ideas about how the architect might
construct rationale [12, 24, 161]. Internal stakeholders are generally inter-
ested in explanations of the software artifacts, and in particular answers to
the “how” questions, as in “how does this software work, and how does this
working satisfy its requirements?”; answers to these questions are sometimes
referred to as technical documentation, and there are various ideas about how
the programmer might construct technical documentation, including various
widely-used tools (Doxygen4, JavaDoc5) as well as Knuth’s more inspired
(and largely unrealized) idea of “literate programming” [167, 153].

Of course, “internal” and “external” are relative terms, and architects
and programmers are stakeholders of one another, and might require of one
another various kinds of explanations. To illustrate one case, programmers
for example might require from architects a form of design rationale that is
slightly different than that required by end customers, what we might call ar-
chitectural intent, to answer “what/where” questions, as in (metaphorically)
“what region of the design space should be explored, what regions should be
avoided, and where is the intended destination?”

Architects and programmers must provide explanations and justifications
for critical design decisions:

a) designers justify key design decisions
4http://www.stack.nl/~dimitri/doxygen/
5http://java.sun.com/j2se/javadoc/

4.4. DESIGN EXPLANATIONS 69

b) justifications are based on confirmable, objective evidence

These points are made concrete in the following definition of objective justi-
fication:

Definition 4.1 (Objective Justification) An argument of the form “The
decision to change the artifact a1 to a2 is justified by the corresponding change
p(a1) to p(a2) that will be, or already has been, observed for some predictable
behavior P .” Formally: δ(a1, a2) ↪→ δ(p(a1), p(a2)).

Note that “phenomenon” refers to an formally predictable behavior (Def. 3.13).
In an ideal design process, each design decision (i.e., each decision to search
one region of the fitness landscape it preference to others) would be accom-
panied by an objective justification; the set of these justifications could be
regarded as the documented design rationale.6

The architect will attend to external stakeholder needs at the earliest
stages of design and throughout: when the scope of a software product is
established; as stakeholder needs are formalized as system requirements; as
each requirement, in turn, is reduced to testable criteria of fit; and as trade-
offs among requirements are made as a consequence of multi-criteria opti-
mization. If success were determined exclusively by designer judgements or
objective measures of fit, then perhaps this is the best the architect can do.
However, key stakeholders, such as investors, might be concerned less with
the software product than in the rationale for specific design tradeoffs. They
might require a justification of why the product is more fit in some ways
and less fit in others, or might go further by requiring an explanation of
which specific design decisions have as their consequence some aggregated or
criteria-specific measure of fit.

Programmers generally have stakeholders who are internal to the design
activity, in particular other programmers and the architect. Peer program-
mers are more likely to be concerned with a concise and accurate account
of how various internal parts of a program work, and with an explanation
of any subtle interactions among those parts that are not readily apparent
from program source code, or are not expressible in the language syntax.
Programmers may also be required to provide to their architect stakehold-
ers evidence, or an explanation of how their programs satisfy architectural
intent. For example, the architect might require a demonstration that a
program conforms to call-level protocol of allowable calling sequences on
various defined interfaces [22] (Def. 3.5, pp.54). Conformance also extends
to a program’s real interface (Def. 3.6, pp.55), in particular to any observ-
able phenomena of programs on which the architect’s decisions depend, for

6One interesting speculation is that the extent of an architecture is defined by those
design decisions for which explicit explanation and justification are likely to be required
by stakeholders of current and future developmental environments.

70 CHAPTER 4. THE SEAM

example the observed average-case or worst-case runtime performance of a
program in a performance-critical system.

4.5 Design Abstractions

If software engineering has any claims of supremacy among other engineering
disciplines, it is that it is non plus ultra in defining and using abstraction.

Two points are worth emphasizing. First, the kinds of abstraction of fore-
most interest in this research are formal abstractions—those that are defined
in terms of a formal symbol system and by (one or more) interpretations from
their symbol systems to other formal abstractions (e.g., programming lan-
guage to machine language, programming language to transition system).
Ultimately, these are grounded in some informal (i.e., empirical) domains of
observable runtime behavior (e.g., transition system to execution time).

Second, software engineering (and engineering in general) is a practical
discipline—it is concerned as much (and more) with what can and does work
in practice than with what could and should be done in theory, with an ill-
defined but changeable boundary between these laying somewhere in the
penumbra of “good enough.” Vanishingly few7 programming languages used
in practice have a thoroughly defined formal semantics, but most software
engineering problems can be solved as if they do.

This research attends to software engineering practice, and accordingly
defines abstractions that are sufficiently formalized. Indeed, what it is that
defines “sufficiently” in this context is itself a matter of interest in this re-
search, as previously discussed (§3.4.5, pp.58) and more extensively in Chap-
ter 10 under the general heading of “co–refinement.”

The Seam V (Design Abstractions). The Seam uses software compo-
nents and component models that have dual and simultaneous meaning
in software architecture and computer program.

Architects and programmers require abstractions that address their con-
cerns, that are based in validated theories, that have well-defined rules that
govern their use, and that provide an objective basis for making and justify-
ing design decisions based on their use. Achieving an effective integration of
architecture and program design also requires that these design abstractions
be not biased towards architecture or programs, but instead reflect common
ground for both. This research offers a proof of existence in the form of
prediction-enabled component technology (PECT) that such abstractions can
be defined, and can be substantially supported by automation. Figure 4.1

7The definition of SML [123] is a noteworthy and illustrative exception to the rule.

4.5. DESIGN ABSTRACTIONS 71

Prediction-Enabled Component Technology

Key: Required Behavior

Quality Attribute

Satisficing Range

n-ary RelationExecutable Relation

Specification

Theory

Evidence

Predictive RangeModel

2

1

2

2

Component
Assemblies

Executable
Programs

Confirmable
Evidence

Reasoning
Frameworks

Computational
Behavior

1

DerivedSatisfice

2

Generate Predict

Validate

Theory of

Fitness Criteria
(the "ilities")

δ(a1,a2)

0

T

Interpret

1

δ(a0,a1)

Figure 4.1: Prediction-Enabled Component Technology in Context

graphically depicts the large-scale abstractions of PECT—assembly specifi-
cations, assembly implementations, reasoning frameworks, confirmable evi-
dence, and various relations that each correspond to some automated trans-
formation of design artifacts of one abstraction to another.

At this point the discussion shifts in focus from metaphor, definition
and conceptual framework (“The Seam”) to prototype technology. The main
ideas of PECT are more naturally introduced, then, in terms of a simple and
generic vignette that illustrates how a designer uses PECT to search a small
region of the fitness landscape, using validated extra-functional semantics, to
produce software that “predictably satisfices” its requirement, and to objec-
tively justify the design decisions leading to this particular design solution.
This vignette is summarized in Table 4.2 as a sequence of design steps, each
of which highlights the portion of Figure 4.1 it explains. Part II provides a
more detailed view of PECT.

To ease the transition from abstract concepts to concrete prototype, each
step in Table 4.2 is described using metaphors and definitions developed
earlier, but each also introduces PECT-specific terminology, highlighted in
boldface font, and pointers to the chapters that pertain to these terms.

72 CHAPTER 4. THE SEAM

Table 4.2: Seam Scenario using PECT

0

10
δ(a0,a1)

2 2
Trans

21
δ(a1,a2)

1 1
Predict

1
Interp

2 2Val

2 2
Predict

2
Interp

TheoryInterp

Satisfice

Satisfice

T O

Q

2

Quality attribute Q with runtime behaviors O recurs as a critical
requirement. A reasoning framework F (Ch.8) is designed (co-
refinement: Ch. 10), based originally in theory T, that is
validated (Ch. 8) as sufficiently predictive of O, and which
defines design rules (analytic constraints) that permit a
sufficient range of systems (assemblies) to be designed.
A new system is to be developed with quality requirement q' with
behavior o'. The assembly a0 in the Pin Component
Language and Technology (Ch. 6-7) is the starting point.
The designer attempts to predict the behavior of a0 using F, but
F reports constraint violations on the analytic interface of a
components in a0. The designer produces new assembly a1.
a1 is well-formed in F, and its o' behavior is predictable in F. F
constructs as an interpretation of a0 and invokes a (semi-)
decision procedure to predict o'.
The behavior of a1 is predictable by construction, but its
predicted behavior does not satisfy the requirement, leading the
designer to produce a new assembly a2.
a2 is also well-formed in F, and its predicted behavior falls within
the normative range of the acceptable values for the
requirement.
The designer generates an implementation of a0 for the Pin
runtime (Ch. 6-7).

Predictions do not provide absolute certainty, even when backed
by proof certificates (Ch. 8). The designer spot validates a2
to see if actual and predicted behaviors of a2 correspond.
Because F has a validated confidence interval of its predictive
quality (Ch.8), the designer can justify the design of a2, and
reduce testing effort by some margin within the confidence of F.

-1

0

1

2

3

4

5

6

7

Step Index to Figure 4.2 Key Ideas

Part II

Technologies

73

Chapter 5

Prediction-Enabled Component
Technology

75

76 CHAPTER 5. PECT

Part II of this thesis describes a prototype prediction-enabled component
technology (hereafter, PECT). This prototype is freely available for down-
load.1 The technology at this download location is called the “PACC Starter
Kit,” or “PSK.” See Ch.2 §2.1 for a discussion of the relationship between
PACC and PECT. In brief, PSK is an instance of a general class of PECT.
To maintain this distinction, I will use PSK to refer to the prototype, and
PECT to refer to the general idea.

The PSK is simple in concept but requires the integration, and in several
instances modification, of several non-trivial technologies. The overall PSK
is packaged as a PECT Perspective in Eclipse; reasoning frameworks are
implemented as plug-ins to the PECT Perspective. Figure 5.1 provides a
summary view of the PSK, again in terms of the “quandrant” depiction (see
Fig. 4.1, page 71), but this time highlighting technologies rather than the
theory concepts:

Reasoning Framework Plug-Ins(Pin) Components and Assemblies

Confirmable
Evidence

(Pin) Executable
Programs1

1

Pin Component
Language (PCL)

λ* Performance Framework

λ-ABA λ-WBA λ-SS

Model Checking
FrameworkContainers

Services

Code Gen

Pin Component
Technology

Pin Assemblies

M
ea

su
re

In
te

rp
In

te
rp

Export

Export Measure

Components

Environments

Library

Counterexample

Time
Prediction

Ex
po

rt
C

he
ck

Measurement
Services, Tools

2

2

Host OS/Win32

Proof Certificate

Confidence
Interval

Notes: 1. Eclipse PECT Perspective.
2. Eclipse PECT Plugin.

Key: Interpretation, generation,
prediction, validation
mechanisms

Figure 5.1: The PSK: A Prototype PECT

Pin Component Language. The Pin Component Language (PCL) (bold
box in upper-left quadrant of Figure 5.1) is the constructive basis of the
PSK. It formalizes the Pin component model, and extends it in various ways
to accommodate larger-scale abstractions such as component assemblies and

1http://www.sei.cmu.edu/predictability/tools/starterkit/index.cfm.

77

environments.2 PCL is a language processor in the traditional sense. The
“front-end” implements a syntax for the Pin component model (substantially
based on “components and connectors”) and semantics described in Appendix
A). The “middle-end” performs static analysis and generates an annotated
abstract syntax tree, which is exported for use by reasoning frameworks.
The “back-end” is a code generator (the “Generate” relation in Figure 4.1),
with ANSI-C and the Pin runtime environment as target language and target
machine, respectively.

Pin Component Technology. Pin (bold box, lower-left quadrant of the
figure) provides the runtime environment and services used by components,
for example directory services, distributed message queues, container man-
agement, and life-cycle management for components and their assemblies.
Pin also defines a binary standard for Pin components (WIN32 dynami-
cally linked libraries), and a defined C application programming interface
(API) for implementing components and for component access to runtime
services. The Pin runtime environment implements a variant of real-time
POSIX threads, with fixed-priority scheduling, 128 thread scheduling prior-
ities, optional runtime support for priority inheritance protocol, and various
extensions to support specialized Pin event types defined by PCL. Pin has a
portability layer, and has been hosted on WindowsCE and WindowsXP and
the RTX real–time extension of Windows; only WindowsXP is supported by
the PSK.

Reasoning Frameworks. Reasoning frameworks are independently pack-
aged and deployed as plug-in extensions to the PSK. The PSK includes sev-
eral reasoning frameworks: for performance analysis, model checking anal-
ysis, buffer overflow analysis and memory footprint analysis; only the first
two are discussed in this research. The performance reasoning framework is
based substantially in generalized rate monotonic scheduling theory [89] and
can be used to predict average–case and worst–case execution time in sys-
tems that have periodic and stochastic event arrivals. The model checking
reasoning framework uses automatic abstraction–refinement to construct a
sound but finite over–approximation of component and assembly behavior;
the checker then exhaustively searches the finite model to confirm or falsify
some behavior.

Confirmable Evidence. Reasoning frameworks announce their predictions
by writing something to the computer display, or to a file, or by launching
an external tool, such as a simulator. Each reasoning framework defines how
predictions are confirmed. The performance reasoning framework uses direct
observation; the PSK provides a measurement infrastructure with “hooks”

2In the PSK distribution, PCL is known instead as CCL, for “construction and compo-
sition language.” PCL is preferred in the text to emphasize its basis in the Pin component
model, and to deemphasize “composition,” a term with too many (mostly overambitious)
connotations

78 CHAPTER 5. PECT

into the Pin runtime environment and tools to gather runtime data. The
model-checking reasoning framework provides a counterexample if an as-
sembly fails to exhibit a required behavior, and a proof certificate if it does
exhibit required behavior; the PSK provides an interactive explorer for coun-
terexamples and an automated proof checker.

The remainder of this chapter is structured as follows. Each of the main
elements of the PSK (bold boxes depicted in Figure 5.1) are described: the
Pin component language (§5.1), the Pin component technology (§5.2), the
λ∗performance reasoning framework (§5.3), and model-checking reasoning
framework (§5.4). Because these elements are further elaborated in separate
chapters, so the emphasis here is on key ideas. Each summary also includes
an “In Action” illustration of the key ideas using examples that are available
in the PSK. An important theme of the research is that properly locating
the Seam requires that genuine attention be paid to the practical aspects of
tooling and scale; the illustrations provide a sense of what was required to
achieve the goals of this research.

5.1 Pin Component Language (PCL)

PCL combines elements of architecture description language (components
and connectors), software component technology (Pin) and programming
languages (UML statecharts, ANSI-C).

5.1.1 Components and Connectors

The choice of “components and connectors” as a syntactic core in PCL is not
surprising—it is a choice made by many ADLs (Garlan makes the general
case [54]) and component models ([59, 86]), it provides a natural correspon-
dence of component to process algebraic interpretations ([106, 109]) and it is
regarded as a fundamental view type for documenting software architectures
([44, 93]).

The interface of a Pin component is specified in terms of pins, which as a
first approximation can be regarded as equivalent to ports in other notations,
though pins are intentionally primitive in some respects—for example, they
can not be aggregated, and there is no means to define pin-specific protocols.
The type of a pin is a composite < D,P, S > where D is either “sink”
(inbound requests to a component arrive on these) or “source” (outbound
requests of a component are made on these), P is either “asynchronous” or
“synchronous” protocol, and S is a signature of data types transmitted on
the pin.

PCL does not support connectors as “first-class” abstractions—new types
of connector can not be specified directly in the language.3 Instead, PCL de-

3Of course, the same effect can be emulated by defining components whose only task is

5.1. PIN COMPONENT LANGUAGE (PCL) 79

fines two basic kinds of connector, one each for synchronous and asyn-
chronous interactions, that are used to connect synchronous and asynchronous
pins, respectively, to one another.

5.1.2 Reactions and Interactions

Components in PCL are reactive—they begin their execution by listening
for the arrival of stimulus on a sink pin, and react to any stimulus by per-
forming some task, and when finished return to the listening state. As part
of performing its task, a component may issue requests on its source pins,
and these in turn become stimulus for any component with sink pins that
have been connected to those source pins; their connection enables interac-
tions among component reactions. A component may define one or more
reactions, and each reaction may be threaded or unthreaded.

Since components are reactive, a reasonable question to ask is “where is
the first event?” Components interact with their environments by interacting
with a special class of components, called services, for which requirement for
strictly reactive behavior is relaxed. This class of component can interact
with the external world, for example on low–level devices. However, aside
from this, and the use of the keyword service rather than component,
services are defined in exactly the same way as components.

5.1.3 Reactions and Pincharts

PCL uses a subset of UML statecharts, called Pincharts, to specify the be-
havior of components. The subset is consistent with UML version 2.0 both
in terms of semantics, and in resolution of choice points. One UML choice
point is the choice of “action” language, and for this PCL uses a subset of
ANSI C.

Example 5.1 shows a completely specified component simple (text on
the left) and a UML diagram of the reaction R (on the right); the component
responds to a request on its sink pin next by producing a value modulo a
value max supplied at instantiation time. The correspondence should be
easy to see for anyone familiar with UML notation; not surprisingly, the
diagramming notation (which is not supported by the PSK) is somewhat
easier to understand for simple to moderately complex reactions.

One important detail emphasized in Example 5.1 is the interpretation of
pins p as pairs (^p, $p) of UML events, where ^p is pronounced as “initiate
interaction on p” and $p as “complete interaction on p”. This interpretation
allows PCL specifications to preserve the asymmetry of caller and receiver
that is especially important to synchronous interactions that may exhibit
blocking behavior.

to mediate interactions among other components. This was a much-debated topic in the
early days of ADL research.

80 CHAPTER 5. PECT

Example 5.1: Simple Component.

1 component Simple (int max)
2 {
3 int num=0;
4 sink asynch next () ;
5 source asynch
6 value (produce int v) ;
7 threaded react R (next , va lue)
8 {
9 start −> Lis t en {}

10 Li s t en −> Cycle {
11 trigger ^next ;
12 action ^value (num %= max)}
13 Cycle −> Lis t en {
14 trigger $value ;
15 action $next () }
16 } // R
17 } // Simple

Listen

Cycle

$value/
^next();

^next/^value(
 num%=max);

Work

component Simple
≫ ≫

int v
valuenext

Key
≫ asynchronous pin (sink, source)
UML Statecharts for Pincharts

5.1.4 Constructive and Analytic Interfaces

Pins define the constructive interface of components—the external struc-
ture of components from which, with connectors, a system of components
can be composed.4 This constructive interface is not sufficient, however,
for describing the observable behavior of components, or therefore for pre-
dicting the behavior of systems constructed from components. The analytic
interface of components are specified as annotations on reactions. One re-
action annotation is so generally important that it has its own keyword in
PCL—“threaded.” Another annotation is equally important, and has its
own complex syntax and semantics based in UML statecharts and ANSI-C,
as previewed in example in Figure 5.1.

PCL also has a generalized annotation mechanism for tagging any named
construct in PCL (environments, pins, variables, states, etc.) with whatever
information is required by a reasoning framework, provided that information
can be expressed as a value in the type system of the action language. An-
notations are therefore one way that reasoning frameworks specify analytic
constraints on components, environments, and systems.

4Strictly speaking, because components may have one or more reactions, pins describe
the constructive interfaces of reactions. Such details are reserved to Chapter 6.

5.1. PIN COMPONENT LANGUAGE (PCL) 81

5.1.5 Composition and Assembly

The constructive interfaces of components are denoted by their pins, in the
example asynchronous ‘�’ pins, and interactions are expressed by compo-
sition operators ∼>. Together they are used to express constructive compo-
sitions of components. In this research, the term “composition” is reserved
for cases where a composite has analytically-predictable behavior. The term
constructive composition is not an oxymoron, however, because PCL defines
a functional semantics of Pincharts and connectors (see Appendix A). Be-
cause each reaction must specify a Pinchart, the functional behavior of a
constructive composition is semantically well-defined. The semantic inter-
pretation defines composition operators; we might denote such an operator
as ‘� ’ for the case where asynchronous pins are connected.

Each reasoning framework F also defines a semantics, and therefore also
defines one or more composition operators ‘ F ’ that express analytic com-
positions of components. Here, analytic composition refers to case where
a composite has analytically-predictable, but possibly extra-functional be-
havior (see Def. 3.10 on 57 for the definition of extra-functional behavior).
However, ‘ F ’ will in practice differ substantially from ‘� ’ in the numbers
and types of operands they take, and in the types of their results. For ex-
ample, while � can, for most intents, be regarded as a dyadic operator, the
analogous operator λ

 in the λ∗ reasoning framework is intrinsically polyadic
because it composes all components that are scheduled on a single processor.

snipped

✂snipped

✂

assembly gentone (Rtos)
// ... fragment

toneHigh>| >

toneLow>| > splitter1>|
>

>
splitter3>|

>

>

splitter2>|
>

>

adapter1>| >

adapter2>| >

inverter1>| >

adder3
>|

>
>|

G
en

1
G

en
2

Player

>|
>

>

>

>

>|

D
isplay>|

>|>component

service

synchronous sink pin

synchronous source pin

connected pins

>

>|
Key

Figure 5.2: Audio Mixing Assembly

82 CHAPTER 5. PECT

PCL semantics defines a semantics of constructive composition for � us-
ing Hoare’s process algebra, CSP [75] (and for other operators as well). How-
ever, constructive compositions do not result in new component types; in
PCL one can not say something like C12 = C1:r ∼>C2:s, for example. The
different properties of constructive and algebraic composition, and the dif-
ferent hierarchies they induce, make such a notion less useful than one might
expect. Instead, a PCL assembly aggregates arbitrarily many components
and singly constructively-composed components; assemblies may themselves
be instantiated in hierarchical fashion, but this amounts to something more
akin to macro expansion than composition (although it is not in substance
different than the elaboration semantics defined for Darwin [108]).

5.1.6 PCL in Action

Although the PSK was developed and validated on design problems posed by
electric grid substation automation and industrial robot control, it turns out
that desktop streaming audio provides a ready source of examples with which
to demonstrate, and to teach, the concepts of predictability by construction
(in particular for hard ad soft real time behavior). The PSK includes a
collection of components and services that can be used to build interesting
applications for mixing, playing and visualizing digital audio data, and sev-
eral pre-built audio applications are provided in the PSK, and are used to
demonstrate the features of several reasoning frameworks.

Figure 5.2 depicts a fragment of one pre-built application that receives
two constant tone signals from the environment (the Gen1 and Gen2 services
depicted on the left border of the assembly), and plays these back to an audio
output service (Player, on the right border of the assembly) and transmits
the audio signals to external viewers (Display). In between there are more
than twenty instances of various component types (splitters, adders, invert-
ers, filters, etc.) executing at different priorities, which must synchronize
their behavior and sustain a 44Hz sampling rate. More interesting examples
can be constructed using music media which for licensing reasons can not be
distributed in the PSK, but end–users are free to use their own media files.

Figure 5.3 is a screen capture of a portion of the PSK Eclipse environ-
ment that shows a number of folders that contain generated C code that
implements each component type used in the assembly, as well as a top-level
assembly controller (gentone) that manages the lifecycle of the assembly.
The generated implementation of component type (Invert) has been ex-
panded to reveal a portion of its reaction in the Pin component technology.
An important principle governing this research is that PECT abstractions
must have simultaneous meaning for architect and programmer. Reasoning
frameworks address the needs of the architect, and their predictive strengths
are validated. The practical “programmability” of the PSK is how we vali-
date that the solution attends to the needs of the programmer. Indeed, this

5.2. PIN COMPONENT TECHNOLOGY 83

grounding is also essential to find the right balance, and to make the right
design tradeoffs, between the needs of the architect and programmer.

Other
generated

components

Generated
component

implementation

Figure 5.3: Audio Mixing (Generated Code)

5.2 Pin Component Technology

The Pin component technology was developed expressly for use in the PSK,
and to support the kinds of performance-critical, real-time and embedded
software systems that are the subject of the case studies in Chapter 9. The
major design goals for Pin included simplicity in its programming model
(for the programmer) and extensibility and adaptability to new reasoning
framework-imposed analytic constraints (for the architect) [69]. Pin is there-
fore a quintessential component technology for the Seam.

Pin is a standalone component technology, and as such it has its own Pin
component model. This component model is, however, significantly more
flexible than the component model that is formalized by PCL. For example,
standalone Pin allows, among other things, distributed component assem-
blies, runtime adaptation of assembly topology, and extensibility to new
component interaction policies (as with PCL, connectors are implicit). This
does not point to a design flaw in PCL; it reflects the governing philosophy of
co-refinement (Chapter 10): start with predictable even if highly restricted
design rules, and progressively relax these rules while maintaining required
prediction quality.

84 CHAPTER 5. PECT

<<delegate>>

Pin Container
(DLL)

PCL Component
(DLL)

ContainerServices

ComponentCore

PinComponent

ComponentInstance Container

Constructed
at Runtime

PCL Assembly
Controller
(.EXE)

Generated from PCL Generated from PCL

Key: UML

Figure 5.4: Pin Components and Containers

The architecture of Pin will be examined in close detail in Chapter 7.
The feature of Pin that is of particular interest in the context of the earlier
description of PCL is Pin containers.5 Pin’s basic container architecture is
depicted in Figure 5.4. The key points to note are those that pertain to
isolation, runtime assembly, and analytic sandboxing :

Isolation: PCL components are isolated from their execution environments,
and from other PCL components, by Pin containers. All interactions
among PCL components are mediated by containers. Containers con-
trol the main event loop of PCL components, and transparently (to the
PCL component) manage interactions across threaded and unthreaded
reactions, and handle various failure conditions such as message time-
outs. While this constrains what PCL component designers can do, the
result is significantly simpler and more easily analyzed PCL component
behavior.

Runtime assembly: Pin components are composed at runtime from PCL
components and Pin containers.6 A top-level assembly controller is
generated by PCL to perform the runtime composition of Pin com-
ponents, and to manage the Pin component and assembly lifecycles.
Containers can manage one or more PCL components, and PCL com-

5Containers are treated as annotations in PCL.
6The notions of “isolation” and “sandboxing” also make it possible to regard PCL com-

ponents as being deployed into containers, but it is probably best to restrict the meaning
of deployment to market distribution mechanisms.

5.2. PIN COMPONENT TECHNOLOGY 85

ponents may be relocated at runtime to other containers. Containers
can be nested (not evident in Figure 5.4), which is a particularly useful
feature for analytic sandboxing.

Analytic sandboxing: The term “sandboxing” is usually associated with
container-like mechanisms that enforce security policies on programs,
for example Java applets execute in a “sandbox” provided by a browser.
Pin allows the development of containers that implement analytic sand-
boxes for qualities not limited to just security, and provides guarantees
to both the environment and the sandboxed component. For exam-
ple, λSS uses a specialized container to make bi-lateral guarantees of
bounded temporal intrusiveness of PCL components the environment
and service time of PCL components managed by these containers.

5.2.1 Pin runtime environment in Action

The Pin runtime environment is designed to support a variety of hard and
soft real-time applications, and to support the development of new perfor-
mance reasoning frameworks, possibly requiring a mix of scheduling disci-
plines. Various commercial real-time operating systems are available that
would provide a solid basis for further development along these liens. At
the same time, the PSK was not intended only for real-time applications;
that scope would have been too narrow to demonstrate the applicability
of PECT, and would have also restricted the availability of the PSK to a
small and highly specialized installed base of host platforms. The Pin run-
time environment strikes a balance between the need to support real-time
predictability, generality, and applicability by implementing a virtual real-
time operating system as a layered extension of Microsoft’s WindowsNT and
WindowsXP platforms.

Figure 5.5 is a screen capture of the gentone assembly (Figure 5.2) at run-
time. Three graphics-intensive displays have been attached to the Display
service in Figure 5.2: strip chart, oscilloscope, and spectrograph. Each of
these programs are external to the Pin runtime environment—they are ex-
ecuting in the native WindowsNT or WindowsXP host. The Pin runtime
environment runs as a real–time Windows process so that it can provide
fixed-priority scheduling of component threads, but these external displays
are operating at normal (default) Windows application priority.

The practical significance of the demonstration is that the PSK can pro-
vide real-time guarantees to component assemblies, and at the same time
have bounded impact on the external host environment. Pin assemblies can
therefore be safely “embedded” in a non–real–time host, and can access ex-
ternal devices through PCL environments.

86 CHAPTER 5. PECT

Figure 5.5: Audio Mixing (Pin Runtime)

5.3 Performance Reasoning Framework (λ∗)

The performance reasoning framework in the PSK can be used to predict
the real-time behavior of assemblies. It applies to systems that execute on
a uniprocessor, use a fixed-priority preemptive scheduling discipline, have
periodic and aperiodic tasks with hard (worst case) and soft (average case)
deadlines.

The performance reasoning framework is actually three distinct but re-
lated reasoning frameworks λABA, λWBA, and λSS that are packaged to-
gether in a single PECT plugin:7

λABA, λWBA: These reasoning frameworks predict the average– and worst–
case performance, respectively, of assemblies that have periodic inter-
arrival rates for work. Both reasoning frameworks can be used on
assemblies that have components with threaded and unthreaded reac-
tions, where reaction threads execute at different priorities, and the as-
sembly has a mix of asynchronous and synchronous interactions among
components.

λSS: This reasoning framework predicts the average–case latency of assem-
blies that have aperiodic (stochastic) inter-arrival rates for work. How-
ever, even though λSS predicts average-case latency, these assemblies

7λ stands for latency, A/W stands for “average–case” and “worst–case” respec-
tively, B stands for “blocking effects are considered,” and A stands for “asynchronous
interactions are permitted.”

5.3. PERFORMANCE REASONING FRAMEWORK (λ∗) 87

can still be used in systems that have hard periodic deadlines because
the invasiveness of these assemblies is strictly bounded by the λSS
container.

The following sections provide a summary of the theory, interpretation
and validation of these reasoning frameworks.

5.3.1 Theory

Each of the λ∗ frameworks is based in generalized rate–monotonic analysis
(GRMA) [89]. λABA,WBA make use of GRMA to schedule tasks with varying
execution priorities [62]; this prior work in the applied GRMA provides a
natural interpretation of a “synchronizing concurrent pipeline” pattern that
is easily constructed in PCL (and in Pin). In λ∗ jargon this pattern is called
an “HKL pattern” from the initials of the authors of [62].

The λSS container enforces the application–level sporadic–server algo-
rithm [63]; this prior work in applied GRMA also has a natural interpre-
tation in containerized components. λSS also broke new ground in applied
GRMA by defining a queuing-theoretic solution to predict the average-case
execution time of PCL components managed by the λSS container [67]. This
solution provides closed-form upper and lower bounds on managed execution
time, and a simulation model if more precise predictions are required.

5.3.2 Interpretation

The λ∗ frameworks impose various design rules (constraints), and these are
summarized in Chapter 8. Some of these design rules are enforced implic-
itly by the Pin runtime environment (e.g., thread scheduler, λSS container),
while others are enforced statically by the λ∗ interpretations (e.g., priority
ceiling, acyclic topology). The analytic interfaces on components and envi-
ronment are another source of statically-enforced design rules, and these are
specified as PCL annotations (e.g., non-blocking execution time of compo-
nent reactions, statistical distribution of event inter-arrival rates from the
environment).

If a PCL assembly is “well-formed” to the specific λ∗ reasoning frame-
work, the interpretation will generate a model that is well-formed in a syntax
defined by a performance meta-model (PMM), and which has its own seman-
tics in the equations of GRMA, and in simulations that can be executed on
these models using one of the simulators packaged with λ∗. Some technical
ingenuity was required to interpret acyclic but quite complex PCL com-
ponent topologies as a collection of PMM tasks that are each composed
from a linear sequence of PMM subtasks, but the interpretation is otherwise
straightforward because of the close correspondence of the HKL pattern to
the Pin component model.

88 CHAPTER 5. PECT

5.3.3 Validation

The predictive quality of the λ∗ frameworks have been validated by extensive
model simulation as well as by targeted “spot checks” of λ∗ predictions in
non-trivial industrial cases (see Chapter 9). The sufficiency of these spot
checks is justified by an earlier and more extensive validation of the λABA
framework using techniques developed by Larsson [98] and Moreno et al
[124]. These techniques established a well-founded confidence interval for
λABA predictions.

Because the other members of λ∗ are based in substantially the same
underlying theory, it is reasonable, if somewhat optimistic, to conjecture that
the confidence interval applies to these other members as well. Optimistic
or otherwise, spot validations (sometimes involving more substantial testing
than credited by the term “spot”) have shown the original λABA confidence
interval to be valid and even conservative for all of λ∗. The conjecture is
further sustained by the fact that the confidence interval was established
on a version of Pin that was hosted on a commercial real-time extension
of Windows-NT, but has remained valid despite numerous and significant
changes to Pin, including its re-hosting to a real-time kernel developed for
this research and used in subsequent industrial cases.

assembly RobotController (Rtos)

≫

≫

≫

Trajectory
Planner

Sensor

Movement
Planner

Position
Monitor

Repository

ControllerX

ControllerY

tick

go

go

go

≫

≫

≫

position

read

put

get

moveX

moveY

>

≫

≫

≫

>

>

input

move

tick

tick

read

access

move

≫

≫
≫

>|

>|
pri = 10

pri = 4

pri = 15

pri = 12

pri = 14

pri = 18

pri = 20

pri = 20

>|>

synchronous sink pin

synchronous source pin

connected pins

>

>|Key

asynchronous pin (sink and source)≫

pri = X thread priority

period =
150

period =
450

period =
130

period = X event inter-arrival

Figure 5.6: λ∗ Robot Controller

5.3. PERFORMANCE REASONING FRAMEWORK (λ∗) 89

It is worth remarking at this point that in λ∗, predictability applies to the
behavior of PCL assemblies, not to the behavior of PCL components; this is
not the case for the model checking reasoning framework (described in §5.4).
The portion of a component’s λ∗ analytic interface that describes, for exam-
ple, its unblocking execution time is assumed by the reasoning frameworks to
be ground truth. It is also a general rule of reasoning framework design that
all parts of a component’s analytic interface be obtainable and confirmable
by third parties using a mechanism defined by, if not provided by, the rea-
soning framework. The meaning of “unblocking component execution time”
is defined by λ∗, and the PSK provides a measurement infrastructure with
which to obtain its value for a component.

5.3.4 λ∗ in Action

Figure 5.6 depicts a robot controller that, although highly simplified, accu-
rately models the basic coordination scheme used by a robot controller in one
of the case studies described in Chapter 9. It also introduces several compli-
cations not present in the audio example discussed earlier: the presence of
non-harmonic task periods, and a mixture of synchronous and asynchronous
task interaction.

The TrajectoryPlanner component receives work orders every 450ms,
which is simulated in the assembly by pulse from a clock service. which it
reads from Repository. On receipt of a work order,
TrajectoryPlanner consults the current robot state by issuing a synch-
ronous read on PositionManager. The PositionManager is updated by sen-
sors every 130ms. Based on the current robot position, TrajectoryPlanner
generates a series of subwork orders, which it then synchronously deposits
in Repository, at which point TrajectoryPlanner waits for another work
order. The MovementPlanner component operates on a 150ms period, and
at each period it read an subwork order from the repository and generates
movement commands for two control axes. If MovementPlanner encoun-
ters an empty repository (i.e., no subwork orders available), the robot must
abort. Thus both TrajectoryPlanner and MovementPlanner must meet
their respective deadlines.

Figure 5.7 shows λ∗’s interpretation of the RobotController assembly as
an “HKL” assembly. The λ∗ interpretation has translated an acyclic graph of
component compositions, containing a mix of synchronous and asynchronous
interactions, into three distinct task/subtask chains that will be “executed”
by the HKL equations (or simulators, depending on which decision pro-
cedures are selected) to determine worst–case and average–case assembly
latency. The effects of blocking on the Repository component have been
accounted for by replicating its shared reaction on two different tasks; anal-
ogously, PositionMonitor also shows up on two different tasks, though for
different reasons. What is important to note is that the component topol-

90 CHAPTER 5. PECT

TrajectoryPlanner.go
Pri = 4
G(88.63, 89.66, 90.64)

PositionMonitor.read
Pri = 14
G(3.01, 3.06, 3.12)

Repository.access
Pri = 18
G(19.90, 19.92, 20.81)

MovementPlanner.go
Pri = 16
G(18.94, 20.06, 21.04)

Repository.acess
Pri = 18
G(19.90, 19.92, 20.81)

ControllerX.move
Pri = 20
G(9.95, 10.01, 10.14)

ControllerY.move
Pri = 20
G(9.95, 10.01, 10.14)

Sensor.go
Pri = 10
G(5.00, 5.02, 5.66)

PositionMonitor.input
Pri = 12
G(9.99, 10.01, 10.84)

Task: clock130.tick
Offset=0, Period=130

Task: clock130.tick
Offset=320, Period=450

Task: clock130.tick
Offset=20, Period=150

Same component,
different reactions

Same component,
same reaction

Task
Key

Subtask G(X,Y, Z) Execution time distributions

Figure 5.7: λ∗ Interpretation of Robot Assembly

ogy and scheduling topology are semantically related but quite distinct, as
was discussed in §5.1.5 on the differences between constructive and analytic
composition.

5.4 Model-Checking Framework (ComFoRT)

The software model checking reasoning framework in the PSK, ComFoRT,8

can be used to verify that a component or assembly satisfies behavior re-
quirements expressed in a temporal logic that describes sequences of future
execution states. Model checkers work by exhaustively checking all possible
execution paths to verify specified behavior.

ComFoRT introduced a new form of linear temporal logic (LTL) called
state/event-LTL [30]. SE–LTL specifications can be composed from propo-
sitions on states (PCL variables) and events (PCL begin/end events on
pins). This leads to simpler and more intuitive specifications of component-
based behavior when compared with the tradition LTL approaches that allow
propositions on either states or events, but not both. For example, the fol-
lowing annotation:

annotate simple {
"comfort",
const string LivenessAndSafety =
"G((^next => F $next) & ([R:num < Simple:max])"}

8Com–ponent F–ormal R–easoning T–echnology.

5.4. MODEL-CHECKING FRAMEWORK (COMFORT) 91

when added to the PCL fragment shown in Example 5.1, pp.80, specifies
that it is G globally (i.e., always) the case that if an incoming request arrives
on the ^next pin, the request is F finally (i.e., eventually) completed $next,
and the value of reaction R’s local variable R:num is always strictly less than
the instantiation parameter max. ComFoRT successfully verifies this claim.
It should be noted, however, that SE-LTL is strictly no more expressive than
an LTL based exclusively in states or events.

5.4.1 Theory

Clarke and Emerson are generally regarded as having introduced the idea
and name “model checking” [42]. Model checking adopts a model-theoretic
(i.e., semantic) rather than proof-theoretic (i.e., syntactic) approach to ver-
ifying that software satisfies its specification. To model check a system, the
following steps are performed:

1. The system is modeled asM , using the description language of a model
checker.

2. The claim Φ to check is defined using the specification language of the
model checker, typically a temporal logic formalism.

3. The model checker examines each state in M to demonstrate that M
“satisfies” Φ, expressed formally: M |= Φ.

4. The model checker reports “Yes” if M |= Φ and “No” otherwise.

When a claim is not satisfied, most model checkers also produce a counterex-
ample that documents system behavior that causes the failure. Counterex-
amples are one of the most useful features of model checking, as they allow
users to quickly understand why a claim is not satisfied.

All model checkers (software or otherwise) suffer from “state-space ex-
plosion.” A precursor to ComFoRT was used to verify a small portion of
an interprocess communication library (IPC) in an industrial robot control
system [80]. The IPC software was manually abstracted into executable
UML [118], and the reasoning framework produced an interpretation [173]
from UML to S/R, the input language of the COSPAN model checker [64].
However, its estimated 2.35× 101932 number of states arising from the S/R
interpretation of the original UML model was well beyond all practical lim-
its. The considerable manual effort required to produce a “checkable” UML
model is what led us to investigate automated abstraction refinement and
ultimately to ComFoRT. See the case study description in Chapter 9, §9.3.3,
pp. 197.

ComFoRT attacks state space explosion with a combination of predicate
abstraction [57] and counter-example guided abstraction refinement (CE-
GAR) [43]. Predicate abstraction produces a conservative over-approximation

92 CHAPTER 5. PECT

Ψ(p) of the behavior of program p, i.e., every specified behavior p is exhib-
ited by Ψ(p), but not every behavior in Ψ(p) can be exhibited by p. Thus,
if Ψ(p) |= f , then p |= f and the model checker terminates. However, a
counterexample that falsifies f in Ψ(p) may not be possible in p—it may
be spurious. CEGAR uses a theorem prover to check if a counterexample
is spurious. If it is not, the model checker reports a genuine error in p and
terminates. Otherwise, CEGAR uses the spurious counter-example to refine
abstraction Ψ(p) to Ψ(p)′.

There is no decidable way to construct a provably sound (if conservative)
finite abstraction of an arbitrary program. Thus, ComFoRT implements a
semi-decision procedure: if produces a correct result if it terminates, but
there is no guarantee that it will terminate. Nonetheless, ComFoRT does
reasonably well in practice—which is not to say that it has solved the problem
of state–space explosion.

5.4.2 Interpretation

PCL defines a process-algebraic semantics [82] of constructive composition
(using CSP [75]), along the same lines of Wright [3] (also using CSP), Darwin
[109] (using FSP [111]), and Piccola [106] (using π–calculus[122]). PCL dif-
fers in one important way: by differentiating real concurrency as threaded
reactions and potential concurrency as unthreaded reactions, it permits a
faithful interpretation of concurrency in the real system. Threaded reactions
represent real concurrency, and as such are naturally modeled as processes
(in the CSP, FSP and π−Calculus sense). Unthreaded reactions represent
potential concurrency—depending on how they are composed with other re-
actions, they may execute on one or arbitrarily many threads.

Assigning a semantic interpretation of unthreaded reactions as processes
would be a sound but conservative over-approximation, and would almost
certainly result in spurious counterexamples that could not be detected by
CEGAR. Further, it would exacerbate state space explosion, as the size of
the state space can be exponential in the number of parallel-composed pro-
cesses. ComFoRT defines a faithful interpretation of concurrency by using
information available in the global assembly topology to allocate potential
concurrency to real concurrency. As a consequence, its interpretations are
smaller (in potential state space) and more accurate than more conserva-
tive approaches. However, the reliance on global analysis leads to a non-
compositional interaction semantics, and the resulting formalization is not
as clean or elegant as the semantics of Wright, Darwin, Piccola or others
that are more conservative and, we argue, simplistic.

5.4. MODEL-CHECKING FRAMEWORK (COMFORT) 93

5.4.3 Validation

If a component or assembly fails to satisfy its SE-LTL specification f , Com-
FoRT (and this is true of all model checkers) will produce a counterexample
that demonstrates the violation of f as an execution trace (not necessar-
ily the shortest!) through M . Each counterexample is thus a “witness” to
the cause of the failure. As implied in the earlier description of CEGAR,
the witness can be interrogated, i.e., checked for its veracity, and as already
mentioned, ComFoRT only reports counterexamples that it has established
(by proof) to be real. This makes ComFoRT useful for developers because
it provides a tool for “debugging” systems at even early stages of develop-
ment, for example when high-level interaction protocols among components
are defined.

While all model checkers provide counterexample witnesses, almost none
offer proof witnesses to support M |= f . Instead, they answer “yes” if no
counterexample has been discovered. This is not a principled “yes” in the
axiomatic sense that ¬M 6|= f ⇔ M |= f . For example, “yes” might be the
result of a “bug” in the model checker itself, hardly an unthinkable possibil-
ity given the complexity of these tools. The explanation for this asymmetry
may well be explained by the greater importance that designers and pro-
grammers place on finding errors than generating evidence of the absence of
error—although this emphasis may be changing. ComFoRT can be asked
to generate a proof certificate to serve as a witness that M |= f [28].

The idea of a certifying model checker did not originate in with Com-
FoRT, see for example Namjoshi [129]. ComFoRT breaks new ground by con-
cretizing proof certificates into executable code, thereby providing a fully au-
tomated end–to–end capability to generate proof-carrying code (PCC) [130].
One argument made in support of PCC is that it reduces the “trusted com-
puting base” (TCB) that is required to trust code. Because the PSK embeds
a proof witness in executable code, it is possible to mount a principled ar-
gument that none of the components on the tool chain leading to that code
(ComFoRT, PCL program generator, even the GNU C compiler) need be
trusted. This is a strong claim, and not one to be dismissed—or accepted—
lightly. As part of this research we also demonstrated the use of traditional
safety–case analysis to argue not about the end–system behavior guaranteed
by the certified code, but about the quality of the evidence itself [31] (see
Chapter 8).

5.4.4 ComFoRT In Action

ComFoRT witnesses are constructed from their CEGAR abstractions. To
make these witnesses confirmable or falsifiable requires they be concretized
in some way. The PSK concretize counterexample witnesses via a reverse-
interpretation from ComFoRT to PCL, which of course requires a bit of

94 CHAPTER 5. PECT

bookkeeping since semantic interpretation is (in general) not bijective. A
interactive explorer is provided to assist the PSK user to examine what might
be quite long and involved counterexamples; this is a practical necessity given
the ability of model checkers to uncover deep concurrency defects.

PCC in PSK is implemented as a succession of concretizations: from
ComFoRT to PCL source via reverse interpretation; from PCL source to
Pin “C” source code via program generation, and from Pin source code to
assembly language via the GNU C compiler [33, 32].

1. Certifying Code
Generation

2. Proof
Checking

Figure 5.8: Certified Code

Figure 5.8 provides a screen capture of two steps in the process of gen-
erating a certified PSK component:

1. Generating a certified proof-carrying component by embedding invari-
ants in generated Pin–C component source.

2. Checking that the proof is valid on the PowerPC assembly code gen-
erated by the GNU compiler from the Pin–C component.

In this example we certify that variable i of the Simple component shown
in Example 5.1 is always bounded by min and max.

5.5. SUMMARY OF KEY POINTS 95

5.5 Summary of Key Points

The PSK is a proof–by–existence that PECT can be implemented, and that
predictability by construction can be obtained for an interesting class of sys-
tems and system behavior. This summary has emphasized those features of
the PSK that demonstrate practical and useable automation. These aspects
of the PSK are not merely “nice to have,” but are essential to demonstrating
the feasibility of the overall approach. Without such a grounding it would be
impossible to locate the Seam in practice, and to make the kinds of tradeoff
decisions that are required that balance the restrictiveness of design rules,
strength and quality of analytic predictions, and scaleability of solutions
required by engineering practice.

The remaining chapters of Part II examine in closer detail each of the
main components of the PSK technology. Part III then turns to practical
experiences in using these technologies on non-trivial industrial problems.

96 CHAPTER 5. PECT

Chapter 6

Pin Component Language

97

98 CHAPTER 6. PIN COMPONENT LANGUAGE

The Pin Component Language (PCL) combines a structure notation
based in the Pin component technology with a behavior notation based in a
subset of UML Statecharts called PinCharts. The syntax and semantics of
PCL formalizes the Pin component model, and extends it in ways that make
it suitable as a Seam technology.

PCL notation mimics C syntax, and the action language of PinCharts is
a reasonably complete but pointer–free subset of C; an escape mechanism is
also provided to access full ANSI–C. The Pin–based structures allow com-
ponents to be specified in terms of their sink pins, which components use
to receive requests from client components, and source pins, which compo-
nents use to make requests of client components. Although the underlying
communication model and semantics are event–based, PCL allows pins to be
declared as using either synchronous or asynchronous communication pro-
tocols; components can use synchronous pins to send (“produce”) or receive
(“consume”) data, while components may only produce data on asynchronous
pins.

Component behavior is specified in their reactions, which may option-
ally be declared as executing on their own independent thread of control.
Reactions, in turn, are specified as PinCharts, which is used to define state
machines that link behavior specified in the C–based action language with
the sending and receiving of pin (and other types of) events. Component
interaction is enabled when the source pins of one component are connected
to the sink pins of other components. Components are aggregated into as-
semblies, and the pins of aggregated components are selectively exposed to
allow hierarchical assembly. An annotation mechanism is provided to allow
any storable expression value to be associated with any named PCL con-
struct; this allows code–generators, reasoning–frameworks and other “back-
end” clients of the PCL processor to obtain, or to require, additional infor-
mation of components and their assemblies.

Organization of this Chapter

Section 6.1 introduces the notational conventions used to describe PCL. Sec-
tion 6.2 introduces the basic structures of PCL, and is primarily concerned
with the C–based action language; readers familiar with C can safely skip
the details and move directly to Section 6.3, which describes the structural
aspects of PCL, in particular components, assemblies and environments. Sec-
tion 6.4 then turns to the behavioral aspects of PCL, and in particular the
use of PinCharts to specify reactions. Section 6.5 gives a brief overview of
the denotational definition of interaction and the operational definition of
reaction, details of which are provided in Appendix A. Section 6.6 discusses
language pragmatics, with a particular emphasis on the balance PCL strikes
between expressiveness and restrictiveness in its choice of interaction prim-
itives. Finally, section 6.7 summarizes the key points of the chapter and

6.1. NOTATIONAL CONVENTIONS 99

points the way to the Pin Component Technology described in Chapter 7.

6.1 Notational Conventions

The syntax of PCL is defined using a variant of Backus–Naur Form (EBNF):

Extended Backus–Naur Form (EBNF)
BNF Meaning
N = M Production rule: N is a non-terminal.
Q R Concatenation: Q is followed by R.
Q | R Alternation: Q or R.
[Q] Optional Q: zero or one Q.
Q+c One or more Q. ‘c’ is a separator if present.
Q∗c Zero or more Q. Equivalent to [Q+c].
(P) Grouping.
keyword Keywords are shown in boldface.
IdR Identifiers are italicized. R is a context clue if present.
Tlit Literals are formed from their type name T.
‘c’ Character literals are single quoted.

Example fragments of PCL are provided to illustrate the major abstractions,
along with their associated graphical notation.

6.2 Basic Elements

The basic lexical structure of PCL is strongly shaped by the C programming
language, and C is the basis for the PCL action language. Familiarity with
the basic syntax of C will be both useful and assumed; however, a detailed
understanding of C is not required to understand the main ideas.

Tables are used to identify elements that are defined exclusively in PCL,
those that have overloaded meaning in PCL and C, and those that retain
their original meaning in C. Text appearing in these tables in small italics
provides hints or pointers to where in the chapter the text entry is discussed
in more detail.

6.2.1 Lexical Structure

Table 6.1 defines the structure PCL literals, and Table 6.2 lists the PCL key-
words. Note that PCL is more restrictive than C in forming numeric and
string literals and identifiers. PCL supports two familiar form of comments:
‘//’ which denotes a comment until the end of the line of text, and ‘/*’
which denotes a (possibly multi-line) comment until a matching ‘*/’ is
encountered. As usual, multi-line comments do not nest. The PCL pro-
cessor supports the #include pre–processor directive; this is the only pre–
processing directive supported.

100 CHAPTER 6. PIN COMPONENT LANGUAGE

Table 6.1: PCL Literals

Char = ASCII US keyboard
Letter = (‘a’–‘z’) | (‘A’–‘Z’)
Digit = (‘0’–‘9’)
Integerlit = Digit+

Floatlit = Digit∗ ‘.’ Digit+
Stringlit = ‘"’ Char∗ ‘"’
Id = Letter (Letter | Digit | ‘_’)∗

Table 6.2: PCL Keywords

Added by PCL Inherited from C

action after alert annotate
as assembly assume asynch
boolean byte component consume
environment expose from guard
proc produce react service
singleton sink source start
state string synch threaded
trigger when

break const
continue do
double else enum
extern fa l se f loat
for i f int return
short true
typedef unsigned
void while

6.2.2 Types

PCL diverges sharply from C by excluding explicit use of address types,
i.e., C pointers. C without pointers is a bit like Java without classes, but
nonetheless the restriction was an important compromise to ensure strict
separation of components at runtime. A base language other than C might
have been a more principled choice, but (as of this writing, in mid–2010)
C and C++ remain de facto standards for building embedded, real–time
software. Table 6.3 summarizes the types that are supported by PCL.

Table 6.3: PCL Types

Added by PCL Supported C
Basic
Type

byte (signed, unsigned)
boolean
string

short (signed, unsigned)
int (signed, unsigned)
float, double

Constructed
Type

event (see §6.4.1) typedef
array (by typedef)
enum (by typedef)

PCL supports multi-dimensional arrays. As with C, PCL array types

6.2. BASIC ELEMENTS 101

have no explicit type name. However, because C array types and index-
ing are defined in terms of address arithmetic, there are a few noticeable
differences in the way PCL treats arrays and C’s treatment. In particular,
PCL array types do not support operators such as ==, !=, which would be
meaningless without address types and expensive if implemented as byte-
wise comparison (which the programmer can always choose to do). As with
C, type conformance between two PCL array variables is defined on the num-
ber and size of array indexes, and on conformance of the base types (using
C’s rather complicated rules for implicit conversion).

PCL also makes a compromise with C address types by introducing an
explicit type string. As with C, a string is essentially a one-dimensional array
of characters. However, PCL strings can be constructed only from literals or
by parameter passing; they can not be subscripted and so do not reveal their
base type values. The byte type is used as a syntactic replacement for C’s
char type to avoid any confusion between the PCL notion of string and the
C notion of array of char. Comparison operators ==, >= etc., are defined
for strings, and are defined in terms of lexicographical order.

PCL does not support C struct or union types. This is a limitation in
the current implementation.

6.2.3 Expressions

PCL supports a reasonably complete set of C operators, and full C expression
syntax, with the exception of operations on arrays and strings, as noted
above. Table 6.4 lists the operators supported by PCL, which conform to
C precedence and associativity. Table 6.5 provides an abstract syntax for
expressions. The abstract expression operator ‘◦’ corresponds to one of the
prefix, postfix, or infix operators, where infix is to be inferred if an operator
is neither prefix or postfix.

The two prefix operators introduced by PCL (‘^’ and ‘$’) (see PinEvent
and PinData productions in Table 6.5) operate on pins rather than program
values, and evaluate to values of UML event type; these operators are de-
scribed in §6.4.2. The ScopedId syntax reflects the hierarchical namespace
introduced by the PCL structural abstractions discussed in §6.3.

6.2.4 Declarations

PCL inherits C’s rather baroque declaration syntax, as summarized in Table
6.6. There are a few divergences from C worth noting. First, PCL requires
that enumerator types and array types be introduced by an explicit typedef ;
enumeration and array variables must be declared using a “typedef–ed” type
identifier. Example 6.1 illustrates various forms of declaration and partial
(static) evaluation.

102 CHAPTER 6. PIN COMPONENT LANGUAGE

Table 6.4: PCL Expression Operators

Op Description Syntaxa

() function call, pin event Call, PinEvent
. Pin data selection PinData
[] array subscript E ◦
−− ++ decrement, increment E ◦
−− ++ decrement, increment ◦ E
− + sign
! logical negation
(Idtypecast) typecast
∗ / % multiply, divide, modulus E ◦ E
+ − add, subtract E ◦ E
< > less than, greater than
<= >= less than equal, greater than equal E ◦ E
!= == relational (in)equality E ◦ E
|| && logical or, and E ◦ E
= assignment E ◦ E
+= −=
/= %=
<<= >>=
^= &= |=

compound assignment

, expression sequence E ◦ E

aSee PCL Expressions, Table 6.5

Table 6.5: PCL Expressions

Exp = ◦ Exp | Exp ◦ Exp | Exp ◦ | Call | PinEvent | PinData | Lit
Call = ScopedIdProc ‘(’ Exp∗, ‘)’
PinEvent = [‘$’ | ‘ˆ’] IdPin ‘(’ Exp∗, ‘)’
PinData = ScopedIdPin ‘.’ IdFormalParam

Lit = ScopedId | stringlit | intlit | floatlit | true | false
ScopedId = [‘:’] Id+:

Example 6.1: Example declarations.

typedef enum {white=0, blue=2, red=3} TColor ;
typedef TColor I3 [2] [2] ;
I3 myI3 = { {white , red } , {blue , b lue } } ;
I3 th e i r I 3 , yourI3 = myI3 ;
const int peek = (int) yourI3 [0] [1] ;

PCL allows functions to be declared and defined in C-style, when pro-

6.2. BASIC ELEMENTS 103

Table 6.6: PCL Declarations

Declaration = ProcDecl | V ariableDecl | TypeDecl
V ariableDecl = [const] TypeSpec InitDecl+, ‘;’
TypeSpec = BasicType (see Table 6.3) | Id(typedef)

InitDecl = Id [‘=’ Exp] | PinInstance
P inInstance = Id ‘(’ Exp∗, ‘)’ [Provision] (see Table 6.13, pp.112)
TypeDecl = typedef TypeDeclSpec InitDecl+, ‘;’
TypeDeclSpec = TypeSpec | ArraySpec | EnumSpec
ArraySpec = Id IndexExp+

IndexExp = ‘[’ Exp ‘]’
EnumSpec = enum ‘{’ Enumerator+, ‘}’
Enumerator = Id [‘=’ Exp]
Exp = (See Table 6.4.)
ProcDecl = (See discussion later in this section.)

ceeded by the keyword proc. A few minor adjustments to C’s basic syntax
are made to accommodate the lack of address type, in particular borrowing
from C++ notion of reference type on formal parameters of procs (the only
place in PCL that permits the use of explicit reference types). The following
fragment illustrates the main idea:

Example 6.2: Example proc declaration and definition.

extern boolean proc strcmp (string s1 , string s2) ;
int proc times2add1 (int ¶m) ;
void proc addone (int v1 , int v2 , int &v3)
{

i f (v3 > 0) v3 = v1 + v2 ;
}

As with C, PCL has a “pass by value” semantics. In the above example,
strcmp(string s1, string s2) incurs the overhead of an explicit copy of the
string arrays, which is worse than it sounds because strings are represented
internally by PCL as fixed–length character arrays (due to the fixed–length
message format used by Pin). Better would have been to declare both formal
parameters as reference types, as was done for the &v3 parameter of proc
addone.1

1To paraphrase former SEI colleague Mark Graham: you might not see C’s pointer
semantics in PCL, but you can smell it.

104 CHAPTER 6. PIN COMPONENT LANGUAGE

6.2.5 Statements

PCL supports the major C statement constructs (with the exception C’s
switch) as summarized in Table 6.7. The symbol ‘$’ denotes the union of
simple assignment and compound assignment operators.

Table 6.7: PCL Statements

Stmt = AsgnStmt | IfStmt | IterStmt | BreakStmt | CpmdStmt
AsgnStmt = Exp ‘$’ Exp
IfStmt = if ‘(’ Exp ‘)’ Stmt [else Stmt]
IterStmt = ForStmt|WhileStmt| RepeatStmt
ForStmt = for ‘(’ Exp ‘;’ Exp ‘;’ Exp ‘)’ Stmt
WhileStmt = while ‘(’ Exp ‘)’ Stmt
RepeatStmt = repeat Stmt ‘(’ Exp ‘)’
BreakStmt = break| continue| return [Exp]
CpmdStmt = ‘{’ Stmt∗; ‘}’

6.2.6 Annotations

PCL uses an annotation mechanism to associate a (name,value) pair with
any named construct. Annotations can be used to communicate information
to the runtime environment, code generators, or any other “backend” tools of
the PCL processor. Reasoning frameworks use annotations to specify their
analytic interfaces. For example, the performance reasoning framework in
the publicly released PSK requires that each sink pin be annotated with its
execution time, which is defined as the latency of a component to react to an
event on the sink pin when executing in isolation, that is without any pre-
emption or blocking effects, and no execution time expended on interactions
through any of the component’s source pins.

Table 6.8: PCL Annotations

Annotate = annotate Id ‘{’ stringlit ‘,’ const TypeSpec InitDecl+, ‘}’

In the Annotate production in Table 6.8, Id is the name of the construct
being annotated, stringlit is a tag used to define a class of annotations, and
the constant declaration assigns one or more (name, value) pairs to Id. The
following fragment illustrates several annotations:

6.3. STRUCTURAL ELEMENTS 105

Example 6.3: Example annotations.

annotate compon {"Pin" , const boolean gencode = fa l se }
annotate compon : theReact ion {"Pin" , const int t imeout = 60}
annotate c l o ck : t i c k {"lambda∗" , const int per iod = 450}

The code generator looks for "Pin" annotations. In the example above the
first annotation tells instructs the code generator to skip code generation
on component compon; the second instructs it to change the default timeout
value on that component’s reaction (compon:theReaction) message handler.
The "lambda∗" annotation is one of the annotations defined by the λ∗ rea-
soning framework (described in Chapter 8).

6.2.7 Verbatim

PCL is fairly expressive, but on occasion programmers require direct access
to devices or other low-level platform services, and this often requires access
to C libraries or the ability to access C’s address types. For these situations,
PCL provides a mechanism to escape into C.

The following example illustrates the technique to define the times2add1
function that was previously declared in Example 6.2. The implementation
returns one more than the value of the parameter, but then has a side-effect
on the parameter. This is not an example of good programming style, but
demonstrates several aspects of PCL, such as the representation of reference
types as C pointer types and how to bridge the PCL and underlying C
namespaces.

Example 6.4: Example verbatim code.

int proc times2add1 (int ¶m) ;
{

%{ int ∗ l o c = cclparam ; return ∗ l o c++; %}
}

Everything within the verbatim start ‘%{’ and end ‘%}’ delimiters is
written directly to the output stream (the generated code file). Symbols
that are prefixed with ‘ccl’ are mapped by the code generator to their
mangled internal names.2

6.3 Structural Elements

The major structural abstractions of PCL are now presented, along with
their informal graphical notation.

At the top-level (Table 6.9), a PCL specification consists of a (possi-
bly empty) sequence of annotations, constant declarations, function (proc)

2This fragment also demonstrates the kinds of program that PCL tries to discourage
by excluding C pointer types. Sometimes, however, such code is necessary.

106 CHAPTER 6. PIN COMPONENT LANGUAGE

Table 6.9: PCL Top–Level Structure

TopLevel = (BasicUnit | PinUnit)∗

BasicUnit = Annotate | Declaration
P inUnit = Component | Environment | Assembly

declarations, type definitions (as described in §6.2), components (§6.3.1),
assemblies (§6.3.2), and environments (6.3.3).

6.3.1 Components

The syntax of PCL components is introduced in Table 6.10. PCL com-
ponents conform to the Pin component model [69], and are independently
deployed as Win32 dynamically linked libraries (DLLs).

Table 6.10: PCL Components and Services

Component = (([singleton] service) | component) CompDef
CompDef = Id ‘(’ FormalParm∗, ‘)’ CompBody
CompBody = ‘{’ Declaration∗| PinDef+| ReactionDef+ ‘}’
PinDef = PinModes Id ‘(’ PinParam∗, ‘)’ ‘;’
PinModes = (sink | source) (asynch | synch)
PinParam = (produce | consume) FormalParam
FormalParm = TypeSpec Id

ReactionDef = See Table 6.14, pp.113

Component behavior is accessed exclusively by other components through
pins. As a first approximation, pins are analogous to ports in Darwin [108],
Acme [54] and SAVE [86]. However, pins have several distinctive features
and so care must be taken not to overstate the analogy.

Each pin p has three constituent parts, p =< D,P, S >, where D is
direction, P is protocol and S is signature.

Direction. Pin direction is specified by one of the keywords sink or source.
Events arrive at components on their sink pins, and leave through
their source pins. The set of sink pins on a component is sometimes
referred to informally as the component’s stimulus interface, and its
set of source pins as its response interface. However, it is not accu-
rate to think of these as provides and requires interfaces; this point is
elaborated in the discussion of assemblies in §6.3.2.

6.3. STRUCTURAL ELEMENTS 107

Protocol. Pin protocol is specified by one of the keywords synch or asynch.
These correspond to synchronous and asynchronous interaction proto-
cols, respectively. On a surface level, these correspond to function-
based interaction (synch) and event-based interaction (asynch). It is
worth noting here, however, that all pin interaction is asynchronous,
i.e., is event based. The deeper significance of synch and asynch is
deferred to the discussion of PCL’s behavioral elements in §6.4.

Signature. Pin signature is specified as a pin identifier followed by a (possi-
bly empty) sequence of pin formal parameters. The data flow direction
of each pin formal parameter is declared by one of the keywords con-
sume or produce, depending on whether the parameter is read by the
component or written by the component, respectively.

PCL defines two kinds of components, specified by one of the keywords
component or service. There are no differences in how components and
services are implemented or composed. However, PCL enforces different
design rules for components and services. The most important of these
is that components must be purely reactive, while services may be either
reactive or self–stimulating. In concrete terms, components must have at
least one sink pin, and all component behavior is triggered as a consequence
of events arriving on sink pins, or from the runtime environment (§6.3.3).
Service reactions need not specify any sink pins, and in addition to the
triggers available to components, services may be triggered by the Pin real–
time operating system, for example device interrupts.

Examples 6.5 and 6.6 illustrate the syntax and informal graphical nota-
tion for components and services, respectively. Note that these examples are
not syntactically valid because all components and services must have at
least one reaction, and these have not yet been introduced (see §6.4). With-
out reactions specifications there is no way to know what component FIFOQ
and service Clock will do, but for the moment let as assume that FIFOQ im-
plements a bounded buffer and Clock implements an event generator.

Note that Clock does not specify a sink pin; it is self–stimulating, and it
specifies one source pin Clock:tick that it uses to deliver events, presumably
at some known rate. LFIOQ however is a component, and its behavior is
exclusively triggered by events arriving on its sink pin, Q:enq (line 3).

Terminology: The term “component” will be used to refer to both compo-
nents and services where the distinction is unimportant.

6.3.2 Assemblies

Components in PCL may interact with each other only when their pins have
been connected by an interaction operator ‘∼>’. The interaction operator
provides for constructive composition of components. However, PCL does

108 CHAPTER 6. PIN COMPONENT LANGUAGE

Example 6.5: Component Fragment.

1 typedef unsigned byte T[3 2] ;
2 component FIFOQ (
3 const int len , const string ID)
4 {
5 sink asynch enq (
6 consume T in) ;
7 source asynch deq (
8 produce T out) ;
9 source synch l og (

10 produce string msg) ;
11 threaded react Work . . .
12 // continued in Example 6.10, pp.116
13 }

≫
>

deq
≫FIFOQ

(const int len,
const string ID)

enq

T

string

T

log

Example 6.6: Service Fragment.

1 service Clock (int per iod)
2 {
3 source asynch t i c k () ;
4 } // reac t i on omit ted

≫Clock(int period)
tick

Key:

≫
>|
≫

>synchronous sink data flowsynchronous source
asynchronous sink asynchronous source

not provide a way to name the resulting composition. This is because
PCL components are defined in terms of units of deployment rather than
units of composition. The significance of this, and the closely related sub-
ject of interaction semantics (i.e., constructive composition), are deferred to
the discussion of semantics in §6.5.

PCL does however provide a way of creating denotable hierarchies called
assemblies, using the syntax defined in Table 6.11.

Rather than being defined in terms of constructive composition, assem-
blies are defined in terms of aggregation and restriction:

Assembly aggregation: PCL assembly types define an aggregation of (pos-
sibly connected) component and assembly instances. The discussion of
components has (so far) been in terms of their types; components,
environments and assemblies may also be instantiated.

Assembly restriction: PCL assembly types restrict (hide) the pins of all

6.3. STRUCTURAL ELEMENTS 109

Table 6.11: PCL Assemblies

Assembly = assembly Id ‘(’ FormalParm∗, ‘)’ [Env] AsmbDef
Env = ‘(’ IdEnv ‘)’
AsmbDef = ‘{’ Assumes (Declaration| Interaction)∗ Exposes ‘}’
Assumes = assume ‘{’ Declaration∗ ‘}’
Interaction = CompSrcP in ‘∼>’ CompSnkPin
CompSrcP in = ScopedIdPin

CompSnkPin = ScopedIdPin| ‘{’ ScopedIdPin
+, ‘}’

Exposes = expose ‘{’ ExposedP in∗, ‘}’
ExposedP in = ScopedIdPin [as Id]

component instances. These may be selectively exposed by the assem-
bly type, in which case they become pseudo–pins of the assembly type.

This basic ideas are illustrated by Examples 6.7 and 6.8, which assembles
larger buffered queues from the mystical component Q type introduced in
Example 6.5. The important point to note is that assemblies do not define
behavior.

Example 6.7 defines assembly QQ to compose two instances of Q. The
meaning of the assume clause (line 2) is described later, in Example 6.8,
pp.110. On line 4, two instances q1(i), q2(i) of Q are created using QQ’s
formal parameter int i, presumably to create two queues of length i. These
component instances are then connected, source–pin to sink–pin, on line 6.
The expose clause on lines 8–9 is required if QQ is to serve a useful purpose
as a queue. Without these lines, no events could arrive on q1, and events
leaving on q2 would have no place to go. Note that the synchronous sink
pins of q1 and q2 are now hidden by QQ; in and out are pseudo–pins that
are really just aliases of q1:enq and q2:deq, respectively.

Note Graphical Convention: Component pins are sometimes depicted
with stalks, as in examples 6.5 and 6.6, pp.108, or without stalks,
i.e., with the pin symbol directly on the border of components, assem-
blies or environments, as in example 6.7 and in most of the assembly
examples found in this thesis. The line connecting QQ:in to FIFOQ:enq
is not a connector; it is a pin aliasing from the expose clause. It is gen-
erally easy to distinguish connectors from aliasing, since the latter are
always drawn from an enclosing assembly to an enclosed component or
assembly instance.

It is worth noting that source pin q1:log is not only hidden, but it is
also not connected. In the earlier discussion of pin direction in §6.10 it
was observed that it would be incorrect to regard source pins as a kind

110 CHAPTER 6. PIN COMPONENT LANGUAGE

Example 6.7: Assembly.

1 assembly QQ(int i) {
2 assume{}
3
4 FIFOQ q1 (i , "q1") ,
5 q2 (i , "q2") ;
6
7 q1 : deq ∼> q2 : enq ;
8
9 expose {q1 : enq as in ,

10 q2 : deq as out ,
11 q2 : l og as l og }
12 }

QQ (int i)

log
out

in

≫
>

≫ FIFOQ
q1(i,"q1")

>

FIFOQ
q2(i,"q2")

>
≫

enq

deq

≫
≫

log
enq

deq

≫

Example 6.8: Top-Level Assembly.

1 assembly TopQ() (Rtos) {
2 assume{
3 Keyboard kbd () ;
4 Console cns () ; }
5
6 QQ qq1 (1) , qq2 (1) ;
7
8 kbd : type ∼> q1 : in ;
9 q1 : out ∼> q2 : in ;

10 q2 : l og ∼> cns : wr i t e ;
11
12 expose {}
13 }

TopQ (int i)

Console
cns()

Keyboard
kbd()

>|

≫

>|≫Key: Assumed service.

QQ
q1(i)

>

QQ
q2(i)

>
enq

deq

≫
≫

log
in

out

≫

≫

of “requires” interface; clearly, the log source pin can not be both required
and unconnected. Instead, we can regard a component’s set of synchronous
source pins that consume data as defining a “requires” interface (recall that
asynchronous source pins may not consume data). An example of this is
shown at the end of this chapter (Example 6.13, pp.128).

There are a few basic conformance rules that govern the connection of
all pins C1:r ∼>C2:s:

• r (any pin on the left side of ∼>) must be a source pin and s (any pin
on the right side) must be a sink pin.

• the signatures of r and s must agree in the number and type of formal
parameters.

6.3. STRUCTURAL ELEMENTS 111

• each corresponding pair of formal parameters (r.p, s.p) must have com-
plementary produce or consume direction.

• C1 6= C2. Services may be self–stimulating, but no component or
service may be self–connected.

The TopQueue assembly defined in example 6.8 differs from QQ in several
important ways. The first difference is the appearance of the additional par-
enthetical expression “ (Rtos)” on line 1. Assemblies ultimately will be instan-
tiated within a runtime environment (the subject of §6.3.3), and TopQueue
will be instantiated in an instance of the Rtos environment. Lines 2–4 spec-
ify that instances of two Rtos services Keyboard kbd() and Console cns() are
assumed. These lines do not create these service instances, but merely give
them local names. Line 6 creates two instantiations of QQ, and provides
to each instance the queue length (corresponding to the formal parameter
component FIFOQ (const int len) from Example 6.5). Lines 8–10 establish
all the connections. There is no need to expose any pins to the runtime
environment, although there is no harm in doing so.

6.3.3 Environments

Environments represent the runtime environment of components and assem-
blies. As discussed in Chapter 5, reasoning frameworks may make assump-
tions about the runtime environment, and different reasoning frameworks
might be valid for different runtime environments. A distributed or hetero-
geneous system might have components executing in, and interacting across,
several quite distinct runtime environments.

The syntax of environment specification, shown in Table 6.12, is quite
simple when compared with components and assemblies, and consists mainly
as a sequence of constant declarations, annotations and services.

Table 6.12: PCL Environments

Environment = environment Id ‘{’ EnvironPart ‘}’
EnvironPart = (Declaration| Component| Annotate)∗

An environment is likely to provide services that access platform devices
and other platform–dependent details. The Rtos environment referred to in
the following examples is part of the PSK distribution (see Chapter 5 for
details on the PSK), and includes as basic services a variety of clocks, a
network gateway, keyboard and console; and extensions for audio mixing
that include various decoders, inverters, adders, etc. Many of these services
require direct access to platform devices, and their development in PCL is a
good test of its expressiveness and programmability.

112 CHAPTER 6. PIN COMPONENT LANGUAGE

6.3.4 Instantiation

Returning to Example 6.8, one important step remains: to instantiate the
Rtos runtime environment and TopQ top–level assembly. Unlike the earlier
instantiations of components and assemblies, these instantiations must en-
sure that whatever services are assumed by the top–level assembly (TopQ
in this case) are provided by the runtime environment. For this we need to
complete the syntax for PinInstance that was begun earlier (see Table 6.6,
pp.103). The complete syntax is defined in Table 6.13.

Table 6.13: PCL Provisionings

PinInstance = Id ‘(’ Exp∗, ‘)’ [Provision]
Provision = ‘{’ ServiceInstance∗ | AsmbUses∗ ‘}’
ServiceInstance = ScopedIdService Id ‘(’ Exp∗, ‘)’ ‘;’
AsmbUses = ScopedIdAssumed ‘=’ ScopedIdServiceInstance ‘;’

Example 6.9: Instantiation.

1 // i n s t a n t i a t e Rtos
2 Rtos myEnv ()
3 {
4 /∗∗∗∗ s e r v i c e s ∗∗∗∗/
5 Rtos : Keyboard kbd () ;
6 Rtos : Console cns () ;
7 } ;

Rtos myEnv()

Console
cns()

Keyboard
kbd()

>|

≫

Key: Provided service.>| ≫

8 // i n s t a n t i a t e TopQ
9 TopQ TopLevel ()

10 {
11 /∗∗∗∗ assumptions ∗∗∗∗/
12 TopQ: kbd = myEnv : kbd ;
13 TopQ: cns = myEnv : cns ;
14 } ;

TopQ TopLevel ()

Console
myEnv:
cns()

Keyboard
myEnv:

kbd()

>|

≫ QQ
q1(i)

>

QQ
q2(i)

>
enq

deq

≫
≫

log
in

out

≫

≫

Example 6.9 illustrates the two–step process for instantiating environ-
ments and top–level assemblies. Line 2 instantiates the Rtos environment

6.4. REACTIONS 113

as myEnv, and lines 5–6 provision myEnv with two service instances. Line 9
instantiates the TopQ assembly as topLevel. You might recall from lines 1–4
from Example 6.8, pp.110 that TopQ “knows” it will be deployed in an in-
stance of Rtos and expects that its assumed services will be provided by that
environment instance. In lines 12–13 these topLevel assumptions are satis-
fied by myEnv. The topLevel assembly instance is deployed into the myEnv
environment instance by means of a controller (a “main program”) that exe-
cutes as a high–priority thread in the Pin real–time operating system. (See
Chapter 7, §7.3.2, pp. 138 for additional detail about controllers.)

6.4 Reactions

The behavior of components resides exclusively in their reactions, and all
component types define one or more reactions. The syntax of reactions is
described in Table 6.14.

Table 6.14: PCL Reactions

ReactionDef = [threaded] react Id ReactAlphabet ReactPart
ReactAlphabet = ‘(’ IdPin

+, ‘)’
ReactPart = ‘{’ Declaration∗ Statechart ‘}’
Statechart = See Table 6.15.

Reactions are defined as threaded or unthreaded by using the optional
keyword threaded. Threaded reactions execute on their own independent
thread of control, while unthreaded reactions execute on the thread of con-
trol of some other reaction (of some other component), which itself might
be unthreaded and hence executing on yet another reaction thread, and so
on. Explicit threading is an unusual but not novel feature in architecture
description languages (see Koala [166] for example). Making concurrency
explicit is necessary on practical grounds; any reasonably complex system
will require at least some concurrency, and making all behavior concurrent
will not scale. Explicit concurrency is also necessary for analysis, and both
PSK reasoning frameworks (Chapter 8) make use of this extra information.

Reactions are parameterized by a set of pins; these define the stimulus
and response interfaces of the reaction. Reactions also specify a state ma-
chine of the reactive behaviors of components, and when composed with ‘∼>’
specify interactive behaviors of the composed components. There are a few
design rules that govern the allocation of pins to reaction R of a component
C, i.e., C:R:

• Each sink pin C:Snk is allocated to exactly one reaction.

114 CHAPTER 6. PIN COMPONENT LANGUAGE

• Each source pin C:Src is allocated to at least one reaction

• Asynchronous sink pins may only be allocated to threaded reactions.

Thus, sink pins are uniquely associated with reactions, but source pins may
be shared by reactions.

6.4.1 Pin Events

As suggested by their keywords, reactions are intended to be reactive—they
respond to changes in the environment; in PCL these are delivered as events
on sink pins. Each reaction, then, is implicitly endowed with an event han-
dler, although for reasons of accident these have come to be called reaction
handlers and this is the term used here. If a reaction is threaded, its re-
action handler is executed on the reaction thread, otherwise (i.e., if it is
unthreaded), its reaction handler is executed on its caller ’s thread. Thus,
unthreaded reactions are effectively library functions, and they can be access
without explicit synchronization or message queuing.

Reaction handlers can handle different types of events, and by far the
most important of these are pin events. Each declared pin P induces a pair of
event types ^P and $P, pronounced “begin P” and “end P,” respectively. Each
of these event types has a signature that is defined as an order-preserving
projection of P’s consume parameters onto ^P and produce parameters onto
$P. To understand how these event types are used to define the semantics of
component interaction, and how different interaction policies can be defined
by components or containers (which are described in Chapter 7), it is neces-
sary to describe how the behavior of reactions is specified using PinCharts.

6.4.2 PinCharts

PCL adopts a subset of UML statecharts for describing reactions. The Pin-
Charts syntax is defined in Table 6.15. The syntax and semantics of Pin-
Charts has a wholly consistent interpretation of all UML “semantic variation
points” (a term defined by the UML standard).

A brief and informal summary of PinChart semantics is a useful prelim-
inary:

Current State. A Pinchart is said to be “in” a current state at any given
instant, beginning with the initial start state. The transition from the
start state to an initial state occurs when the Pinchart is activated. In
PCL , this happens when the component is instantiated.3

Event Trigger. Behavior is triggered by the arrival of an event (PCL key-
word trigger). All transitions with matching triggers become activated ;

3A more complete description of the component lifecycle is provided in Chapter 7.

6.4. REACTIONS 115

Table 6.15: PCL Statecharts

Statechart = (StateDecl | TransDecl)+

StateDecl = state Id ‘{’ Statement ‘}’
TransDecl = FromState ‘–>’ IdState ‘{’ [Trigger] [Guard] [Action] ‘}’
FromState = start| IdState
Trigger = trigger (PinTrigger| TimeTrigger| ChangeTrigger)
PinTrigger = PinEvent ‘;’ (See Table 6.5, pp.102)
TimeTrigger = after Expint ‘;’
ChangeTrigger = when Expboolean ‘;’
Guard = guard Expboolean ‘;’
Action = action Statement

the event is discarded if no transition has that type of event as a trig-
ger. PCL supports three kinds of events: pin events, timer events and
change events. The example shows only the use of pin events.

Guard Evaluation. The guards of all activated transitions are evaluated
(PCL keyword guard). If no guard is satisfied the event is silently
discarded ; it is good practice to avoid this situation. If no guard is
specified the transition is treated as if it had specified a guard that is
always satisfied.

Transition Firing. A non-deterministic choice is made of one transition
from the set of transitions whose guards are satisfied, and this tran-
sition is said to have fired. Nondeterminancy is sometimes useful in
design, but seldom useful in programming.

Execution Order. The transition actions of the fired transition are exe-
cuted (PCL keyword actions), the target state actions are executed4,
and the target state becomes the current state; the cycle repeats from
here.

Example 6.10 completes the specification of component FIFOQ that was
begun in Example 6.5. The reaction is also described using standard UML
graphical notation; accepting states (defined, below) are shown in bold out-
line.

In this example, component FIFOQ defines one threaded reaction
threaded react Work (lines 3–29); Workmust be threaded because FIFOQ:enq
is an asynchronous pin. Each reaction must define a transition from the start
state (line 8). There are restrictions on the actions that may be performed

4UML defines both entry and exit actions on states; however, PCL makes do with only
entry actions, as Pin provides no mechanism to interrupt a state’s actions.

116 CHAPTER 6. PIN COMPONENT LANGUAGE

Example 6.10: Statechart Reaction.

1 component FIFOQ (const int len , const string id) {
2 // ...continued from Example 6.5, pp.108
3 threaded react Work (enq , deq , l og) {
4 int num = 0 , next = 0 ; // cou ld i n i t i a l i z e at s t a r t
5 T b [MAX] , temp ;
6 proc void q (T &i t) { b [next++] = i t ; next %= len ; }
7
8 start−>l i s t e n {}
9 //−− ^enq , ! f u l l , f i n i s h

10 l i s t e n−>l i s t e n {
11 trigger ^enq ;
12 guard num < s i z e ;
13 action {
14 q (enq . in) ;
15 $enq () }}
16 //−− ^enq : f u l l , cont inue
17 l i s t e n−>dequeue{
18 trigger ^enq ;
19 guard num >= s i z e ;
20 action {
21 temp = enq . in ;
22 ^deq (b [next]) ; }}
23 //−− $deq : cont inue
24 dequeue−>logevent {
25 trigger $deq ;
26 action {q (temp) ; ^ log (id + " : dequeued") ; }}
27 //−− $ log : f i n i s h
28 logevent−>l i s t e n { trigger $ log ; action $enq () ; }
29 } // end Work
30 } // end FIFOQ

listen

dequeue

logevent

$deq / { q(temp);

^enq [num < size] /{ q(enq.in); $enq() }

 ^log(id+ ":dequeued") }$log / $enq()

temp = enq.in;
^deq(b[next]) }

^enq [num >= size] / {

on this initializing transition; for example, no interactions with other com-
ponents are permitted. The start transition tends to be superfluous because
PCL allows static initialization of variables (line 4).

A state is said to be an “accepting state” if it has event–triggered tran-
sitions, and a “reacting state” otherwise. PCL imposes two rules concerning
accepting states:

1. If a state has any event–triggered transition, then all of its transitions
must be event–triggered.

2. For components, but not for services, it is required that all target states
from the start transition be accepting, and further that all execution
paths in a reaction complete in an accepting state.

6.4. REACTIONS 117

This latter constraint can not be enforced by the PCL processor, but it can be
checked with the model checking reasoning framework described in Chapter
8. To anticipate just a bit, the following claim would be appropriate:5

annotate FIFOQ {
" comfort " , const string Ful lyReact ive =
"G((^ enc␣=>␣F␣$enc)) "

}

In the example, FIFOQ:Work implicitly defines three states: listen (an ac-
cepting state), dequeue and logevent (reacting states).

Lines 10–22 define the reactive behavior of FIFOQ:enq. There are two
cases: lines 10–15 cover the first case, when a new item arrives to a non–full
queue (line 12, num < size), while lines 17–22 cover the second case, when the
queue is full (line 19, num >= size). It might have been possible to write the
guard for latter case as num==size, and then leave it to the model checker
to establish that num > size can never hold. However, it is always risky to
under–specify guards because UML semantics (which are honored by PCL)
requires that unhandled events be silentlydiscarded.

Case 1: Queue has room. The incoming item is placed in the buffer (line
14, q(enq.in)), where proc void q(T &it) is defined locally (line 6) to
make the reaction somewhat easier to read. The reaction then gener-
ates an “end interaction event” for the reaction (line 15, $enq()). Having
completed the transition action for the transition listen−>listen intro-
duced on line 12, the new current state becomes (once again) listen ;
had this state been explicitly defined its actions would have been exe-
cuted.

Case 2: Queue is full. This is the more interesting case, as it requires
FIFOQ to interact with other components. Because the scope of a pin
parameter is the transition, not the reaction, a temporary copy of the
pin parameter is made on line 21 (temp = enq.in), and then on line 22
a begin interaction event is generated by ^deq(b[next]) to forward the
oldest item in the queue on the source pin C:deq. PCL requires that
reactions immediately wait on the completion of interactions. For this
reason, the transition relation on line 17 listen−>dequeue specifies a
reacting target state dequeue (defined on lines 24–26) that only triggers
on ^deq(b[next])’s matching end interaction event $deq. A similar chain
of begin/end interactions is initiated on line 28, which is triggered by a
$log event, and whose final action is to generate the end reaction event
$enq().

5This is not quite strong enough as it assumes the environment is also reactive.

118 CHAPTER 6. PIN COMPONENT LANGUAGE

6.4.3 Other Event Types

PCL supports two other UML event types: timer events and change events,
which are briefly summarized here. The semantics of events (in UML and
PCL), is quite tricky—when timers are started, when they are cleared, when
change conditions are evaluated, precedence, etc., and is discussed in §6.5.2,
pp.121.

Timer events and time–triggered transitions. A time trigger is an
integer-valued, side effect free expression that causes a timed event to be
generated no sooner than the amount specified by the time trigger expression
(in milliseconds). It is important to note that timed events are not clocks:
specifying wait (100) means that the environment will generate a timer event
no sooner than 100ms, and incidentally will attempt to provide that event
as soon as possible thereafter. Clock capabilities are provided by services,
and indeed several kinds of clocks, each with its own guaranteed inter-arrival
distributions (e.g., uniform and exponential distributions) are provided with
the public release of the PSK.

Timer events are useful mainly for handling communication failures or
other disruptions to component interaction.6 For example, time–triggered
transitions from the listen state could be used to signal that the queue
component is waiting longer than expected on the arrival of a new item, or
analogously on the dequeue and logevent states that an interaction is taking
longer to complete than expected.

Change events and change notification–triggered transitions. Com-
ponents may have more than one reaction, and PCL allows state (constants,
variables, functions) to be defined at component scope and shared by reac-
tions. Change events are used to communicate changes in state shared by
reactions within a component. Component– and reaction–scoped variables
can both appear in change trigger expressions. However, if no component–
scoped variables appear in a trigger, then the trigger is semantically equiva-
lent to a guard, and the language processor is free to use guards (which are
far more efficient) if it chooses. The condition is evaluated when the change
trigger is created, and it is evaluated subsequently whenever the value of any
relevant (i.e., “watched”) component–scoped variable changes.

In practice, components with multiple reactions have proven to be less
useful than originally anticipated, and as a rule a component with N reactions
is just as easily implemented as N components, each having one reaction, and
thereby sidestepping the need for inter–reaction synchronization. On the
other hand, there is also additional code and code management overhead
associated with each additional component.

6The Pin runtime environment provides an alternative timeout mechanism that can
be manipulated via PCL annotations. As always, there is a fine line in deciding what to
specify at a design level and what to leave implicit.

6.5. SEMANTICS 119

6.4.4 Controller Alerts

Components may initiate interaction with their environments using the built–
in alert mechanism, which has the following definition:

extern proc alert (string &msg , int s t a tu s) ;

The controller will display msg on the Pin runtime console (which is not the
same console as provided by the Rtos console service). If status is a nonzero
value, the controller will initiate shutdown procedure, and report abnormal
termination if status < 0. If status == 0 the controller will return control to
the issuing component.

Using environment–provided services rather than alerts to interact with
environments is a valid design choice that is available to developers. However,
a direct channel between component and environment is a great convenience
and results in simpler assemblies.

6.5 Semantics

The previous discussions have defined the formal syntax of PCL, and have
provided an informal description of its constructive semantics by way of a
few very simple examples. A more formal treatment of PCL semantics is
provided in Appendix A. Here only the basic schemas used to define this
semantics is summarized, and there are two: a denotational semantics [128]
of PCL interaction terms of Hoare’s algebra of Communicating Sequential
Processes (CSP) [75], and an operational semantics [138] of reactions. The
aim here is to convey the intuition of interaction and reaction semantics
rather than the gory details, which are safely hidden in Appendix A.

6.5.1 Interaction Semantics

The aim of interaction semantics is to give an accounting of the behavior
of the ‘C1:r∼>C2:s’ operators that are used to connect component instances.
As mentioned several times already, we adopt a process–algebraic approach
to defining interaction behavior, both in the definition of PCL interaction se-
mantics and in the ComFoRT interpretation, though these differ in approach
as discussed further ahead.

It is certainly possible to define a naive semantics (“minimalist” might
be less pejorative) that interprets component instantiations C c1(),C c2() as
CSP process P1, P2, respectively, and interpret C1:r∼>C2:s as the parallel
composition P1 ‖ P2. However, this would not observe certain behaviors
that are quite important contributors to extra–functional behaviors such
as performance, for example FIFO queueing (or other) policies for events
arriving on a component sink pin, or blocking behavior for reactions initi-
ating interactions on source pins. To observe such behaviors a somewhat

120 CHAPTER 6. PIN COMPONENT LANGUAGE

more elaborate interpretation is required, the basics of which are illustrated
graphically in Figure 6.1.

≫
C c1()

≫ ≫
C c2()

≫

≫
C c3()

≫≫
C c4()

≫
rs

P1 P1r P2s P2

Figure 6.1: Interaction Semantics: Schema

Consider the small arrangement of component instances in Figure 6.1,
and the question of what processes will model the behavior of C1:r∼>C2:s,
which in this case is one of two interactions in the serial unicast (the other
being C1:r∼>C3:s initiated by C1. As with the naive semantics, component
instances are assigned CSP processes.

Here, though, two auxiliary processes P1r and P2s are also constructed,
called source glue and sink glue processes, respectively. The source glue
process P1r defines where blocking occurs in the initiating reaction, and
the order in which events are queued to c2:s and c3:s. The definition of
“glue” processes depends on details of connection topology, and in this ex-
ample P1r is constructed from, and it’s alphabet is defined by, C1:r∼>C2:s
and C1:r∼>C3:s, and similarly P2s is constructed from and alphabet defined
by C1:r∼>C2:s and C4:r∼>C2:s. The CSP process defined by P1r ‖ P2s ob-
serves the behavior of an “asynchronous connector.” An analogous semantic
interpretation for synchronous interactions likewise observes the behavior of
“synchronous connectors.”

The ComFoRT interpretation uses a similar construction, but is opti-
mized for model checking. In particular, the interpretation sketched above
over–approximates the potential concurrency in the assembly, since the im-
plementation of the assembly need not (and in the current implementation of
Pin, does not) have separate Pin threads for both glue processes. Since state
space explosion in model checking arises from process composition, it pays
to minimize the number of distinct CSP processes used to model behavior.
ComFoRT also avoids constructing CSP processes for unthreaded reactions
(see [83, 81]). A closer look at PCL interaction semantics can be found in
Appendix §A.1.

6.6. PRAGMATICS 121

6.5.2 Reaction Semantics

While interaction semantics describes the external behavior of components,
reaction semantics defines their internal behavior. There are two aspects of
reaction semantics:

• semantics of the imperative action language

• semantics of event handling and the internal view of interaction

The first is quite routine, involving order of expression evaluation, envi-
ronments (mappings from names to locations) and stores (mappings from
locations to values), control flow, etc. No semantics for this part of PCL is
provided here. Several have been defined at various points, but because
PCL’s action language is so basic have never proven to be useful, or at least
worth keeping up–to–date with PCL as it evolved. The second, however,
while not particularly complex (when compared with interaction semantics)
requires explicit treatment because it defines the PCL interpretation of the
subset of UML statecharts used by PinCharts, and also formalizes the re-
lationship between reactions defined in PCL and the Pin containers that
manage the execution of reactions.

In brief, each PCL reaction is implemented as a callback function called
the reaction handler. The reaction handler is invoked by a Pin container
with the next FIFO–ordered event when the reaction has inbound events
on its event queue (sink pin events, time events, change events, and vari-
ous “undocumented” events such as measurement and other instrumentation
events). The PCL reaction semantics defines what reactions do with these
events, how Pin mechanisms are used to construct time events and change
events, how and when they are constructed and deleted, how transitions are
enabled and fired—in general how Pin implements PCL PinCharts.

Several formalisms have been used (denotational, small–step structural
operational) but the most practical and useful by far has been proven to
be the pseudo–code of a generic reaction handler. This can be found in
Appendix §A.2.

6.6 Pragmatics

Syntax and semantics are concerned with structure and meaning of a lan-
guage; pragmatics is concerned with its use. A discussion of the Seam as a
problem of language design, and therefore the role of pragmatics in defin-
ing the fitness of the Seam, is taken up in Chapter 10, Theories and Co-
Refinement. Here several aspects of PCL pragmatics are discussed in conve-
nient proximity with its syntax and semantics. Because the action language
is, with the inclusion of verbatim syntax, essentially as expressive as C, few
pragmatic arise in the description of component behavior. Also, the Pinchart

122 CHAPTER 6. PIN COMPONENT LANGUAGE

subset of statecharts appears from experience to be sufficiently expressive if
component behavior can be conveniently described by UML statecharts.7

Instead, issues of pragmatics tend to center on the expressiveness of
PCL to different coordination schemes among components. For example,
what kinds of topologies can be constructed? Are two kinds of connector
protocols sufficient? Can different coordination schemes be defined even
without “first class” connector types? The following discussion touches on
some of these issues.

6.6.1 Reactivity and Immediacy

PCL constrains the behavior of component (but not service) reactions in two
ways: reactivity and immediacy; though it is admitted that these names are
not particularly helpful. The design rules are better described in terms of
their CSP formalization.

Given a reaction R with sink pin s and source pin r (signature and protocol
does not matter at this point), the following behavioral scheme demonstrates
the two constraints:

R = s
τ→ r → r̄

τ→ r → r̄
τ→ s̄→ R (6.1)

R is a reaction that accepts an interaction on channel (sink pin) s and
becomes a process that can perform actions that are not visible to the envi-
ronment (that is the meaning of τ→), and then becomes a process that can
interact on channel (pin) r, etc., as described in §6.5.1.

Components are reactive (“reactivity”). The pairing of s as the first
accepting event in a reaction with a matching s̄ as the last accepting
event defines a reactive process. PCL requires that all component
reactions are reactive in this sense.

Interactions are immediate (“immediacy”). The pairing r → r̄ des-
cribes an immediate interaction; once it starts an interaction on r, the
R process can do nothing but wait for the interaction on the source
pin to complete with r̄ before moving on. PCL requires that all inter-
actions be immediate.

Although it is a slight abuse of CSP notation, immediacy is much more
clearly shown using the following scheme, which will be the preferred form
henceforth:

7Statecharts are not suitable for all kinds of programs; they are well suited to event–
driven and reactive programs.

6.6. PRAGMATICS 123

R = s
τ→ rr̄

τ→ rr̄
τ→ s̄→ R (6.2)

It was mentioned earlier that PCL can not directly enforce reactivity. How-
ever, PCL can and does enforce immediacy: target states of transitions whose
actions (either a transition action or state action) generate a ^sourcePin (...)
“begin interaction” must end with that action and all outgoing transitions
must trigger on a matching $sourcePin “end interaction” event (see for exam-
ple lines 25 and 28 of Example 6.10, pp.116).8

Of course, reactivity brings with it all the advantages of finite termina-
tion, and also brings along all the attendant issues of decidability. Immediacy
means that components are not free to defer or delay completing an inter-
action once requested. Together these rules achieve a reasonably strong but
by no means complete decoupling of reaction from interaction. A reactive
component will complete what it has been requested to do; and immediate
interaction means that components will obtain results from requests they
initiate in a standard way.

6.6.2 Coordination Expressiveness

Reactivity and immediacy are strong constraints—but are they too strong, or
perhaps even too weak? The answer will depend on many factors: the kind of
problem being solved; whether it is a recurring problem and if so its intrinsic
variety; the need (if any) for objective evidence of predicted system behavior;
and so on (see Chapter 10). Seam abstractions need to provide programmers
and architects with coordination primitives that are “satisficingly” varied and
expressive. Too much of either will make it difficult to establish invariants
that reasoning frameworks may require; too little and design space may
become overly–constrained, and programming too awkward, to be of interest
to practitioners. It is the nature of the Seam that there be no clear dividing
line between too much and too little of either, and certainly there is no stable
line where customer needs or engineering practices change.

The following examples, although simple, show where the original design
of PCL drew the line, and how its location has already shifted in response to
changing needs, and might therefore change in the future. The examples pose
a simple question in the use of the FIFOQ component: how many items are
in the queue? Some degree of coordination of FIFOQ instances is required
to answer the question. Two cases will be considered, which will lead to
three examples. In the first case, component FIFOQ uses asynchronous pins
to communicate the number of elements it has (Examples 6.11, pp.124 and

8It might be considered that interactions on asynchronous source pins should not re-
quire an explicit trigger on the matching end interaction event, but this turns out to be
a minor inconvenience when compared with the uniformity it brings in the way reactions
are specified.

124 CHAPTER 6. PIN COMPONENT LANGUAGE

Example 6.11: Reactive Asynchronous Coordination.

CQQ (int i)

int in

getr
int

log
deq

enq

≫
≫
>

≫
≫get

FIFOQ
q1(i,"q1")

≫ >

≫

FIFOQ
q2(i,"q2")

>
≫
≫

enq

deq

≫
≫

getr

≫

get≫

log
listen

report

$getr/$get();
^get/
^getr(get.in + num);

component FIFOQ has been ex-
tended by sink asynch get(int in)
and source asynch getr(int out).
Note that the position of pins on
the bounaries of components is
freely changed to suite the needs of
convenient connection topology.

The original FIFOQ:Work reaction
has one new state and two transi-
tions. The incoming ^get may be
coming from another queue so its
data parameter is added to the local
length and then passed to the (pos-
sibly) next queue with ^getr.

6.12, pp.126), while in the second and substantially simpler case, it uses
synchronous pins (Example 6.13, pp.128).

Reactive Asynchronous Coordination

Example 6.11 introduces the first case by making the appropriate changes
to the FIFOQ component developed in earlier examples.

A downside of the design in Example 6.11 of course is that all queue
instances most communicate even if only a subset of them have items, but our
concern is with coordination, not with efficiency in this example. Example
6.11 (cont), illustrates what a component must do if it wishes to obtain
the number of items in a queue from q(i) and satisfy the requirement that
it be reactive. For this purpose a coordinator component RAX has been
introduced (for reactive, asynchronous coordination).

Eventually–Reactive Asynchronous Coordination

In this case, requiring reactivity introduces considerable complexity in doing
something (obtaining a queue length) that ought to be simple to do; the
component RAX reaction would have become unmanageable had it been
required to coordinate with several internal queues.

6.6. PRAGMATICS 125

Example 6.11: Reactive Asynchronous Coordination (cont).

RAXQ (int i)
log

deq

enq

≫
>≫

req

getN
int

>|

≫
≫ >

≫

≫

>|

get

≫

getr int

≫

CQQ q(i)

RAX x()

≫

≫

^getr /
{N = getr.in;
$getr()}

init

s1

s2

s3

^req/^get(0)

$get/$req()

^getN / $getN(N)

^req/^get(0)

^req/
$req()

^getN/$getN(-1)

^getN/
$getN(-1)

The reactive asynchronous coordina-
tor exposes two sink pins, an asyn-
chronous pin (req) to initiate a re-
quest, and a synchronous pin (getN)
on which to await a response. Two
internal pins asynch sink getr and
asynch source get coordinate with
like–named queue pins. Two exposed
pins are required because RAX must
be reactive with its external client
and with its internal client q(i).

This is the Pinchart for RAX. Each
of the accepting states init, s2 and
s3 must be prepared to accept re-
quests on both ^getN and ^req, in-
cluding duplicates (recall that UML
semantics will “silently discard” in-
bound events that are not handled).
Here, $getN(−1) signals premature
synchronization by returning an ille-
gal number of elements.

It is interesting that this particular coordination pattern did not arise in
any of the industrial cases from electric grid substation control or industrial
robot control (see Chapter 9). It did arise, however, in streaming audio appli-
cations (as well as in model checking the industrial robotics communication
library, discussed in Chapter 9).

This forces a relaxation of reactivity to eventually reactive. The schema
for eventually reactive components is shown in 6.3 and 6.4, and can be con-
trasted with the stronger form of reactivity shown earlier in Eq. 6.1. In
an eventually–reactive component, a reaction need not immediately react
to a pin request before moving on to other requests, but it should do so
eventually.

R = s
τ→ rr̄

τ→ R′
τ→ rr̄

τ→ s̄→ R (6.3)
R′ = s′

τ→ rr̄
τ→ rr̄

τ→ s̄′ → R (6.4)

Example 6.12 shows an eventually reactive coordinator component ERAX.

126 CHAPTER 6. PIN COMPONENT LANGUAGE

Example 6.12: Eventually Reactive Asynchronous Coordination.

ERAXQ (int i)
log

deq

enq

≫
>≫

getN
int

>|

≫ >
≫

≫

>|

get

≫
getr int

≫
CQQ q(i)

ERAX x()

≫

init

s2

^getr / { $getr();
 while (i--)
 $getN($getr.in)
}

i=0;

s1
^getN/i++

$get/

^getN/
^get(0)

This is an eventually–reactive coor-
dinator. It is no longer necessary to
require clients of the coordinator to
manage a two–step coordination pro-
tocol because it is permitted for this
component to accept intermediate in-
teractions on its sink pin ^getr before
responding to ^getN.

In contrast to RAX, the accepting
state s2 can keep count of how many
requests have arrived on getN, and
wait until the arrival of stimulus
from the queue on ^getr before re-
sponding to all requests on getN.
What is not shown is the queuing
policy—does the first $getN corre-
spond to the first or last ^getN?

As expected, the guarantee of eventual reactivity allows the coordinator to
expose just one synchronous getN pin.

However, this coordination pattern introduces a number of difficulties for
PCL, not all of which it was equipped to address in its original form. As
discussed in §6.6.1, a design goal of PCL is to separate reaction from in-
teraction, and for this purpose component programmers were given limited
access to ^p/$p() events. Technically, event types in PCL are denotable and
expressible (can be named and used in expressions), but are not storable.
Were events to also be storable, component programmers could develop ar-
bitrary coordination schemes—this is too much expressiveness to serve the
Seam.

As a consequence of having denotable, expressible, but not storable event
types, the arriving ^getN events on the ERAX coordinator in Example 6.12
can not be stored in an array (for example). There is no way to tell from the
Pinchart what policy is being used; the $getN events being generated might
correspond FIFO or LIFO to the previously arrived ^getN events. In fact,
the current policy implemented by PCL is not what one would expect—it
uses FIFO.

PCL adopts a FIFO policy because doing so ensures that components

6.7. SUMMARY 127

can not change the FIFO policy one expects when communicating on pins—
i.e., calls to an interface are answered in the order they arrive. However,
why PCL has adopted a FIFO policy is not at issue in the present discus-
sion; it is a simple–enough matter to add an annotation to instruct PCL to
adopt another policy. More interesting is the question where to draw the
line between expressiveness and restrictiveness. The original requirement for
reactivity (Eq. 6.1) was too restrictive; eventual reactivity is as undecid-
able as reactivity, but it adds useful expressiveness while still being suitably
constrained.

Reactive Synchronous Coordination

To complete the discussion about coordination expressiveness, we consider
the case that FIFOQ uses a synchronous rather than asynchronous pin to
communicate its number of elements. Besides being simpler as a coordination
scheme, synchronous communication may also be required to remove cycles
in a component connection topology; both of the coordination schemes shown
above have cycles in their connection graphs. PCL has no difficulties with
cycles, and the Pin components generated from a PCL specification can
be connected in arbitrary topology, subject only to pin conformance and
the rules against self–connection. However, the λ∗ performance reasoning
framework described in Chapter 8 imposes acyclic interaction as an analytic
constraint.

Example 6.13 shows the synchronous coordination solution, which be
done entirely without an external coordinator component. The only point
worth remarking is that source pins that consume data (which means they
must also be synchronous pins) are regarded as required interfaces—they
must be connected. There is no shortcut in PCL to this requirement, and
for this purpose a component K(const int v) is specified whose instances
always and only returns the value v from an unthreaded reaction that handles
K:val requests. This involves quite a bit of overhead to produce zero results,
and perhaps this is an area where a judicious use of annotations might be
useful.

6.7 Summary

PCL is a specification language that is more detailed in the behaviors that it
describes than architecture description languages, and less flexible (but not
less expressive, functionally) than programming languages—it occupies the
Seam. It provides a basis for substantial automation, for program generation
and for program and architecture analysis by reasoning frameworks. PCL is
by no means a perfect language, but its current syntax and semantics—warts
and all—are a result of its evolution to different kinds of design problems.

128 CHAPTER 6. PIN COMPONENT LANGUAGE

Example 6.13: Reactive Synchronous Coordination.

SQQ (int i)

int out

log
deq

enq

>

≫

sget

≫

>|

>
int in
sget

FIFOQ
q1(i,"q1")

≫ >

≫

≫

≫

>>|

FIFOQ
q2(i,"q2")

>

≫ ≫
≫
>

>|

get

≫sgetr
sget enq

deq

getr
listen

report

$sgetr/
$sget(sgetr.in
+num);

^sget/
if (num < size)
 $sget(num)
else ^sgetr();

component FIFOQ is extended by
sink synch sget(produce int out)
and source synch sgetr(consume
int in). Its reaction can return its
length immediately if it is not full.
However, because sgetr consumes
data it must be connected, in this
case to constant component K k(0)
which always returns 0.

RSXQ (Rtos)

Rtos:
Console
cns()

≫ >
Rtos:
Keyboard
kbd()

CQQ
q(3)

≫ >

≫ ≫
≫

>|

K k(0)

sgetr>

const intval

>|

0

PCL formalizes the Pin component model, and makes use of the real–time
platform services of the Pin Component Technology, described in Chapter 7.

Chapter 7

The Pin Component
Technology

129

130 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

This chapter describes the Pin component technology. While Chapter
6 describes a logical view (one might say “semantic” view but for the over-
loading of that term with reasoning framework interpretation) of Pin, this
chapter describes its implementation.

§7.1 discusses the major design objectives for Pin. The remaining sec-
tions provide a closer look at the implementation. §7.2 describes the logical
and layered architectural views of Pin. §7.3 describes component containers
(§7.3.1) and assembly controllers (§7.3.2), both of which are largely implicit
in PCL. §7.4 describes the “real time operating system” (RTOS) layer of the
Pin runtime environment. Finally, §7.5 summarizes how Pin satisfies the
design objectives sketched in §7.1.

7.1 Pin Design Objectives

Before developing Pin we defined several top–level design objectives that Pin
must satisfy if it were to serve as a foundation for PECT.

The emphasis on “as a foundation, etc.” serves to highlight an important
point: Pin is not intended to be used directly by architects and programmers
(though it could be), but indirectly through PCL or some equivalent language
(or other “frontend”) veneer. In this regard Pin can be thought of as defining
a “machine code” for PCL. In short, our ambition was not to design the most
sophisticated component technology, but rather a core upon which to build
a new kind of component technology called PECT.

We had formed definite opinions about what characteristics of a com-
ponent technology were desirable for PECT based on our first prototype
PECT[71, 70]. From these experiences we decided that Pin must:

1. Provide only those features needed for predictability by construction.

2. Provide a simple programming model and an execution model.

3. Provide multiple ways of enforcing design constraints.

4. Be adaptable to new target environments.

5. Be freely distributable and installable on conventional PC desktops.

Objectives (1) and (2) are intended to simplify automation: (1) to sim-
plify the development of code generators for components and assemblies;
(2) to simplify the development of sound interpretations. Objective (3) is
intended to ensure that Pin supports, if not simplifies, the development
of reasoning frameworks by providing various “hooks” to satisfy reasoning
framework constraints. Objective (4) is intended to ensure that a PECT
can be sustained through new operating system releases, and to maximize
the potential to re–target any PECT to different deployed–system platforms.

7.2. PIN ARCHITECTURE 131

Objective (5) is intended to facilitate the transition of PECT technology to
university or industry users.

7.2 Pin Architecture

Figure 7.1 provides a logical, layered view of Pin.

>|>

Host Platform (Windows Based)

portability API

Real Time OS

Pin Interface

Assembly ControllerTrusted
Containers

Connector

Custom
Code

Controllers

life cycle

queuing

scheduling

runtime binding

Figure 7.1: Pin Architecture (Logical View)

Working from the bottom to top of Figure 7.1:

• Portability API. Although the currently released version of Pin (in the
PSK) supports only Windows platforms (WindowsNT, WindowsXP,
WindowsVista), it can be easily re–hosted to a conventional Unix vari-
ant. The host computer need not be a desktop–class machine, and
indeed an earlier (and not currently supported) version of Pin was
hosted on WindowsCE in anticipation of its use in embedded environ-
ments. However, re–hosting Pin to an embedded or highly resource–
constrained platform will likely require more effort than for desktops,
and this has not yet been attempted.

• Real Time OS. Pin provides its own real–time operating system (RTOS,
described in more detail in §7.4). RTOS provides a conventional pre-
emptive priority–based scheduler with 128 thread priorities, and in
most respects adheres to the POSIX specifications for real–time exten-
sions,1 with a few exceptions to support various UML–extensions used
by PCL.

1POSIX.1b, Real-time extensions (IEEE Std 1003.1b-1993)

132 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

• Pin Interface. The Pin interface layer provides application–level li-
braries for building and executing Pin components and assemblies of
components. The application programming interfaces (API) of the Pin
component model are implemented in this layer.

• Controllers. The Controller layer is not, strictly speaking, part of
Pin, but rather it is the design pattern adopted by the PSK to build
Pin applications. Controllers are generated from the specification of
top–level PCL assemblies; they are “main” programs responsible for
managing the life cycle of Pin components and assemblies.

The dashed–line box labeled “Assembly Controller” in Figure 7.1 highlights
a few additional points of interest about Pin:

• Components and Trusted Containers. Pin components are formed from
a composite of trusted containers and custom code. Here “trusted”
refers to containers that are provided in the Pin distribution, which
have known behaviors that can be exploited by code–generators and
reasoning frameworks; the λ-SS container is an example of the lat-
ter. However, the Pin interface layer does permit the development and
use of untrusted containers. Custom code executes component type–
specific behavior, possibly but not necessarily generated by PCL.

• Runtime Composition. Pin components use run–time binding to form
connections with other components. Although the connection topol-
ogy of Pin assemblies can change during runtime, PCL supports static
topologies only. This PCL restriction is not “principled” but expedient;
it reflects the restrictions imposed by the two reasoning frameworks
(λ∗ and ComFoRT) developed in tandem with Pin.

• Restricted Range of Interaction (Connector) Mechanisms. Pin connec-
tor semantics for asychronous and synchronous connections are imple-
mented in the Pin Interface layer, but the basic queueing mechanism
for connectors is provided by RTOS. Pin does not make it easy to add
new connector types; this is an intentional design decision rather than
a limitation in the component model.

7.3 Pin Component Model

The simple PCL specification shown in Example 7.1 (the PCL equivalent of
“Hello, World”) and the generated code that implements the assembly will be
used to illustrate key ideas about Pin component and its correspondence to
PCL. The assembly consists of one component instance of component Tap
and one instance each of service Keyboard and service Console. If Keyboard
were connected directly to Console, keystrokes would appear directly on the

7.3. PIN COMPONENT MODEL 133

console. In this assembly, Tap listens in on the conversation by interposing
itself between keyboard and console.

Example 7.1: Simple PCL Assembly.

1 component Tap (string p) {
2 sink asynch in (consume string s) ;
3 source asynch out (produce string s) ;
4 threaded react Work (in , out) {
5 start −> l i s t e n {}
6 l i s t e n −> send { trigger ^in ; action ^out (in . s) ; }
7 send −> l i s t e n { trigger $out ; action $ in () ; }}
8 }
9 assembly Tapped () (Rtos) {

10 assume { Rtos : Keyboard keyb () ; Rtos : Console outp () ; }
11
12 Tap tap (" . ") ;
13
14 keyb : keyed ∼> tap : in ;
15 tap : out ∼> outp : wr i t e
16 expose {}
17 }
18
19 Rtos env ()
20 {Rtos : Keyboard kb () ; Rtos : Console cns () ; } ;
21
22 Tapped tapped ()
23 {Tapped : keyb = env : kb ; Tapped : outp = env : cns ; } ;

7.3.1 Components and Containers

Figure 7.2 summarizes the structure of Pin components. A Pin component
instance is constructed at runtime from two separately and independently de-
ployed binary constituents: a container, and custom code (called the “Nub”).
All interactions between Nub and its external environment (i.e., the runtime
environment, other Pin components) are mediated by the container Clients
of a component see a component instance that supports three interfaces, Pin-
Component, ComponentInstance, and Container, each of which is delegated
by a the container.

Different container types may be defined that introduce container–specific
interaction policies. For example, the λ-SS reasoning framework comes bun-
dled with a λ-SS container that mediates between Nub and the environ-
ment to manage Nub execution priority, execution budget and replenishment
schedule. (See §8.5 pp. 156 for details about λ-SS.) Moreno demonstrated
a technique based on C++ template metaprogramming to generate custom
containers [125].

134 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

<<delegate>>

Pin Container
(DLL)

PCL Component
(DLL)

ContainerServices

ComponentCore

PinComponent

ComponentInstance Container

Constructed
at Runtime

PCL Assembly
Controller
(.EXE)

Generated from PCL Generated from PCL

Key: UML

Figure 7.2: Pin Component Interfaces

There is no analogous notion of assembly container, although the con-
troller pattern might be a reasonable place to start should such a concept be
found useful.

Table 7.1 presents a brief digest of the ComponentCore and Contain-
erService interfaces:2

• ComponentCore defines “hooks” for managing the component lifecycle
(create, delete, initialize) and a callback function invoked by the con-
tainer when new messages arrive on a reaction event queue (TCom-
monHandler).

• ContainerServices is used by the Nub to initiate interactions on a syn-
chronous (SendOutSourcePinWait) and asynchronous (SendOutSour-
cePin) source pin, and to generate an “end interaction event” on sinkPin
event along with any produce parameters on that event.

Only the target of the operation is included in the signatures3; however,
in conjunction with their brief descriptions in Table 7.1 and the examples
that follow should be sufficient to demonstrate the main ideas.

Compiling the Pin specification in Example 7.1 will produce a number
of C++ source files. One of these (Tap.cpp) implements Nub. Excerpts of

2The complete documentation of Pin interfaces is available in the online help feature
of the PSK.

3The Pin API is defined in ANSI–C, so they simulate object–oriented concepts by
passing the target object instance as the first parameter of a function call.

7.3. PIN COMPONENT MODEL 135

Container Interface
PinComponent ∗ loadComponent (char ∗componentName, Container ∗)
Loads a component factory (a DLL) into memory.
BOOL unloadComponent (PinComponent ∗)
Unloads a component factory (a DLL).

ContainerServices Interface
BOOL sendOutSourcePin (Reaction ∗...)
Sends an asynchronous message out a component instance’s source pin.
BOOL sendOutSourcePinWait (Reaction ∗...)
Sends a synchronous message out a component instance’s source pin.
BOOL sendReply (Reaction ∗...)
Sends a reply to a received synchronous message.
IpcPort_Message ∗ parseUserMessage (Reaction ∗...)
Parses a PIN_MSG received by a reaction handler.
int notifyController (ComponentInstance ∗...)
Sends a notification to the controller.

ComponentCore Interface
BOOL createComponentInstance (ComponentInstance ∗...)
Allocate and Initialize the internal state of a component instance.
BOOL deleteComponentInstance (ComponentInstance ∗...)
Deletes the internal state of an instance being deleted.
void reactionInitialize (Reaction ∗...)
Initialization hook for the reaction of a component instance.
void reactionTerminating (Reaction ∗...)
Termination hook for the reaction of a component instance.
typedef ReactionStatus TCommonHandler (Reaction ∗...)
Callback invoked by container when events arrive to a reaction.

Table 7.1: Container, ContainerService and ComponentCore Interfaces

136 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

this implementation are discussed in a running illustration beginning with
Example 7.2:

Example 7.2: Tap Component Implementation.

57 // e a r l i e r code omit ted . . .
58 React ionIn fo r e a c t i o n s I n f o [1] =
59 {
60 {
61 REACTION_Work_NUM_SOURCES, //number o f source p ins
62 REACTION_Work_NUM_SINKS, // number o f s ink p ins
63 REACTION_Work_SOURCE_ARRAY, // ordered array o f pin nums
64 REACTION_Work_SINK_ARRAY, // ordered array o f pin nums
65 PIN_TRUE, // i s threaded
66 DEFAULT_QUEUE_SIZE,
67 REACTION_DEFAULT_PRIORITY,
68 IPCPORT_WAITFOREVER, // d e f a u l t t imeout
69 FALSE, // d e f a u l t measurement f l a g
70 REACTION_Work_PIN_GENERAL_EVENT_HANDER // f o r a l l e ven t s
71 }
72 } ;
73 // l a t e r code omit ted . . .

Lines 58–72 show a component defining an array of ReactionInfo structures;
each of these corresponds to a “Reaction *” parameter in the ContainerSer-
vices and ComponentCore interfaces. The last element of the structure is a
pointer to the event handler for the reaction, and these handlers implement
the PinChart defined for that reaction (in this case, for the Tap:Work reac-
tion). The Pin Interface defines a number of structures that are analogous
to ReactionInfo; these interfaces allow Pin to provide a “poor man’s” form of
run–time introspection of components and assemblies.

Example 7.2 Tap Component Implementation (Cont.)

85 // e a r l i e r code omit ted . . .
86 BOOL createComponentInstance (ComponentInstance ∗pInstance ,
87 void ∗State , unsigned int S izeOfState)
88 {
89 int i = NUM_SOURCE_PINS;
90 INSTANCE_DATA ∗pData ;
91 COMPONENT_Tap_ARGS ∗pp = (COMPONENT_Tap_ARGS ∗) State ;
92 i f (State != NULL) {
93 pInstance−>pInstanceData =
94 Malloc (s izeof (INSTANCE_DATA)) ;
95 i f (pInstance−>pInstanceData == NULL) { return FALSE; }
96
97 pData = (INSTANCE_DATA ∗) pInstance−>pInstanceData ;
98
99 memcpy(&(pData−>args) ,

7.3. PIN COMPONENT MODEL 137

100 State , s izeof (COMPONENT_Tap_ARGS)) ;
101 pData−>synchReplyQ [0] =
102 (QUEUE) QUEUE_new(pData−>args . numConnectedSources [0]) ;
103 // −−− i n i t i a l i z e component l o c a l v a r i a b l e s −−−
104 // −−− i n i t i a l i z e r eac t i on l o c a l v a r i a b l e s −−−
105 pData−>Work_CURRENT_STATE = 0 ;
106 }
107
108 return PIN_TRUE;
109 }
110 // l a t e r code omit ted . . .

Lines 85–109 show the implementation of Tap’s constructor, createCompo-
nentInstance. The Nub is passed a pointer to a ComponentInstance struc-
ture, one member of which is the array reactionsInfo of reactions defined
earlier. In Pin, all heap memory is allocated at component instantiation;
the call to Malloc on line 94 does this for Tap’s string instance parameter,
and had there been string variables defined by Work they would have been
allocated between lines 104–105.

Example 7.2 Tap Component Implementation (Cont.)

168 // e a r l i e r code omit ted . . .
169 case 1 : // l i s t e n
170 i f (pMessage−>sinkPin == 0 /∗ ^in ∗/) {
171 __marshDx = 0 ;
172 s trncpy (
173 (char ∗) &(_THIS_−>MessageOut . data [__marshDx]) ,
174 ((char ∗)(&pMessage−>data [0])) /∗ in . s ∗/ ,
175 PIN_MAX_STRING_LENGTH) ;
176 __marshDx += PIN_MAX_STRING_LENGTH;
177 //−−− Ca l l asynchronous IPC mechanism −−−//
178 i f (! sendOutSourcePin (/∗ ^out () ∗/
179 pReaction , 0 ,
180 &(_THIS_−>MessageOut) ,
181 (short) (s izeof (_THIS_−>MessageOut . data)) ,
182 IPCPORT_WAITFOREVER,
183 &messageInfo))
184 {
185 // error handl ing , abor t r eac t i on
186 }
187 _THIS_−>Work_CURRENT_STATE = 2 ;
188 // l a t e r code omit ted . . .

Finally, the Nub invokes the sendOutSourcePin from its reaction handlers
to initiate interactions on its source pins. Lines 168–187 shows the code
corresponding to the listen −> send transition from Example 7.1. Had the
source pin been synchronous, sendOutSourcePinWait would have been used

138 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

Figure 7.3: Assembly Controller Pattern

Key:

1

2

Step

Control flow

Component
constructor
Fire start
transition

Lifecycle
step

Load
Containers

Load
Component

Factories

Start Pin
Runtime

Instantiate
Component

Install in
Container

Initialize
Reaction

Configure
Instance

Connect
Components

Start
Components

Start
Services

Start
Clocks

Wait for
Notify Loop

Stop Pin
Interactions

Stop
Clocks

Stop
Services

Stop
Components

SET HIGH
PRIORITY

Stop Pin
Runtime

SET LOW
PRIORITY

STARTUP SHUTDOWN

1

2

INSTANTIATE EXECUTE

on line 178, and the reaction would have blocked until the reaction of the
corresponding (connected) component had completed.

Therefore, the sendOutSourcePin and sendOutSourcePinWait correspond
to ^sourcePin (...) “begin interaction” events, and the code immediately fol-
lowing these calls corresponds to trigger $sourcePin “end interaction” tran-
sitions. Although PCL semantics regards $sourcePin events as “first class”
events that arrive on the message queue, the implementation handles these
as conventional return values of a remote function call.

7.3.2 Assembly Controllers

Another C++ file generated by compiling the Pin specification in Example
7.1 is the assembly controller tapped.cpp. The controller corresponds to the
instantiation of the Tapped assembly on line 22 of Example 7.1. Controllers
use the Container interface summarized in Table 7.1 and the PinComponent
and ComponentInstance interfaces summarized in Table 7.2 to implement
the component and assembly lifecycle summarized in Figure 7.3. The code
fragments beginning with Example 7.3 show how this is accomplished.

Example 7.3: Tapped Assembly Implementation.

46 // e a r l i e r code omit ted . . .
47 // load con ta iner s used in t h i s assembly . . .
48 i f (! (pStandardContainer =
49 loadConta iner (" StandardContainer . d l l ")))

7.3. PIN COMPONENT MODEL 139

PinComponent Interface
unsigned int getNumSourcePins (PinComponent ∗)
Gets the number of component source pins.
unsigned int getNumSinkPins (PinComponent ∗...)
Gets the number of component sink pins.
unsigned int getNumReactions (PinComponent ∗...)
Gets the number of component reactions.
SourcePinInfo ∗getSourcePinInfo (PinComponent ∗...)
Gets information about a source pin.
SinkPinInfo ∗getSinkPinInfo (PinComponent ∗...)
Gets information about a sink pin.
ReactionInfo ∗getReactionInfo (PinComponent ∗...)
Gets information about a reaction.
ComponentInstance ∗createInstance (PinComponent ∗...)
Creates a Pin component instance.

ComponentInstance Interface
BOOL configureInstance (ComponentInstance ∗)
Configures a newly created instance of a component.
BOOL configureContainer (ComponentInstance ∗...)
Configures the component container for an instance.
BOOL setReactionPriority (ComponentInstance ∗...)
Sets the priority of a component instance’s reaction.
BOOL setReactionQueueLength (ComponentInstance ∗...)
Sets message queue length of instance reaction.
BOOL setReactionTimeout (ComponentInstance ∗...)
Sets the timeout of instances reaction.
BOOL setMeasureExecutionTime (ComponentInstance ∗...)
Enables or disables measurement trace events.
BOOL startInstance (ComponentInstance ∗...)
Starts an instance of a component.
BOOL stopInstance (ComponentInstance ∗...)
Stops an instance of a component.
BOOL deleteInstance (ComponentInstance ∗...)
Deletes an instance of a component.

Table 7.2: PinComponent and ComponentInstance Interfaces

140 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

50 {
51 Pr in t f (" Fa i l ed ␣ to ␣ load ␣ standard ␣ conta ine r \n") ;
52 return EXIT_FAILURE;
53 }
54
55 // load f a c t o r i e s f o r components used in t h i s assembly . . .
56 f a c t o r i e s [0] =
57 loadComponent ("Tap . d l l " , pStandardContainer) ;
58 i f (f a c t o r i e s [0] == NULL) {
59 Pr in t f (" Fa i l ed ␣ to ␣Load␣Tap\n") ;
60 return EXIT_FAILURE;
61 }
62 else {
63 Pr in t f ("Tap␣Load␣ Suc c e s s f u l \n") ;
64 }
65 // l a t e r code omit ted . . .

Lines 46–65 illustrate the first two steps in the assembly lifecycle, loading
containers and component factories. Line 57 associates the component fac-
tory for component Tap with the standard Pin container; all instances of
Tap will be managed by a single instance of this standard container. Had we
wished to have Tap instances execute in the λ-SS container, we would have
specified that as an annotation in the PCL specification. In that case, the
controller would still load the standard container (line 48), but then would
have followed by loading the λ-SS container (also a DLL) into the stan-
dard container. In this way, Pin allows containers to be “nested,” possibly
in order to implement interaction constraints required by several reasoning
frameworks.

Example 7.3 Tapped Assembly Implementation (Cont.)

132 // e a r l i e r code omit ted . . .
133 s trncpy (Tap_args . s , " . " , PIN_MAX_STRING_LENGTH) ;
134 Tap_args . numConnectedSources [0] = 0 ;
135 i f ((i n s t an c e s [2] = c r e a t e In s t an c e (
136 f a c t o r i e s [0] , " tap" ,
137 &Tap_args ,
138 s izeof (Tap_args))) != NULL)
139 {
140 Pr in t f (" tap␣ i n s t a n t i a t e d \n") ;
141 } else {
142 Pr in t f (" tap␣FAILED␣TO␣BE␣ i n s t an t i a t e d \n") ;
143 return EXIT_FAILURE;
144 }
145 i f (! con f i gureConta ine r (i n s t an c e s [2] , NULL)) {
146 Pr in t f ("%s ␣ conta ine r ␣ c on f i gu r a t i on ␣FAILED\n" ,
147 i n s t an c e s [2]−>uniqueName) ;
148 }

7.4. PIN RUNTIME ENVIRONMENT 141

149 // l a t e r code omit ted . . .

Lines 132–147 instantiate the Tap component. The call to configureCon-
tainer permits different instances managed by the container to have distinct
container–specific properties. Note that the “0” on the right hand side of
the assignment statement on line 134 denotes the integer that identifies a
connected source pin.

Example 7.3 Tapped Assembly Implementation (Cont.)

187 // e a r l i e r code omit ted . . .
188 i f (sourceAddSinkPin (i n s t an c e s [1] , 0 ,
189 i n s t an c e s [2]−>uniqueName , 0) == FALSE)
190 {
191 Pr in t f ("keyb : keyed␣∼>␣ tap : in ␣ Fa i l ed \n") ;
192 return EXIT_FAILURE;
193 }
194
195 i f (sourceAddSinkPin (i n s t an c e s [2] , 0 ,
196 i n s t an c e s [0]−>uniqueName , 0) == FALSE)
197 {
198 Pr in t f (" tap : out␣∼>␣outp : wr i t e ␣ Fa i l ed \n") ;
199 return EXIT_FAILURE;
200 }
201 // l a t e r code omit ted . . .

Lines 187–199 show the use of sourceAddSinkPin to build the assembly topol-
ogy. The first invocation implements the keyb:keyed ∼>tap:in connection,
while the second implements the tap:out ∼>outp:write connection. As can
be seen, the decision to enforce assemblies to static topologies is one that
could be revisited should a reasoning framework for e.g., mobile computing
be developed in the future. The remaining steps in the assembly lifecycle
are implemented analogously to the examples above, and no further details
are required to understand the basic ideas of the Pin component model.

7.4 Pin Runtime Environment

The case studies reported in Chapter 9 used an earlier version of Pin than
the one available in the PSK. That version used a commercial real–time
extension of Windows (RTX4) as the Real–Time OS layer (refer to Figure
7.1). Because this restricted the availability of Pin to users of this commercial
product, we developed a non–proprietary replacement. Figure 7.4 adds detail
to the bottom two layers of the Pin architecture (Real Time OS (RTOS) and
Pin Interface) to show the essential elements of this replacement.

4See http://www.advantech.com/, last accessed 26 August, 2010. An early technical
description of this product was published 1997 [27].

142 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

Basic Pin Interface

Environment-Specific Extensions

Distrib
MsgQ

Thread
Mgr

Signals

Network

SemaphoreClock

EventQ

ISR

Process

Init

Client
Services

Keyboard

Audio

Switch Ports

Events

AudioIn
Service

AudioOut
Service

Clock
Service

Keyboard
Service

Console
Service

Display
Service

≫

≫

≫

≫

≫

≫

Basic RTOSRTOS Extensions

Pin Interface
R

eal Tim
e O

S

Figure 7.4: Pin Kernel (Layered View)

Basic and Extended RTOS

The RTOS layer is logically partitioned into a Basic RTOS and extensions:

• The Basic RTOS provides many of the essential services of a real–time
operating system, including not just thread scheduling but networking,
distributed message queues, signal handling, etc. Basic RTOS is the
non–proprietary replacement to RTX.

• The RTOS extensions layer includes device drivers and other host plat-
form mechanisms that are used to implement PCL services. For exam-
ple, the Switch extension to RTOS was used to implement the custom
switch device used in the first stage of the substation control case study
(§9.2.3, pp. 180).

RTOS is implemented as a single executable Windows process that uses
a small number of real–time Windows threads. One Windows thread ex-
ecutes the RTOS thread manager (ThreadMgr in Figure 7.4), which itself
implements a fixed–priority scheduler, with a 10 ms scheduling quantum, for
an arbitrary number of Pin threads, each of which corresponds to a threaded
reaction.

Other real–time Windows threads are used by RTOS to implement net-
working services and timer services. RTOS extensions that require inter-
acting with platform devices (such as audio drivers) also use a real–time
Windows thread. This imposes a practical limitation on the number of such
device extensions that can be added to RTOS, because Windows provides

7.5. SUMMARY OF PIN 143

only a small number of real–time priorities, and because each such Win-
dows thread becomes a potential source of scheduling interference for Pin’s
scheduler.

It is worth mentioning that RTOS does not provide a device driver ar-
chitecture that permits third–party plugins. As a consequence, extending
RTOS requires the equivalent of a “kernel mod.” This is a limitation in the
implementation of RTOS that could of course be remedied.

Basic and Extended Pin Interface

The Pin Interface layer is likewise partitioned into a basic and extended
form, with the Basic Pin Interface implementing the component model de-
scribed earlier in §7.3, while the Environment Specific Extensions provides
the various PCL environment specifications that make use of the service
extensions alluded to above.

7.5 Summary of Pin

Pin does a reasonably good job of meeting its original design objectives.

Objective 1: Provide only those features needed for predictability
by construction.

It is difficult to establish that Pin has only those features required by the
Seam. However, the case studies in Chapter 9 demonstrate that it has at
least those features required by several non–trivial demonstrations of pre-
dictability by construction.

Moreover, the Pin component model, as specified by Pin Interfaces sur-
veyed in §7.3, is quite compact, providing primitive but flexible mechanisms
for managing the runtime lifecycle of components and assemblies. It is dif-
ficult to identify any element of Pin Interfaces that could be eliminated
without adversely affecting one the above mentioned case studies—although
this is not a definitive proof.

Overall, Pin satisfies the “spirit” of the design objective.

Objective 2: Provide a simple programming model and an execu-
tion model.

The Pin programming model is remarkably simple, even if its API’s do not
make the development of Pin components or assemblies a matter of just a
few lines of code.

This essential simplicity is demonstrated by the straightforward mapping
of PinCharts to Nubs; custom code essentially runs as a callback of an event

144 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

dispatching loop provided for the component developer by the standard Pin
component container.

The component developer has no visibility to the environment (to other
components or to the runtime) beyond that provided by its container, so
external code dependencies are sharply reduced, which of course leads to
simpler programs.5 Pin also enforces a model of “pure assembly,” wherein
components are integrated by declaratively composing larger systems from
components by connecting their pins (‘∼>’).

Overall, Pin satisfies this design objective.

Objective 3: Provide multiple ways of enforcing design constraints.

The Pin architecture and component model provide several locations for
enforcing constraints:

• Containers can enforce runtime constraints (see λ-SS descriptions in
Chapters 8 and 9).

• Assemblies can enforce runtime constraints as well, though these need
to be programmed into a code generator.

• The Pin Interface can be extended in various ways; a notable example
is the introduction of UML change events and time events as peers to
Pin events.

• The Pin RTOS can also be extended, for example to include a different
scheduling discipline such as “earliest–deadline first,” though these need
to be programmed as kernel extensions to RTOS.

Overall, Pin satisfies this design objective.

Objective 4: Be adaptable to new target environments.

Pin is adaptable in principle because it is relatively small (objective 1), sim-
ple (objective 2) and provides several loci for constraint enforcement (objec-
tive 3).

However, in practice Pin is not quite so easy to work with. The choice
of C rather than C++ as an implementation language for Pin means that
the library interfaces and their implementations must “mimic” useful object–
oriented programming concepts, which leads to a certain level of awkward-
ness. In retrospect, C++ might have been a better choice, even though C++
is regarded somewhat skeptically by developers of hard real–time systems.

5Of course, component developers may use PCL verbatim code to violate this isolation
if they choose.)

7.5. SUMMARY OF PIN 145

It has already been observed that extending RTOS requires “kernel mods”
and therefore deep familiarity with the RTOS implementation.

Overall, Pin fell slightly (but not decisively) short on this design objective.

Objective 5: Be freely distributable and installable on conventional
PC desktops.

Pin is available in the PSK, and can be used to build interesting hard, firm
and soft real–time applications on conventional desktop computers. Pin
satisfies this design objective.

146 CHAPTER 7. THE PIN COMPONENT TECHNOLOGY

Chapter 8

Reasoning Frameworks

147

148 CHAPTER 8. REASONING FRAMEWORKS

Reasoning frameworks are the semantic extension points of a PECT.
They permit automated analysis of designs, and automated prediction of
component and assembly runtime behavior. Designers who use PECT will
decide which reasoning frameworks to use, and therefore which design con-
straints to satisfy, depending on the kinds of behavior they wish to make
predictable by construction. The λ∗ reasoning framework can be used to
reason about (hence predict) latency, schedulability and other “real–time”
system properties; the ComFoRT reasoning framework can be used to rea-
son about (hence predict, and in some cases provably verify) patterns of
behavior over time.

This chapter introduces the overall structure of a reasoning framework in
§8.1, and then provides an overview of the λ∗ reasoning framework in §8.2,
and ComFoRT reasoning framework in §8.6.

8.1 The Structure of Reasoning Frameworks

The top–level, logical structure of a reasoning framework is shown in Fig-
ure 8.1. Its three major internal components are an interpretation, model
representation, and decision procedure:

• The interpretation checks that a design is well–formed to the reasoning
framework, and if so generates the corresponding behavioral model of
the component.

• The (semi) decision procedure uses the generated model to answer ques-
tions posed on the design, for example to predict its worst–case latency.

data flowBehavior Model

Interpretation

Decision
Procedure

Design

Data Process

Doc

dependency

Reasoning Framework RF

I/O

Question

Theory T

RF
Constraints

satisfies

based
on

Answer

KEY:

Deployed

Figure 8.1: Reasoning Framework Structure

8.2. λ∗ REASONING FRAMEWORK 149

The λ∗ and ComFoRT reasoning frameworks are described in a way
that strongly reflects their logical structure:

• Theory: What are the key terms, formulas, relationships, etc., that
define the behavioral theory?

• Constraints: What restrictions are imposed to ensure that theory as-
sumptions are satisfied?

• Decision Procedure: How is analysis automated?

Two points are worth noting. First, although a reasoning framework is an
independently–deployable unit of semantic extension in a PECT, and as such
it is a kind of component in its own right, this chapter is not concerned with
reasoning framework interfaces, or what might be regarded as the component
model of the PECT (in contrast to the component model supported by the
PECT, i.e., Pin). Such details, while important in a practical sense, pose no
special challenges.

Second, many of the detail presented in this chapter have been culled from
existing reports and papers. For λ∗ these include: Overview of the Lamba-
Star Reasoning Framework [60] and Performance Property Theories for Pre-
dictable Assembly from Certifiable Components [67]. For ComFoRT these
include: The ComFoRT Reasoning Framework [34], Overview of ComFoRT:
A Model Checking Reasoning Framework [81], and Certified Binaries for
Software Components [32].

8.2 λ∗ Reasoning Framework

When the correctness of the system requires not only producing the right
result but producing it at the right time, the system is called a real-time
system. Klein and colleagues present a framework to describe and reason
about realtime systems [89].

λ∗ is both a reasoning framework (in that it is packaged as a PECT
component as shown in Figure 8.1) as well as a suite of reasoning frameworks
(in that it contains several distinct theories, interpretations and decision
procedures). This suite of reasoning frameworks evolved to meet the needs
of industrial case studies described in Chapter 9, and under the operation
of a reasoning framework design process called “co–refinement” described in
Chapter 10.

8.2.1 λ∗ Preliminaries

The timing requirements in real-time systems are expressed relative to an
event. An event is some sort of stimulus to which the system has to respond.
An event can be environmental, such as the push of a button or data arriving

150 CHAPTER 8. REASONING FRAMEWORKS

from the network, or it can be timed, that is, generated at specific times or
after a given amount of time elapses. Events can also be classified according
to their arrival pattern. In this dimension, events can be periodic if the time
between arrivals is constant or aperiodic when it is not. The computation
that must be performed upon the arrival of an event is called the response.
The amount of time it takes to complete the response to an event since the
arrival of that event is called response time or latency.

Timing requirements, then, can be expressed as requirements on the
response time. Furthermore, when a requirement imposes an upper bound
on a response time, the upper bound is referred to as a deadline.

Timing requirements are usually classified as:

Hard: Deadlines must be met at all times because failing to do so has severe
consequences. For instance, reacting to a critical overcurrent condition
to prevent damage on an electric motor has a hard deadline.

Firm: Deadlines have to be met most times but occasionally missing a dead-
line does not have severe consequences. In addition, once the response
misses the firm deadline, there is no value in completing it. For exam-
ple, in live video streaming, dropping a video frame once in a while is
not a big problem.

Soft: The value of responding to an event gradually decreases past the dead-
line, which is usually referred to as a soft deadline. For example, re-
freshing the display of some instrument in a panel may have a soft
deadline of 30ms; however, should the refresh occasionally take longer,
it will not cause a failure.

There are three main contributors to the latency of a response that have to
be accounted for to predict it:

1. Execution is the amount of time that the response takes to perform its
computation without any interference from other tasks in the system.

2. Preemption is the amount of time that the response is not able to
execute because the processor is being used by a higher priority task.

3. Blocking is the amount of time that the response is waiting—and con-
sequently, not executing—for a shared resource to become available.

8.2.2 λ∗ Common Theory

The performance model used in λ∗ is based on an analysis technique de-
veloped by Gonzalez Harbour and colleagues [62]. This technique, which
we refer to as “HKL,” works for systems that comprise a set of tasks that
execute concurrently. The work carried out by each task is represented by a

8.2. λ∗ REASONING FRAMEWORK 151

sequence of subtasks that execute serially. Each subtask represents a portion
of the computation that executes at a fixed priority level, does not volun-
tarily yield the processor, and does not access resources for which it could
block. In this way, the subtask does not introduce the opportunity of a
scheduling point—a point in time at which the scheduler makes a scheduling
decision—in the middle of its execution. Changing priority level, acquiring
and releasing shared resources, or entering and leaving critical sections is
done at the boundary between subtasks.

The main attributes of a subtask are its execution time and priority level.

8.2.3 λ∗ Common Behavioral Model

A metamodel for λ∗ is shown in Figure 8.2. The three classes at the top
(i.e., PerformanceModel, Task, and Subtask) directly correspond to HKL: a
performance model defines a collection of tasks, and each task in turn has
a collection of subtasks. The metamodel is more general than HKL, for
example to model tasks that are not periodic and that have non-constant
execution times.

The characterization of event interarrivals is done in two different ways
depending on whether the task is a periodic task (PeriodicTask) or an aperi-
odic task (AperiodicTask). In the former, the period attribute in the derived
class PeriodicTask represents the period of the task or the event that triggers
the task. For the latter, the event interarrival distribution is modeled with
an instance of a Distribution, an abstract class representing different kinds
of statistical distributions.

The two most important attributes for the subtasks are the priority—a
proper attribute in the class—and the execution time distribution, repre-
sented with an instance of the Distribution class as well. The SSTask repre-
sents an aperiodic task that is scheduled by a sporadic server [154].

Not all the concepts in the metamodel are used by each of the reasoning
frameworks in λ∗. For example, unbounded statistical distributions can-
not be used in worst-case latency prediction (for reasons described later).
Therefore, the metamodel is more general than it needs to be for any par-
ticular reasoning framework, but it can be readily adapted to future needs.
Moreno has also developed a more elaborate intermediate representation for
performance models to simplify integration with various performance anal-
ysis tools [126, 127]. For present purposes, however, the metamodel shown
here is sufficient.

8.2.4 λ∗ Common Constraints

The following are basic constraints of the λ∗ performance reasoning frame-
works:

152 CHAPTER 8. REASONING FRAMEWORKS

EString name
EString sourceFile

Performance
Model

EDouble offset
EDouble period

Periodic Task

EString name
EInt taskId
EDouble deadline

Task

Aperiodic Task

EInt backgroundPriority
EDouble budget
EInt replenishment

SSTask

EDouble max
EDouble min

Uniform

EDouble mean
EDouble stdDev

Normal

EDouble mean
Exponential

EDouble value
Constant

EDouble mean
EDouble min
EDouble max

Generic

EString name
EInt priority
EInt pinId

Subtask

Distribution

subtasks
1..N

interArrival-
Distribution

1

tasks
1..N

execTime-
Distribution1

Figure 8.2: λ∗ Metamodel

1. The assembly executes in a single processing unit.

2. Tasks are scheduled by preemptive fixed-priority scheduling.

3. Components complete their work first and then interact with other
components.

4. Each sink pin event produces interactions on all source pins in its
reaction.

5. There are no loops in the connection graph of components.

6. Components do not suspend themselves during their execution. That
means that they do not yield the CPU by sleeping or invoking opera-
tions that could block, such as I/O.

7. Priority of reactions must conform to the highest locker protocol (a.k.a.
priority ceiling emulation).

8. If the computations corresponding to two sink pins within the same
response can be ready to execute at the same time, they must have
different priorities.

8.3. λ-WBA REASONING FRAMEWORK 153

8.3 λ-WBA Reasoning Framework

λ-WBA stands for “latency prediction, for worst case, with blocking and
asynchronous interactions permitted.”

8.3.1 λ-WBA Questions and Answers

λ-WBA predicts the worst-case latency for the response to an event, and
can be used to predict whether the response to an event will complete before
its deadline. The computed value is an upper-bound for the latency because
the worst-case component execution times, blocking, and preemption effects
are assumed to occur simultaneously.

8.3.2 λ-WBA Theory

The underlying theory GRMA, and more specifically a technique for analyz-
ing the schedulability of a set of tasks with varying priorities [62].

According to this theory, each task or response is composed of a sequence
of subtasks that have an associated execution time and priority level. This
makes it possible to analyze situations in which the response to an event is
composed of several computations executing at different priorities, which is
the kind of response found in a component-based system, where each compo-
nent carries out a portion of the response and can execute at its own priority
level if it has its own thread of execution. In this case, the assignment of
priorities can be based on deadlines or the semantic importance of the com-
ponent [62]. In addition, the theory can also account for the effect of the
synchronization between responses when using a priority-based synchroniza-
tion protocol.

The most complex aspect of this theory involves computing the preemp-
tion effect. In regular rate monotonic analysis, each task executes at a fixed
priority, so the set of tasks that can preempt the task being analyzed is con-
stant, and they preempt every time. With the varying priorities method,
priorities can vary throughout the execution of both the task being analyzed
and the other tasks in the system. Therefore, the set of tasks that can pre-
empt the task being analyzed is not constant. The algorithm for computing
the worst-case latency for tasks with varying priorities classifies the other
tasks in the system based on their ability to preempt each of the subtasks in
the task being analyzed.

First, the task being analyzed is transformed to canonical form, a spe-
cial form of the task wherein the priority of consecutive subtasks does not
decrease and that for worst-case analysis is equivalent to the original task.
If P is the priority of the subtask being analyzed, the rest of the tasks are
classified in the following sets:

154 CHAPTER 8. REASONING FRAMEWORKS

H: The set of tasks whose lowest priority is higher than or equal to P. These
tasks preempt every time (when they execute at a priority equal to P,
they are assumed to preempt, the worst effect).

HL: The set of tasks that start at a priority higher than or equal to P and
then drop below P. These tasks preempt only once because when they
arrive they are higher priority, but once they drop to low priority they
cannot complete until the task being analyzed completes.

LH: The set of tasks that start at a priority lower than P and eventually rise
over P. Only one of the tasks in this set can preempt since a task from
this set can only preempt if it is already executing its high-priority
segment when the subtask being analyzed starts; only one of them
could be executing its high-priority segment at that time.

L: The set of tasks whose priority is always lower than P, and these never
preempt. The algorithm then uses these sets in the process of comput-
ing the worst-case response time of the subtask being analyzed.

8.3.3 λ-WBA Constraints

1. Only lower bounded interarrival time distributions are allowed.

2. Only upper bounded execution time distributions are allowed.

Only these bounded distributions are supported because for worst-case
analysis, the worst interarrival and execution times are used. If they were
described by unbounded distributions, then the analysis would assume events
arrive with infinite frequency and components have infinite execution time,
which of course results in the impossibility to schedule the tasks.

8.3.4 λ-WBA Decision Procedure

λ-WBA uses MAST [61], a worst-case analysis tool that implements the pro-
cedure described above. The worst-case latency is computed by constructing
the worst possible alignment of preemption and blocking effects for each task.

8.4 λ-ABA Reasoning Framework

λ-ABA stands for “latency prediction, for average case, with blocking and
asynchronous interactions permitted.”

8.4.1 λ-ABA Questions and Answers

During the execution of a system each job of a response (i.e., each instance
of a response) can be affected differently by other tasks and thus exhibit

8.4. λ-ABA REASONING FRAMEWORK 155

different latencies. λ-ABA predicts the average latency for the response to
an event by taking into account how different jobs are affected by other tasks.
Instead of creating an alignment of tasks that causes the worst case for a
response, as in λ-WBA, λ-ABA uses the alignment that naturally occurs
from the arrival patterns and execution times of the different tasks.

8.4.2 λ-ABA Theory

λ-ABA is, essentially, a discrete event simulation of a collection of fixed–
priority scheduled tasks. Nevertheless, λ-ABA shares many concepts with
λ-WBA (from which it was, in fact, derived), which it uses to improve the
performance of the λ-ABA discrete event simulation. In particular:

• The highest locker protocol is used to do priority-based task synchro-
nization. In this way, the simulation does not need to handle synchro-
nization specifically because it is handled by virtue of its simulation of
fixed-priority preemptive scheduling.

• When all the tasks are periodic, it is possible to find a hyper-period,
defined as the least common multiple (LCM) of the periods of all the
tasks. Hyper-period analysis can be used only if the execution times
of the components are constant or have a negligible variance; in other
cases, looking at a single hyper-period would not allow for the varying
execution times of a component to be sampled.

8.4.3 λ-ABA Constraints

λ-ABA does not introduce additional constraints beyond the λ∗ common
constraints. However, the different evaluation procedures supported by λ-
ABA introduce constraints due to tool limitations:

SIM–MAST Only constant, uniform and exponential interarrival dis-
tributions allowed.
Only constant, uniform and generic execution time dis-
tributions allowed.
Sporadic servers are not allowed.

Extend Only constant execution time allowed.
Only constant, uniform, normal and exponential interar-
rival distributions allowed.
Explicit deadline annotations not allowed.

8.4.4 λ-ABA Decision Procedure

λ-ABA uses a discrete–event simulation to make latency predictions by simu-
lating the execution of the system, generating random event interarrival and

156 CHAPTER 8. REASONING FRAMEWORKS

execution times following the distributions specified in the model. While
running the simulation, they keep track of best, average, and worst latency.
Three different discrete-event simulation procedures are supported: SIM–
MAST [113], QSIM [158], and Extend [91].

Rather than simulate the execution of a system, λ-ABA simulates the
execution of the performance model. The advantage of doing this is that the
simulator does not need to handle blocking (other than the resulting from
fixed-priority scheduling), nor does it need to maintain a call stack. The
latter is due to the fact that the interpretation has transformed all the calls—
both synchronous and asynchronous—into plain sequences of subtasks. That
is, the scheduling within a task has already been done by the interpretation,
leaving less work for the simulation to do.

8.5 λ-SS Reasoning Framework

λ-SS stands for “latency prediction, sporadic server.”
The sporadic server algorithm provides a good quality of service to high–

priority aperiodic tasks while at the same time bounding the invasiveness of
aperiodic tasks on hard real-time periodic tasks. When analyzing the hard
real-time periodic part of the system, a component managed by a sporadic
server container aperiodic can be regarded as a periodic task with execu-
tion time equal to the sporadic server budget, and period equal to sporadic
server replenishment period. Assemblies containing components managed
by sporadic servers may therefore be analyzed with λ-WBA and λ-ABA. A
summary of the sporadic server algorithm can be found in §8.5.2.

8.5.1 λ-SS Questions and Answers

λ-SS predicts the average latency for the response to an event when the
response is carried out by a component managed by a sproradic server con-
tainer.

8.5.2 λ-SS Preliminaries

The sporadic server (SS) scheduling algorithm [154] was invented to solve
the problem of protecting periodic events with hard deadlines from bursts
of high priority stochastic events, while being able to accord high priority
to processing stochastic events. The hallmark of a sporadic server is that it
provides a periodic “virtual processor” within which aperiodic events can be
processed and analyzed.

Implementations of the SS algorithm are based on the general premise
that a server (a process within an operating system, or a thread of control
within a process) that handles high priority stochastic events will execute at
either one of two priorities: foreground (i.e., high) or background (i.e., low).

8.5. λ-SS REASONING FRAMEWORK 157

5 10 12 17 21 23 26 30
18

SS foreground

SS background

Periodic task

Key:

aperiodic
event

replenishment
event

SS budget = 10
SS replenishment period = 18
Periodic task period = 25

time

Figure 8.3: Example Sporadic Server Task Timeline

An aperiodic task will execute at foreground priority if the sporadic server
has not exhausted its execution budget. If the SS has no remaining execution
budget, then the aperiodic task is restricted to background priority. A SS
that has been restricted to background priority is not restored to foreground
priority until its execution budget is replenished.

Implementations of the SS algorithm can reside in the kernel (e.g., the
thread scheduler) or in application space, which vary slightly in detail and
effect. We chose to use an application–level server because it is substantially
easier to implement, and because Pin’s support of component containers
makes this the natural choice. Figure 8.3 provides a task timeline to illustrate
the basic ideas of the application–level algorithm, adapted from [63].

In this example, each aperiodic event takes 5 units of time to be serviced.
The first two aperiodic requests arrive at t = 5 and t = 12 and are serviced
immediately. This is because at t = 5, the execution budget of the SS is
decreased by 5 units of time (as each event takes 5) still leaving a remaining
execution budget of 5 units which permits the SS to execute at foreground
priority. Also at t = 5, a replenishment event is scheduled for t = 23 (i.e.,
for the event occurring at 5 + the replenishment period 18). At t = 12,
the execution budget is again reduced by 5 units of time and replenishment
is scheduled for t = 30, and the SS can still execute at foreground priority.
After t = 12, the execution budget is exhausted and when the next aperiodic
event arrives at t = 18, the SS is restricted to execute at background priority.
The additional execution budget for 5 units of time is replenished at the
scheduled times of t = 23 and t = 30, respectively, for the first two requests
thereby restoring the execution budget of the SS.

158 CHAPTER 8. REASONING FRAMEWORKS

8.5.3 λ-SS Theory

λ-SS uses queueing theory to predict the latency of the response to a stochas-
tic event. The expected or average latency E[W] can be computed as the
sum of the mean queueing time E[Q] and the mean service time E[Sa], as
in Eq. 8.1:

E[W] = E[Q] + E[Sa] (8.1)

Assuming exponentially distributed interarrival times, the mean wait time
can be determined using the Pollacek-Khinchin formula [90], shown in Eq. 8.2:

E[Q] = (
ρ

1− ρ
)(
E[S2

a]

2E[Sa]
) (8.2)

where ρ = E[Sa]/E[T], in where T is the mean interarrival time of the
aperiodic events.

Now, to compute the mean wait time, the mean service time E[Sa] is
needed. However, the service time of the aperiodic task in the sporadic server
depends on the amount of high priority execution budget available during
its execution. An important result presented by Hissam and colleagues [67]
allows us to determine the mean service time from the point of view of the
queue in a special case called continuous background.

While a sporadic server has execution budget, its aperiodic task can ex-
ecute at high foreground priority. However, once the sporadic server budget
is exhausted, its aperiodic task can execute only when the periodic tasks are
not executing, at then only at low background priority. For example, if there
is one periodic task with execution time 8ms and period 10ms, background
execution time will be available for 2ms every 10ms. If the period of the pe-
riodic is reduced while keeping the same utilization, for instance execution
time 0.2ms and period 1ms, background is available in smaller chunks but
more often. If this is taken to the extreme of having an infinitesimal period
for the periodic task, background becomes available for infinitesimal periods
of time infinitely often, hence the name continuous background.

In continuous background, it looks as if the aperiodic task were executing
in a slower processor, with a “degrade” service time that can be computed
as Eq. 8.3:

Ŝa =
Sa

1− Up
(8.3)

where Up is the utilization of the periodic tasks.
What is equally important is that from the point of view of the events

waiting to be serviced in the queue, the apparent service time of the aperiodic

8.5. λ-SS REASONING FRAMEWORK 159

Figure 8.4: λ-SS Performance Envelope

task is always the one given by Eq. 8.3, regardless of whether the task is
executed completely in the sporadic server at high priority, completely in
background, or some hybrid of both. This is because even if it executes at
high priority, the task waiting in the queue still has to wait for the backlog
of periodic work to be worked off before it can be executed. (See [67] for the
proof.)

With the first term E[Q] of Eq. 8.1 computed, the rest of the theory is
concerned with computing the second term, the mean service time E[Sa].
This requires computing the distribution of sporadic server, background,
and hybrid arrivals, and also the distribution of high-priority execution in
the latter. This is done drawing from results of queueing and renewal theory,
the detailed derivations of which may be found in [67].

However, the essence of these theory is expressed by four heuristic equa-
tions that define a performance “envelope” for sporadic server tasks, depicted
in Figure 8.4.

H1: The “no periodics” case. For a given aperiodic service time (Sa) and
inter–arrival interval (Ta), the best-case average latency occurs when
there are no periodics (Up = 0). The latency for this case is predictable
by Eq. 8.1.

H2: The “no background” case. For a given aperiodic service time and inter–
arrival interval, the worst case average latency occurs when the periodic
utilization is large enough so that aperiodics execute only within the
sporadic server. The latency for this case is predictable by Eq. 8.1,

160 CHAPTER 8. REASONING FRAMEWORKS

where Sa = Tss.

H3: The “continuous background” case, applies when 0 < Up < 1−Sss/Tss.

• Given Up, E[Q] can be predicted very accurately by using Eq. 8.2
with Sq = Ŝa.
• E[Ss] can be approximated by a weighted average of Sa and Ŝa,

and therefore lies between those two extremes. As Up gets larger,
Ŝa approaches Tss with diminishing room for background process-
ing. Even though E[Q] increases, E[Ss] approaches Sa.

H4: The “large periodic” case, applies when 0 < Up < 1− ρ. For very large
periodic periods, average latency as a function of Up approximates the
convex combination of the no–periodics (NP) and no–background (NB)
cases:

E[W] = (
E[WNB]− E[WNP]

1− ρ
)Up + E[WNP] (8.4)

where

E[WNP] = (
ρ

1− ρ
)(

[ES2
a]

2E[Sa]
) + E[Sa] (8.5)

and where

E[WNB] = (
ρ̂

1− ρ̂
)
E[Ŝ2

a]

2E[Ŝa]
+ E[Sa] (8.6)

If more precision than the bounds provided by this closed-formula evalu-
ation procedure is required, a simulation-based evaluation procedure can be
used.

8.5.4 λ-SS Constraints

λ-SS introduces several constraints beyond the common λ∗ constraints:

• An assembly may have exactly one sporadic server task (the rest must
be periodic).

• The interarrival distribution of the sporadic server task is exponential.

• The task managed by the sporadic server must have constant execution
time.

• The sporadic server budget must be equal to its execution time.

• The background priority of the sporadic server is lower than that of
any periodic.

8.6. COMFORT REASONING FRAMEWORK 161

8.5.5 λ-SS Decision Procedure

In addition to heuristic equations H1–H4, the aperiodic task in the spo-
radic server, along with the complete set of periodic tasks in the application
(instead of being represented by a single utilization parameter), can be sim-
ulated in Extend. Simulation is used when a more precise estimate of E[W]
is desired between the H3–H4 bounds.

8.6 ComFoRT Reasoning Framework

In formal verification, a system is modeled mathematically, and its specifica-
tion (also called a claim in model checking) is described in a formal language.
When the behavior in a system model does not violate the behavior specified
in a claim, the model satisfies the specification.

8.6.1 ComFoRT: Preliminaries

Model checking [42] is a fully automated form of formal verification that uses
algorithms to check whether a system satisfies a desired claim through an
exhaustive search of all possible executions of the system. The exhaustive
nature of model checking renders the typical testing question of adequate
coverage unnecessary. One advantage of restricting ourselves to finite-state
systems is that verification can be performed automatically. Given sufficient
resources, model checking always terminates with a yes or no answer.

The “Achilles Heal” of model checking is “state space explosion,” where
the size of finite models can grows too quickly, and becomes too large, for
any reasonable definition of sufficient resource (time or memory). And un-
like hardware systems, which exhibit genuinely finite behavior (and which
are now routinely verified by model checking) software typically does not
exhibit finite behavior. For software model checking, additional techniques
are required to construct finite approximations of infinite-space behavior.

Edmund Clarke is fond of remarking that there are only two approaches
to solving state space explosion: abstraction and composition:

• Abstraction: A smaller abstract system is constructed such that if a
claim is satisfied by the abstract system it is also satisfied for the
original system.

• Composition: The verification is partitioned into checks of individual
modules while the global correctness of the composed system is es-
tablished by constructing a proof outline that exploits the modular
structure of the system.

An enormous body of literature has been developed for both of these ap-
proaches, and contemporary software model checkers can be characterized

162 CHAPTER 8. REASONING FRAMEWORKS

largely in terms of which specific abstraction and composition approaches
used.

Abstraction

Abstraction is one of the principal complexity reduction techniques ([15, 39,
105] are just a few of many). Abstraction techniques reduce the state space
by mapping the concrete set of states of the actual system to an abstract set
of states that preserve the actual system’s behavior. Abstractions are usually
performed in an informal, manual manner and require considerable expertise.
(The model checking case study in §9.3.3, pp. 197 is a good illustration of
manual abstraction.)

Predicate abstraction [57] is one of the most popular and widely applied
methods of automated abstraction. It maps concrete data types to abstract
data types through predicates over the concrete data. ComFoRT combines
predicate abstraction with “CEGAR,” an automated technique of iterative
abstraction refinement. Predicate abstraction and CEGAR are described in
§8.6.3.

Composition

The main approach to compositional model checking use some form of
“assume–guarantee” reasoning ([1, 40, 115] are just a few of many). An
assume–guarantee scheme to demonstrate that a system composed of mod-
ules M1 and M2 satisfies the claim Φ proceeds by demonstrating (1) M1 ‖
Φ2 |= Φ1 and (2) M2 ‖ Φ1 |= Φ2 and from this concludes (3) M1 ‖M2 |= Φ.
This approach uses the local claims Φ1, Φ2 as the constraining environments
(assumptions) with regard to the behavior of M2, M1, taken in isolation
fromM1, M2, respectively. Assume–guarantee reasoning has been successful
in verifying large hardware systems, but there are some major difficulties
in its application to software systems, most notably in (1) decomposing the
system (in this case, component boundaries may impose constraints) and (2)
identifying suitable environment assumptions. As with manual abstraction,
manual assume–guarantee reasoning requires considerable expertise.

Bobaru and colleagues have reported promising preliminary results in
obtaining automated assume–guarantee reasoning in a predicate abstraction
and CEGAR framework [21], but these results have not yet been incorpo-
rated into ComFoRT. Earlier experiments in automated assume–guarantee in
ComFoRT achieved some success [36, 29, 35] but are currently not prominent
features in the deployed reasoning framework, and are not further discussed.1

Compositional reasoning techniques used within ComFoRT’s CEGAR are
briefly described in §8.6.3.

1These features are however available in the model checking engine used by ComFoRT,
which is available as a standalone tool.

8.6. COMFORT REASONING FRAMEWORK 163

The ComFoRT interpretation maps PCL specifications to a combination
of ANSI–C and the FSP [111] process algebra used by the model checking
engine. Details on the interpretation can be found elsewhere [83, 81].

Note on Terminology. To maintain readability, the term “component” is
used imprecisely in the following description. Strictly speaking, the Com-
FoRT model checker composes and verifies processes, in the process–algebraic
sense. The ComFoRT interpretation takes care of the details of mapping
component reactions to processes. This task is task made complex by the
fact that components in PCL may define several reactions, and that reactions
may be threaded, in which case they correspond quite naturally to processes,
and unthreaded, in which case modeling them as processes produces an over–
approximation of real concurrency which, though sound, carries with it the
prospect for spurious counterexamples. Thus the ComFoRT interpretation
uses information from PCL assembly specifications to construct a process–
theoretic representation that is more faithful to real concurrency. However,
distinguishing between assembly, component, reaction and process quickly
becomes tedious without adding any clarity. Hence, for the remainder of this
chapter I will adopt the user’s perspective and regard all of the theoretical
aspects of model checking in terms of components and assemblies. In this
it might be useful to regard components as specifying exactly one threaded
reaction each, although this is not a constraint imposed by ComFoRT.

8.6.2 ComFoRT: Questions and Answers

Some system behaviors are best expressed in terms of sequences of actions
that occur over time. For example, we may wish to verify that “resources
are never accessed until locked,” and that “all locks are eventually released.”
Terms such as “until” and “eventually” introduce notions of temporal order-
ings of events, and indicate a need to verify behaviors that involve orderings
of events in logical (as distinct from real) time.

A temporal logic can be used to express such behaviors [139], and is
obtained by extending propositional logic with modal operators that cap-
tures the notion of “until,” “eventually,” and other temporal concepts. Model
checking is a technique for automatically verifying that the system exhibits
behaviors that are specified in temporal logic.

There are two broad classes of behavior that can be expressed in a tem-
poral logic: safety (informally, a specified “bad” condition will never happen)
and liveness (informally, a specified “good” condition will eventually happen).
Alpern and Schneider demonstrate that a wide variety of system properties
can be specified as a conjunction of a safety and liveness property [10].

164 CHAPTER 8. REASONING FRAMEWORKS

8.6.3 ComFoRT: Theory

The basic theory components of ComFoRT are summarized in the following
sections.

Kripke Structures and Search

In classical model checking [42], systems are modeled mathematically as state
transition systems and claims are specified using temporal logic [139].

The model checking problem is succinctly expressed as a search problem
[41] and is typically formulated in terms of Kripke structures:

Definition 8.1 (Software Model Checking Problem) Given a tempo-
ral logic formula f , and a Kripke structure M =< S, I,R, L >, where S is a
finite set of states, M ⊆ S is a set of initial states, I is a transition relation
I ⊆ S × S such that ∀s ∈ S, ∃s′ ∈ S • (s, s′) ∈ I, and L : S −→ 2P is
a labeling function (or semantic interpretation) for atomic propositions P ;
find all states s̄ ∈ S such that M, s̄ |= f .

In this definition, programs (components, assemblies) are represented as
finite (a key term!) transition systems (i.e., the S, I,R components of M),
and L represents propositions about each state in the transition system.
Because there are a finite number of states, model checking reduces to a
search problem, and s̄ can be computed in finite time and space.

Temporal Logics

Temporal logic is used to define formulas that describe system behavior over
time, where the propositions of the logic are behaviors of interest involving
state information (current state or values of variables) or events. Temporal
logic formulas combine such propositions with temporal operators to describe
interesting patterns of propositions over time, for example: “a file is never
written without having first been locked, and all locks on files are eventually
released.”

There are two main classes of temporal logic, computation tree logic
(CTL) and linear temporal logic (LTL). Both temporal logics use s̄ to assign
different, and incomparable, definitions of semantic entailment M |= f , i.e.,
to determine whether the program modeled by the finite transition system
in M satisfies the temporal logic claim f . Which is the better for software
model checking is a longstanding debate. Ultimately, though, both LTL
and CTL are too restrictive when verifying component-based systems; useful
claims often involve patterns of communication among components that are
dependent on the state of the participants.

For example, the Bluetooth L2CAP specification2 asserts:
2Haartsen, J. Bluetooth Baseband Specification, Version 1.0. Published in 2003.

8.6. COMFORT REASONING FRAMEWORK 165

“when an ‘L2CAP_ConnectRsp’ event is received in a
‘W4_L2CAP_CONNECT_RSP’ state, within one time unit, an
‘L2CAP’ process may send out an ‘L2CAP_ConnectInd’ event, dis-
able the ‘RTX’ timer, and move to state ‘CONFIG’.”

As this example shows, both states (W4_L2CAP_CONNECT_RSP and
CONFIG) and events (L2CAP_ConnectRsp and L2CAP_ConnectInd) are re-
quired to properly capture the desired L2CAP behavior.

To increase the usability of model checking for verification of software
designs, ComFoRT introduced a new formalization of the model checking
problem in which state-based and event-based claims could be verified in a
variant of LTL called SE–LTL [30]. The formalization extends the usual def-
inition of Kripke structure shown in Def. 8.1 with a labeled Kripke structure
in which transitions (not just states) are labeled with actions, and where an
event is a particular kind of action.

SE–LTL is formally no more expressive than LTL. However, the claims in-
volving combinations of state and event behavior are much more conveniently
expressed in SE–LTL than conventional LTL. Experiments have shown that
standard, efficient LTL model checking algorithms can be used with SE–LTL,
at no extra cost in space or time [30].

SE–LTL formulas are constructed from the usual operators of proposi-
tional logic augmented with three temporal operators:

• G: “Always.” G p means that p is always true from the current state
forward.

• F: “Eventually.” F p means that p is either true in the current state
or will become true at some point in the future.

• U: “Strong until.” p U q means that p is true until q becomes true and
q must eventually become true.

• X: “Next.” X p means that p must be true in the next state.

Propositions may made about program state (i.e., a program variable)
or about events (i.e., a pin event). So for example G ^s => F [x ==0] means
that if a “begin p” event occurs the program variable x will always eventually
become 0.

Predicate Abstraction

Predicate abstraction automatically constructs an abstract model that de-
scribes the behaviors of the original component in terms of these predicates.
For example, let x, s, and t be integer variables of a component C, let P and
Q be predicates defined as P ← x < 5 and Q← s+ t = 3.

166 CHAPTER 8. REASONING FRAMEWORKS

CFG

t == 0 t != 0

t != 0t == 0

t == 0 t == 0t != 0 t != 0

t == 0 t != 0

return 0 return 1
return 0 return 1

τ τ τ

τ τ

E E

DDCC

A

BB

τ

A

Abstract State Space

t = x

if (t == 0)

return 0 return 1

FINAL

C

A

B

D

E

Figure 8.5: Predicate Abstraction

Once a finite set of predicates is chosen, the states of the corresponding
abstract model are simply valuations of the predicates. Each abstract state
A symbolically represents the set of states of the original component that
agree with A on the valuations of the predicates. For example, the abstract
state (P = True,Q = False) corresponds to all component states where
variable x is less than 5, and the sum of s and t is not equal to 3.

Figure 8.5 illustrates these ideas. The left side shows the control flow
graph (CFG) of a simple component with two integer variables x and t. If
we define a single predicate P ← t = 0, two abstract states correspond to
each control location in CFG, i.e., where P is either True or False. The
right-hand side of shows the abstract model that we obtain via predicate
abstraction. Transitions are labeled with actions that can represent syn-
chronization events (absent here), the return values of procedure calls, and
internal actions (τ). Note that certain abstract states are unreachable (e.g.,
the state corresponding to location C and valuation True for P). Intuitively,
this is true because the component can never take the else branch of the if
statement in location B when t is equal to zero.

The initial set of predicates can be obtained in many ways. The most
common way is to collect formulas appearing in conditional expressions as
well as in the claim to be checked. The user can also specify predicates of
interest, perhaps based on some deeper understanding of the system. New
predicates are generated, if needed, in the model refinement phase, which is
described next.

8.6. COMFORT REASONING FRAMEWORK 167

Predicate
Abstraction

Model
Checking

Counterexample
Analysis

Predicate
Refinement

Theorem
Prover Counterexample

Spurious
Counterexample

Abstraction
Improvements

Boolean Program
C Prog
Claim φ

φ

φ True

φ False

Counterexample

Figure 8.6: CEGAR Loop

Counterexample–Guided Abstraction Refinement

The model constructed by predicate abstraction is guaranteed to be a con-
servative abstraction of the original system, meaning that each behavior in
the original system is represented by some behavior in the model, although
the model may contain more behaviors. As a result, if the model satisfies
the claim, so does the original system [39].

However, a counterexample obtained by verifying the model may be spu-
rious; in Figure 8.5 any counterexample that involved a state corresponding
to location C and valuation True for P would be spurious because that state
could never be reached in the component program. Using a theorem–prover,
the model checking engine analyzes the counterexample and, if it is spuri-
ous, uses this information to derive additional predicates to construct a new,
finer–grained abstraction of the system. The verification is then repeated,
with the refined model. The process continues until either the claim is shown
to be satisfied, the claim is refuted and a counterexample is produced, or the
model checker runs out of time or memory.

This iterative refinement process, depicted in Figure 8.6, is known as
counterexample guided abstraction refinement (CEGAR) [95], and, besides its
use in ComFoRT, has been successfully used to verify industrial hardware [38]
and, when combined with predicate abstraction as in ComFoRT, industrial
software [15][66].

Compositional Reasoning in CEGAR

In addition to automated abstraction procedures, the model checking engine
applies compositional reasoning within the CEGAR framework to further re-
duce verification complexity. Assume that an assembly A consists of compo-
nents C1 . . . Cn executing concurrently. The algorithms that check whether

168 CHAPTER 8. REASONING FRAMEWORKS

a claim Φ holds for A use the following three-step iterative process.

1. Abstract. Create an abstract model M = M1 ‖ . . .Mn. Note that the
construction of theMi’s can be done one component at a time without
constructing the full state space of A. Further, it can be shown that if
A has an error, so does M .

2. Verify. Check if a claim M |= Φ. If it does, report success and exit.
Otherwise, let CE be a counterexample that indicates where Φ fails in
M .

3. Refine. Check whether CE is a valid counterexample with respect to A.
Once again, this is done one component at a time. If CE corresponds
to a real behavior, the algorithm reports a failure and a fragment of
each Mi that shows why ¬(A |= Φ). If CE is spurious, refine M using
CE to obtain a more precise abstract model and repeat from Step 1.

Note that only the verification stage (Step 2) requires the explicit com-
position of components, though this composition always involves only the
abstract models. All other stages can be performed compositionally (i.e.,
one component at a time).

Deadlock Detection in CEGAR

Verifying the absence of deadlock in a composed system is a common re-
quirement, especially for safety-critical systems. As always, if deadlock is
detected, it is highly desirable to be able to provide system designers and
developers with feedback showing what caused the deadlock.

However, despite significant efforts, validating the absence of deadlock in
systems of realistic complexity remains a major challenge. The problem is
especially acute for concurrent processes that communicate via mechanisms
with blocking semantics (e.g., synchronous message-passing and semaphores).
Abstraction and compositional reasoning are less useful in detecting dead-
lock because deadlock is inherently non–compositional, and its absence is
not preserved by standard abstractions.

ComFoRT extends CEGAR with abstract refusals to either detect a dead-
lock or to prove that no deadlock exists. These extensions are grounded in
standard CSP [75]. The resulting CEGAR approach for deadlock detection is
completely automated and provides a counterexample whenever a deadlock
is detected.

Proof Certificates

The outcome of the CEGAR loop shown in Figure 8.5 exhibits an odd asym-
metry. While verification failures are accompanied by a witness—a machine–
checkable counterexample, verification successes must be taken on faith, as

8.6. COMFORT REASONING FRAMEWORK 169

their is no corresponding witness to success. The ComFoRT reasoning frame-
work can, in some circumstances, generate a witness to success, and as such
it may be regarded as a certifying model checker [129, 94].

Chaki shows that CEGAR can be used to extract a witness Ω, and de-
fines a procedure for generating a verification condition (VC) from Ω [28].
He also demonstrates that a component C will satisfy a policy Φ if and
only if VC is valid (i.e., True under all variable assignments in C). The
witness is constructed and shipped by the code producer along with C and
the proof P(VC). The code consumer uses Ω to reconstruct VC, and then
checks P(VC), which is efficient because proof checking is generally a linear–
complexity operation. Therefore, the witness Ω and the proof P may be
regarded as a certificate that C respects Φ.

8.6.4 ComFoRT Constraints

In the case of λ∗ where each reasoning framework constraint is intended
to satisfy one or more analytic assumptions, constraints in ComFoRT are
motivated by the need to reduce the size of the model state space.

The following constraints are imposed by ComFoRT:

• PCL types string, float and array variables are not permitted.

• PCL proc and extern proc are not permitted.

• verbatim code is not permitted, but this constraint can be overridden.

• certifying code generation applies to components only (not assemblies).

8.6.5 ComFoRT Decision Procedure

Strictly speaking, the decision procedure for ComFoRT is CEGAR and its
extension to accommodate deadlock detection.

CEGAR is a semi–decision procedure: it produces correct results if it
terminates, but there is no guarantee of termination. Nevertheless, it works
reasonably well in practice. For example, it was used to find a bug in Micro-C
OS version 2.00, a real-time operating system for embedded software consist-
ing of about 3,000 lines ANSI C. It has also been used to verify an extensive
set of claims against the OpenSSL implementation, an open source imple-
mentation of the Secure Socket Layer (SSL).

Figure 8.7 illustrates the overall structure of ComFoRT. All of the tech-
nical details of model checking described above take place within the “model
checking” box. The remaining elements of ComFoRT provide the interpre-
tations and reverse–interpretations needed to apply the model checker to
components and assemblies specified in PCL. One reverse interpretation is
required to present counterexamples as PinChart sequence charts; another is

170 CHAPTER 8. REASONING FRAMEWORKS

Interpretation Model
Checking

Reverse
Interpretation

C Counterexample

C,
FSP

PCL Specification
Claim φ

φ

ComFoRT

Ω

PinChart
 Counterexample

Concretizer

TRUE

Reverse
Interpretation

C Invariants

PCL Code
Generator

PCL +
Concrete
Invariants

Proof Carrying
Component (Binary)

Abstract
Invariants

Figure 8.7: ComFoRT Workflow

required to embed the abstract proof certificate Ω into a modified PCL spec-
ification. This, in turn, is used by the PCL code generator to produce proof–
carrying component binaries [33]. This approach follows the general scheme
for “proof carrying code” introduced by Necula and Lee [131], with Com-
FoRT playing the role of a fully–automated verification condition generator
(“VCG” in [131]).

Part III

Experiences

171

Chapter 9

Industrial Cases

173

174 CHAPTER 9. INDUSTRIAL CASES

Industrial case studies were crucial to the research described here, in
revealing the structure of the Seam and the pragmatics of achieving pre-
dictability by construction. Case studies also guided the development of the
PECT that is available today in the PSK.

The remainder of this chapter describes the key results of case studies
in electric grid substation automation systems and industrial robot control
systems. §9.1 introduces a few preliminaries pertaining to the structure of
model problems and the statistical techniques used to demonstrate formal
predictability in solutions to these problems. §9.2 and §9.3 provide details
on case studies in substation automation and industrial robot control, re-
spectively. Finally, §9.4 summarizes the key results of these efforts.

9.1 Preliminaries

The terms “model problem,” “model solution,” and “statistical label” appear
passim throughout the case study descriptions that follow. A brief introduc-
tion to these terms is provided in §9.1.1Model Problems and §9.1.2 Statistical
Labels.

9.1.1 Model Problems

The structure of model problems in these case studies is depicted in Figure
9.1, and is analogous in its essential aspects to model problems as described
by Wallnau, Hissam, and Seacord [170].

Hard Problem

Model Problem

1..N

1..N

Overall Problem Statement

Abstractions of Hard Problem

Concrete, Evaluable Solutions to Model Problems

In §9.3.3 See: IEC-61850 Predictable Assembly: Model Problem
In §9.3.4 See: Soft P&C Predictable Assembly: Model Problem

§1.3 Key Questions (Research Goals)
§9.4.1 Robotics Problem Setting
§9.3.1 Substation Automation Systems Problem Setting

In §9.3.3 See: IEC-61850 Predictable Assembly: Model Solution
In §9.3.4 See: Soft P&C Predictable Assembly: Model Solution

In §9.4.2 See: Safe Extension: Model Problem
In §9.4.2 See: Verifiable Components: Model Problem

In §9.4.2 See: Safe Extension: Model Solution
In §9.4.2 See: Verifiable Components: Model Solution

Model Solution

Figure 9.1: Structure of a Model Problem

Essentially, a model problem is a reduction of a design issue to its simplest
form from which one or more model solutions can be investigated. A model

9.1. PRELIMINARIES 175

solution is a demonstration of a design, implementation, or example that
addresses the issue posed by the model problem.

The “art” in defining a model problem is to ensure that the intended
audience—usually a technology adopter—agrees that a successful model so-
lution says something meaningful about the real problems that are abstracted
by the model problem.

9.1.2 Statistical Labels

Statistical models figure prominently in the case studies. One use is descrip-
tive, for example to express the estimated value of component properties, and
the quality of these estimates. A second use is inferential, for example to
express the quality of reasoning framework predictions for some components
and assemblies not yet designed.

We refer to statistical models that describe component and reasoning
framework properties “labels” by analogy with food labels. See [124] for a
brief tutorial discussion on statistical labels for software components and rea-
soning frameworks. See Larsson’s dissertation [98] for a detailed description
of the validation techniques used in the research summarized here.

Component Labels

In general, a property of interest (the “measurand”) is a function of N values:
Y = f(χ1, χ2, . . . , χN) [165]. For λ∗, these values included, in different com-
binations depending upon component type, execution time, blocking time,
and period. We would like to know the true value of Y, component latency.
Of course, the true value of Y or any χ1, χ2, etc., is not obtainable, as the
following definition makes clear:

Definition 9.1 (True Value) True Value: the mean (µ) that would result
from an infinite number of measurements of the same measurand carried out
under repeatability conditions, assuming no systematic error.

Because we can not, even in principle, know the true value of µ, we must
use an estimator for it, produced by statistical methods. For example, we
take a sample of observations of χ, and use its average as the estimator of
m, a population parameter. The uncertainty associated with this estimator
is expressed as the standard deviation s such that the true—and unknown—
value of µ will fall within some interval with some specified confidence. The
factor k is known as coverage factor. When k=1, yields a 68% confidence
interval. That is, we have 0.68 confidence that this interval contains µ.

Typically, we compute the 0.95 confidence interval (k=2), which yields
higher confidence but a larger bound.

176 CHAPTER 9. INDUSTRIAL CASES

Confidence Interval λ-ABA

Proportion (ρ)................ 80%

Upper Bound (MRE)..... < 1%

Confidence (γ).............. > 99%

Figure 9.2: λ-ABA Confidence Interval

Prediction Labels

We use γ “confidence” and ”tolerance” intervals to characterize how effective
a property theory is likely to be for future predictions, where γ is typically
chosen to be either 95% or 99%, but is sometimes itself calculated.

γ Confidence Interval We use confidence intervals if we want to compute
the proportion p of a population of a population that will satisfy stated
interval. The interval is specified in measurement units appropriate for
a property, and the probability ρ (called the “population parameter”,
not to be confused with “confidence”) is calculated an object in the
population will satisfy that interval.

γ Tolerance Interval We use tolerance intervals if we want to compute
the interval that contains some proportion p of a population. The
population parameter ρ is specified, and the interval is calculated is
calculated.

For prediction labels we are interested in the describing the magnitude
of relative error (MRE) between the assembly latency predicted by a theory,
and the latency observed in the environment:

Definition 9.2 (Magnitude of Relative Error)

MRE =
|a.λ− a.λ′|

a.λ′
(9.1)

where a.λ and a.λ′ are the predicted and measured latency of assembly a,
respectively.

Figure 9.2 shows the statistical label assigned to the λ-ABA reasoning
framework. The label may be interpreted as saying “80% of all assemblies
well–formed to λ-ABA (i.e., predictable by construction with respect to
λ-ABA) will exhibit less than 1% MRE between actual and predicted per-
formance, and we have more than 99% confidence in this upper bound.”

9.2. SUBSTATION AUTOMATION SYSTEMS: SOFT P&C 177

9.2 Substation Automation Systems: Soft P&C

The electric power grid (where no confusion will arise, simply “the grid”) is
responsible for generating electrical power, transmitting electricity over short
and long distances, and, ultimately, for distributing power to consumers.
The electric grid is a quintessential example of “critical infrastructure” that
requires the application of disciplined engineering of the highest order.

Substations are nodes in the grid that (among other things) monitor,
protect and control transmission lines external to the substation, as well as
a variety of equipment managed by each substation, including transformers,
switches, circuit breakers, and meters. Substation operations are performed
by substation automation systems (SAS), which may involve human opera-
tors or be wholly autonomous.

The technical and business drivers that shaped the research are described
in §9.2.1. Background on the industrial standard IEC-61850, which had
a strong influence on the work, is provided in §9.2.2. The research was
carried out over several years, which for convenient exposition are described
as corresponding to two stages of work. The first stage (§9.2.3) concentrated
on developing the technologies needed to demonstrate the technical feasibility
of the approach, and the methods used to develop those technologies. The
second stage (§9.2.4) concentrated on demonstrating the practical feasibility
of the approach by having a collaborator from ABB use the infrastructure
developed in the first stage to tackle a more complex design problem.

9.2.1 SAS Problem Setting

As is most industry sectors, the electricity industry is increasingly reliant on
digital technology as a way of reducing the cost of products while also im-
proving their quality and introducing new and competitive product features.
The most prominent business drivers that influenced the direction of this
research (with the first item adding urgency to the remaining two) were:

• New technical and business strategies are needed to meet the explosive
growth in demand for SAS in developing economies, notably China and
India.

• SAS must be susceptible to third–party integration using from products
supplied by different, and possibly competing vendors.

• SAS functions that currently execute on dedicated real–time computers
must be consolidated to execute on shared, commodity computers.

One strategy for meeting these business drivers is Soft Protection and
Control (Soft P&C), which, for the purpose of this research, is defined as
follows :

178 CHAPTER 9. INDUSTRIAL CASES

Definition 9.3 (Soft Protection and Control) A complete substation au-
tomation system that is implemented on a centralized (more or less standard)
industrial personal computer, with no proprietary hardware.

The transition from substation automation systems constructed from
proprietary, specialized (and, historically, analog) equipment to Soft P&C rep-
resents a significant change for electricity industry. However, when viewed
from the vantage of real–time computing, the technical challenge of imple-
menting major SAS functions on commodity computers and operating sys-
tems are not particularly daunting. Instead, the real challenge is in per-
suading a relatively conservative industry and customer base that the cost
and schedule benefits of Soft P&C do not come at the expense of reliability
[99]—the PECT emphasis on producing justifiable confidence in predicted
behavior was a good fit to meet this challenge.

9.2.2 Preliminaries on IEC–61850

The IEC–61850 Communication Networks and Systems in Substations[78]
standard played an important role in the case study.1 While there are many
potential benefits promised by the adoption of IEC–61850, one claim fre-
quently encountered ([26, 92] are just two of many cases) is that IEC 61850
allows, with some paraphrasing, “free allocation of functions to devices”,
meaning that devices previously dedicated to one or some other small but
fixed number of functions could be used for an open–ended number of func-
tions, subject to performance or other resource constraints, and “free” can
be taken to mean “third party.”

Preiss and Wegmann [140] further speculated (“claimed” would be too
strong) that, if IEC 61850–defined functions can be systematically mapped
to software components, then “free allocation” can be extended to include
“free composition” as well: more complex functions might be composed from
a library of (possibly third–party) SAS components; the component parts of
these functions might be allocated to different devices or to a single device,
and each device might have allocated to it multiple functions or component
parts of functions.

The kind of flexibility envisaged by Preiss and Wegmann would benefit
from predictability by construction. We might go further to suggest that
predictability by construction is a prerequisite to this vision if, in addition to
compositional flexibility, we also want to a) drastically compress the cost and
schedule to engineer and commission substations, and b) engender justifiable
confidence in the quality of the resultant SASs in the minds of customers,
regulators and industry partners.

1See http://www.abb.com/industries/us/9AAC30200310.aspx?country=US, last ac-
cessed on 12 August 2010, as an indicator of ABB’s business interests in IEC 61850.

9.2. SUBSTATION AUTOMATION SYSTEMS: SOFT P&C 179

Substation
Automation

System

Logical
System

Physical
System

Function Device

Logical
Node LN

Physical
Device

Data
Object

Logical
Connection LC

Physical
Connection PC

2
1..n

1..n1..n

11

2
1..n

1..n

+runs
on

+exchanged
over

1..n 1

+connect+connect

1..n
+distrib

IED-1 IED-2

IED-3

LN-1

LN-2

LN-3

LN-4

High Voltage
Device

LC-3 PC-1

PC-2

KEY: UML

LC-2
LC-1

Composed,
Allocated
Function

1..n 0..1
+map

to

Example
Deployment
View

Logical
View

Figure 9.3: Relevant IEC 61850 Concepts

With this in mind, IEC–61850 took on a prominent role in the case
study, serving as an authoritative source of SAS function definitions, extra–
functional requirements, and model problems in predictability by construc-
tion in Soft P&C. Figure 9.3 (adapted from [140]) summarizes a number of
important terms used by IEC-61850 used in the Soft P&C case study:

• The left side of Figure 9.3 shows the logical system—one or more SAS
functions (sometimes called logical functions or logical nodes), connec-
tions among functions, and data objects transmitted on these connec-
tions. This view constitutes “engineering data” maintained in by tools
in the SAS engineering environment. IEC–61850 defines standards (for
example, it defines a configuration language) for the representation or
this data. The logical system is then allocated to the physical system.

• The right side of Figure 9.3 is a simple illustration of a logical SAS
mapped to a physical SAS. The term “intelligent electronic device”
(IED) in this research always refers to a computer of some kind. In
this example, four logical functions are composed into an unnamed
composite function; each is also deployed on one of three IEDs. The
composed function manages a high voltage device attached to one of
the IEDs, although the figure is not detailed enough for the reader to
deduce this.

180 CHAPTER 9. INDUSTRIAL CASES

9.2.3 Stage–1: Developing the Basic PECT

Very little technical infrastructure was available at the outset of this case
study, and it therefore a two–stage approach made sense. In the first stage
(described in this section) we would produce the required tooling (component
technology, reasoning frameworks, specification notations, semantic interpre-
tations to reasoning frameworks, measurement and validation infrastructure,
etc.) and use this to establish the overall technical and practical feasibility
of the Seam and using PECT to automate the Seam. In the second stage
(described in §9.2.4) we would apply the results of Stage–1 to a more de-
manding model problem, the details of which would depend on the outcome
of Stage–1.

IEC–61850 Predictable Assembly: Model Problem

Working with Preiss and others at ABB, we defined three classes of Soft
P&C assembly from which model problems in predictability by construction
could be defined:

1. Operator assemblies. These are the operator interface subsystems of an
SAS, and are composed substantially from human–machine interface
(HMI) components.

2. Control assemblies. These are the subsystems of an SAS that provide
protection and control of grid equipment, and are composed from IEC-
61850 components.

3. Combined operator and controller assemblies. These are subsystems
of an SAS that allow operators to interact with grid equipment, and
are composed from operator assemblies and controller assemblies.

These classes are depicted in Figure 9.4, along with the nominal confidence
intervals we required for predicted latency for each class of assembly.

Figure 9.4 may be interpreted as describing a hierarchy of PECTs, one
for composing controllers from components, one for composing operator sta-
tions from components, and one for composing substation automation sys-
tems from operator station assemblies and controller assemblies. We initially
thought this might be a possible result, similar (in some ways) to Szyperski’s
tiered component systems [160]. As it turned out, however, one PECT was
sufficient for all three classes of assembly.

Stage–1 focused on building the technical infrastructure (the PECT) and
defining the design methods and workflows for developing a PECT, and in
particular for designing and validating reasoning frameworks. The prediction
requirements for these model problems did not pose a severe test of GRMT,
but posed enough of a test to make exercise meaningful, that predictability
by construction can be achieved for a well–defined class of design problems,

9.2. SUBSTATION AUTOMATION SYSTEMS: SOFT P&C 181

Operator

Proportion (ρ)............. 80%
Upper Bound (MRE)...10%
Confidence (γ)............ 95%

Controller

Proportion (ρ)............. 80%
Upper Bound (MRE)... 5%
Confidence (γ)............ 99%

Operator + Controller

Controller-1 Operator-1

Controller-2

Operator + Controller

Proportion (ρ)............. 80%
Upper Bound (MRE)...10%
Confidence (γ)............ 95%

Figure 9.4: Initial SAS Model Problems

Figure 9.5: Concrete 61850-Based Controller Assembly

182 CHAPTER 9. INDUSTRIAL CASES

and to establish that a PECT and its reasoning frameworks can be tuned to
different required strength of evidence for predictions, and different degrees
of intrusiveness on designer and programmer prerogatives.

Details of what we learned about the PECT design methods and work-
flows are presented later in the discussion of Co–Refinement, in §10.2 on
pp. 213. Much of that discussion is concerned with the stepwise develop-
ment of the λ∗ performance reasoning framework—its theories, interpreta-
tions, and validation. Those details will not be repeated here.

IEC–61850 Predictable Assembly: Model Solutions

While it may be possible to develop and validate a reasoning framework using
only synthetic components and assemblies, a small number of concrete model
problems, with “real” components and assemblies, is needed as a proxy for
reality—as a kind of plot device to get the PECT designers “into the shoes”
of the end–user, and conversely to help our end–user collaborators to relate
to what is, after all, an integration of several non–trivial technoogies. Thus,
we specified assembly instances for each of the classes of assembly illustrated
in Figure 9.4. We used these concrete instances to “spot check” the PECT
at various stages of its co–refinement.

For the controller class, we used the controller assembly depicted in Fig-
ure 9.5 (the other exemplars can be found in [68]). This assembly controls
a switching device (not shown in the figure), custom fabricated for use in
Stage–1. The device consists of a software and hardware switch arranged in
series, with the idea that we want the software switch to “trip” to demonstrate
soft protection, but have the hardware switch as backup and to report fail-
ures of soft protection. The OPCGateway services permit interactions among
operator and controller assemblies. The XCBR, CSWI, TCTR, TCVR, PIOC,
and MMXU component instances each corresponds to a logical node defined
by IEC-61850. The functional roles of these components, and of other com-
ponents either fully specified in PCL or wrapped from legacy software, are
summarized in Table 9.1.

The switch device had a rheostat that an operator/experimenter could
use to vary line current (which could also be done programmatically, of
course), and a light that would indicate situations where the hardware switch
was tripped due to missed software deadlines. While the combined controller
and device was little more than a “toy,” it served its above–stated purposes
admirably.

Model Checking Analysis

For the most part, all of the work in Soft P&C (both Stage–1 and Stage–2)
concentrated on formal predictability and predictability by construction of
real time behavior. However, we also used the opportunity to initiate work

9.2. SUBSTATION AUTOMATION SYSTEMS: SOFT P&C 183

Name Role Description Keya

CILO Station or Bay
Interlocking

Interlocking may be totally centralized or
totally decentralized.

2/g

CSWI Switch Con-
troller

Controls all switching conditions above
process level.

1,2/g

IHMI Operator
Interface

Front–panel interface at bay level, local
operator interface at station level.

2/g

TCTR Current Trans-
former

Delivers current as sampled values. 1

TCVR Voltage Trans-
former

Delivers voltage as sampled values. 1

PDIF Differential
Protection

Protect against percentage, phase angle
or other quantitative difference of two
currents or other quantities.

2/g

PIOC Instantaneous
Overcurrent
Protection

Protect against an excessive value of cur-
rent or an excessive rate of current rise.

1

PTOC AC Time
Overcurrent
Protection

Act as a relay when the AC input current
exceeds a predetermined value.

2/w

PTOV DC Overvolt-
age Protection

Act as a relay when its input voltage is
more than a predetermined value.

2/w

PTRC Protection
Trip Condi-
tioning

Connects the “operate” signal of PIOC to
trip signal of XCBR. If condition of trip-
ping the XCBR is met then the circuit
breaker is to trip.

2/g

MDIF Differential
Measurements

Acquire differential values from current
and voltage transformers.

2/g

MMXU Measurement Acquire values from current and voltage
transformers.

1,2/w

XCBR Circuit
Breaker

Models switches with short circuit break-
ing capability.

1,2/g

XSWI Switching De-
vices Unable
to Switch
Short Circuits

Line switch is a switch used as a dis-
connecting, load-interrupter, or isolating
switch on an AC or DC power circuit.

2/g

aStage–1 components (‘1’) are hand written; Stage–2 components (‘2’) are generated
from PCL (‘/g’) or are generated wrappers (‘/w’) for legacy SAS code.

Table 9.1: IEC 61850 Components Implemented in Pin

184 CHAPTER 9. INDUSTRIAL CASES

on the development of a reasoning framework for verifying component and
assembly behaviors specified in some form of temporal logic, or possibly in
some other automata–theoretic representation. We were inspired in partic-
ular by the Kramer and McGee’s use of the FSP process algebra to specify
and check the behavior of concurrent Java programs [110] and software ar-
chitectures specified in Darwin [112, 55], although there were other examples
as well.

The choice of action language for PCL had yet to be decided (and was not
implemented until Stage–2). We had contemplated using FSP, or possibly
CSP [75], to specify component behavior. However, we ultimately judged
that such notations are too arcane for practitioners. The Java/FSP approach
was ruled out because the FSP model checker, the Labeled Transition System
Analyser (LTSA), did not scale beyond trivial models, and because C and
C++ rather than Java are the programming languages of choice for real–
time and embedded software. In lieu of deciding on an action language for
PCL, we used CSP as a starting point because it is more expressive than
FSP, and because we had already begun to formalize the semantics of the
Pin component model that was being also being developed.

As a first step we specified the behavior of CSWI in CSP. CSWI was chosen
because it implemented a relatively simple (though conventional) protocol
for opening and closing switches, and for selecting and deselecting switches
prior to changing their open/close position. As a further simplification, we
restricted the model to externally visible behavior on Pins, and left to later
modeling program variables and other such code–level details (which at this
point we were not certain should be modeled at all). We knew of course that
whatever model checker we used for initial experiments would be suscepti-
ble to state space explosion problems, and we preferred to deal with those
problems separately. The interface specification for CSWI is:

typedef enum {on , o f f } TSelect ;
typedef enum {open , c l o s e } TPos ;
component CSWI()
{

sink synch ops e l (consume TSelect va l) ;
sink synch oppos (consume TPos va l) ;
source synch s b o s e l (produce TSelect va l) ;
source synch sbopos (produce TPos va l) ;

}

Using CSP at least had the advantage consistency with the work that
was occurring simultaneously to define the compositional semantics of Pin
[82]. While we could have used FDR directly on the CSP model, we also
anticipated the need to use a range of model checkers, some already being
used in industry, and others that were only just emerging from research labs.
These considerations suggested the need to define an interpretation, from

9.2. SUBSTATION AUTOMATION SYSTEMS: SOFT P&C 185

waiting

unselecting

selecting
deselecting

opening closing
selected

sbopos/
sbosel_off

sbosel/oppos

opsel_on/sbosel_on

obsel_off/sbosel_off
sbosel/opsel

sbopos/
sbosel_off

opsel_off/sbosel_off

sbosel/opsel
opsel_on/sbosel_on

oppos_close/sbopos_close
oppos_open/
sbopos_open

Figure 9.6: Model Checking Interpretation of CSWI

whatever action language we ultimately would choose, to a neutral semantic
representation that could be further translated to notations used by specific
model checkers.

The CSP model of CSWI is not shown here, but its interpretation to a
neutral semantic representation (which was formally defined but done using
“paper and pencil”), for which purpose we chose UML Statecharts, is shown in
Figure 9.6. The Statechart follows the conventions introduced in Chapter 6
to denote the CSP interpretation of pin p as a pair of CSP events p and p̄, that
denote begin/end interaction events, respectively, on p. Also, parameters
are encoded directly in the events themselves as “_value” suffixes on event
names. For example, the rightmost transition from waiting to selecting is
triggered by the arrival of a request on the ‘opsel’ sink pin with the parameter
value ‘on’, and this results in CSWI generating a request on its ‘sbosel’ source
pin, also with the parameter value ‘on’.

A further interpretation was defined from the Statechart representation
to the input language of the NuSMV model checker [37], and then various
behavioral claims were specified for the component and verified by the model
checker, for example:

AG((state = waiting)∧ (input = opsel_on)→ AX(output = sbosel_on))

which specifies the “liveness” claim (informally: something good eventually
happens) that for all paths globally (AX), whenever CSWI is waiting (state =
waiting) and the operator select arrives (input = opsel_on), the sbo select
signal (output = sbosel_on) will eventually arrive (AX). And,

¬E[¬(output = sbosel_on) U (output = sbopos_open)]

186 CHAPTER 9. INDUSTRIAL CASES

which specifies a “safety” claim (informally: something bad never happens)
that it is always impossible for the switch top be opened before it has been
selected.

The CSWI model and its two–step interpretation to NuSMV served one
analogous purpose to the “toy” switch and assembly by facilitating dialog
between different stakeholders in the PECT development activity, in this
case between experts in temporal logic model checking and industry experts
in substation automation. From these dialogs, we made several observations
and reached an important (if tentative) conclusion about the design of a
model checking reasoning framework.

A model checking reasoning framework would impose on its users a steep
learning curve. Temporal logics and temporal logic model checking were (and
still are) almost completely unknown to software engineering practitioners,
even those who had some familiarity with “formal methods” for specifying
program behavior. The steepness of the learning curve was (and still is) exac-
erbated by the relative immaturity of model checking technology (compared
with GRMA), especially regarding the treatment of state space explosion.
According to Giannakopoulou [55], this in turn requires the users of model
checkers to pick and choose from among various arcane heuristics to amelio-
rate the effects of state space explosion. And this, in turn, required famil-
iarity with the algorithms used by the model checker, and with a substantial
amount of model checking theory.

Model checkers tend to adopt a state–based approach (such as NuSMV),
which models behavior as sequences of changes to program state variables,
or a transition–based approach (such as LTSA), which models behavior as
sequences of transition events. Both approaches model equivalent behaviors,
but of course the syntactic form these claims take, and the mental models
they impose, are quite different. However, component systems such as Pin
are naturally thought of as combining state–based behavior (changing state
in component instances) and event–based behavior (sequences of interactions
among component instances). Forcing users to an exclusively state– or event–
based style of specification was unnatural, and introduced additional and
wholly artificial complexity to the use of model checking technology.

For a PECT–style model checking reasoning framework to succeed, it
would need to hide the substantial complexity of model checking tools from
its users, and we were uncertain about the extent to which this could be
achieved. However, two important design decisions were made for the model
checking reasoning framework:

1. We required a verification model (and associated temporal logic) that
combined event–based and state–based behavior; this ultimately led
us to develop the state–event approach [30] that was later adopted by
ComFoRT.

2. We decided to adopt UML Statecharts as a basis for specifying the

9.2. SUBSTATION AUTOMATION SYSTEMS: SOFT P&C 187

behavior of Pin components, because it offered a notation that com-
bined states and transitions, and was familiar to software engineering
practitioners.

One additional decision was made as well: to suspend further co–refine-
ment of the model checking reasoning framework while we worked out the
details of how to do 1 and 2, above. We would not return to the subject of
model checking Soft P&C components or assemblies. That particular thread
of investigation was picked up in the case study described in §9.3.

9.2.4 Stage–2: Distributed Soft P&C

Attention shifted in Stage–2 to testing the PECT instance on a more de-
manding range of concerns. We wished to determine:

• Would the λ-ABA validation work on “real” rather than synthetic as-
semblies?

• Were the design rules imposed by the PECT overly restrictive for prac-
titioners?

• Did the overall PECT apparatus support a complementary architec-
t/programmer view of the Soft P&C design problem?

Soft P&C Assembly Model Problems

Thomas Werner from ABB Corporate Research, Switzerland joined the re-
search effort at this point to play the role of SAS engineering practitioner,
as well as the role of lead designer using the prototype PECT to develop a
prototype Soft P&C–based SAS. As before, the first order of business was
developing an appropriate model problem with which to answer our ques-
tions.

IEC-61850 defines several classes of SAS. For the model problem we chose
to design a prototype in the D2 “Medium Distribution Substation” class, the
most common class of SAS. This class is defined as having more than five but
fewer than twenty elements (feeders, transformers, etc.) and a station–wide
communication network. Figure 9.7 depicts the line diagram of the system
on the left, and the allocation of Soft P&C functions to two IEDs (SoftPC–A
and SoftPC–B) on the right. The substation elements labeled Qx (x = 0, 1,
etc.) denote various kinds of switch; BBx denote busbars, and T1 denotes a
transformer. Seven concrete demonstration scenarios were defined:

1. SoftPC–A and SoftPC–B operate correctly in steady–state.

2. Manual operation of switches by substation operator.

3. Manual setting of equipment parameters by substation operator.

188 CHAPTER 9. INDUSTRIAL CASES

X
X

BB0

BB1

BB2

Q0

Q1

T1

Q9

Q0

Q1 Q2

Q9 Q8

Protect:
Differential current

Control:
Q0, Q1, Q9
Interlocking

Monitor:
Differential current

Protect:
Overcurrent, overvoltage
Differential current

Control:
Q0, Q1, Q2, Q8, Q9
Interlocking

Monitor:
Differential current
Measurement

SoftPC-A

SoftPC-B

SCHEMATIC VIEW ALLOCATION TO IED

simulation events
(IEC-61850 SAV)

P/C/M
Scope

Figure 9.7: Soft P&C Top–Level Logical View

9.2. SUBSTATION AUTOMATION SYSTEMS: SOFT P&C 189

4. Function tripping (overcurrent and differential protection.)

5. Reporting of protection events.

6. Synchronization of SoftPC–A and SoftPC–B.

7. Predictability by Construction.

Scenarios 1–3 show the system under routine operation. Scenarios 4–6
show the system in various states of protection: responding to a protection
event (scenario 4), producing timely reports of a protection event (scenario
5) and bringing the distributed system back to steady state (scenario 6).
Scenario 6 demonstrated the capability of a substation designer to change the
design/implementation by replacing, modifying or reallocating components;
predicting the timing behavior of the modified system; and then comparing
actual and predicted timing behavior under the scenarios 1–6.

Soft P&C Assembly Model Solutions

We used a suite of IEC-61850 interoperability testing tools used by Seimens,
ABB and Areva, in conjunction with device simulators, to approximate a
physical implementation of the substation. The interoperability testing tools
generate synthetic sampled values (IEC–61850 SAV messages), which are
then packetized and fed to equipment simulators. The details of these tools
are not essential to understand the results of the experiments, and are not
further discussed.

The experimental setup is depicted in Figure 9.8. Each of the boxes
denotes a commodity laptop running a conventional version of Microsoft
Windows. The SoftPC-A and SoftPC-B laptops each execute an assembly
of IEC-61850 components that implement their allocated protection, control
and monitoring functions. Packet Gen posts the synthetic sampled data to
the network. Time Tracer performed event capture and after–run timing
analysis. An experiment controller laptop (upper rightmost in the figure)
provided a console view of the substation, hosted the device simulators, and
hosted the PECT interactive development environment to permit interactive
experimentation with different substation configurations. IEC-61850 Generic
Object–Oriented Substation Event (GOOSE) messages are produced and
consumed by SoftPC’s A and B to communicate commands, report status
or other events of interest, and are also generated by the experimenter from
the console to simulate commands issued by a substation operator.
All scenarios were successfully demonstrated.

9.2.5 Summary of SAS Case Study Results

On completing Stage–2, we had a working instance of a PECT that in-
cluded all of the elements depicted in Figure 5.1, pp. 76, excluding the Com-

190 CHAPTER 9. INDUSTRIAL CASES

SoftPC-B

SoftPC-A

SoftPC Console

Time TracerPacket Gen

Ethernet
9-2 SAV
9-2 GOOSE

9-2 SAV
9-2 GOOSE 9-2 SAV

9-2 GOOSE

9-2 GOOSE

X
X

BB0

BB1

BB2

Q0

Q1

T1

Q9

Q0

Q1 Q2

Q9 Q8

Switches (Sim)
PECT IDE

Figure 9.8: Soft P&C Experimental Setup

FoRT model checking framework, and the λ-SS component of λ∗ (which is
the subject of the case study in §9.3). A substantial technology infrastruc-
ture had been developed. However, several questions were also posed on
entry to Stage–2. The case study is concluded with brief answers to each.

Would the λ-ABA validation work on “real” rather than synthetic
assemblies?

Of course it is important to caveat “real”: we are referring to a prototype
simulated class D2 substation rather than a physical mock–up. Nonetheless,
I claim that the essentials of the Seam part of the approach, demonstrated in
the “method” used to develop the prototype, and in the form of component–
based buildtime and runtime used in the prototype solution, would carry
over in their entirety to a reasonable next evaluation step involving a physical
system.

It is also worth observing that the IEC–61850 components and SoftPC-
A/B assemblies developed wholly within the PECT were not trivial. The
PCL source specification of SoftPC-A is provided in Appendix B §B.1, pp. 262,
and requires 16 IEC–61850 component types, 38 component instances, 128
pin connections, and 100 annotations, the great majority of which define the
λ-ABAanalytic interface of components and their various denotable sub-
structures. An analogous degree of reality can be seen in the source listing
of the PTRC component found in Appendix B §B.2.

On balance, the case study adequately demonstrates the viability of the
approach for problems of realistic complexity.

9.2. SUBSTATION AUTOMATION SYSTEMS: SOFT P&C 191

Were the design rules imposed by the PECT overly restrictive for
practitioners?

Here it is important to distinguish restrictions due to limitations in tooling
(including all aspects of automation and language design) from those that
were intentionally imposed on the PECT users and genuinely impinge on a
necessary degree of the user’s design freedom. My concern here is with the
latter.

At no point did the basic apparatus provided by PCL, Pin, or λ-ABA im-
pose any meaningful restriction of design freedom, and that all restrictions
that were were deliberately imposed by PCL or λ-ABA were more than off-
set by corresponding gains in predictability. After some sufficient number of
experiences developing assemblies that seldom differ in their predicted and
actual timing behavior by more than 1%, we came ultimately to expect this
as a norm.

It should also be noted that several of the IEC–61850 component types
used in the prototype substation were not developed in PCL, but were
industrial–strength library components provided by ABB and wrapped by
PCL , and therefore made available as Pin components. PCL wrapper tem-
plates were developed that, with the code generator, make this trivial to
do, assuming the legacy code is compiled, native code (ideally, as libraries,
as was true of this case study). The ability to wrap external code, or to
drop through the trap door of “verbatim” code in PCL, makes it easy to
incorporate existing functions into Pin.

Conversely makes it easy for designers to sidestep any restrictions that
might encounter—with consequences on predictability, of course.

Did the overall PECT apparatus support a complementary archi-
tect/programmer view of the Soft P&C design problem?

I claim that the case study demonstrated this complementarity in a com-
pelling way: units of composition, units of deployment, units of analysis all,
from the architect and programmer perspective, coincided with the notion
of Pin component.

Scenario 7 also demonstrated one of the stated objectives of the Seam—to
support a rational design process whereby design decisions can be objectively
justified as making progress towards a possibly distant design goal. In the
generate and test metaphor of design search, the case study demonstrates
an analytic approach to “test” and an analytically–informed constructive
approach to “generate.”

192 CHAPTER 9. INDUSTRIAL CASES

9.3 Industrial Robotic Control Systems

ABB is a leading provider of industrial robots. One ABB product line archi-
tecture for industrial robot control, called “S4” in this case study, had been
a substantial commercial success and had been in deployment for several
years.

Various enhancements to S4 were being considered, one of which was
called the “Open Robot Controller” (ORC). In the business model supported
by S4, ABB licensed S4 to other ABB business units to create new indus-
trial robots, or more commonly to perform whatever adaptation would be
necessary to apply an existing S4–controlled robot to a new industrial au-
tomation problem. The ORC, if pursued, would permit external licensing of
the controller as a platform, to independent (non–ABB) vendors.

An industrial robot controller is a large, complex, real–time system. The
S4 system architect reported that over 1000 person–years of effort had been
invested in the development and implementation of S4, and despite being a
product line, each instantiation of S4 required substantial quality assurance
efforts to ensure the end–product would perform as expected, and be safe
when used in industrial applications. “Opening” the platform for third–party
extension offered attractive business opportunities, but introduced several
serious technical challenges to ensure that all third–party extensions would
continue to exhibit safe and predictable behavior.

9.3.1 Open Robot Controller Problem Setting

A critical design feature of this new platform is the ability to customize the
controller with user-added extensions. These extensions, made by ABB or
other companies, are augmentations to the core controller platform. How-
ever, it is not difficult to foresee the potential poor performance or instability
introduced through a user-added extension. By analogy, common off-the-
shelf operating systems (OSs) permit third-party device drivers that, when
flawed, cause unexpected or unwanted behavior potentially impacting quality
attributes of the system as a whole.

ABB Robotics wanted a way to ensure that the impact of third-party
extensions to the ORC could be predicted. Obviously, it was important to
demonstrate that third–party extensions could do nothing that would inter-
fere with the robot’s ability to meet critical control deadlines. At the same
time, ABB believed that third–party users of the ORC would also want guar-
antees from the ORC, for example that controller extensions would execute
in some predictable way. In short, the ability to ensure safe controller opera-
tion while also providing third–parties with concrete performance guarantees
was regarded by ABB as a potentially important business discriminator.

Two investigations were conducted in the suitability of PECT to safe
and predictable third–party extensions to the ORC. The first, described in

9.3. INDUSTRIAL ROBOTIC CONTROL SYSTEMS 193

§9.3.2, regarded the design problem as one that was amenable to conven-
tional GRMA, for which the prototype PECT developed for SAS would be
a good point of departure. The second, described in §9.3.3, regarded the
design problem as ultimately requiring some form of automated verification
along the lines of the static driver verification tools that were then being
developed by Microsoft [14], and have since been introduced in practice for
driver certification.2

9.3.2 Safe Extension of Open Controllers

The technical challenge is to define an ORC mechanism that would permit
third–party component extensions that would simultaneously:

1. Provide suitable guarantees of hard controller deadlines to ABB.

2. Provide suitable performance guarantees to third–party component de-
velopers and integrators.

To achieve 1 we determine if the extension causes any controller task to
miss its deadline. To achieve 2 we determine the average latency of plug–in
components.

Safe Extension: Model Problem

The typical hardware platform for the ORC consists of a single Intel Celeron
processor running VxWorks; this is referred to as the main computer. The
main computer communicates with one or more axis computers, each of
which controls a degree of motion on the robot itself.

The model problem focuses on the interaction between tasks in the main
computer, which is responsible for running robot movement control pro-
grams (written in a high-level robot programming language) that generate
work orders. Those orders are decomposed into sub–work orders that are
further processed, ultimately into movement commands expressed in micro-
coordinates that are communicated to an axis computer that controls robot
movement.

The main computer executes many periodic and aperiodic tasks; however,
only a small subset of these must meet hard real time deadlines. Priority–
based scheduling is used to ensure these deadlines are met. Communication
among tasks makes use of FIFO queues. Figure 9.9 summarizes the task
structure of the most critical real–time tasks within the ORC:

• Task Ai receives work orders and create movement control plans ex-
pressed as a sequence of sub–work orders that are asynchronously sent
to Bi.

2See http://research.microsoft.com/en-us/projects/slam/, last accessed 21 Au-
gust 2010.

194 CHAPTER 9. INDUSTRIAL CASES

M

A1 B1

A2

A3

B2

B3

C

MAIN COMPUTER

AXIS
COMPUTERS

feedback
to Ai

KEY:

Task

Queue

Data flow

Figure 9.9: Simplified S4 Task Structure

Task Priority Arrivals Exec. Time
Ai Low Exponential

(µ = 75ms)
Exponential
(µ = 9ms)

Bi High Constant (24 ms) Uniform (1–2 ms)
C Very High Constant (4 ms) Uniform (0.5–1 ms)
M Medium Exponential

(µ = 100ms)
Uniform (15–25 ms)

Table 9.2: ORC Task Details

• Task Bi generates, for each sub-work order, six movement commands
expressed in micro-coordinates, and sends these to C.

• Task C receives movement commands from one or more Bi, and con-
verts these to control commands sent to one or more axis computers
that control robot movement.

• Task M represents the third–party extension.

Communication channels between these tasks use FIFO queues. Ai will
“block” if the Ai–Bi queue becomes full, and likewise Bi will block if the
Bi–C queues become. However, the robot is considered to have entered an
unsafe state if the Bi–C queue becomes empty—the controller will under
these conditions have no appropriate orders to send the axis computers, and
the robot will shut down. Consequently, it is also highly undesirable (though
not in itself fatal) for the Ai–Bi queues to become empty.

Table 9.2 summarizes the performance parameters of the ORC tasks; the
details for tasks Ai, Bi and C are faithful to the S4, while those for task M
were conjectured. Note that Ai arrivals and execution time are exponentially
distributed; the planning function on occasion takes a long time to complete
(very rarely causing queue underflows). Note also that the priority of M is

9.3. INDUSTRIAL ROBOTIC CONTROL SYSTEMS 195

greater than that of any Ai; we must ensure that it does not starved any Ai
to the extent that it causes the Ai–Bi queues to empty and cascade to the
unsafe state where Bi–C becomes empty.

The assembly depicted in Figure 5.6, pp. 88 shows one possible realization
of the ORC task structure for just one instance of Ai (the TrajectoryPlanner
component) and Bi (the MovementPlanner component), and C split into two
components of equal (and highest) priority. The problem at hand is to permit
additional M components to be introduced that will not cause queues to
empty, but which will experience predictable average latency.

Safe Extension: Model Solution

The key observation (made by Mark Klein) was that the problem of queue
underflow that results from the variable behavior of Ai, and the problem
of ensuring that M extensions never interfere with any Ai, can both be re-
solved by using the well–known sporadic server (SS) solution [154]. The
SS scheduling algorithm protects periodic events with hard deadlines from
bursts of high priority stochastic events, while being able to accord high pri-
ority to processing stochastic events. The hallmark of a sporadic server is
that it provides a periodic “virtual processor” within which aperiodic events
can be processed and analyzed, and bounds the invasiveness of aperiod events
to the period of the virtual processor. The sporadic server algorithm can be
implemented in the kernel space (i.e., in the scheduler) or in application
space. We chose to implement it in application space because Pin’s support
of component containers made this the natural decision. Details about SS
algorithm can be found in §8.5.2, pp. 156.

Returning to the case study, the first objective to “provide suitable guar-
antees of hard controller deadlines” can be addressed. Ai can be converted
to use the sporadic server algorithm simply by deploying it in a sporadic
server container, and can be given just enough execution time to ensure that
there is always at least one sub–work order in the Ai–Bi queues. The possi-
bility of queue underflow is eliminated. Further,Ai can now be treated like
periodic tasks, meaning that the collection of Ai, Bi and C are amenable to
conventional GRMA schedulability analysis supported by the then available
λ∗ reasoning framework. Similarly, third–party component extensions can
likewise be deployed into sporadic servers, and their invasiveness on Ai, Bi
and C similarly bounded.

Addressing the second objective to “provide suitable performance guaran-
tees to third–party component developers and integrators” was not so easily
dispatched, because it required the development of an analytic theory for
predicting average latency for periodic tasks managed by a sporadic server,
something that had not previously been done, the results of which are doc-
umented in [67].

One main result of λ-SS is the so–called “Banana Curves” described by

196 CHAPTER 9. INDUSTRIAL CASES

Figure 9.10: Sporadic Server “Banana Curves”

four heuristic equations, labeled H1 through H4 in Figure 9.10 (repeated from
Chapter 8 for convenience). The curves describe the case of an assembly with
two tasks, one periodic, and one aperiodic in a sporadic server. H1–H4 define
a performance envelope for the average latency of the sporadic server task.
These curves are discussed in 8.5, near pp. 159.

The assumption of only one periodic task is not as limited as it first
appears, though. As long as the system is work-conserving (i.e., it continues
to do work without idling as long as there is work to do) the priority structure
and subtask structure of the periodics does not influence the average latency
of the aperiodics. (See [67] for a demonstration of this fact). Therefore,
for analysis purposes a set P of periodic tasks can be regarded as a single
periodic with a period equal to the longest period in the task in the set, and
service time equal to the sum of the service times of the tasks in the set.
Because the model problem represents an extreme case where Up = 1 −
Sss/Tss, (i.e., the no background case), H2 is used:

E[W] = (
ρq

1− ρq
)(
E[S2

q]

2E[Sq]
) + E[S]

= (
.24

.76
)(

242

2(24)
) + 14

= 17.78947 ms

(9.2)

The solution to H2 in Eq. 9.2 was compared to the average latency observed
in many simulations of the model problem, and the predicted and simulated

9.3. INDUSTRIAL ROBOTIC CONTROL SYSTEMS 197

values for task latency fell within two standard errors:

Samples n = 1035

Measured Sa = 17.79473
Standard deviation σ = 0.12574
Predicted E[W] = 17.78947

In this case, the heuristic was quite sufficient to make an accurate predic-
tion. If greater precision is required, however, the λ-SS reasoning framework
provides a simulator that can generate arbitrarily many points between H1
and H4.

Although we never subjected λ-SS to the formal rigors of empirical val-
idation applied to λ-ABA, the result achieved in this case is representative
of our general experiences. Perhaps this should not be surprising since the
theory constituents of λ-SS (λ-WB and λ-ABA) were extensively validated,
and no significant new assumptions were introduced beyond those that were
enforced by the λ-SS sporadic server container.

9.3.3 Model Checking Industrial Robot Code

λ-SS provided explicit, statistically–bounded assurance about certain tem-
poral properties of components and controller assemblies. However, there
were sure to be many ways that a third–party component could compromise
robot safety. As mentioned in §9.3.1, the analogy between third–party ex-
tension of ORC and third–party Windows device drivers suggested the use
of model checking as a useful and possibly necessary tool.

We had had mixed experiences with model checking in Stage–1 of the
SAS case study, but in the interim between the conclusion of that line of
investigation and the initiation of the ORC case study two conditions had
changed that warranted revisiting the possibility of using model checkers to
ensure safe ORC extension:

1. PCL had evolved to the point that it now supported PinCharts and
code generators, which removed one level of indirection between the
design specification and the model checker: we had expectations now
of allowing temporal logic claims to be specified directly on PinCharts.

2. Xie, Brown and Levin [173] had developed a bona fide model checking
reasoning framework called ObjectBench, which Sharygina, Kurshan
and Brown had previously used to verify the behavior of a controller
for a deep–space robot [148].

At this point, Natasha Sharygina (the principal investigator of the work
reported in [148]) joined the case study effort, and arranged to have Object-
Bench made available for our use.

198 CHAPTER 9. INDUSTRIAL CASES

Verified IPC Library: Model Problem

ObjectBench was referred to, above, as a bona fide reasoning framework
because it composed all of the essential ingredients of a reasoning framework,
as described in Chapter 8:

• An interpretation from a design notation, in this case and conveniently,
xUML [118], sometimes referred to as “executable state machines.”

• A behavioral theory and decision procedure, in this case the COSPAN
model checker [64].

• An interpretation from the design language to the input language of the
decision procedure, in this case “S/R,” the input language of COSPAN.

Not surprisingly, S4 was not documented in xUML, and therefore to
make use of ObjectBench we would need to create models “from scratch.”
Rather than repeat the experience of creating a simple synthetic component
to verify (as was done for the IEC–61850 CSWI component (Figure 9.6, 185),
we decided to manually extract an xUML model from “real” industrial robot
code as a proxy for the kind of complexity that ORC plug–in extensions
would exhibit. Not having a sample plug–in at hand, we chose instead to
use a portion of the inter–thread/inter–process communication library used
by S4 controllers.

The library provides operations for message-based communication among
threads, which supports a variety of synchronous and asynchronous forms of
communication and includes such realistic but complicating features as:

• timeouts on both sender and receiver operations

• shared memory-based message queues implementing a message-based
communication style

• three different types of synchronization primitives to coordinate oper-
ations invoked by different threads

We focused on the most complicated portion of the library—those parts
that deal with synchronous message exchange, with the typical use summa-
rized in the sequence diagram in Figure 9.11. A sending thread initiates
the interaction by sending a message and waiting for the answer (by calling
ipc_sendwait). A receiving thread requests its next message (ipc_receive) and
eventually sends a response back to the sending thread (ipc_answer).

We then worked with ABB engineers to document a range of behavior
claims to verify. One lesson we took from our initial experience with model
checking was to write temporal logic claims first in natural language. Several
claims were defined:

9.3. INDUSTRIAL ROBOTIC CONTROL SYSTEMS 199

ipc_sendwait(msg)

return(msg)

ipc_answer(ans)

return(ans)

ipc_receive()

return()

SENDER RECEIVERIPC LIB

Figure 9.11: A Simple Coordination Protocol

Claim 1 Whenever a message is sent to X, X eventually receives that mes-
sage (barring timeouts).

Claim 2 Whenever a message is sent to X, Y 6= X never receives that
message.

Claim 3 Whenever a sender receives an answer, it is the answer to the most
recently sent message.

Claim 4 A sender is never blocked while trying to write to a message queue
that is not full.

Claim 5 Messages (or answers) are never written to a slot that has discon-
nected.

Claim 6 There are never more than the maximum number of messages in
a message queue.

Claim 7 LeaveCriticalSection is never called by a thread that is not the cur-
rent owner of the critical section.

With the exception of Claim 7, and the reference to “slot” in Claim 5, the
claims could be formulated from the pattern shown in Figure 9.11 and did
not rely on the availability of source code.

Verified Components: Model Solution

A detailed account of our experiences are provided by Ivers [80], from which
two main lessons can be culled.

The first lesson was an emphatic confirmation of Giannakopoulou obser-
vation that a model checker should be regarded by its users as a kind of
“toolbox” for which considerable expertise in the theory of model checking
and with the tool at hand are required [55].

200 CHAPTER 9. INDUSTRIAL CASES

Document Design Formalize Claims

Generate S/R
Models

Apply Model
Checker

Reduce State
Space

Terminates? Interpret Results

Manual
Abstraction

Tune Model
Generator

Try Different
Algorithms YES

NO

Figure 9.12: Workflow for Using ObjectCheck Reasoning Framework

Figure 9.12 shows the process of using ObjectCheck from the architect
or programmer perspective. Most of the effort required to construct the
model solution (i.e., to successfully demonstrate or refute the defined behav-
ior claims) was spent in reducing state space. The first xUML model was
estimated by COSPAN to have 2 × 101932 states (!), well beyond the reach
of COSPAN. Several iterations were required before the first claims could be
analyzed.

The second lesson was an equally emphatic demonstration of the capa-
bility of model checkers to find deep, subtle design flaws. Claim 3 specifies
an important property of a robot controller, essentially saying that differ-
ent components in the controller are logically synchronized. Interestingly,
ObjectCheck falsified the claim, and produced the counterexample that is
shown (in abstracted form) in the sequence chart in Figure 9.13.

The first line of the counterexample shows that at step 21 in an execution
trace, the first request is made by Sender (m == 1). As a result of various
message timeouts (steps 49, 113, 149), Sender and Receiver lose synchro-
nization, resulting in Sender receiving an answer to the wrong request at
step 179 (reads a == 2). ABB engineers confirmed that the validity of the
counterexample, and noted that this particular design flaw had been only
recently discovered after being in deployment for over five years, and that it
had been the source of pernicious, though rare, failure in the control system.

9.3. INDUSTRIAL ROBOTIC CONTROL SYSTEMS 201

Figure 9.13: Verifiable Counterexample

202 CHAPTER 9. INDUSTRIAL CASES

The nondeterministic effects of timeouts produces too many interleav-
ings of actions between Sender and Receiver to be tested using conventional
means. While COSPAN made no guarantee that counterexample presented
is the shortest one, programmers familiar with the challenges of writing
“correct” multi–threaded software will recognize in this counterexample as
paradigmatic of those challenges.

9.3.4 Summary of Robotics Case Study Results

The “safe extension” case study (§9.3.1) demonstrated several important re-
sults for the Seam and for PECT automation of the Seam:

• The concepts and technologies developed in a PECT for SAS were
preserved intact when used for industrial robot control. This is not
surprising—both share many characteristics with may kinds of embed-
ded (and mostly periodic) real–time systems.

• With the exception of the theory for predicting average latency of
tasks managed in sporadic servers, the λ∗ reasoning framework was
developed almost entirely from well–established prior work in real–
time system analysis, as can be seen from the dates of the relevant
cited publications for the λ∗ theories.

• The λ-SS container demonstrated another kind of synergy between
component technology and predictability by construction, by provid-
ing a natural locus for enforcing reasoning framework constraints and
thereby acting as a kind of “analytic sandbox.” In this case the sand-
box provided reciprocal guarantees to components executing within the
container, and to assemblies composed from these “analytically sand-
boxed” components.

• λ-SS can be regarded as an extension rather than as a refinement of
λ-WB and λ-ABA. This suggests that λ-WB and λ-ABA acted, in
some sense, as a toolkit for building new performance theories. This is
an area for potential further investigation.

The “Model Checking” case study (§9.3.3) also demonstrated several impor-
tant results:

• Model checking could be used to find subtle design flaws in industrial
software, and in some cases can find flaws that can not be found by
even the most extensive testing regimes.

• Practitioners can state temporal logic claims quite easily in natural
language, which suggested that with modest training they could also
be taught to use a more concise and formal notation for expressing
claims.

9.4. SUMMARY OF KEY RESULTS 203

• Requiring practitioners to perform manual abstraction of software to
document designs in xUML inhibits (if not destroys) the transparency
between design specification and analysis–specific semantics and deci-
sion procedures. This led us to model checking technology that per-
forms automated abstraction of models from source code, and led ul-
timately to the ComFoRT reasoning framework available in the PSK.

9.4 Summary of Key Results

Overall, I claim that the case studies demonstrated the technical and prac-
tical feasibility of the Seam, and the use of PECT to automate the Seam
and thereby achieve predictability by construction. This chapter described
several applications of PECT to address non–trivial industrial engineering
challenges. The next chapter steps back from the use of PECT and reflects
on our experiences in the design of a PECT, and in particular in the de-
sign of the reasoning frameworks that distinguish PECT from conventional
component technology and conventional model–based software engineering.

204 CHAPTER 9. INDUSTRIAL CASES

Chapter 10

Theories and Co-Refinement

205

206 CHAPTER 10. THEORIES AND CO-REFINEMENT

In 1993 C.A.R. Hoare published an essay “Algebra and Models” in which
he described what constitutes a theory (or model) of computational behav-
ior1, why new theories are developed, and how they are intended to be used
[74]. His essay had three main aims:

1. To justify a traditional separation of concerns in computing between
science and engineering, with computer scientists developing theories,
and software engineers using these theories to achieve practical ends.

2. To define the main features of any theory of computational behavior,
and to emphasize the ways that theories of computational phenomena
differ from theories of natural phenomena.

3. To describe the modus operandi of the scientist–qua–theory developer,
and thereby also establish normative guidelines on the direction and
conduct of computer science.

In advancing the first of these aims, Hoare justified the development of
a proliferation of theories “as numerous as the seeds scattered by the winds”
of which “only very few will...take root.” Moreover, he encouraged the devel-
opment of theories that might be useful for future rather than existing (and
therefore “real”) problems for which he regarded new theories as necessarily
arriving far too late.

However, the aims of the Seam will not be met in the scattering of innu-
merable theories, but in the targeted development and cultivation of those
theories that serve immediate (and quite possibly limited) ends. Accordingly,
our interest therefore is in Hoare’s latter two aims, and in the application of
his ideas to the design of reasoning frameworks.

This chapter has three sections. §10.1 introduces fundamental ideas of
the design of theories of computing behavior, based on ideas described by
Hoare [74]. §10.2 shows these basic ideas applied to the design of reason-
ing frameworks by means of co-refinement, using the co-refinement of the
λ∗ reasoning framework to illustrate the main ideas. Finally, §10.3 draws
some conclusions about the co-refinement process.

10.1 Seam as Theory Design

Hoare’s key ideas, and how they relate to the research described in this dis-
sertation, are discussed in the remainder of this section. §10.1.1 discusses
pragmatic concerns, touching on issues such as the scope of theories, their
analytic and constructive compositionality, and their economics. §10.1.2 de-
scribes the basis of theories in observations, and emphasizes the role placed

1The meaning of “theory of computational behavior,” which denotes any theory of any
kind of observable computational behavior, is distinct from that of “theory of computa-
tion,” which denotes a theory of computable functions.

10.1. SEAM AS THEORY DESIGN 207

in this research on the role of decision procedure in such theories. §10.1.3 de-
scribes the duality of prediction and specification championed by Hoare, and
relates this to the formally weaker but more practical notion of predictability
by construction. §10.1.4 relates Hoare’s characterization of indirect observa-
tions and experiments to annotations and environments discussed in Chapter
6 Pin Component Language. §10.1.5 then relates the Hoare’s notions of sat-
isfaction and specification strength to the definition of candidate designs and
preference structures described in Chapter 3 Rational Design. §10.1.6 relates
Hoare’s notion of implementable sets to the definition of formally predictable
behavior given in Chapter 3. Finally, §10.1.7 highlights a missing element in
Hoare’s characterization with which theories can be formally related to their
problem scopes, and thus made amenable to incremental development. This
sets the stage for the discussion of Co-Refinement in §10.2.

10.1.1 Pragmatic Concerns of Theories

Hoare was unapologetic in his defense of the need to develop many spec-
ulative theories of computational behavior, and the corresponding need to
accept the requisite failure of most of these to obtain any practical use. He
was, however, committed to the idea that the goal of developing any new
theory of computational behavior is, ultimately, relevance to practical com-
puting problems. In his introductory remarks, Hoare described several areas
of pragmatic concern to be addressed by the scientist. Italics are added to
highlight key terms related to the Seam:

Theories Address a Defined Problem Class. A theory must address
problems “which may be solved by application of some computing de-
vice” and moreover must be expressed “in the terminology in which
they2 are described.”

The Ultimate Goal is Engineering Predictability. Hoare regarded the
ultimate purpose of a theory to be a foundation that serves the engi-
neer’s goal “to design and implement a product which can be predicted
by the theory to exhibit the specified properties.”

Theories Exploit Divide and Conquer. A theory must reflect the way
that “solutions to complex problems can be found by decomposition,”
and the way that more complex systems “can be constructed by con-
necting subassemblies and components” in some technology.

Theories are Evaluated in Practice. The value of a theory depends not
only on its absolute merits, but also in “comparative cost and efficiency
of alternative methods” to solving that class of problem.

2“the problems being addressed”

208 CHAPTER 10. THEORIES AND CO-REFINEMENT

Each of these stipulations is reflected in the practice of Co–Refinement de-
scribed in §10.2, which builds on Hoare’s original ideas by forging an explicit
relationship between problem class and theory (which was only tacit in [74]),
and by developing practical techniques for incremental design and evaluation
of theories.

10.1.2 Theories, Observations and Decision Procedures

A theory defines what can be observed, and what can be controlled. In
Chapter 3, the notion of observation was ultimately reduced to that which
could be modeled on an ideal computing device (see Defs. 3.9 and 3.10,
pp. 56). Hoare is not as restrictive in this regard, requiring only that what is
defined is “observable, controllable, or otherwise relevant” to the phenomena
being described.

Hoare takes a different approach as well in his description of a theory
as a collection of predicates (equations, inequalities, etc.), where free vari-
ables are observations, and where the behaviors modeled by the theory are
those variable bindings that make the predicates “true.” In this case there
is a substantive difference with the definition of theory (Def. 3.12, pp. 58).
Specifically, Hoare does not include a (semi–)decision procedure as a crite-
rion of a theory. Predictability is defined by the Seam in terms of an ideal
computing device both as a way of ensuring soundness and automation.

Hoare was not indifferent to the need for automated analysis, but likely
regarded that as an inessential detail in a discussion of how theories are
constructed. He refers to the desirability of decision procedures (e.g., term
rewriting) for finite systems, but eschews the possibility of decision proce-
dures for all but highly constrained recursive systems. This is perhaps the
only area of Hoare’s essay that has been invalidated (at least in part), in
this case by advances in model–checking technology, including (with some
irony) the Failure Divergence Refinement (FDR) model checker for Hoare’s
CSP [142].

10.1.3 Preconditions, Predictions and Specifications

Hoare distinguishes a class of predicates he calls preconditions, which refer
to observations that are under the direct control of the end–users of a sys-
tem, or the environment in which the system executes. Preconditions in this
sense correspond to the formal invariants of predictable phenomena in the
Seam (Def. 3.11, pp. 57). Both Hoare and the Seam are a bit liberal in the
interpretation of precondition and formal invariant, however. Hoare equiv-
ocates, stating that preconditions “usually mention” observations, and they
are “generally” in control of the environment, etc., while the Seam regards
formal invariants as syntactic rules of well–formedness in an interpretation,
or anything else that might be “appropriately demonstrated” (see discussion

10.1. SEAM AS THEORY DESIGN 209

of Def. 3.10, pp. 57).
Hoare’s formulation of observation and theory provide elegant and sym-

metric definitions of prediction and specification: A set of predicates that has
all free variables bound, and which (as a set) is satisfiable3 can be regarded
simultaneously as a prediction of the behavior of a system described by those
predicates, and as a specification of the behavior of a system that has yet
to be produced. Hoare has in mind that a plausible goal of an engineering
design is to establish the following theorem:

D ⇒ (P ⇒ ¬FAIL ∧ S) (10.1)

Here, D denotes some design (what Hoare calls a “delivered product”), P
denotes preconditions of a theory and S denotes a specification of required
behavior. Hoare was adamant that a theory needs to describe not only the
behaviors to be achieved, but behaviors to be avoided as well, which he
aggregated into a singe predicate FAIL. Hoare gives as his interpretation
of Eq.10.1:

“. . . if the precondition P is satisfied, then every observation of
the behavior of the delivered product D will be a non–failing ob-
servation, and will also satisfy the specification S.”

It is worth pointing out that Eq. 10.1 is an abuse of notation that con-
fuses sets (of observations) with the predicates defined by a theory that define
those sets. With this slight abuse in mind, Eq. 10.1 imposes a proof obliga-
tion on the designer, who must demonstrate that preconditions are satisfied
and that the implication holds.

Note that Eq. 10.1 has the effect of demonstrating that a design is a
candidate solution, as discussed in Chapter 3 Rational Design). Predictabil-
ity by construction in the Seam has a more modest aim than Hoare, which
however can be expressed in analogous terms:

Dimp ⇒ (PT ⇒ ∃Interp(Ddesc) ∈ T) (10.2)

with the interpretation that if the preconditions of a theory T are satisfied,
then the observable behavior of the product implementation Dimp are ob-
servable in T under a semantic interpretation Interp of that product’s formal
description Ddesc.4

Eq. 10.2 does not establish any facts about Dimp other than that it’s be-
havior is predictable in T . This is another way of stating that predictability

3There is at least one possible observation for some specified variable/value bindings
4Description is used instead of the more natural specification to avoid confusion with

Hoare’s use of that term.

210 CHAPTER 10. THEORIES AND CO-REFINEMENT

describes a semantic relation between designs and theories, but it need not
(though of course it could) establish any theorems about Dimp by way of
Interp(Ddesc). The aim of predictability by construction is to ensure that
only analyzable designs are produced, i.e., are testable in Simon’s generate
and test operationalization of “design as search” as described in Chapter 3
Rational Design. The evaluation of those designs is a different matter.

10.1.4 Direct and Indirect Observations

Hoare notes that while “end–user specifications” (a term he does not elabo-
rate but which is more or less clear) are generally stated in terms of directly–
observable behavior, the value of theories lies in their ability to make indirect
observations; in the performance reasoning framework in Chapter 8, execu-
tion time and preemption are direct and indirect observations, respectively.
He goes on to make two points about indirect observations that are pertinent
to the later discussion of co–refinement.

First, he notes that confirming or refuting a theory requires a sometimes
complex experimental apparatus, the behavior of which (as understood by
the experimenter) might also depend on the theory being developed. There
are many practical consequences of this dependency. One, which is not fur-
ther elaborated but is worth mentioning, is that Seam theories, the static
tools and runtime environments that discharge their assumptions, and the
apparatus used to validate theories all undergo simultaneous development.
It is in the nature of things that all must therefore be simultaneously “de-
bugged.” Although debugging is itself something of a black art, our practical
experience suggests that having a reasonably well thought out theory of be-
havior is itself immensely useful in finding errors in tools and environments.
In most cases, discrepancies between observed behavior and behavior pre-
dicted by a theory was due to errors in the Pin runtime environment rather
than a problem with the theory.

Hoare also notes that what are regarded as direct observations at one level
of system organization can be indirect observations at another level, possibly
(but not necessarily) of another, more basic theory. Using performance again,
average-case latency can be indirect at one level (combining execution time
and preemption effects over the hyperperiod of a set of periodic tasks) and
direct at another (a measure of an assembly). Or, analogously, a temporal
logic claim on a component implies a host of indirect observations in the
underlying model checking theory, but once a claim has been established it
can be regarded as a directly–observable behavior of a component.

10.1.5 Correctness, Preference and Tactics

In Chapter 3, design was expressed as a search problem, with functional cor-
rectness a necessary condition of a candidate design solution, and a prefer-

10.1. SEAM AS THEORY DESIGN 211

ence structure to rank competing candidate solutions (candidate designs and
preference structures are discussed in §3.2 on or near pp.49). The preference
structure is a proxy for subjective design judgement, but it is nonetheless
based in theory observations such as those discussed by Hoare.

However, Hoare uses the apparatus of set theory to move beyond “correct-
ness.” In Hoare’s set–theoretic interpretation of theories, both S and D in
Eq. 10.1 describe sets of observations, and discharging the proof obligation
of Eq. 10.1 involves, in essence, demonstrating that D ⊆ S, i.e., that only
those observations that are described by S are observable in D. However,
specifications can be ordered by subset inclusion:

D ⊆ Sn ⊆ Sn−1 ⊆ Sn−2 · · · ⊆ S0 (10.3)

where each Sk can be considered as “stronger” than all Sj<k by virtue of
its permitting fewer observable behaviors. Should any particular Sm be a
candidate solution, then each Sk>m can be regarded as “preferable” in some
sense to Sm (more deterministic, faster, etc.). Thus, the same theory that
establishes “correctness” can also serve as the preference relation � that
operationalizes “design as search.” Hoare is quite careful to make particular
note of circumstances where tradeoffs among behaviors are required, which
he regards as necessarily “left to the good judgement of the engineer. No
amount of mathematical theorising can ever replace that!”

Hoare asserts that “one of the main objectives of a mathematical theory
is to provide a comprehensive collection of such correctness–preserving, but
efficiency–increasing transformations.” This research regards such efficiency–
increasing transformations, elsewhere called “tactics” ([13, 145]) as a com-
plementary agenda, one that requires predictability by construction as a
precursor. The nature of the complement is hinted at in Step #3 in the
PECT use scenario sketched in Table 4.2 on or near pp.72.

10.1.6 Implementable Sets

In Hoare’s characterization, theory T defines a universe of possible obser-
vations; a specification S ⊆ T defines the acceptable observations of any
satisfying product design; and the engineer’s goal is to implement a product
D ⊆ S that will satisfy S along the lines of Eq. 10.1. But how much liberty
does an engineer have in choosing D? Indeed, how does the theory designer
establish that for all interesting S there exists at least one implementable
D, where “interesting” can be taken to mean of practical significance to the
class of problems that T purports to address?

To address this issue Hoare introduces the idea of implementable sets,
which he calls “PROC.” Each PROC defines a family of specifications that
are “implementable in a particular envisaged language or technology,” i.e., a

212 CHAPTER 10. THEORIES AND CO-REFINEMENT

language or technology that is already at hand or that is perhaps conjectured
by T .

“The conditions defining membership of PROC. . . is the first and
most serious difficulty in the construction of realistic models;
what is worse, their sufficiency and validity can be established
only at the very last step in the evaluation of the model by prac-
tical use. That is why Dana Scott once characterized formalisa-
tion5 as an experimental science.”

Implementable sets describe essentially the same idea as predictable in
(Figure 1.2, pp.22) and predictive range (Figure 4.1, pp.71), and also captures
the same idea of formally–predictable behavior (Def.3.13, pp.58).

10.1.7 Incremental Theory Refinement

As Hoare describes matters, the criteria that define implementable sets arise
from intuition and inspired guesswork. There is no formal connection made
between these criteria and the class of design problems (§10.1.1) addressed
by the theory. For example, the problem class can itself be represented as a
set of observations PROB that defines the problem set, which is interpreted
as all possible observations that are interesting to the class of problems at
hand. This, in turn, can serve as a specification for the theory, with the
objective:

PROC ⊆ PROB ⊆ T
for some targeted collection of implementable sets. Without such a specifica-
tion there can be no basis on which theories can be systematically designed,
but rather they can only invented and, at the last step, confirmed.

A clear specification of PROB, however, is not itself sufficient to resolve
the difficulty observed by Hoare and Scott: here the criteria that defines
PROB rather than PROC can only be tested at the last instant.

What is needed for the design of theories is an analogous notion to that
of refinement introduced by Hoare in his CSP process algebra: each succes-
sive design preserves correctness (refines its specification) but also reduces
non-determinism, increases efficiency, or makes some other incremental im-
provement that is a step towards some ultimately satificing design. In this
way the algebra captures the essence of incremental design and verification.
The sequence:

PROCf ⊆ Tf
. . .

PROC1 ⊆ T1
PROC0 ⊆ T0

(10.4)

5“theory development”

10.2. SEAM AS LANGUAGE DESIGN: CO-REFINEMENT 213

captures the intuition that, starting from some simple base theory T0 some
ultimately acceptable final theory Tf can be arrived at through a succession
of intermediate theories. This formulation is no more abstract than Hoare’s
original characterization of PROC; it simply adds incremental theory devel-
opment.

Of course, the main caveat is that for this abstract scheme to be practica-
ble, there must be substantial benefits to designing and validating a sequence
of theories instead of heading for the final one straightaway. This may ex-
plain in part why Hoare did not regard incremental theory development as
a matter requiring discussion.

However, if the Seam is to enable a sustainable engineering practice, its
major components—reasoning frameworks—must be practically susceptible
to incremental design and verification. For this purpose we require:

• an understanding of the nature of the relation between each (Tk, Tk+1),
(PROCk, PROCk + 1) and similarly for each (PROCk, Tk);

• effective heuristics with which a theory designer can construct Tk+1

from Tk, and eachPROCk+1 from PROCk; and,

• a preference relation RFk � RFk+1, RF =< PROCk, Tk > with which
to initiate a search for a suitable Tf whose features may not be well
understood (as discussed in Chapter 3 Rational Design).

A method of Co-Refinement described next offers clues about each of
these.

10.2 Seam as Language Design: Co-Refinement

The invention of a new theory of computational behavior is no doubt chal-
lenging, and perhaps Hoare is correct that this is an area of intellectual
activity for which there is no clearly reducible, systematic practice; there
may only be that fortuitous mixture of knowledge, skill, luck and intuition
that characterizes the successes of leading computer scientists of our age.

However, the Seam is an engineered construct, and as such is meant to
operate within the practical bounds of a range of well–defined and recurring
design problems. In this context, designing a small number of fundamental
theories of behavior is of less concern than designing a collection of highly
specialized but otherwise “good enough” theories.

With this in mind we take inspiration for the design of reasoning frame-
works from Wirth’s “stepwise refinement” for the design of computer pro-
grams [172]. Wirth’s prescription inspires because it provides a practical
technique for solving programming design problems of realistic complexity,
and also because it provides a pedagogy for teaching that design process to
future practitioners. This is not to say that stepwise refinement is sufficient

214 CHAPTER 10. THEORIES AND CO-REFINEMENT

for all design problems, but it is without question an essential design skill
for software engineers.

We also take inspiration from modern applications of type theory in pro-
gramming language design and program analysis. Robert Harper expressed
the key idea quite succinctly when he observed, first, that “restrictions en-
tail stronger invariants,” and, second, that “flexibility arises from controlled
relaxation of strictures, not from their absence”.6 These two points combine
quite nicely. The first suggests a way of finding what we have elsewhere called
“smart constraints” [73] where “smart” refers to those constraints that, when
enforced, lead to predictable system behavior. As Harper also remarked,
“well–typed means well–behaved”.7 The second suggests a direction for re-
finement, with each refinement relaxing stricture.

We coined the term “co-refinement” to describe the stepwise refinement
process used to develop the initial version of the λ∗ reasoning framework
[68]. The “co” in co-refinement expresses the idea that each of PROC, T , and
Interp is simultaneously refined, in the direction of relaxing constraints, and
in the context of the refinement of the others. As with stepwise refinement,
co-refinement is a heuristic rather than a mathematical notion (in contrast
to refinement in Hoare’s CSP [75] or to, say, co-induction [85]).

The remainder of this section describes co-refinement in more detail.
§10.2.1 provides background on the initial conditions of co-refinement. §10.2.2
through §10.2.7 summarize the co-refinement steps leading, ultimately, to the
λ∗ reasoning framework. Much of this material was documented in a con-
temporary account of the work [68], but is substantially extended here to
reflect later experiences.

10.2.1 Background on Co-Refinement of λ∗

At the beginning of work in the substation automation “protection and con-
trol” case study in 2002, the broad outlines of predictability by construction
were understood:

• The IEC61850 specification for substation automation systems [78],
combined with IEC1131-3 function block notation [101] in the indus-
trial tool chain, seemed ideally suited to a component technology such
as Pin: IEC61850 described a “domain model” of substation automa-
tion functionality in terms of logical components, while IEC1131 syn-
tactically mirrored the Pin component model.

6“The Practice of Type Theory in Programming Languages,” presented at Dagstuhl
10th Anniversary Symposium [171]. Presentation available online www.cs.cmu.edu/~rwh/
talks/Dagstuhl (last accessed August 3, 2010).

7For consistency with Harper this catch–phrase is equivalent to “smart restrictions” or
“smart strictures.”

10.2. SEAM AS LANGUAGE DESIGN: CO-REFINEMENT 215

Step 5: λ-ABA(Average case, Blocking, Asynchrony)
• synch/asynch pins • pin re-writing

• spot check
Step 4: λ-AB(Average case, Blocking)
• execution jitter • full validation
• monte carlo • assembly labels
Step 3: λ-WB(Worst case, Blocking)
• varying task priority • priority ceiling • spot check

• (un-)/threaded • component labels
• (non-)/reentrant

Step 2: λ-A(Average case)
• non-zero phasing • measurement
• hyperperiods
• simulation
Step 1: λ-W(Worst case)
• periodic • unthreaded only
• deadline < period • reentrant only
• non–blocking • (synch pins only)
Step 0: Starting Points
• GRMA[89] • Basic Pin • No toolchain

Table 10.1: Five Stepwise Iterations to λ-ABA

• Preiss and Wegmenn used IEC61850 to define a number of model prob-
lems for predictability by construction [140], including protocols that
might be verified with temporal logic model checking, and performance
requirements that might be analyzed with rate monotonic analysis.

While we suspected that predictability by construction would prove to be
technically feasible, but there were many unknowns about its practical fea-
sibility:

• Did the proximity of Pin, IEC61850 and IEC1131 extend beyond sur-
face syntax? That is, could Pin be a key Seam abstraction for sub-
station automation systems, or would Pin components prove to be too
constraining (or too “heavyweight”) for this purpose?

• Were the measures on extra-functional behaviors, and measures of con-
fidence in these described by Preiss and Wegmenn achievable? Were
these normative measures or could they be traded against other design
qualities such as ease of programming?

• Could implementation constraints be imposed on industrial substation
automation system designers and developers? Could “increased confi-
dence” be traded for a “less convenient programming” for example?

216 CHAPTER 10. THEORIES AND CO-REFINEMENT

Matters were complicated still more because of dependencies among these
(and similar) questions. We did not know how to assign business value
to predictive confidence, for example whether there was any difference in
value between a 95% and 99% confidence interval on average–case latency,
and therefore whether the added cost and complexity of modeling low–level
platform details such as context–switching time, or introducing real–time
scheduling to a base Windows platform made “business sense.” The detailed
design objectives and tradeoffs for a performance reasoning framework would
need to be discovered—and addressed—while exploring a largely uncharted
design space for reasoning frameworks in general, and for λ∗ in particular.

Table 10.1 summarizes the co-refinement sequence from an initial un-
derstanding of the design problem to an automated, validated performance
reasoning framework. Each step in the sequence (other than Step 0) corre-
sponds to a discrete theory in λ∗. The table is partitioned into three vertical
columns which highlight for each iteration its effect on (from left to right)
the theory, on design rules, and on validation, respectively.

We defined several criteria for choosing each next step in the design
process:

Valuable. Each step must deliver an analytic capability that is useful to
end–users.

Predictable. Each step must define an interpretation from the component
model to the analytic theory; and the predictions made the theory, and
each independent variable used by that theory, must be in principle
observable by measurement or by analysis.

Progress. Each step (except the first) must extend the prior step in one
or more ways, by generalizing the analytic theory, or relaxing design
constraints, or improving predictive quality.

“Component model” in the criteria refers to the Pin component model
and in addition any theory–imposed design rules that constrain the use of
Pin at some co-refinement step. Where no confusion will arise, “Pin” will
denote the Pin component model, and “Pink” will denote the component
model at Step k. Analogously, λk will denote the performance theory at
Step k.

10.2.2 Step 0: Starting Points

At the outset, the Pin component model had only just been implemented.
In its early form, Pin supported a variety of pin types and basic hierarchical
assembly (see [82]), but did not support real–time scheduling. There were
no code generators or measurement infrastructure.

Substation automation would require worst–case performance analysis
to guarantee that critical protection and control task deadlines are met, and

10.2. SEAM AS LANGUAGE DESIGN: CO-REFINEMENT 217

the periodic nature of many of the tasks strongly suggested generalized rate
monotonic scheduling theory [89] (“GRMA” in the table) as a theory foun-
dation.

However, control loops involving the operator, along with a stated busi-
ness objective to explore “soft” protection and control (i.e., use of Windows
or other non–real time platforms with fast processors as sufficient to en-
sure deadlines) also suggested that some form of average–case latency would
be important. It was unclear whether GRMA could be directly applied
or be generalized for this purpose, or whether an alternative theory such
as Lehoczky’s real–time queueing theory [49] (RTQT), or some hybrid of
GRMA and RTQT would be required.

Although we did not know in detail what sort of reasoning framework
would emerge, we did define three elementary “model problems” that any
candidate solution must solve. Each model problem is thus an exemplar
of a class of industrially significant problems, for substation automation in
particular but for other real–time systems domains too. Each model problem
uses real (though sometimes simplified) IEC61850–defined functionality, and
IEC61850–defined quality measures for predictions. See §9.1.2 pp. 175 for a
discussion of statistical techniques used in this research, and Eq. 9.1, pp. 176
for the definition of magnitude of relative error (MRE).

The three model problems and the required predictive quality of their
solutions are:

1. Controller Assemblies: Predict timing behavior of one or more protec-
tion and control functions, implemented in one Pin assembly, execut-
ing on a dedicated, single computing device. The required confidence
interval is 0.99 confidence that predictions will exhibit, with 0.80 prob-
ability, a MRE less than 0.05.

2. Operator Station Assemblies: Predict timing behavior of an assembly
of human/machine interface (HMI) components, at least some of which
manage controller assemblies. The required confidence interval is 0.95
confidence that predictions will exhibit, with 0.80 probability, a MRE
less than 0.10.

3. Substation Assemblies: Predict timing behavior of assemblies of con-
troller and operator station assemblies that communicate using a local
area network. The required confidence interval is 0.95 confidence that
predictions will exhibit, with 0.80 probability, a MRE less than 0.10.

10.2.3 Step 1: Establish λ1 Worst Case Non-Blocking La-
tency

The first step resulted in a working base case that could be further refined.
Two considerations were dominant:

218 CHAPTER 10. THEORIES AND CO-REFINEMENT

1. We knew that Pin was going to need to be re-hosted from native Win-
dows to some other platform if it were to support predictability in a
real–time setting. Consequently, focusing the early iterations on only
the most basic real–time predictions seemed both prudent and useful
as a way of testing rehosted Pin versions.

2. We also knew that worst–case latency and schedulability analyses were
going to be critical elements of performance analysis for control sys-
tems, so these were likely candidates for early implementation.

For Pin1 we restricted components and assemblies to the bare minimum.
Only unthreaded reactions were allowed; each reaction would ultimately exe-
cute on a single thread provided by the environment clock service. Restrict-
ing components to unthreaded reactions also implied restricting components
to synchronous pins. We had also yet to decide whether to use priority in-
heritance [147] (which would require support of the Pin runtime) or priority
ceiling [56] (which could be enforced by the interpretation). For this reason
we deferred the need to make a decision by further restricting components
to “non-blocking” sink pins.

For the highly restrictive Pin1, λ1 required only the most basic elements
of GRMA for worst–case schedulability analysis. Eq. 10.5 summarizes the
theory used to predict the worst case latency of the ith task by finding its
fixed point (i.e., Ln+1 = Ln:

Ln+1 =

i−1∑
j=0

⌈
Ln
Tj

⌉
Cj + Ci (10.5)

where Ci is the execution time of the ith task, Ti is its period, and Cj has
higher scheduling priority than Ck if and only if j < k.

Formal predictability was demonstrated with a combination of pencil–
and–paper exercises and spot–checking of predictions. A pencil–and–paper
interpretation was defined without difficulty: the execution time of task Ck
was defined to be the sum of Pin component execution times of the hierarchy
of Pin components rooted at a pin component C ′k, with the priority of Ck
retrieved from an annotation of a C ′k sink pin. The period of Ck would be
obtained from the annotated source pin of an environment–provided clock
service (essentially, an event generator). We also defined a protocol for mea-
suring component and assembly execution times, and used this to spot check
predictions.

Because the theory was so basic we were certain that any variance be-
tween predicted and actual latency would arise due to a programming error
in the Pin infrastructure. Needless to say, such errors did exist, and strong
confidence in theory predictions were quite useful for tracking down prob-
lems.

10.2. SEAM AS LANGUAGE DESIGN: CO-REFINEMENT 219

10.2.4 Step 2: Generalize λ1 to Average Case Latency

Step 2 was almost entirely concerned with generalizing λ1 to predict average–
case latency, and therefore had no consequential impact on the Pin1 (beyond
“debugging” the implementation).

Conceptually, generalizing to the average case was straightforward once
it was observed that the pattern of preemption for task Ck repeats every
NP = LCM(T0, T1, . . . , Tk−1, Tk)/Tk periods, where NP is the number of
periods in the hyperperiod of that task, and LCM is “least common multiple”
of the task periods of Ck and all higher–priority tasks than Ck. The average
latency of Ck then is the average of each instance of Ck (each “job”) in its
hyperperiod, within which only one task will experience the “critical instant”
where all higher priority jobs become ready at exactly the same time.

As with Step 1, predictability was demonstrated with a combination of
pencil–and–paper exercises and spot–checking of predictions. However, when
spot–validating λ2 we were surprised that predicted latency did not match
the observed latency.

What we discovered (without too much investigation) is that in Pin the
first job of each task (for all but the highest priority task) did not begin
instantly at time 0 as was modeled in λ2, but rather at a later time—at some
task offset. At application startup the highest priority task C0 is “launched”
by setting the clock timer for that task. The clock will not generate its first
event until T0 time has expired, and thus C0 will not begin until at least one
period has expired, and so forth for the other tasks.

The problem, such as it was once diagnosed, was resolved by allowing the
reasoning framework to communicate to the measurement infrastructure the
number of periods to skip for each task before recording time measurements.
In this way the preemption patterns predicted by λ2 would be exactly aligned
with the patterns experienced in the Pin2 runtime. In retrospect this was a
simple problem, but at the time we were relieved to so easily diagnose the
problem; as mentioned earlier, this was possible because we had a perfor-
mance theory that we trusted and that provided us with useful “hints” on
where to look.

10.2.5 Step 3: Generalize λ2 for Blocking

The generalization of λ2 to include blocking allowed us to relax Pin2 de-
sign rules that prohibited the use of threaded components, as well as the
requirement that all sink pins (more accurately: all reactions) had to be
reentrant. Recalling that these design rules were introduced exclusively to
rule out potential blocking behavior, then Step 3 can be understood as pri-
marily motivated by the need to provide software developers with a more
expressive Pin3 component model.

The main outlines of the λ3 theory were in fact recognizable even as

220 CHAPTER 10. THEORIES AND CO-REFINEMENT

Step1 was underway. Mark Klein, one of my collaborators in this research
and an inventor of GRMA, recognized the similarity of Pin assemblies with
the “concurrent pipeline” architectural style that was used as a canonical
example in earlier work on attribute–based architectural styles [88] (ABAS).
In the concurrent pipeline ABAS Klein et al demonstrated that analysis of
worst–case latency can be obtained from a prior GRMA result that modeled
tasks that have time–varying priority [62].

Thus, in concurrent pipelines the worst–case latency of the ith task is
again computed by finding its fixed point:

Ln+1 =
∑
j∈H

⌈
Ln
Tj

⌉
Cj + Ci +

∑
j∈HL

CHj +maxj∈LH(CHj) (10.6)

where, given Ci,low is the lowest priority task in Ci, H, HL, and LH partition
the pipelines into sets:

• H: “High” pipelines for which all tasks have a higher priority than Ci,low

• HL: “High then Low” pipelines which begin at a higher priority than
Ci,low but become lower than Ci,low

• LH: “Low then High” pipelines which begin at a priority lower than
Ci,low but become higher than Ci,low

Eq. 10.6 simplifies matters a bit because it omits details of a prelim-
inary step that is needed to translate an arbitrary set of pipelines into
semantically–equivalent (for latency calculations) canonical H, HL and LH
assemblies. It also does not describe details of the iteration on each pipeline.
However, comparing λ1’s theory in Eq. 10.5 with the ABAS theory in Eq.
10.6 shows the combined simplifying effects of restricting Pin components to
unthreaded reactions and non–blocking sink pins: only the first two terms
of Eq. 10.6 are required by λ1. It would have been possible to define λ3
using Eq. 10.6, and relax Pin2 to allow threaded reactions but maintain the
restriction to non–blocking sink–pins. However, we were sufficiently confi-
dent from our earlier progress to relax Pin2 further to permit blocking sink
pins. Thus, λ3 needed to accommodate pipelines that might be preempted
by higher–priority tasks, and might also block on shared resources.

An interpretation had also become necessary for λ3 precisely the relaxed
design rules in Pin3 significantly enlarged the constructive and predictive
range of the reasoning framework (what Hoare called, in aggregate, “imple-
mentable sets”). Complex acyclic assembly topologies could now be con-
structed and analyzed, although their timing behavior sometimes defied in-
tuition; at this point questions about how the theory would be validated
began taking on extra prominence.

One key decision made at this point was to use priority ceiling rather
than priority inheritance as a design rule in Pin3, in large part because this

10.2. SEAM AS LANGUAGE DESIGN: CO-REFINEMENT 221

could be enforced at the application–level through interpretation rather than
requiring Pin runtime support and hence introducing a significant platform
dependency. The interpretation constraint was simple to implement: if two
Pin components pc1 and pc2 synchronize on the same non–reentrant Pin com-
ponent pc3 (i.e., the assembly contains both pc1:r∼>pc3.s and pc2:r∼>pc3.s),
then the interpretation ensures that the priority of pc3 is higher than both
pc1 and pc2. Priority ceiling emulation is slightly more intrusive on the de-
signers, but otherwise its advantages outweighed its disadvantages at this
point in the development of the Pin.

10.2.6 Step 4: Generalize λ3 for Average Case

Although we did not realize it at the time, Step 4 was to be the last major
hurdle in developing a performance reasoning framework suitable for soft
protection and control of substation automation systems. λ3 and Pin3 cov-
ered a significant range of possible designs; spot checks of predictions for
complex assembly topologies seemed to agree with observed assembly be-
havior, although the statistical correlations had not been established. And
hand–checked assemblies also agreed with our expectations of what the the-
ory ought to predict for certain “edge” cases.

When computing worst–case latency, the computations sketched in
Eq. 10.6 needed to be concerned only with finding so–called “critical in-
stants,” when all tasks of higher priority than a given task are simultaneously
ready to execute. For average case latency, many more interleaved execu-
tions needed to be examined. For this reason, a purely analytic approach to
the λ4 decision procedure became unwieldy, and discrete event simulation
was used to implement the reasoning framework decision procedure. At this
point of the co–refinement process, the analytic theory, its simulator, a mea-
surement infrastructure, component technology and substation automation
applications were undergoing simultaneous development.

Significant attention was also now being paid to establishing the pre-
dictive quality of λ3, which we expected to be already close if not already
sufficiently accurate, at least with respect to the relatively generous target
confidence intervals defined in the model problems.

During this step, Magnus Larsson developed a validation approach that
combined judgment sampling (using substation automation experts to define
key assembly characteristics) and random assembly generation [98], and we
began extensive validation of λ4. Not surprisingly, we were easily able to sat-
isfy the statistical requirements for predictions, achieving a MRE somewhere
between 0.05 and 0.075, that is, between 5–7%, for the required confidence
and population parameters specified by the model problems.

It is worth highlighting the role of the empirical validation infrastruc-
ture developed by Larsson (a summary of which is depicted in Figure 10.1).
As observed by Hoare, an obvious challenge is to develop an experimental

222 CHAPTER 10. THEORIES AND CO-REFINEMENT

assembly generator

assembly testbenchstatistical analyzer

component
generator

Design Space
Specification

component testbench

component
repository

component
registry

labeled components

labeled reasoning frameworks

Figure 10.1: Measurement Infrastructure and Workflow

apparatus that depends to large extent on the nature of the theory being
validated (see 10.1.4). However, our experience suggests that the discipline
of creating such an infrastructure forced us to be more precise about tacit
theory assumptions, such as identifying which among the various types of
Pin events (sink or source events, begin or end interaction events) to use as
measurement anchors.

Another observation is that the techniques used by Larsson to define the
sample space of components and assemblies can be regarded as a systematic
way of defining Hoare’s implementable sets (see 10.1.6) of a theory. Just as
the development of the experimental apparatus imposed discipline that re-
inforced theory development, so, too, the design space specification required
our industry collaborators to be more concrete about the scope of a theory—
what kinds of topologies should be expected, and what range of behaviors
(in this case, defined by the λ∗ theories being developed) to expect from
components and assemblies.

Returning to the spot validations of λ4, although we had satisfied the
statistical requirements for prediction quality, we were far from satisfied with
the results. In fact, we were eager to understand why the predictions were
not at least one order of magnitude more accurate-. What aspect of the Pin
runtime environment had we not modeled? Examining the validation cases
also showed that while some assemblies had an exceedingly small MRE, there
were outliers that exhibited significant error, i.e., an MRE of 0.20 or more.

From this, and from measurement logs, Gabriel Moreno was able to iso-
late the problem to assemblies where low priority task would complete exe-
cution near the release time of a higher priority task. Variance in execution

10.2. SEAM AS LANGUAGE DESIGN: CO-REFINEMENT 223

jitterpreempted

High

Low

Key:
executing

t1 t2 t3 t4 t5

Figure 10.2: Effects of Execution Jitter on Latency

time might result in a low priority task failing to complete before being pre-
empted by the high priority task. The problem is represented schematically
in the bottom pair of task shown in the scheduling timeline fragment in Fig-
ure 10.2, where as a consequence of jitter the first (jitter–free) latency of
the low priority job is t2 − t1, while later the effects of jitter result in job
completing past its intended release point, and possibly beyond its deadline,
with latency t5− t3� t2− t1.

There were several approaches to remedy the problem. Perhaps the most
principled approach would have been to ferret out the source of interference
that caused execution jitter—perhaps it was caused by some unidentified
high priority Windows process that was interfering with the scheduler? or
possibly cache effects were being experienced? Instead, the λ4 simulator
was extended with Monte Carlo simulation using the execution bounds (for
coverage factor k=2 or 95% confidence) and execution distribution for com-
ponent execution times. The result was highly satisfactory, with λ4 substan-
tially surpassing the quality requirements established in Step 0 to achieve
0.99 confidence (original requirement: both 0.99 and 0.95), with a probabil-
ity of 0.80 (unchanged), that predictions will exhibit a MRE less than 0.01
(original requirement: between 0.05 and 0.10, with an average MRE of 0.005.

10.2.7 Step 5: Generalize λ4 to Asynchronous Pins

Pin4 was sufficiently expressive for substation automation, and was a close fit
to how control functions were written and composed in at least one IEC1131–
based tool chain being used by our industrial collaborator. Still, we were
somewhat dissatisfied at losing asynchronous pins, and begin looking into
how to extend λ4 to handle asynchronous as well as synchronous pins.

At this point Gabriel Moreno had a remarkable insight: any Pin assem-
bly that contained asynchronous pins and interactions could be replaced by
a semantically–equivalent (using λ4 as the semantic theory) assembly that

224 CHAPTER 10. THEORIES AND CO-REFINEMENT

contained only synchronous pins and interactions.8 This was formalized as
a Pin rewrite grammar (essentially, a syntax–directed tree–transformation
grammar) and included in the interpretation. Details of the rewrite gram-
mar are provided in [68], and are not repeated here. As a consequence, Pin5
was relaxed from Pin4 to allow asynchronous pins and connections, and λ5
was unchanged from λ4, but was appropriately re–christened as λ-ABA.

10.3 Learning from Co-Refinement

The challenge of incrementally designing reasoning frameworks is evidently
far larger in its social scale, and messier in its technological detail, than
the design problems described by Hoare in Algebra and Models or Wirth in
Program Development by Stepwise Refinement. Two broad lessons stand out
from our experiences with co–refinement of both the λ∗ and ComFoRT rea-
soning frameworks. The first, discussed in §10.3.1, is in the nature of the
design forces that influence the direction of the search through the reasoning
framework design space. The second, discussed in §10.3.2, is in the engineer-
ing roles involved in co–refinement, and how different roles interact with one
another, and how they influence, and are influenced by, the co–refinement
design forces.

10.3.1 Co-Refinement Design Forces

Christopher Alexander observed that, in nature, a tree can be regarded as a
diagram of the forces that have acted on it [6]. The design of certain classes of
software system will be strongly influenced by characteristic design forces—
cost, schedule, safety, etc.—though these will differ from domain to domain.

Three forces appear to most strongly influence the design of reasoning
frameworks: generality, predictability, and practicability:

Generality. This force applies to the constructive and analytic constituents
of a reasoning framework. Increasing generality of the constructive
constituents means increasing the extent of the reasoning framework’s
implementable set, and is achieved by relaxing stricture. Increasing
generality of the analytic constituents means increasing the extent of
a theories observations, and is achieved by relaxing assumptions.

Predictability. This force applies to the interpretation and validation con-
stituents of a reasoning framework. Increasing predictability means
increasing the coverage of interpretation, and is usually achieved by
reducing the extent of the set of assemblies that are wrongly rejected
as “ill–formed” to a theory.

8This required that no two tasks having the same priority could never be ready to
execute simultaneously, a condition that was not difficult to enforce.

10.3. LEARNING FROM CO-REFINEMENT 225

Practicability. This force applies to how the extent of implementable sets
is defined (i.e., the “application design space” supported by the reason-
ing framework), how much transparency or opacity must be achieved
between the reasoning framework theory and the users of the frame-
work, and how normative goals for the quality of reasoning framework
predictions are defined.

These forces interact in the characteristic ways shown in Figure 10.3. Pre-
dictability and practicability are mutually reinforcing—increasing (decreas-
ing) one generally results in increasing (decreasing) the other. Generality,
however, tends to work against predictability and practicability.

To illustrate, consider GRMA and timed automata, which are compa-
rable in the sense that both may be used to predict real–time behaviors.
Without question, GRMA is a “weaker” theory than timed automata in that
it makes many more assumptions about the environment (for example, the
apparatus for priority–based scheduling) than timed automata, and makes
far fewer observations (for example, largely confined to scheduling points).
On the other hand, timed automata exhibit quite poor practicability, due in
large part to the intractable computational complexity of its possible decision
theories.

An analogous effect can be seen in the different outcomes in the co–
refinement of λ∗ and ComFoRT. In the case of λ∗, co–refinement could be
initiated from a highly restrictive starting point, in terms of the constructive
freedom allowed designers, and in the observations that made by the theory.
In contrast, the starting point for ComFoRT exhibited (to a large extent)
the debilitating effects of generality on practicability—the reasoning frame-
work can hardly be claimed to have ameliorated the effects of state–space
explosion.

In retrospect, it is difficult to escape the conclusion that a key heuristic to
co–refinement is to start from the most specialized theories possible and then
follow Harper’s prescription of steady “controlled relaxation.” In contrast,
co–refinement of ComFoRT can be regarded as having been initiated from
an overly–generalized starting point, from which various specializations have
been developed (buffer overflow detection is one example) that tend to be
mutually incomparable, if not incompatible.

10.3.2 Engineering Roles in Co–Refinement

Developing a PECT is a non–trivial undertaking, requiring collaboration
among different specialty skills. I have chosen to distinguish these roles by
adding various prefixes to “engineer.” Where Hoare would consider theory
development to be the purview of the computer scientist (and it should be),
the emphasis in the Seam is on the application, and tuning, of existing
theories to meet specific objectives at hand, for which “engineer” seems more

226 CHAPTER 10. THEORIES AND CO-REFINEMENT

Predictability

Practicability Generality

+

−

−

Figure 10.3: Reasoning Framework Design Forces

attuned.

Role Concerns
PECT Engineer Is expert in component technologies, the ideas

of The Seam and Predictability By Construc-
tion. Is “Chief Architect” of the PECT, or
PECT Reasoning Framework.

Application Engineer Is expert in the application domain that is the
target of the PECT, the standards and prac-
tices for developing applications of requisite
quality, and the business objectives that will
be satisfied by predictability by construction.

Theory Engineer Is expert in a behavior theory, its observations
and assumptions, how it can be specialized or
generalized, and how its decision procedures
can be automated.

Language Engineer Is expert in the design and implementation of
programming languages, including the specifi-
cation of type systems and language semantics
and the development of code generators.

System Engineer Is expert in the design and implementation
of operating systems, system instrumentation,
measurement, and testing.

The PECT engineer can be regarded as the logical unitary design authority
who is responsible for orchestrating the interactions among the other roles.
Although two co–refinement data points are hardly sufficient basis for sweep-
ing generalizations about the social aspects of co–refinement and the design
of a PECT, a few minor observations are in order.

First, and perhaps surprisingly given the apparent theoretical complexity
of some of the technologies integrated in a PECT, the entire enterprise hinges
on the strength of the application engineer and the existence of a genuine and
reasonably well–defined business objective. The application engineer gives
voice to “practicability” concerns, which must be based in a concrete problem

10.3. LEARNING FROM CO-REFINEMENT 227

at hand, without which the entire design process can become unhinged and
wander off into interesting but not always useful regions of the PECT design
space.

Second, the design activity requires a significant level of communication
among all of the roles, throughout the entire PECT or reasoning framework
design process. There are as yet no clear interfaces that can separate the
design of the constituents of a PECT—reasoning frameworks, component
technologies, specification languages, validation infrastructures, code gener-
ators. The mutual dependencies in the design tradeoffs among these means
they can not be designed in isolation of one another.

Last, a PECT is a complex product that requires a significant investment
to develop. As with any complex product, its architectural design must
be adequately documented if it is to be sustained, and if it is to adapt
to new engineering practices—and perhaps be the impetus for incremental
improvement in engineering practice. In this regard we might consider the
apparatus of programming language design to be well–suited to documenting
a PECT, as “analytic theory as language semantics” is certainly a central
tenant of the overall PECT philosophy.

228 CHAPTER 10. THEORIES AND CO-REFINEMENT

Part IV

Conclusions

229

Chapter 11

Summary of Results

231

232 CHAPTER 11. SUMMARY OF RESULTS

In Chapter 1 Introduction I argued that contemporary software engi-
neering theory and practice has, since its conception, been predicated on a
false dichotomy between design and implementation, and therefore between
architect and programmer, and this in turn has adverse consequences on
both technical and social aspects of software engineering practice. I then
introduced the major Theses of this research:

1. A region of complimentary design concerns for software architecture
and computer programs, called The Seam, provides common ground on
which to reconstruct software engineering practice to more effectively
integrate architecture and programming practice.

2. A new software engineering capability, called Predictability By Con-
struction, can be obtained by focusing the Seam on the invention
and use of design rules that yield systems that exhibit analytically–
predicted runtime behavior, with an explicit basis for justifiable confi-
dence in these predictions.

3. A new kind of software component technology, called Prediction–En-
abled Component Technology (PECT) is particularly well–suited to
provide substantial automation of the Seam, and provides a range of
shared design abstractions that have dual meaning to architects and
programmers.

In this chapter I review in §11.1 how the results presented in this dis-
sertation support the theses, and in §11.2 answer the key research questions
posed by the Theses. Taken together, these two sections strongly justify the
conclusion that the thesis presented by this research has been sustained. I
close in §11.3 with the limitations of the approach reported here, and identify
areas of possible future work.

11.1 Results in Support of the Theses

As noted early in this dissertation, establishing the viability of the Seam
required applying it to non–trivial engineering design challenges. It is for
this purpose that industrial case studies took on a prominent formative and
normative role in the research approach—formative in giving shape to our
understanding of the Seam, PBC, and PECT; and normative by establishing
objective criteria with which to judge the effectiveness of triad.

Several industrial case studies were undertaken, with results described
in Chapters 9–9. Each of these efforts confirmed one or more of the main
theses presented in this research. A brief summary of key confirming results
from the case studies is provided in Table 11.1.

11.1. RESULTS IN SUPPORT OF THE THESES 233

Table 11.1: Seam Results From Case Studies and Prototypes

C
on

ce
rn
s • Distributed Soft P&C prototypes have predictable worst/average–

case latency (§9.2.3, §9.2.4).

• Hard real–time robot controller can be safely extended by third-party
components (§9.3.2).

T
he
or
ie
s • λ-ABA predictions satisfy confidence interval γ = 0.99, ρ = 0.99,

UB < 0.01 (§9.2.3, §9.2.4).

• ObjectBench generates counterexample that confirms presence of
deep latent “bug” in previously released industrial robotics communi-
cation library (§9.3.3).

R
ul
es

• λ∗ assumptions are enforced by a combination of Pin runtime mech-
anism, application constraints enforced by PCL and by the various
λ∗ interpretations (§10.2).

• λ-SS assumptions are enforced by a combination of λ-ABA interpre-
tation and by a specialized container that implements an application-
level sporadic server (§9.3.2).

E
xp

la
na

ti
on

s • λ-ABA allows substation engineers to assess performance impact of
different allocations of logical nodes to IEDs, up to an explicit confi-
dence bound (§9.2.4)

• λ-SS allows the architect to assess impact of different sporadic server
refresh rates on overall system performance, and on service times of
third-party components, up to an explicit confidence bound (§9.3.2).

A
bs
tr
ac
ti
on

s

• Pin components used to generate new and wrap legacy substation
controller software, consistent with IEC-61850 logical nodes used by
substation designers (§9.2.3, §9.2.4).

• Constructive (Pin) interfaces and Analytic (λ∗) interfaces provide
dual functional and extra-functional view of code. (§9.2.4, §9.3.1).

• λ-SS container provides bounded performance guarantees to Open
Controller provider, Open Controller user, and third-party compo-
nent developer (§9.3.1).

234 CHAPTER 11. SUMMARY OF RESULTS

11.2 Answers to Key Research Questions

Question 1: What makes a runtime behavior “predictable” and
what constitutes “sufficiently predictable” behavior?

This research provides a definition of formally predictable behavior (Def. 3.13,
pp. 58) that combines theories of computation (Def. 3.9, pp. 56), and objec-
tive evidence (Def. 3.11, pp. 57), each constituent of which is an essential
part of a PECT reasoning framework.

The question of “sufficiency” was addressed in the method of co–refine-
ment (§10.2), which combines Hoare’s ideas of theory development with
Wirth’s ideas of stepwise refinement of program design; the use of co–
refinement on for the continuing evolution of λ∗ through several years of
industrial trial demonstrate the viability of the approach.

Question 2: How are theories program behavior packaged as “non–
traditional semantics” of programs?

This research demonstrates that reasoning frameworks can be developed and
independently deployed as “prediction-enabling” components of a PECT.
ComFoRT (§8.6) and λ∗ (§8.2) are existence proofs of at least two such
non–standard semantics, although it would be more accurate to view λ∗ as
comprising three distinct non–standard semantics, and a similar case can
be made for ComFoRT , where its certifying– and non–certifying decision
procedures impose different constraints and have subtle differences in their
interpretations mark these as defining distinct non–standard semantics.

Question 3: How are “design rules” that lead to predictable behav-
ior identified and enforced?

This research demonstrates that co-refinement can be used to develop rea-
soning frameworks that impose variable degrees of stricture on designers,
and to systematically uncover theory assumptions that must be satisfied to
obtain specific theory observations and those that might be satisfied by static
checking or runtime enforcement.

This research also demonstrated that software component technology
provides various loci for enforcing constraints:

• The component runtime provides real–time services for λ∗, and support
for UML–style time– and change–triggered events, for ComFoRT and
for PCL program generators.

• The component model provides containers and connectors to imple-
ment interaction policies used by λ-SS to manage component execution
budgets and replenishment periods (§8.5.2) and ComFoRT to construct
faithful (not over–) approximations of real application concurrency.

11.3. LIMITATIONS AND FUTURE WORK 235

Question 4: How is justifiable confidence in program behavior es-
tablished, and how is it used?

This research demonstrates that empirical and formal evidence of component
and assembly behavior can be obtained:

• Empirical evidence can be constructed using conventional techniques of
statistical inference, as shown by Larsson in his contribution to PECT
[98], and as used to satisfy the objectives of the industrial case studies.

• Formal evidence that confirms or refutes a specified behavior can be
constructed from model checkers and in the former case the resulting
“proof certificates” obtained from component specifications and ulti-
mately embedded in the deployable component binaries (in §8.6, Figure
8.7, pp. 170, reported in [33]).

The relatively “tight” λ-ABA confidence interval also allowed us to demon-
strate the use of justifiable confidence to conduct “what if” experiments with
alternative Soft P&C designs to assess their respective impact on perfor-
mance (§9.2.4). Thus, reasoning frameworks support an efficient form of
“test” in Simon’s “generate and test” model of the design process (§3.1). An
analogous capability was provided by the containerized plug–in approach
demonstrated for the Open Robot Controller (§9.3.2).

Question 5: How is software component technology used to provide
substantial automation of the seam?

This research demonstrates that familiar component-based abstractions and
implementation techniques can be used to implement the seam. The PECT
developed as a consequence of the research reported here is publicly avail-
able1, and the development of non–trivial Soft P&C prototypes with an
earlier and far less capable version of the public release PECT are persua-
sive demonstrations of the viability of component technology to automate
the Seam.

11.3 Limitations and Future Work

In response to a question about a problematic “corner case” in the semantics
of the (then newly minted) Ada programming language, its inventor, Jean
Ichbiah, replied that “if you go looking for trouble, you are sure to find
it.” For those interested in building on the results reported here, I offer
the following trouble spots, and suggest possible avenues of investigation to
address them.

1See http://www.sei.cmu.edu/predictability/tools/starterkit/index.cfm.

236 CHAPTER 11. SUMMARY OF RESULTS

New Dependencies and New Sources of Complexity

The PECT prototype described in this dissertation has a reasonably well–
defined component structure, and in principle should be adaptable to differ-
ent specification languages, target languages, component technologies, and
reasoning frameworks. However, reasoning frameworks impose idiosyncratic
(to the reasoning framework) constraints, and there is no reason to believe
that the constraints imposed by an arbitrary collection of reasoning frame-
works would be consistent or satisfiable.

Ultimately, we will need better abstractions for talking about constraints,
and for composing and validating sets of constraints, if we ever hope to
compose reasoning frameworks. This is closely related to the question of
modular language semantics, which is known to be notoriously difficult to
achieve.

Gentle Slope Adoption

Despite the fact that all of the constituent parts of the prototype PECT de-
scribed here were largely pre–existing (GRMA, C, UML Statecharts, Model
Checkers), the cost of developing the prototype was substantial. Indeed,
the cost of developing each reasoning framework was substantial, and as ob-
served in §10.3, co–refinement requires substantial interaction among people
who possess specialized (and likely costly) expertise.

Building blocks for reasoning frameworks are necessary (possibly along
the lines of what Dwyer and colleagues attempted for model checkers [50]) if
they are to be developed under practical time and resource constraints, and
if “co–refinement” is to move from research lab to engineering practice.

The Value of Confidence

What is the business value of a (γ = .99, ρ = .80,UB < 0.01) confidence
interval, and how much additional value is obtained by improving ρ, and
what preference should we express for incomparable alternative intervals, for
example one that improves ρ at the expense of UB versus one that improves
γ at the expense of ρ? What is it worth to a component consumer to have a
machine–checkable proof that the component satisfies some explicit security
policy?

The axis of predictability by construction turns on the assumption that
there is economic and business value in having an objective basis for confi-
dence in analytic predictions, but this premise remains ungrounded in current
practice. The value proposition for PECT, and for PBC, can not be estab-
lished without first obtaining a better appreciation of how different qualities
of evidence translate to social or business value.

Reconsidering PCL

11.3. LIMITATIONS AND FUTURE WORK 237

As the designer of PCL I can safely say that I don’t like its current syn-
tax, and its major constituents (Pin component model, UML Statecharts, C
action language) are not cleanly modularized in the language syntax, seman-
tics, or implementation. This is a significant inhibitor to further development
of the PECT prototype, and hinders its adoption by researchers and practi-
tioners who might otherwise have an interest in extending the prototype.

There are several interesting approaches that might be investigated:

• Replace the PCL frontend with a commercial CASE2 tool can provide
a UML Statechart frontend.

• Replace the PCL frontend with an industrially–viable architecture de-
scription language such as AADL.

• Identify the minimal extensions needed to ANSI–C to allow C program-
mers to define Pin–like component abstractions, and replace PCL with
a frontend for this minimally extended dialect as a kind of component–
based analogy to “cfront,” the first implementations of C++.

A final idea about extending PCL which can be undertaken without aban-
doning its current design and implementation would be to make pins in
PCL denotable (can be named), expressible (can be used in expressions),
and storable (can be saved and referred to by indirect means). In the cur-
rent design, pins are only denotable. With these extensions (not conceptually
difficult) it would be possible to implement something closely analogous to
channel passing in Occam-π3 by allowing pins to be passed by reference as
pin parameters. More directly—this would permit a form of runtime evolu-
tion of component topology that also has an available behavioral theory in
the π–Calculus.

2Computer Aided Software Engineering
3See http://www.cs.kent.ac.uk/projects/ofa/kroc/, last accessed 30 Aug 2010

238 CHAPTER 11. SUMMARY OF RESULTS

Part V

Appendixes

239

Appendix A

PCL Semantics

241

242 APPENDIX A. PCL SEMANTICS

PCL defines an interaction and a reaction semantics. The interaction
semantics is given in §A.1; it defines the meaning of the ‘∼>’ operator that
wires two (or more) components together. The reaction semantics is given in
§A.2; it defines how components interact with the environment, and defines
the PinChart execution model for component reactions.

A.1 Interaction Semantics

A.1.1 Preliminaries

A denotational style of definition is given in which well–formed phrases in
the syntax domain (PCL) are mapped to one or more mathematical ob-
jects in the semantic domain (CSP [75]). PCL phrases are enclosed in
[[doublebrackets]].

P[[E]] = P

describes a semantic function P that maps the PCL phrase E to CSP object P. A
denotational definition is convenient because the syntactic structure of PCL aligns
easily with CSP. Using CSP for the semantic domain is also quite natural and
it (and other process algebras) have been used to describe composition semantics
[8, 108, 106]. The following CSP operators are used in this summary:

Channels In CSP processes describe computational behavior, and they commu-
nicate by synchronizing on channels. For example, s?x!y represents a com-
munication channel s that receives data x and sends data y.

‘→’ Step Φ→ r specifies a computational step from Φ to r, where r is a channel
name offered to the environment. Φ

α−→ r specifies two computational steps,
from Φ to r, with the action α performed before r is offered.

‘=’ Process P = s!x→ r?y → P specifies a process P that performs s (and sends
x) and then becomes a process that performs r (and receives y) and then
becomes once again the process P.

‘9’ Interleave s → P 9 r → Q (interleaving) denotes independent processes P
and Q that can perform s or r (or any events in a longer prefix) in any order.

‘‖’ Parallel s → P ‖ s → Q (parallel) which denotes two processes s → P and
s → Q that must simultaneously perform s (synchronize on s) and then
become P and Q, respectively.

‘�’ External Choice P = x→ P � y → P denotes a process P that can perform
x or y, depending on which the environment chooses to present.

Component types and instances are generally denoted by C and c, respectively.
Sink pins and source pins are generally denoted by s and r, respectively. Subscripts,
superscripts and other markings are used as necessary.

A.1.2 A Simple Example
Let us assume two PCL component types component C1 and component C2
with the following specifications:

A.1. INTERACTION SEMANTICS 243

Example A.1: Motivating PCL Assembly.

component C1 ()
{

sink synch s1 () ;
source sink r1 () ;
threaded react R1 (s1 , r1)
{

start −> l i s t e n {}
l i s t e n −> act { trigger ^s1 ; action ^r1 () ; }
act −> l i s t e n { trigger $r1 ; action $s1 () ; }

}
}

component C2 ()
{

sink synch s2 () ;
source sink r2 () ;
threaded react R1 (s1 , r1)
{

start −> l i s t e n {}
l i s t e n −> l i s t e n { trigger ^s2 ; action $s2 () ; }

}
}

assembly A () (E) {
assume {}

C1 c1 () , c3 () ;
C2 c2 () ;

c1 : r ∼> c2 : s ;
c3 : r ∼> c2 : s ;

expose {}
}

We wish to model the behavior of c1:r ∼>c2:s, setting aside as a minor detail the
fact that we ought to define this behavior on an instance of assembly A rather
than its type. Let:

C[[C1 c1()]] B
= P1 = s1 → r1 → r̄1 → s̄1 → P1

C[[C2 c2()]] B
= P2 = s2 → s̄2 → P2

be the CSP process descriptions of the two component instances c1 and c2, where
’B=’ signifies that the CSP processes are the ultimate outcome of the action of
semantic functions which have not yet been defined. A naive interaction semantics

244 APPENDIX A. PCL SEMANTICS

X is then given by:

X [[c1:r ∼>c2:2]]
B
= C[[c1]][r1←r1,2] ‖ C[[c2]][r2←r1,2]

where P[a←b] denotes a new process P ′ in which all occurrences of channel name a
in P are replaced by b.

This interpretation is quite reasonable, but for our purposes is inadequate because
it fails to account for two aspects of interaction behavior that we wish to model:

1. It does not express the queuing of events on C2:s that will result from
c3:r∼>c2:s. In such circumstances, one of c1 or c3 may find itself queued
beyond interactions initiated by the other. In once sense blocking behavior is
just blocking behavior, but in another there are different causes of blocking,
and waiting in a queue to be served is different than waiting while being
served. Further, there is no way to express the queuing policies that c2:s will
use to service incoming requests.

2. It does not distinguish blocking and non–blocking behavior on C1:r. In this
example only synchronous interactions are involved, and so this deficiency
is not immediately apparent. However, had the pins in Example A.1 been
asynchronous rather than synchronous, the behavior would have incorrectly
modeled c1 as blocking on c1:r ∼>c2:s until the reaction denoted by c2:s
completes.

We account for 1 and 2 by using two different kinds of “glue” processes to
model these behaviors—source glue processes, denoted P r, and sink glue processes,
denoted P s.

≫
C c1()

≫ ≫
C c2()

≫

≫
C c3()

≫≫
C c4()

≫
rs

P1 P1r P2s P2

Figure A.1: Interaction Semantics: Schema (Redux)

Figure A.1 illustrates the overall scheme used to define the semantics of interac-
tion. The source glue process P1r defines where blocking occurs in the initiating re-
action, and the order in which events are queued to c2:s and c3:s. The definition of
“glue” processes depends on details of connection topology, and in this example P1r
is constructed from, and it’s alphabet is defined by, C1:r∼>C2:s and C1:r∼>C3:s,

A.1. INTERACTION SEMANTICS 245

and similarly P2s is constructed from, and alphabet defined by, C1:r∼>C2:s and
C4:r∼>C2:s.

The CSP process defined by P1r ‖ P2s observes asynchronous interactions
between component instances c1() and c2() on their source and sink pins c1:r and
c2:s, respectively. It can be regarded as a “connector” process, but if it instantiates a
connector type then the type must be parameterized by all processes that interact on
C1:r and C2:s. An analogous semantic interpretation for synchronous interactions
likewise observes the behavior of “synchronous connectors.”

A.1.3 Top–Level Process

Later it will be shown how to construct for any PCL component instance (with any
number of reactions and sink and source pins) a single CSP process that denotes its
behavior. Therefore, without loss of generality, we describe interaction semantics
in terms of simple cases:

• Components will have exactly one reaction.

• Components (and reactions) will be stateless (state is addressed in §A.2 Re-
action Semantics).

• Components will have at most one sink and one source pin.

• The top–level assembly is constructed from component and services instances
only (i.e., no sub–assemblies).

The following abstract syntax suffices for this simplified language:

Definition A.1 (Initial Syntax Domain)

γ = Asm ::= Inst∗ Wire∗

Inst ::= IdC Id+s Id
+
r

Wire ::= IdC.IdP IdC.IdP

where Inst defines the name of a component instance (IdC) and a set of sink (Id+s)
and source pin (Id+r) names, and where Wire connects two component instances
on their respective source and sink pins. IdC and IdP are identifiers that denote
components and pins, respectively. The semantic domains of interest are:

Definition A.2 (Initial Semantic Domain)

CSP = the domain of CSP process descriptions
ρ : Env = Id→ CSP
A : Asm→ Env→ CSP
D : Inst→ Env→ Env
C : Inst→ CSP
X : Wire→ Env→ Env

246 APPENDIX A. PCL SEMANTICS

Env is a function that when presented with an identifier Id returns a CSP process
associated with that Id. It is customary for the denotation of an identifier to be
the identifier, i.e., [[Id]] = Id. Asm, Env, Inst, and Wire correspond to syntactic
phrase groups in the abstract syntax in Def. A.1. D is the name of a (higher order)
function that when presented with an Inst and an Env will produce another Env;
C takes an Inst and produces a CSP process, etc.

Definition A.3 (Initial Semantic Equations)

D[[IdC(Id+
P)]]ρ = ρ[C[[IdC(Id+

P)]]/IdC]

D[[γ1; γ2]] = D[[γ2]] ◦ D[[γ1]]

C[[IdC(Id+
P)]] = See §A.1.4.

X [[IdC.IdP IdC.IdP]]ρ = See §A.1.5.
X [[γ1γ2]] = X [[γ2]] ◦ X [[γ1]]

Def. A.3 defines the skeletal structure of the interaction semantics. The first equa-
tion shows how instantiations are added to the environment ρ, where the notation
ρ[x/y] means the new function ρ′ such that if a = y then ρ′(a) = x; otherwise
a 6= y and ρ′(a) = ρ(a). The second equation (and the last) show the paradigmatic
way that sequential composition in the syntactic domain is handled in the semantic
domain—as function composition.

A.1.4 Component Instance Processes

We construct for each PCL component instance a single CSP process that speci-
fies its behavior, regardless of how many (threaded and unthreaded) reactions the
PCL component types specify. Each such CSP process must be constructed to in
such a way that it has a unique channel alphabet. In CSP, processes synchronize on
shared channel names; and processes with unique alphabets will never synchronize.
Then the semantic function X will, among other things, selectively rename chan-
nels so that process synchronization is possible, and hence component interaction.
Component instance processes are constructed in the following way:

• Each pin [[p]] corresponds to a pair of CSP channels, p̂ = (p, p̄), where p may
have input data for each consume parameter, i.e., p?x?y if p has two con-
sume parameters, and p̄ may analogously have output data for each produce
parameter, i.e., p̄!a!b.

• Each reaction [[w]] of component instance [[c]] corresponds to a CSP process
ŵ whose channels are the set P̂ of CSP channels that correspond to the pin
parameters of [[w]], and where each p̂ ∈ P̂ is suitably renamed to ensure their
uniqueness across all processes.

• Each component instance [[c]] corresponds to an interleaved CSP process
ĉ = 9ŵ+ , each ŵ corresponding to a reaction of [[c]]’s component type. In-
terleaving represents nondeterministic (for the purpose of constructive com-
position semantics) scheduling of reaction threads.

A.1. INTERACTION SEMANTICS 247

Example A.2: Unique Instance Processes.

component C ()
{

sink synch s1 () ;
sink asynch s2 () ;
source sink r () ;
unthreaded threaded react R1 (s1 , r)
{

int x = 0 ;
start −> l i s t e n {}
l i s t e n −> act { trigger ^s1 ; action x++; ^r () ; }
act −> l i s t e n { trigger $r ; action $s1 () ; }

}
threaded react R2 (s2 , r)
{

start −> l i s t e n {}
l i s t e n −> act { trigger ^s2 ; action ^r () ; }
act −> l i s t e n { trigger $r ; action $s2 () ; }

}

}

There are many possible ways to construct globally unique names. However, to
make matters concrete, consider the definition of component C in Example A.2.
We wish to construct a single process that represents the behavior of instances of
component C.

C[[C c()]]ρ = R[[c : R1]]ρ 9R[[c : R2]]ρ

where

R[[c : R1]]
B
= cR1 = cs1

x++−−−−→ cR1r → cR1r → cs1→ cR1

and

R[[c : R2]]
B
= cR2 = cs2→ cR2r → cR2r → cs2→ cR2

Pins define the alphabet of the CSP processes, and are mapped to CSP channel
pairs, as described earlier. Actions (i.e., PCL statements, see §6.2.5, pp. 104) that
do not generate channel events are regarded as internal (τ) transitions, and appear
as transition labels.

The technique used to achieve unique process alphabets relies on the static
scoping rules enforced by PCL that requires unique denotable names for certain
syntactic constructs, such as declarations, within scopes such as an assembly spec-
ification; therefore, the name of a component instance within an assembly provides
a unique prefix. Because source pins may be shared by different reactions, the
concatenation of instance name and reaction name provides a unique prefix.1

So a unique alphabet can be constructed from two rules:
1PCL requires that each sink pin be allocated to exactly one reaction, so no such

disambiguation of sink pin names is required.

248 APPENDIX A. PCL SEMANTICS

≫≫

≫

≫≫
r

≫
s

r
>| >

s
>|

≫

r
>| >

r
>| >

>|

≫≫

≫

≫

≫≫
r

r

r

s

s

c1() c2()
c1()

c2()

c1() c2()

c1()

c2()

c1()

c3()

c3()

c2()

c1() c3()

c2() c4()

s

s

s

Case 1

Case 2

Case 3

Case 4

Case 6

Case 5

Figure A.2: Basic Interaction Patterns

1. for sink pin c:s, Q[[c: s]] = cs

2. for source pin c: r, Q[[c: r]] = {cγr • γ is a reaction name of c()}

Details of R and C will not be further elaborated in this semantics. In fact, we
can regard the process outlined above for creating unique processes something that
can be carried out entirely within the syntactic domain as a “pre–processing” step.
This is, in fact, a reasonable interpretation of the abstract syntax give in Def. A.1,
which simply declares component instances and their pins. We lose no generality
by assuming that all component instance names, and all pin names, are unique for
all component instances.

A.1.5 Interacting Processes

Here we describe the rules for composing a top–level CSP process to denote by a
top–level PCL assembly from pairwise syntactically composed PCL components.

Figure A.2 depicts six cases that are discussed in the following sections; these
cases lead to the final semantic specification provided in §A.1.6. Cases 1 and 2
illustrate the different approaches needed to accommodate synchronous and asyn-
chronous interaction. Cases 3 and 4 illustrate the composite effects of interactions
of N components on one pin, with c2() and c3() on c1:r in Case 3, and c1() and
c2() on c3:s in Case 4. Case 5 combines Cases 3 and 4. Finally, Case 6 handles the
case where two component instances do not interact.

To make the discussions concrete where they need to be, the cases are built
from component types: CStimγ and CRespγ, where γ ∈ {Asych, Synch} denote
component types that use asynchronous and synchronous pins, respectively. The

A.1. INTERACTION SEMANTICS 249

CSP process descriptions of CStimγ and CRespγ instances are defined as:

→
P = C[[CStimγ c1()]] B

= P = s→ r → r̄ → s̄→ P
←
P = C[[CRespγ c2()]] B

= P = s→ s̄→ P

and instances of each of the components in the cases are replaced by their corre-
sponding process descriptions.

Case 1: One–To–One Synchronous Interaction

We assume a simple synchronous interaction among two component instances c1
and c2 with process behaviors specified C[[c1()]] B

=
→
P 1 and C[[c2()]] B

=
←
P 2. Then

the semantics of basic synchronous interaction is given by:

X [[c1:r∼>c2:s]] B
=
→
P 1‖ Gr[[c1:r∼>c2:s]] ‖ Gs[[c1:r∼>c2:s]] ‖

←
P 2

where Gr and Gs are source and sink glue constructors, respectively, with:

Gr[[c1:r∼>c2:s]] B
= Gr = c1r → c1rc2s→ c1rc2s→ c1r → Gr

and

Gs[[c1:r∼>c2:s]] B
= Gs = c1rc2s→ c2s→ Reacting

Reacting = c2s→ c1rc2s→ Gs

where c1r and c2s are globally unique channel names obtained by means described
earlier, and where c1rc2s is a globally unique channel name constructed by Gr and
Gs to describe glue processes.
Gr[[c1:r∼>c2:s]] (the source glue) models the expected blocking behavior. In

Gr, the transition c1r → c1rc2s denotes the synchronous event being queued, while
the transition c1rc2s → c1rc2s is the acknowledgement that the event has been
queued.

→
P 1 remains “blocked,” however, until it synchronizes on the matching c2s

generated by the sink glue.
Gs[[c1:r∼>c2:s]] (the sink glue) does not model queueing behavior because there

are no component instances other than c1() to require message queueing on c2:s.
In Gs, the transition c1rc2s → c2s denotes the receipt of a request from some
arbitrary component, and the forwarding of this request to c2:s, at which point Gs2
becomes a Reacting sink glue process. The transition c2s → c1rc2s denotes the
completion of the reaction initiated on c2:s.

To simplify notation, unique pin/channel names will not be constructed from
component instance and pin names, and the above source and sink glue processes
are equivalent to:

Gr[[c1:r∼>c2:s]] B
= Gr = r → ur,s → ūr,s → r̄ → Gr

and

Gs[[c1:r∼>c2:s]] B
= Gs = ur,s → s → Reacting

Reacting = s̄ → ūr,s → Gs

250 APPENDIX A. PCL SEMANTICS

Case 2: One–To–One Asynchronous Interaction

We assume a simple asynchronous interaction among two component instances c1
and c2 with process behaviors specified C[[c1()]] B

=
→
P 1 and C[[c2()]] B

=
←
P 2. Then, as

with Case 1, the semantics of basic asynchronous interaction is given by:

X [[c1:r∼>c2:s]] B
=
→
P 1‖ Gr[[c1:r∼>c2:s]] ‖ Gs[[c1:r∼>c2:s]] ‖

←
P 2

However, in this case we need a different source glue process than that specified for
Case 1. In that case, the source glue forced the initiating process

→
P 1 to wait until

the reaction on
←
P 2 completed. In this case we want

→
P 1 to block only as long as

required to queue the event:

�
Gr [[c1:r∼>c2:s]] B

= Gr = r → ur,s → ūr,s → Gr

A different sink glue is required as well because it is now possible for c1:r to initiate
a sequence of interactions on c2:s, perhaps more quickly than can be handed by
c2(), in which case these events must be queued. As it turns out, however, the
management of queueing policies on sink glues is insensitive to whether the pins
involved are synchronous or asynchronous, and therefore we can define a generalized
form of sink glue that works in all circumstances for any

←
P j :

Definition A.4 (Generalized Sink Glue)

Gs[[c:r∼>cj:s]] = Gs = �ni=1(ur,s → sj → Reactingj)

Reactingj = �ni=1(ur,s
push(Q,ur,s)−−−−−−−−→ Reactingj)

�s̄j
ux,s=pop(Q)−−−−−−−−→ ūx,y

empty(Q)?−−−−−−−→ [Gs,Reactingj]

where p−→ [X,Y] is interpreted as X if p is True and Y otherwise, and where ‘�nm’
is indexed external choice.

The transition ur,s → sj initiates an interaction on cj : s, and then with sj →
Reactingj the sink glue waits for either the arrival of another ur,s event or the
completion of a pending sj event. The first line of Reactingj handles the first
case by queuing the new request, while the second line handles the second case by
popping the queue with ux,s = pop(Q) and generating the matching ūx,s event, in
FIFO order.

Case 3: One–To–Many Asynchronous Interaction

We assume a simple asynchronous interaction among N component instances
c1:r∼>{c2:s,c3:s ,..., cn:s}, where c1 is an instance of component C1 and c1, c2,
c3, etc. are instances of component C2. Case 3 is a straightforward generalization
of Case 2. Beginning somewhat imprecisely, with S ≡ c1:r∼>{c2:s,c3:s ,..., cn:s}:

X [[S]]
B
= P1 ‖ Gr1 ‖ (Gs2 ‖ P2) ‖ (Gs3 ‖ P3) ‖ . . . ‖ (Gsn ‖ Pn)

where Pi = C[[C ci()]], and where parenthesis have been added to highlight the
structure of the expression but have no effect on its meaning.

A.1. INTERACTION SEMANTICS 251

A more concise formulation is given using the “indexed parallel” operator (‖nm):

X [[S]]
B
= P1 ‖ Gr1 ‖

(
‖ni=2 (Gsi ‖ Pi)

)
Case 3 adds one new wrinkle, though: the definition of Gr1 depends on both pairs
of interaction c1:r∼>c2:s and c1:r∼>c3:s. Among other things, Gr1 must specify
an order of interaction—should events be transmitted to c2:s and then c3:s or
the other way around? In fact, the choice made by PCL is to define the order of
interaction as nondeterministic, which leads to the following generalized form for
asynchronous source glues:

Definition A.5 (Generalized Asynchronous Source Glue)

�
Grj= rj →

(
‖ni=1 (ur,s → r̄j → STOP.)

)
;
�
Grj

where ‘‖nm’ is indexed parallel, and where ‘;’ is the CSP sequential composition
operator.

The asynchronous source glue creates a set of short–lived processes, one for each
x in cj : r ∼>cx:s, and which terminates immediately after acknowledging that the
asynchronous event has been placed on the appropriate sink queue.

Note that synchronous source glues are quite simple in comparison since one–
to–many synchronous interactions are not permitted by PCL.2 Thus it is possible
to state the generalized form for synchronous source glues:

Definition A.6 (Generalized Synchronous Source Glue)

>

Grj= rj → ur,s → ūr,s → r̄j →
>

Grj

Case 4: Many–To–One Synchronous Interaction

This case is a straightforward combination of Case 1 with the generalized sink glue
in Eq. A.6 used to accept events from two sources.

Case 5: Many–To–Many Asynchronous Interaction

This case is a straightforward combination of Case 3 with the generalized asyn-
chronous source glue in Eq. A.5 and generalized sink glue in Eq. A.6.

Case 6: Non–Interaction

This is the base case in assemblies that consist of several non–interacting sub-
assemblies, for example a sequence of non–synchronizing pipelines. The semantic
interpretation is simply:

2If there were consume parameters on the synchronous source pin, from which in-
teraction should it obtain results? There are many possible answers, some of them in-
teresting, but this interaction pattern was not considered useful and could in fact have
counterintuitive behavior.

252 APPENDIX A. PCL SEMANTICS

A[[c1(); c2();]]
B
= C[[c1()]] ‖ C[[c1()]]

where we use parallel (‖) rather than interleaved (9) because C always denotes
processes that have unique alphabets.

A.1.6 PCL Interaction Semantics (Final)
We can now consolidate the previous discussion. The syntactic domain specified in
Def. A.7 is generalized from Def. A.1. It defines two languages: γ, which includes
environments and services (which reduce to a placeholder ‘ε’ production), and γ ′
which includes only assemblies and components. Because services and components
are identical under this semantics, γ ′ will be used. Subassemblies are not included
in γ ′, although this is a minor omission since what is defined can be quite easily ex-
tended to accommodate hierarchical assembly by simply adding a expose phrase to
the abstract syntax and defining a direct semantic interpretation from that phrase
to CSP restriction. Pins reduce to unary prefix operators applied to pin identifiers;
these operators combine the direction of the pin (←,→ for sink, source pins, re-
spectively), and protocol (�, > for asynchronous, synchronous, respectively). No
abstract syntax is provided for reactions (React ::= ε) for reasons described later.

Definition A.7 (Syntax Domain)

γ = Main ::= Serv Asmb
Serv ::= Serv � Serv ′ | ε

γ ′ = Asmb ::= Decl Inst Wire
Decl ::= Decl �Decl ′ | C(Idc React Pin)
React ::= ε

Pin ::= Pin � Pin ′ | �←Ids |
>←Ids |

�→Idr |
>→Idr

Inst ::= Idc Idi
Wire ::= (Idi Idr Id ′i Ids)

The semantic domains are given in Def. A.8. CSP is the principal semantic
domain, from which P is defined for processes as the “sum” (+) domain, meaning
that values of P are either processes (CSP) or undefined (⊥).

From P other process domains are defined as G, suitably decorated to denote
the three varieties of glue constructed (two kind is of source glue, one kind of sink
glue). Glue is defined as a “sum” (+) domain of three kinds of glues.

If D is a sum domain D = D1+D2+ . . .+Dk, and if v1 ∈ D1, v2 ∈ D2, . . . , vk ∈
Dk, then e = [v1, v2, . . . , vk] is an index function that uses φ ∈ D as an index. In
the example, if φ ∈ D2, then e φ = v2.

Cproc (for “component processes”) is defined as a “product” (×) domain, mean-
ing that values of Cproc are pairs (Pc, B), where B is the 3–point domain B =
⊥ + F + > that is often used to model the domain of Boolean truth values, with
F modeling “False,” > modeling “True,” and ⊥ modeling “Undefined.” Values of a
product domain are produced using the tuple–forming < . . . > operator.

If D is a product domain D = D1×D2× . . .×Dk >, then Dj where 0 ≥ j ≤ k
is the projection function defined for D such that if d ∈ D then d1 ∈ D1, d2 ∈ D2,
etc., and dx = ⊥, and dj = ⊥ if j ≥ k ∨ j ≤ 0.

A.1. INTERACTION SEMANTICS 253

CType is defined as a product domain of values of Cproc and Glue. Cenv and
Env are defined as function (‘→’) domains, mapping from identifiers to Glue and
CType values, respectively.

Definition A.8 (Semantic Domain)

CSP = well–formed CSP formulae
P = CSP +⊥ (process)
�r
G = P (asynch source glue, Def. A.5)
>r

G = P (synch source glue, Def. A.6)
s

G = P (sink glue, Def. A.4)

Glue =
�r
G +

>r

G +
s

G
Cproc = Pc × B (B = ⊥+ F +>)

π : Cenv = Id→ Glue
CType = Cproc× Cenv
ρ : Env = Id→ CType

The semantic function types are specified in Def. A.9. They define (in Def. A.9)
a homomorphic relation between the abstract syntax γ′ and the CSP processes
that denote component instances and glue processes that denote connectors. For
example, A : Asmb → Env → PA specifies a higher–order semantic function A
that, when given a syntactic phrase belonging to Asmb (see Def. A.7), yields a
function Env→ PA from an environment Env to functions a CSP process PA.

Definition A.9 (Semantic Functions)

A : Asmb→ Env→ PA
D : Decl→ Env→ Env
P : Pin→ Cenv→ Cenv
I : Inst→ Env→ Env
X : Wire→ Env→ Env

Several auxiliary functions are introduced in Def. A.10 that simplify the pre-
sentation of the semantics. These functions are not formally defined here because,
with the exception of Ψ, these details are routine and do not contribute to the
exposition; Ψ is not formally defined because that aspect of PCL is addressed by
the reaction semantics defined in §A.2 Reaction Semantics. However, more will be
said about Ψ and reaction semantics in the introduction to §A.2.

Definition A.10 (Auxiliary Semantic Functions)

Γ : CType→ Id→ CType (extends glue with new interaction)
Λ : CType→ Id→ CType (new process with Id as prefix in Σ)
Ω : Env→ Id→ CSP (all process in ρ, π in parallel)
Ψ : React→ Pc (CSP interpretation of PinChart)

An informal description of the auxiliary functions introduced in Def. A.10 is:

254 APPENDIX A. PCL SEMANTICS

Γ This function is polymorphic on glue process types, and simply extends whichever
process is denoted with an interaction on channel Id.

Λ Given a value from p ∈ CType, (possibly but not necessarily with (p1)2 = T),
this function produces p′ such that all channel names used by any process in
p are prefixed in p′ by Id.

Ω This function performs an indexed parallel composition ‖x where x ranges over
all component instance processes (the first member of CType) and all glue
processes for that instance.

Ψ This function constructs a CSP process Pr denoted by a PinChart specification.
For interaction semantics we regard Ψ as constructing a process that reacts
to each sink pin event by interacting on each of its source pins.

Definition A.11 (Interaction Semantics)

s

G0,
�r
G0,

>r

G0 = (initial glues, see Defs. A.4, A.5, A.6, resp.)
π0 = ∀Id • π Id =⊥ (initial environment)
ρ0 = ∀Id • ρ Id =⊥ (initial environment)

A[[Decl Inst Wire]]ρ = Ω (X [[Wire]] ◦ I[[Inst]] ◦ D[[Decl]])ρ

D[[C(Idc React Pin)]]ρ = ρ[<< Ψ[[React]],> >,P[[Pin]]π0 > /Idc]
D[[Decl �Decl ′]]ρ = D[[Decl ′]] ◦ D[[Decl]]ρ

P[[φIdp]]π = π[[
�r
G0,

>r

G0,
s

G0,
s

G0]φ/Idp]
P[[Pin � Pin ′]]π = P[[Pin ′]] ◦ P[[Pin]]π

I[[Inst � Inst ′]]ρ = I[[Inst ′]] ◦ I[[Inst]]ρ
I[[Idc Idi]]ρ = ρ[Λ (ρ Idc) Idi/Idi]

X [[(Idi Idr Id ′i Ids)]]ρ = ρ[Γ (ρ Idi) Ids/Idi,Γ (ρ Id ′i) Idr/Id ′i]
X [[Wire �Wire ′]]ρ = X [[Wire ′]] ◦ X [[Wire]]ρ

Def. A.11 describes how the semantics maps each syntactic phrase in γ ′ to a
corresponding domain in CSP. At the top level, the A “assembly” function com-
poses component declarations, component instantiations, and wiring of component
instances; the result of which is an environment ρ′ that has one CType value for each
declared component type and one for each instantiated component type. Gamma
constructs a parallel process to denote the assembly by parallel composing all com-
ponent instance processes, along with all glue processes associated with those com-
ponent instance processes.

The D “declaration” function directly constructs the declared component pro-
cesses and glues; had there been additional syntactic phrases that could be declared
(here there is only component types) there would have been a semantic domain for
each alternative (for example, C for components), and C would have been used to
construct the component value. In any case, the value is constructed using < . . . >

A.2. REACTION SEMANTICS 255

tuple–forming operator, nested in this case because the first element of CType is
itself a product domain, where we use > to denote a “type” process.

The P “pin declaration” function produces an environment Cenv that maps

pin names (channel names) to their initial glue processes. The expression π[[
�r
G0,

>r

G0

,
s

G0,
s

G0]φ/Idp] uses φ as an index into a vector of glue processes; note that both

asynchronous and synchronous sink pins will map to the same initial
s

G0 sink glue.
The I “instantiation” function recovers the component type declaration from the

environment and uses the auxiliary Λ function to produce a clone of the component
type with each channel (in the component instance process and all glue processes
of that instance) are prefixed by the instance name.

The X “wiring” function recovers from the environment the component pro-
cesses associated with the instantiated components (ρ Idi and ρ Id ′i , respectively);
source pin Idr is used to extend its source glue with an interaction on Ids, and
analogously sink pin Ids is used to extend its sink glue with an interaction on Idr.

A.2 Reaction Semantics

A.2.1 Preliminaries

Pin components are composed at runtime from two constituents (see §7.3, pp. 132):

1. A Pin container.

2. Custom code (“Nub”) managed by the container.

The Pin container manages event queues for each component reaction (one queue
per reaction per instance). When an event arrives on a reaction’s inbound event
queue the container invokes a callback on the reaction called its Reaction Han-
dler. The PCL reaction semantics describes the behavior of this reaction handler,
assuming that the reaction is specified by PCL PinCharts.

One constraint enforced by the PCL frontend is that a PinChart is completely
partitioned by two disjoint sets of accepting states and reacting states. Each im-
plicitly or explicitly defined state in a PCL reaction belongs to exactly one of these
sets. Informally:

• All outbound transitions from accepting states must be triggered by a ^sinkpin
begin sink event, timed “after” event, or “when” change event.

• All outbound transitions from reacting states must be completions (defines
no trigger) or be triggered by a $sourcepin end source event.

This partition is exploited by division of responsibility between the reaction handler
and container. Essentially, reaction handlers return control to the container when
they reach an accepting state; and while a reaction interacts with other components
via its source pins, it remains in a reacting state.

The reaction handler specified (in pseudo–code) in §A.2.2 abstracts the actual
execution of behavior encoded as transition actions, state actions, trigger definitions
(to evaluate time and change conditions) and transition guards. In reaction handlers
generated by PCL, the PinChart reaction is encoded directly in the body of the
handler as an inline “C switch” statement, with each state modeled as a “case”

256 APPENDIX A. PCL SEMANTICS

Reaction Pin Augmented for semantics
currState() AUG Current AST State.
env() AUG Function from names to locations
sto() AUG Function from locations to values
installTimeTriggers Pin Supported by Pin RTOS
cancelTimeTriggers Pin Supported by Pin RTOS
installChangeTriggers Pin Supported by Pin RTOS
cancelChangeTriggers Pin Supported by Pin RTOS
State AST Operations on states
Transition AST Operations on transitions
triggeredBy(e) AST True if transition is e–triggered
TransitionSet AST Set of transitions
triggeredBy(e) AST Set of e–triggered transitions
eval AUG Interpreter for PCL action language.

Table A.1: Pseudo–Classes for Reaction Semantics

in the switch statement. In this semantics, we refer (directly or indirectly) to an
evaluation function (Def. A.12):

Definition A.12 (Abstracted Execution Environment)

Loc = machine locations
DV = Loc + Int + Float + String + . . .+ Component + Assembly + . . .

SV = Int + Float + String + Bool + . . .

Env = Id→ DV
Store = Loc→ SV
void eval(Env ρ,Store σ,Actions α)

The eval function takes three arguments—an environment, a store, and a program.
The value of a variable named “MyVar” is retrieved by two function applications:
“σ ρ MyVar” and, following notational conventions established earlier, updating
the value of "MyVar = 0" is achieved by updating the store “σ[0/ρ MyVar].”

An informal pseudo–code notation is used to define the behavior of the Nub re-
action handler. Class–like abstractions are used by the pseudo–code to e.g. obtain
the set of transitions defined on a PinChart state, to interact with the component
runtime, etc. These abstractions (briefly summarized in Table A.1) do not corre-
spond precisely to Pin Interfaces, but are convenient for exposition. For example,
the Pin definition of Reaction does not include member functions for retrieving the
current PinChart state, but this information is logically associated with reactions
by PCL. Each interface is labeled as “Pin” if it is provided by the Pin component
model, “AST” if it is provided by the abstract syntax tree produced by PCL, and
“AUG” if it is an augmentation for exposition.

The pseudo–code for the reaction handler is specified in §A.2.2 and described
in §A.2.3.

A.2. REACTION SEMANTICS 257

A.2.2 Reaction Handler

1 int handleEvent (Reaction r , Event e)
2 {
3 Trans i t i onSe t t r i gg e r ed , enabled , complet ions ;
4 Trans i t i on f i r i n g ;
5
6 // accep t ing s t a t e s "wai t " f o r even t s from conta iner
7 a s s e r t (r . a c c ep t ingSta t e (r . cu r rS ta t e)) ;
8
9 // d i s card even t s t ha t don ’ t match t r i g g e r s

10 t r i g g e r e d = r . cu r rS ta t e . t r iggeredBy (e) ;
11 i f (t r i g g e r e d . empty ()) return ;
12
13 // eva l ua t e guards on t r a n s i t i o n s t r i g g e r e d by e
14 enabled = t r i g g e r e d . evalGuards (r . sto , r . env) ;
15
16 // d i s card even t s t ha t have no s a t i s f i e d guards
17 i f (enabled . empty ()) return ;
18
19 // cance l p rev ious t imers and watches
20 r . cance lTimeTriggers () ;
21 r . cance lChangeTriggers () ;
22
23 while (1)
24 {
25 // i f > 1 guard s a t i s f i e d , make non−d e t e rm in i s t i c cho ice
26 f i r i n g = enabled . nonDetermin i s t i cChoice () ;
27
28 // execu te t r a n s i t i o n ac t i on s
29 eva l (r . sto , r . env , f i r i n g . a c t i on s ()) ;
30
31 // make the t r a n s i t i o n t a r g e t the new s t a t e
32 r . cu r rS ta t e = f i r i n g . t a r g e tS t a t e () ;
33
34 // i n s t a l l t imers f o r time t r i g g e r e d t r a n s i t i o n s
35 // s t a r t time even t s r e l a t i v e to s t a t e entry
36 i f (r . a c c ep t i ngS ta t e s (r . cu r rS ta t e))
37 {
38 r . i n s t a l lT imeTr i gg e r s (r . CurrState) ;
39 }
40
41 // execu te s t a t e ’ s entry (and only) ac t i on s
42 eva l (r . sto , r . env , r . cu r rS ta t e . a c t i on s ()) ;
43
44 // i n s t a l l watches f o r change t r i g g e r e d t r a n s i t i o n s
45 i f (r . a c c ep t ingSta t e (r . cu r rS ta t e))
46 {
47 // re turns a l l watches t ha t e va l ua t ed as t rue
48 enabled = r . i n s t a l lChangeTr i gge r s (r . CurrState) .

258 APPENDIX A. PCL SEMANTICS

49 evalGuards (r . sto , r . env) ;
50 }
51 else // r . r e a c t i n gS t a t e (r . cu r rS ta t e)
52 {
53 // $source t r i g g e r s are im p l i c i t
54 enabled = r . cu r rS ta t e .
55 complet ions () . evalGuards (r . sto , r . env) ;
56 }
57
58 // re turn con t r o l to con ta iner or be STUCK
59 i f (enabled . empty ())
60 {
61 i f (r . i sAccep t ingSta t e (r . c u r r s t a t e))
62 {
63 // wai t f o r next event
64 return ;
65 }
66 else // r . r e a c t i n gS t a t e s (r . cu r rS ta t e)
67 {
68 STUCK() ;
69 }
70 }
71 }
72 }

A.2.3 Reaction Handler Description

7 Components are in an accepting state when waiting on events, and reacting states
when handling events. A reaction is always in either an accepting state or a
reacting state; these are disjoint sets that partition the set of reaction states.

10–11 Events are discarded that do not have corresponding triggers on outbound
transitions from the current state.

13–17 Events are discarded if no guards on event–triggered transitions are satisfied
(i.e., evaluate to True). All transitions that match the event and whose guards
are satisfied are considered to be enabled.

20–21 The TimeTrigger and ChangeTrigger interfaces (which are implicit in the
method names used here) are provided by the Pin to support UML time
and change events. Prior to “leaving” a state all timers (corresponding to
PCL ‘after’ triggers) and all watches (corresponding to PCL ‘when’ triggers)
are cancelled. All timer events are purged from the event queue; change
events are not purged.

23 The Nub remains in control until it reaches an accepting state and returns
control to the container.

26 If more than one transition is enabled, then one is chosen non-deterministically
to be fired.

A.2. REACTION SEMANTICS 259

29 The first step in firing a transition is to execute the transition actions. r .env()
is a function from names to locations, and r . sto() is a function from loca-
tions to values; eval() is an interpreter for PCL statements. In the PSK
implementation, eval(), sto(), and env() are replaced by generated inline C
code.

32 The next step in firing a transition is to change the current state to the target
state of the transition.

36–39 PCL enforces the rule that only accepting states have time–triggered tran-
sitions. Timers are started relative to the state’s entry point (i.e., when
r .currState is updated).

42 The next step in firing a transition is to execute the state’s actions.

45–56 If the current state is an accepting state, change triggers are installed for
change–triggered transitions (if any); otherwise the state is a reacting state
which are either triggerless (are “completions” in UML terminology) or are
$sourcePin triggered. The latter case are handed implicitly by the reaction’s
use of SendOutSourcePin and SendOutSourcePinWait methods provided by
Pin’s ContainerInterfaces interface (see Table 7.2, pp. 139). At the end of
this block, the transition has fired and is regarded as “completed.”

48 installChangeTriggers installs the evaluates the (side–effect free) condition spec-
ified by the PCL when condition clause; the set of transitions that satisfy
their conditions are returned, and their guards evaluated, with those transi-
tions satisfying the guard considered to be enabled.

61–65 If the new state is accepting state, then either a) at least one change event is
enabled and must be fired (i.e., continue with the next iteration of the while
loop initiated on line 23), or there are no enabled transitions in which case
control must be returned to the reaction’s (component instance’s) container.

66–69 If the new state is a reacting state, then either a) at least one completion
(including implicit $sourcePin triggered transitions) is enabled and must be
fired (continue with the next loop iteration), or no transition is enabled, in
which case the reaction is deadlocked. This latter condition can only arise
in PinCharts when all guard conditions on outbound transitions of reacting
states evaluate to False.

260 APPENDIX A. PCL SEMANTICS

Appendix B

Examples from Soft P&C Case
Study

261

262 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

B.1 PCL Assembly Specification for SoftPC–A

Example B.1: PCL Assembly Specification of Soft P&C SPC–A.

1
2 ///−−− i n c l ude g l o b a l d e c l a r a t i on s
3 #include "Common/Globa lDec la ra t i ons . c c l "
4 #include "Common/LN0IncludeTemplate . c c l "
5
6 //−−− i n c l ude procedures and func t i on s
7 #include "Common/ Inc lude s /CommandIsEquals . c c l "
8 #include "Common/ Inc lude s /GetBreakerPos i t ionAsStr ing . c c l "
9 #include "Common/ Inc lude s /GetBreakerPositionAsType . c c l "
10 #include "Common/ Inc lude s / I s S e l f . c c l "
11 #include "Common/ Inc lude s / I sBroadcast . c c l "
12 #include "Common/ Inc lude s /ComposeProxyCommand . c c l "
13 #include "Common/ Inc lude s /ComposeAcknowledgeCommand . c c l "
14
15
16 //−−− i n c l ude boundary components , s h i e l d boundary s e r v i c e s
17 #include "HelperComponents/PinDebugOutput . c c l "
18 #include "HelperComponents/CSWIGenerator . c c l "
19
20 //−−− i n c l ude l o g i c a l nodes
21 #include "LogicalNodes /C/CILO . c c l "
22 #include "LogicalNodes /C/CSWI. c c l "
23 #include "LogicalNodes /X/XSWI. c c l "
24 #include "LogicalNodes /X/XCBR. c c l "
25 #include "LogicalNodes /P/PTOC. c c l "
26 #include "LogicalNodes /P/PTOV. c c l "
27 #include "LogicalNodes /P/PDIF . c c l "
28 #include "LogicalNodes /P/PTRC. c c l "
29 #include "LogicalNodes /M/MDIF. c c l "
30 #include "LogicalNodes /M/MMXU. c c l "
31
32 //−−− i n c l ude proxy components
33 #include "ServiceComponents /GOOSEListener . c c l "
34 #include "ServiceComponents /GOOSESender . c c l "
35 #include "ServiceComponents /SAVSender . c c l "
36
37 //−−− i n c l ude LN proxy components
38 #include "ProxyComponents/T/TCTRProxy . c c l "
39 #include "ProxyComponents/T/TVTRProxy . c c l "
40 #include "ProxyComponents/T/TXTRProxy . c c l "
41 #include "ProxyComponents/X/XCBRProxy . c c l "
42 #include "ProxyComponents/X/XSWIProxy . c c l "
43 #include "ProxyComponents/ I /IHMIProxy . c c l "
44
45 //−−− i n c l ude o ther s e r v i c e components
46 #include "ServiceComponents /SAVSynchronizer . c c l "

B.1. PCL ASSEMBLY SPECIFICATION FOR SOFTPC–A 263

47
48 environment RTX() {
49
50 //−−− i n c l ude boundary s e r v i c e s
51 #include "ServiceComponents /SAVListenerProxy . c c l "
52 #include "ServiceComponents /SAVSenderProxy . c c l "
53 #include "ServiceComponents /GOOSEListenerProxy . c c l "
54 #include "ServiceComponents /GOOSESenderProxy . c c l "
55 }
56
57 assembly SPCAAssembly () (RTX) {
58
59 assume {
60 RTX: SAVListenerProxy sav_in () ;
61 RTX: SAVSenderProxy sav_out () ;
62 RTX: GOOSEListenerProxy goose_in () ;
63 RTX:GOOSESenderProxy goose_out () ;
64 }
65
66 // Proxy Components
67
68 const TUniqueDeviceID uniqueDeviceIDgl =
69 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA} ;
70 GOOSEListener goo s eL i s t ene r (
71 uniqueDeviceIDgl , C_MacAddress_SPCA) ;
72 goose_in :CommandWithMac ∼> goo s eL i s t ene r :CommandWithMac ;
73
74 annotate goose_in :Main
75 {"Pin" , const int p r i o r i t y = 121}
76 annotate goo s eL i s t ene r : External
77 {"Pin" , const int p r i o r i t y = 60}
78
79 const TUniqueDeviceID uniqueDeviceIDgs =
80 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA} ;
81 GOOSESender gooseSender (
82 uniqueDeviceIDgs , C_MacAddress_SPCA) ;
83 gooseSender :CommandWithMac ∼> goose_out :CommandWithMac ;
84
85 annotate goose_out : External
86 {"Pin" , const int p r i o r i t y = 124}
87 annotate goose_out : External
88 {"Pin" , const int queueLength = 100}
89 annotate gooseSender : External
90 {"Pin" , const int p r i o r i t y = 63}
91
92 SAVSender savSender (
93 C_MacAddress_SPCB , C_MacAddress_SPCA,
94 C_MergingUnitName_SPCA , C_PulsePerSecond) ;
95 savSender : IU3NOut ∼> sav_out : IU3N ;

264 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

96
97 annotate sav_out :Main
98 {"Pin" , const int p r i o r i t y = 123}
99 annotate sav_out :Main

100 {"Pin" , const int queueLength = 100}
101 annotate savSender : Main
102 {"Pin" , const int p r i o r i t y = 119}
103
104 // TCTR
105
106 TCTRProxy tctrProxy1 (
107 C_MergingUnitName_MU1 , C_SystemParameters) ;
108 sav_in :SAV ∼> tctrProxy1 :SAV;
109 tctrProxy1 : I3N ∼> savSender : I3N ;
110
111 annotate sav_in :Main
112 {"Pin" , const int p r i o r i t y = 122}
113 annotate tctrProxy1 :Main
114 {"Pin" , const int p r i o r i t y = 116}
115
116 // TVTR
117
118 TVTRProxy tvtrProxy1 (
119 C_MergingUnitName_MU1 , C_SystemParameters) ;
120 sav_in :SAV ∼> tvtrProxy1 :SAV;
121
122 annotate tvtrProxy1 :Main
123 {"Pin" , const int p r i o r i t y = 117}
124
125 // TXTR −−> for MMXU −−> a bundled Current/Vol tage stream
126
127 TXTRProxy txtrProxy1 (
128 C_MergingUnitName_MU1 , C_SystemParameters) ;
129 sav_in :SAV ∼> txtrProxy1 :SAV;
130
131 annotate txtrProxy1 :Main
132 {"Pin" , const int p r i o r i t y = 30}
133
134 // Input from SPCB as input to Synchronizer −> MDIF −> PDIF
135
136 TCTRProxy tctrProxy2 (
137 C_MergingUnitName_MU2 , C_SystemParameters) ;
138 sav_in :SAV ∼> tctrProxy2 :SAV;
139
140 annotate tctrProxy2 :Main
141 {"Pin" , const int p r i o r i t y = 115}
142
143 // PTOC
144

B.1. PCL ASSEMBLY SPECIFICATION FOR SOFTPC–A 265

145 const TUniqueLNID uniqueLNIDptoc1 =
146 {C_PhysicalDeviceName ,
147 C_LogicalDeviceName_SPCA , "PTOC" , "PTOC1" } ;
148 PTOC ptoc1 (
149 uniqueLNIDptoc1 , C_SystemParameters ,
150 Phase1 , 20000 , C_ResetManual) ;
151 tctrProxy1 : I3N ∼> ptoc1 : I3N ;
152 goo s eL i s t ene r : CmdOutConfig ∼> ptoc1 :CommandIn ;
153 ptoc1 :CommandOut ∼> gooseSender :CommandIn ;
154
155 annotate ptoc1 :Main {"Pin" , const int p r i o r i t y = 95}
156
157 const TUniqueLNID uniqueLNIDptoc2 =
158 {C_PhysicalDeviceName ,
159 C_LogicalDeviceName_SPCA , "PTOC" , "PTOC2" } ;
160 PTOC ptoc2 (
161 uniqueLNIDptoc2 , C_SystemParameters ,
162 Phase2 , 20000 , C_ResetManual) ;
163 tctrProxy1 : I3N ∼> ptoc2 : I3N ;
164 goo s eL i s t ene r : CmdOutConfig ∼> ptoc2 :CommandIn ;
165 ptoc2 :CommandOut ∼> gooseSender :CommandIn ;
166
167 annotate ptoc2 :Main {"Pin" , const int p r i o r i t y = 96}
168
169 const TUniqueLNID uniqueLNIDptoc3 =
170 {C_PhysicalDeviceName ,
171 C_LogicalDeviceName_SPCA , "PTOC" , "PTOC3" } ;
172 PTOC ptoc3 (
173 uniqueLNIDptoc3 , C_SystemParameters ,
174 Phase3 , 20000 , C_ResetManual) ;
175 tctrProxy1 : I3N ∼> ptoc3 : I3N ;
176 goo s eL i s t ene r : CmdOutConfig ∼> ptoc3 :CommandIn ;
177 ptoc3 :CommandOut ∼> gooseSender :CommandIn ;
178
179 annotate ptoc3 :Main {"Pin" , const int p r i o r i t y = 97}
180
181 const TUniqueLNID uniqueLNIDptoc0 =
182 {C_PhysicalDeviceName ,
183 C_LogicalDeviceName_SPCA , "PTOC" , "PTOC0" } ;
184 PTOC ptoc0 (
185 uniqueLNIDptoc0 , C_SystemParameters ,
186 PhaseN , 20000 , C_ResetManual) ;
187 tctrProxy1 : I3N ∼> ptoc0 : I3N ;
188 goo s eL i s t ene r : CmdOutConfig ∼> ptoc0 :CommandIn ;
189 ptoc0 :CommandOut ∼> gooseSender :CommandIn ;
190
191 annotate ptoc0 :Main {"Pin" , const int p r i o r i t y = 98}
192
193 // PTRC from PTOC

266 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

194
195 const TUniqueLNID uniqueLNIDptrc1 =
196 {C_PhysicalDeviceName ,
197 C_LogicalDeviceName_SPCA , "PTRC" , "PTRC1" } ;
198 PTRC ptrc1 (
199 uniqueLNIDptrc1 , 1 , 4 ,
200 C_SystemParameters , true , true , true , true) ;
201 goo s eL i s t ene r : CmdOutConfig ∼> ptrc1 :CommandIn ;
202 ptrc1 :CommandOut ∼> gooseSender :CommandIn ;
203 ptoc1 : S ta r t ∼> ptrc1 : Star t1 ;
204 ptoc2 : S ta r t ∼> ptrc1 : Star t2 ;
205 ptoc3 : S ta r t ∼> ptrc1 : Star t3 ;
206 ptoc0 : S ta r t ∼> ptrc1 : Star t4 ;
207 ptoc1 : Trip ∼> ptrc1 : Trip1 ;
208 ptoc2 : Trip ∼> ptrc1 : Trip2 ;
209 ptoc3 : Trip ∼> ptrc1 : Trip3 ;
210 ptoc0 : Trip ∼> ptrc1 : Trip4 ;
211
212 annotate ptrc1 :Main {"Pin" , const int p r i o r i t y = 86}
213 annotate ptrc1 :Main {"Pin" , const int queueLength = 100}
214
215 // PTOV
216
217 const TUniqueLNID uniqueLNIDptov1 =
218 {C_PhysicalDeviceName ,
219 C_LogicalDeviceName_SPCA , "PTOV" , "PTOV1" } ;
220 PTOV ptov1 (
221 uniqueLNIDptov1 , C_SystemParameters ,
222 Phase1 , 50000 , C_ResetManual , 20) ;
223 // need 20 v o l t a g e samples b e f o r e t r i p p o s i t i v e
224 tvtrProxy1 :U3N ∼> ptov1 :U3N;
225 goo s eL i s t ene r : CmdOutConfig ∼> ptov1 :CommandIn ;
226 ptov1 :CommandOut ∼> gooseSender :CommandIn ;
227
228 annotate ptov1 :Main {"Pin" , const int p r i o r i t y = 100}
229
230 const TUniqueLNID uniqueLNIDptov2 =
231 {C_PhysicalDeviceName ,
232 C_LogicalDeviceName_SPCA , "PTOV" , "PTOV2" } ;
233 PTOV ptov2 (
234 uniqueLNIDptov2 , C_SystemParameters ,
235 Phase2 , 50000 , C_ResetManual , 20) ;
236 // need to see 20 v o l t a g e samples b e f o r e t r i p p o s i t i v e
237 tvtrProxy1 :U3N ∼> ptov2 :U3N;
238 goo s eL i s t ene r : CmdOutConfig ∼> ptov2 :CommandIn ;
239 ptov2 :CommandOut ∼> gooseSender :CommandIn ;
240
241 annotate ptov2 :Main {"Pin" , const int p r i o r i t y = 101}
242

B.1. PCL ASSEMBLY SPECIFICATION FOR SOFTPC–A 267

243 const TUniqueLNID uniqueLNIDptov3 =
244 {C_PhysicalDeviceName ,
245 C_LogicalDeviceName_SPCA , "PTOV" , "PTOV3" } ;
246 PTOV ptov3 (
247 uniqueLNIDptov3 , C_SystemParameters ,
248 Phase3 , 50000 , C_ResetManual , 20) ;
249 // need to see 20 v o l t a g e samples b e f o r e t r i p p o s i t i v e
250 tvtrProxy1 :U3N ∼> ptov3 :U3N;
251 goo s eL i s t ene r : CmdOutConfig ∼> ptov3 :CommandIn ;
252 ptov3 :CommandOut ∼> gooseSender :CommandIn ;
253
254 annotate ptov3 :Main {"Pin" , const int p r i o r i t y = 102}
255
256 const TUniqueLNID uniqueLNIDptov0 =
257 {C_PhysicalDeviceName ,
258 C_LogicalDeviceName_SPCA , "PTOV" , "PTOV0" } ;
259 PTOV ptov0 (
260 uniqueLNIDptov0 , C_SystemParameters ,
261 PhaseN , 50000 , C_ResetManual , 20) ;
262 // need to see 20 v o l t a g e samples b e f o r e t r i p p o s i t i v e
263 tvtrProxy1 :U3N ∼> ptov0 :U3N;
264 goo s eL i s t ene r : CmdOutConfig ∼> ptov0 :CommandIn ;
265 ptov0 :CommandOut ∼> gooseSender :CommandIn ;
266
267 annotate ptov0 :Main {"Pin" , const int p r i o r i t y = 103}
268
269 // PTRC from PTOV
270
271 const TUniqueLNID uniqueLNIDptrc2 =
272 {C_PhysicalDeviceName ,
273 C_LogicalDeviceName_SPCA , "PTRC" , "PTRC2" } ;
274 PTRC ptrc2 (
275 uniqueLNIDptrc2 , 1 , 4 ,
276 C_SystemParameters , true , true , true , true) ;
277 goo s eL i s t ene r : CmdOutConfig ∼> ptrc2 :CommandIn ;
278 ptrc2 :CommandOut ∼> gooseSender :CommandIn ;
279 ptov1 : Sta r t ∼> ptrc2 : Star t1 ;
280 ptov2 : Sta r t ∼> ptrc2 : Star t2 ;
281 ptov3 : Sta r t ∼> ptrc2 : Star t3 ;
282 ptov0 : Sta r t ∼> ptrc2 : Star t4 ;
283 ptov1 : Trip ∼> ptrc2 : Trip1 ;
284 ptov2 : Trip ∼> ptrc2 : Trip2 ;
285 ptov3 : Trip ∼> ptrc2 : Trip3 ;
286 ptov0 : Trip ∼> ptrc2 : Trip4 ;
287
288 annotate ptrc2 :Main {"Pin" , const int p r i o r i t y = 87}
289 annotate ptrc2 :Main {"Pin" , const int queueLength = 100}
290
291 // Synchronizer

268 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

292 const TUniqueLNID uniqueLNIDsync1 =
293 {C_PhysicalDeviceName ,
294 C_LogicalDeviceName_SPCA , "SYNC" , "SYNC1" } ;
295 SAVSynchronizer savSynchron izer (
296 uniqueLNIDsync1 , C_SystemParameters) ;
297 tctrProxy1 : I3N ∼> savSynchron izer : stream1 ;
298 tctrProxy2 : I3N ∼> savSynchron izer : stream2 ;
299 goo s eL i s t ene r : CmdOutConfig ∼> savSynchron izer :CommandIn ;
300 savSynchron izer :CommandOut ∼> gooseSender :CommandIn ;
301
302 annotate savSynchron izer : Main
303 {"Pin" , const int p r i o r i t y = 94}
304
305 // MDIF
306 const TUniqueLNID uniqueLNIDmdif1 =
307 {C_PhysicalDeviceName ,
308 C_LogicalDeviceName_SPCA , "MDIF" , "MDIF1" } ;
309 MDIF mdif1 (
310 uniqueLNIDmdif1 , C_SystemParameters , C_ResetManual) ;
311 goo s eL i s t ene r : CmdOutConfig ∼> mdif1 :CommandIn ;
312 mdif1 :CommandOut ∼> gooseSender :CommandIn ;
313 savSynchron izer : synchronizedStream ∼> mdif1 : IU3NSync ;
314
315 annotate mdif1 :Main {"Pin" , const int p r i o r i t y = 93}
316
317 // PDIF
318 const TUniqueLNID uniqueLNIDpdif1 =
319 {C_PhysicalDeviceName ,
320 C_LogicalDeviceName_SPCA , "PDIF" , "PDIF1" } ;
321 PDIF pd i f 1 (
322 uniqueLNIDpdif1 , C_SystemParameters ,
323 500 , C_ResetManual) ;
324 goo s eL i s t ene r : CmdOutConfig ∼> pd i f 1 :CommandIn ;
325 pd i f 1 :CommandOut ∼> gooseSender :CommandIn ;
326 mdif1 : D i f f 1 ∼> pd i f 1 : D i f f ;
327
328 annotate pd i f 1 : Main {"Pin" , const int p r i o r i t y = 90}
329
330 const TUniqueLNID uniqueLNIDpdif2 =
331 {C_PhysicalDeviceName ,
332 C_LogicalDeviceName_SPCA , "PDIF" , "PDIF2" } ;
333 PDIF pd i f 2 (
334 uniqueLNIDpdif2 , C_SystemParameters ,
335 500 , C_ResetManual) ;
336 goo s eL i s t ene r : CmdOutConfig ∼> pd i f 2 :CommandIn ;
337 pd i f 2 :CommandOut ∼> gooseSender :CommandIn ;
338 mdif1 : D i f f 2 ∼> pd i f 2 : D i f f ;
339
340 annotate pd i f 2 : Main {"Pin" , const int p r i o r i t y = 91}

B.1. PCL ASSEMBLY SPECIFICATION FOR SOFTPC–A 269

341
342 const TUniqueLNID uniqueLNIDpdif3 =
343 {C_PhysicalDeviceName ,
344 C_LogicalDeviceName_SPCA , "PDIF" , "PDIF3" } ;
345 PDIF pd i f 3 (
346 uniqueLNIDpdif3 , C_SystemParameters ,
347 500 , C_ResetManual) ;
348 goo s eL i s t ene r : CmdOutConfig ∼> pd i f 3 :CommandIn ;
349 pd i f 3 :CommandOut ∼> gooseSender :CommandIn ;
350 mdif1 : D i f f 3 ∼> pd i f 3 : D i f f ;
351
352 annotate pd i f 3 : Main {"Pin" , const int p r i o r i t y = 92}
353
354 // PTRC from PDIF
355
356 const TUniqueLNID uniqueLNIDptrc3 =
357 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
358 "PTRC" , "PTRC3" } ;
359 PTRC ptrc3 (
360 uniqueLNIDptrc3 , 1 , 3 ,
361 C_SystemParameters , true , true , true , fa l se) ;
362 goo s eL i s t ene r : CmdOutConfig ∼> ptrc3 :CommandIn ;
363 ptrc3 :CommandOut ∼> gooseSender :CommandIn ;
364 pd i f 1 : S ta r t ∼> ptrc3 : Star t1 ;
365 pd i f 2 : S ta r t ∼> ptrc3 : Star t2 ;
366 pd i f 3 : S ta r t ∼> ptrc3 : Star t3 ;
367 pd i f 1 : Trip ∼> ptrc3 : Trip1 ;
368 pd i f 2 : Trip ∼> ptrc3 : Trip2 ;
369 pd i f 3 : Trip ∼> ptrc3 : Trip3 ;
370
371 annotate ptrc3 :Main {"Pin" , const int p r i o r i t y = 85}
372 annotate ptrc3 :Main {"Pin" , const int queueLength = 100}
373
374 // PTRC from PTRC1, PTRC2, PTRC3
375
376 const TUniqueLNID uniqueLNIDptrc4 =
377 {C_PhysicalDeviceName ,
378 C_LogicalDeviceName_SPCA , "PTRC" , "PTRC4" } ;
379 PTRC ptrc4 (
380 uniqueLNIDptrc4 , 1 , 1 ,
381 C_SystemParameters , true , true , true , fa l se) ;
382 goo s eL i s t ene r : CmdOutConfig ∼> ptrc4 :CommandIn ;
383 ptrc4 :CommandOut ∼> gooseSender :CommandIn ;
384 ptrc1 : S ta r t ∼> ptrc4 : Star t1 ;
385 ptrc2 : S ta r t ∼> ptrc4 : Star t2 ;
386 ptrc3 : S ta r t ∼> ptrc4 : Star t3 ;
387 ptrc1 : Trip ∼> ptrc4 : Trip1 ;
388 ptrc2 : Trip ∼> ptrc4 : Trip2 ;
389 ptrc3 : Trip ∼> ptrc4 : Trip3 ;

270 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

390
391 annotate ptrc4 :Main {"Pin" , const int p r i o r i t y = 125}
392 annotate ptrc4 :Main {"Pin" , const int queueLength = 100}
393
394 // Q0 − XCBR intance r e s i d e s in another assembly
395
396 const TUniqueLNID uniqueLNIDxcbrproxy1 =
397 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
398 "XCBRProxy" , "XCBR0" } ;
399 const TUniqueLNID uniqueLNIDxcbr1 =
400 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCXA ,
401 "XCBR" , "XCBR0" } ;
402 XCBRProxy xcbrProxy1 (
403 uniqueLNIDxcbrproxy1 , uniqueLNIDxcbr1 , "Q0" ,
404 C_MacAddress_SPCA, C_MacAddress_SPCX) ;
405 xcbrProxy1 :CommandWithMacOut ∼> goose_out :CommandWithMac ;
406
407 annotate xcbrProxy1 : External
408 {"Pin" , const int p r i o r i t y = 127}
409
410 // Q1 − XSWI
411 const TUniqueLNID uniqueLNIDxswiproxy1 =
412 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
413 "XSWI" , "XSWI1" } ;
414 const TUniqueLNID uniqueLNIDxswi1 =
415 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCXA ,
416 "XSWI" , "XSWI1" } ;
417 XSWIProxy xswiProxy1 (
418 uniqueLNIDxswiproxy1 , uniqueLNIDxswi1 ,
419 "Q1" , C_MacAddress_SPCA, C_MacAddress_SPCX) ;
420 xswiProxy1 :CommandWithMacOut ∼> goose_out :CommandWithMac ;
421
422 annotate xswiProxy1 : External
423 {"Pin" , const int p r i o r i t y = 55}
424
425 // Q2 − XSWI
426 const TUniqueLNID uniqueLNIDxswiproxy2 =
427 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
428 "XSWI" , "XSWI2" } ;
429 const TUniqueLNID uniqueLNIDxswi2 =
430 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCXA ,
431 "XSWI" , "XSWI2" } ;
432 XSWIProxy xswiProxy2 (
433 uniqueLNIDxswiproxy2 , uniqueLNIDxswi2 , "Q2" ,
434 C_MacAddress_SPCA, C_MacAddress_SPCX) ;
435 xswiProxy2 :CommandWithMacOut ∼> goose_out :CommandWithMac ;
436
437 annotate xswiProxy2 : External
438 {"Pin" , const int p r i o r i t y = 56}

B.1. PCL ASSEMBLY SPECIFICATION FOR SOFTPC–A 271

439
440 // Q8 − ear th sw i t ch − XSWI
441 const TUniqueLNID uniqueLNIDxswiproxy3 =
442 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
443 "XSWI" , "XSWI3" } ;
444 const TUniqueLNID uniqueLNIDxswi3 =
445 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCXA ,
446 "XSWI" , "XSWI3" } ;
447 XSWIProxy xswiProxy3 (
448 uniqueLNIDxswiproxy3 , uniqueLNIDxswi3 , "Q8" ,
449 C_MacAddress_SPCA, C_MacAddress_SPCX) ;
450 xswiProxy3 :CommandWithMacOut ∼> goose_out :CommandWithMac ;
451
452 annotate xswiProxy3 : External
453 {"Pin" , const int p r i o r i t y = 57}
454
455 // Q9 − XSWI
456 const TUniqueLNID uniqueLNIDxswiproxy4 =
457 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
458 "XSWI" , "XSWI4" } ;
459 const TUniqueLNID uniqueLNIDxswi4 =
460 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCXA ,
461 "XSWI" , "XSWI4" } ;
462 XSWIProxy xswiProxy4 (
463 uniqueLNIDxswiproxy4 , uniqueLNIDxswi4 , "Q9" ,
464 C_MacAddress_SPCA, C_MacAddress_SPCX) ;
465 xswiProxy4 :CommandWithMacOut ∼> goose_out :CommandWithMac ;
466
467 annotate xswiProxy4 : External
468 {"Pin" , const int p r i o r i t y = 58}
469
470
471 // wire t r i p s i g n a l s
472
473 ptrc4 : Trip ∼> xcbrProxy1 : Trip ;
474
475
476 /∗
477 every component checks i f a command i s t a r g e t e d f o r i t s e l f

(I s S e l f) or i s a broadcas t command (IsBroadcas t) and then
proce s s e s the command .

478 ∗/
479 const TUniqueLNID uniqueLNIDihmiProxy1 =
480 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
481 "IHMIProxy" , "IHMI1Proxy" } ;
482 const TUniqueLNID uniqueLNIDihmi1ReportTo =
483 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCIHMI ,
484 "IHMI" , "IHMI1" } ;
485 IHMIProxy ihmiproxy1 (

272 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

486 uniqueLNIDihmiProxy1 , uniqueLNIDihmi1ReportTo ,
487 C_MacAddress_SPCA, C_MacAddress_SPCIHMI) ;
488 ihmiproxy1 :CommandWithMacOut ∼> goose_out :CommandWithMac ;
489
490 annotate ihmiproxy1 : External
491 {"Pin" , const int p r i o r i t y = 20}
492
493 //−−−−−−−−−−−−−−−−− C∗∗∗
494
495
496 // CSWI0
497 const TUniqueLNID uniqueLNIDcswi0 =
498 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
499 "CSWI" , "CSWI0" } ;
500 CSWI cswi0 (uniqueLNIDcswi0) ;
501 cswi0 : OperateOut ∼> xcbrProxy1 : Operate ;
502 goo s eL i s t ene r : CmdOutConfig ∼> cswi0 :CommandIn ;
503 cswi0 :CommandOut ∼> gooseSender :CommandIn ;
504
505 annotate cswi0 :Main {"Pin" , const int p r i o r i t y = 50}
506
507 // CSWI1
508 const TUniqueLNID uniqueLNIDcswi1 =
509 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
510 "CSWI" , "CSWI1" } ;
511 CSWI cswi1 (uniqueLNIDcswi1) ;
512 cswi1 : OperateOut ∼> xswiProxy1 : Operate ;
513 goo s eL i s t ene r : CmdOutConfig ∼> cswi1 :CommandIn ;
514 cswi1 :CommandOut ∼> gooseSender :CommandIn ;
515
516 annotate cswi1 :Main {"Pin" , const int p r i o r i t y = 51}
517
518 // CSWI2
519 const TUniqueLNID uniqueLNIDcswi2 =
520 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
521 "CSWI" , "CSWI2" } ;
522 CSWI cswi2 (uniqueLNIDcswi2) ;
523 cswi2 : OperateOut ∼> xswiProxy2 : Operate ;
524 goo s eL i s t ene r :CmdOutCommands ∼> cswi2 :CommandIn ;
525 cswi2 :CommandOut ∼> gooseSender :CommandIn ;
526
527 annotate cswi2 :Main {"Pin" , const int p r i o r i t y = 52}
528
529 // CSWI3
530 const TUniqueLNID uniqueLNIDcswi3 =
531 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
532 "CSWI" , "CSWI3" } ;
533 CSWI cswi3 (uniqueLNIDcswi3) ;
534 cswi3 : OperateOut ∼> xswiProxy3 : Operate ;

B.1. PCL ASSEMBLY SPECIFICATION FOR SOFTPC–A 273

535 goo s eL i s t ene r :CmdOutCommands ∼> cswi3 :CommandIn ;
536 cswi3 :CommandOut ∼> gooseSender :CommandIn ;
537
538 annotate cswi3 :Main {"Pin" , const int p r i o r i t y = 53}
539
540 // CSWI4
541 const TUniqueLNID uniqueLNIDcswi4 =
542 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
543 "CSWI" , "CSWI4" } ;
544 CSWI cswi4 (uniqueLNIDcswi4) ;
545 cswi4 : OperateOut ∼> xswiProxy4 : Operate ;
546 goo s eL i s t ene r :CmdOutCommands ∼> cswi4 :CommandIn ;
547 cswi4 :CommandOut ∼> gooseSender :CommandIn ;
548
549 annotate cswi4 :Main {"Pin" , const int p r i o r i t y = 54}
550
551
552 // c i l o s u b s c r i b e r s
553 const TUniqueLNIDArray c i loSubArray = {
554 uniqueLNIDxcbr1 [0] , uniqueLNIDxcbr1 [1] ,
555 uniqueLNIDxcbr1 [2] , uniqueLNIDxcbr1 [3] ,
556 uniqueLNIDxswi1 [0] , uniqueLNIDxswi1 [1] ,
557 uniqueLNIDxswi1 [2] , uniqueLNIDxswi1 [3] ,
558 uniqueLNIDxswi2 [0] , uniqueLNIDxswi2 [1] ,
559 uniqueLNIDxswi2 [2] , uniqueLNIDxswi2 [3] ,
560 uniqueLNIDxswi3 [0] , uniqueLNIDxswi3 [1] ,
561 uniqueLNIDxswi3 [2] , uniqueLNIDxswi3 [3] ,
562 uniqueLNIDxswi4 [0] , uniqueLNIDxswi4 [1] ,
563 uniqueLNIDxswi4 [2] , uniqueLNIDxswi4 [3] ,
564 "" , "" , "" , "" ,
565 "" , "" , "" , "" ,
566 "" , "" , "" , "" ,
567 "" , "" , "" , "" ,
568 "" , "" , "" , ""
569 } ;
570
571 const TUniqueLNID uniqueLNIDcilo0 =
572 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
573 "CILO" , "CILO0" } ;
574 CILO c i l o 0 (uniqueLNIDcilo0 , 5 , c i loSubArray) ;
575 goo s eL i s t ene r :CmdOutCommands ∼> c i l o 0 :CommandIn ;
576 goo s eL i s t ene r : CmdOutConfig ∼> c i l o 0 :CommandIn ;
577 goo s eL i s t ene r : CmdOutHardware ∼> c i l o 0 :CommandIn ;
578 c i l o 0 :CommandOut ∼> gooseSender :CommandIn ;
579
580 cswi0 : CanExecute ∼> c i l o 0 : CanExecute ;
581 cswi1 : CanExecute ∼> c i l o 0 : CanExecute ;
582 cswi2 : CanExecute ∼> c i l o 0 : CanExecute ;
583 cswi3 : CanExecute ∼> c i l o 0 : CanExecute ;

274 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

584 cswi4 : CanExecute ∼> c i l o 0 : CanExecute ;
585
586 annotate c i l o 0 :Main {"Pin" , const int p r i o r i t y = 126}
587
588 // connect p o s i t i o n change commands to CILO
589 goo s eL i s t ene r : CmdOutHardware ∼> c i l o 0 :CommandIn ;
590 xcbrProxy1 :CommandOut ∼> c i l o 0 :CommandIn ;
591 xswiProxy1 :CommandOut ∼> c i l o 0 :CommandIn ;
592 xswiProxy2 :CommandOut ∼> c i l o 0 :CommandIn ;
593 xswiProxy3 :CommandOut ∼> c i l o 0 :CommandIn ;
594 xswiProxy4 :CommandOut ∼> c i l o 0 :CommandIn ;
595
596
597 // −−−−−−−−−−−−−−−−−− M∗∗∗∗
598
599 // MMXU
600 const TUniqueLNID uniqueLNIDmmxu1 =
601 {C_PhysicalDeviceName , C_LogicalDeviceName_SPCA ,
602 "MMXU" , "MMXU1" } ;
603 MMXU mmxu1(
604 uniqueLNIDmmxu1 , C_SystemParameters , 10 , fa l se) ;
605 goo s eL i s t ene r : CmdOutConfig ∼> mmxu1:CommandIn ;
606 mmxu1:CommandOut ∼> gooseSender :CommandIn ;
607 txtrProxy1 : IU3N ∼> mmxu1: IU3N ;
608 mmxu1: CommandOutReport ∼> ihmiproxy1 : CommandInReport ;
609
610 annotate mmxu1:Main {"Pin" , const int p r i o r i t y = 25}
611
612 expose { }
613 }
614
615 // annotate e x t e r na l a p p l i c a t i o n s needed to s t a r t up
616 typedef string TString2 [2] ;
617 annotate SPCAAssembly {
618 "Platform" ,
619 const TString2 d r i v e r = { // s t r i n g s t runca ted f o r l i s t i n g
620 "%CCL_GENERATED_CODE_DIR%\.. " ,
621 "%CCL_GENERATED_CODE_DIR%\.. "
622 }
623 }
624
625
626 RTX env () {
627 RTX: SAVListenerProxy sav_in_env () ;
628 RTX: SAVSenderProxy sav_out_env () ;
629 RTX: GOOSEListenerProxy goose_in_env () ;
630 RTX:GOOSESenderProxy goose_out_env () ;
631 } ;
632

B.1. PCL ASSEMBLY SPECIFICATION FOR SOFTPC–A 275

633 SPCAAssembly SPCAApp3() {
634 SPCAAssembly : sav_in = env : sav_in_env ;
635 SPCAAssembly : sav_out = env : sav_out_env ;
636 SPCAAssembly : goose_in = env : goose_in_env ;
637 SPCAAssembly : goose_out = env : goose_out_env ;
638 } ;
639
640 //
641 // lambda∗ performance reasoning framework annota t ions
642 //
643 annotate SPCAAssembly : sav_in
644 {" per iod " , const int per iod = 1000 }
645 annotate SPCAAssembly : goose_in
646 {" per iod " , const int per iod = 1000 }
647
648 annotate SPCAAssembly :mmxu1: IU3N
649 {"lambda∗" , const int downsamplingFactor = 1 }
650
651 //
652 // inc l ude f i l e f o r benchmarks performed on

pcaof . s e i . cmu . edu
653 //
654 #include "Common/ lambdaStar/ pcaof . s e i . cmu . edu . c c l "
655
656 annotate env {
657 "lambda∗" ,
658 const f loat connectionOverhead = 7.168 + 4.55 }
659
660 const int SCN_IGNORE = 0 ;
661 const int SCN_SAV = 1 ;
662 const int SCN_GOOSE = 2 ;
663 const int SCN_MONITOR = 4 ; // I can add scenar i o s
664 const int SCN_TRIP = 8 ;
665 const int SCN_UNKNOWN = 16 ;
666 typedef int TwoScenarios [2] ;
667 typedef int ThreeScenar ios [3] ;
668
669 // annotate a l l t he SAV pins (b l u e SCN_SAV)
670 annotate SPCAAssembly : sav_in :SAV
671 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
672 annotate TVTRProxy :U3N
673 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
674 annotate TCTRProxy : I3N
675 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
676 annotate PTOV: Star t
677 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
678 annotate PTOV: Trip
679 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
680 annotate PTOC: Star t

276 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

681 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
682 annotate PTOC: Trip
683 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
684 annotate PDIF : Star t
685 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
686 annotate PDIF : Trip
687 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
688 annotate SAVSynchronizer : synchronizedStream
689 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
690 annotate MDIF: Diff3NSAV
691 { " s c ena r i o " , const int s c ena r i o = SCN_SAV }
692
693 // annotate the TRIP pins (b l a c k dashed SCN_TRIP)
694 annotate PTRC: Star t
695 { " s c ena r i o " , const int s c ena r i o = SCN_TRIP }
696 annotate PTRC: Trip
697 { " s c ena r i o " , const int s c ena r i o = SCN_TRIP }
698 annotate XCBRProxy :CommandWithMacOut
699 { " s c ena r i o " , const int s c ena r i o = SCN_TRIP }
700
701 // annotate the MONITOR pins (purp l e SCN_MONITOR)
702 annotate TXTRProxy : IU3N
703 { " s c ena r i o " , const int s c ena r i o = SCN_MONITOR }
704 annotate TXTRProxy :SAV
705 { " s c ena r i o " , const int s c ena r i o = SCN_MONITOR }
706 annotate MMXU:CommandOutReport
707 { " s c ena r i o " , const int s c ena r i o = SCN_MONITOR }
708 annotate IHMIProxy :CommandWithMacOut
709 { " s c ena r i o " , const int s c ena r i o = SCN_MONITOR }
710
711 // annotate a l l GOOSE pins (green SCN_GOOSE)
712 annotate SPCAAssembly : goose_in :CommandWithMac
713 { " s c ena r i o " , const int s c ena r i o = SCN_GOOSE }
714 annotate GOOSEListener :CmdOutCommands
715 { " s c ena r i o " , const int s c ena r i o = SCN_GOOSE }
716 annotate GOOSEListener : CmdOutHardware
717 { " s c ena r i o " , const int s c ena r i o = SCN_GOOSE }
718
719 // annotate the UNKNOWNS pins (orange SCN_UNKNOWN)
720 annotate CSWI: OperateOut
721 { " s c ena r i o " , const int s c ena r i o = SCN_UNKNOWN }
722 annotate CSWI: CanExecute
723 { " s c ena r i o " , const int s c ena r i o = SCN_UNKNOWN }
724 annotate XCBRProxy :CommandOut
725 { " s c ena r i o " , const int s c ena r i o = SCN_UNKNOWN }
726 annotate XSWIProxy :CommandWithMacOut
727 { " s c ena r i o " , const int s c ena r i o = SCN_UNKNOWN }
728 annotate XSWIProxy :CommandOut
729 { " s c ena r i o " , const int s c ena r i o = SCN_UNKNOWN }

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 277

730 annotate SAVSender : IU3NOut
731 { " s c ena r i o " , const int s c ena r i o = SCN_UNKNOWN }
732
733 // a l l the sources to be ignored by the i n t e r p r e t a t i o n
734 annotate PTOV:CommandOut
735 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
736 annotate PTOC:CommandOut
737 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
738 annotate PTRC:CommandOut
739 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
740 annotate MDIF:CommandOut
741 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
742 annotate PDIF :CommandOut
743 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
744 annotate CSWI:CommandOut
745 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
746 annotate GOOSESender :CommandWithMac
747 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
748
749 annotate TCTRProxy :CommandOut
750 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
751 annotate TVTRProxy :CommandOut
752 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
753 annotate TXTRProxy :CommandOut
754 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
755 annotate CILO :CommandOut
756 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
757 annotate GOOSEListener :CommandOut
758 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
759 annotate GOOSEListener : CmdOutConfig
760 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
761 annotate SAVSender :CommandOut
762 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }
763 annotate IHMIProxy :CommandIn
764 { " s c ena r i o " , const int s c ena r i o = SCN_IGNORE }

B.2 PCL Component Specification for PTRC

Example B.2: PCL Component Specification of Soft P&C PTRC.

1
2
3
4 // Log i ca l Node Group : P (p ro t e c t i on f unc t i on s)
5 //
6 // Assumptions
7 // SAV samples are r e c e i v ed on a per−synch−b a s i s
8 //
9 // (PIN) Common

278 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

10 // Direc t ion Name Descr ip t i on
11 // <− S ta r t i n d i c a t e s t ha t the func t i on entered the

" supe r v i s i on " mode
12 // <− Trip a t r i p i s t ha t a f a u l t has occured and needs

to be c l a r ed
13 // −> Command Command input
14 // <− Acknowledge Command acknowledge output
15 // −> Sta r t (1 . . 4) S t a r t inpu t s
16 // −> Trip (1 . . 4) Trip inpu t s
17 //
18 // (Commands) Common
19 // Type Name ParameterName Descr ip t i on
20 // CMD SET, GET OPERATIONMODE ge t ’ s or s e t ’ s the

opera t ion mode
21 // ACK SET, GET OPERATIONMODE acknowledge f o r s e t / ge t

opera t ion mode r e que s t
22 // CMD SET, GET PARAMETER ge t or s e t a func t i on

parameter
23 // ACK SET, GET PARAMETER acknowledge f o r s e t / ge t

f unc t i on parameter
24
25 #include "Common//Globa lDec la ra t i ons . c c l "
26 #include "Common// Inc lude s //ComposeAcknowledgeCommand . c c l "
27
28 typedef boolean TBoolArray [1 0 0] ;
29
30 component PTRC(
31 TUniqueLNID uid ,
32 int delay ,
33 int xOutOf4 ,
34 TSystemParameters systemParameters ,
35 boolean channelActive1 ,
36 boolean channelActive2 ,
37 boolean channelActive3 ,
38 boolean channelAct ive4)
39 {
40
41 // s i n k s
42 // incoming from SAVListener
43 sink asynch Star t1 (
44 consume TUniqueLNID xSource ,
45 consume boolean xInit iateWatch ,
46 consume int xSampleCount) ;
47 sink asynch Star t2 (
48 consume TUniqueLNID xSource ,
49 consume boolean xInit iateWatch ,
50 consume int xSampleCount) ;
51 sink asynch Star t3 (
52 consume TUniqueLNID xSource ,

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 279

53 consume boolean xInit iateWatch ,
54 consume int xSampleCount) ;
55 sink asynch Star t4 (
56 consume TUniqueLNID xSource ,
57 consume boolean xInit iateWatch ,
58 consume int xSampleCount) ;
59 sink asynch Trip1 (
60 consume TUniqueLNID xSource ,
61 consume boolean xTrip ,
62 consume int xSampleCount ,
63 consume int xFaultValue) ;
64 sink asynch Trip2 (
65 consume TUniqueLNID xSource ,
66 consume boolean xTrip ,
67 consume int xSampleCount ,
68 consume int xFaultValue) ;
69 sink asynch Trip3 (
70 consume TUniqueLNID xSource ,
71 consume boolean xTrip ,
72 consume int xSampleCount ,
73 consume int xFaultValue) ;
74 sink asynch Trip4 (
75 consume TUniqueLNID xSource ,
76 consume boolean xTrip ,
77 consume int xSampleCount ,
78 consume int xFaultValue) ;
79 sink asynch CommandIn(
80 consume TUniqueLNID xSource ,
81 consume TUniqueLNID xDest inat ion ,
82 consume TCommand xCommand,
83 consume int xSampleCount ,
84 consume string xStr ingVal ,
85 consume int xIntVal ,
86 consume boolean xBoolVal ,
87 consume f loat xFloatVal) ;
88
89 // sources
90 source un i ca s t Sta r t (
91 produce TUniqueLNID xSource ,
92 produce boolean xInit iateWatch ,
93 produce int xSampleCount) ;
94 source un i ca s t Trip (
95 produce TUniqueLNID xSource ,
96 produce boolean xTrip ,
97 produce int xSampleCount ,
98 produce int xFaultValue) ;
99

100 source un i ca s t CommandOut(
101 produce TUniqueLNID xSource ,

280 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

102 produce TUniqueLNID xDest inat ion ,
103 produce TCommand xCommand,
104 produce int xSampleCount ,
105 produce string xStr ingVal ,
106 produce int xIntVal ,
107 produce boolean xBoolVal ,
108 produce f loat xFloatVal) ;
109
110 threaded react Main(
111 Start1 , Start2 , Start3 , Start4 ,
112 Trip1 , Trip2 , Trip3 , Trip4 , Trip ,
113 Start , CommandIn , CommandOut)
114 {
115
116 TUniqueLNID theUID , tempUID , tempSrcUID ,

tempDestUID ;
117 TCommand tempCmd ;
118 TOperationMode theOperationMode = C_Unblock ;
119 TOperationMode tempOperationMode = C_Unblock ;
120 int theDelay = 10 ;
121 int theXOutOf4 = 3 ;
122 boolean the Inc ludeS ta r t = fa l se ;
123 boolean tempDoTrip = fa l se ;
124 boolean tempDoStart = fa l se ;
125 boolean tempDoExecuteCommand = fa l se ;
126 boolean eva l = fa l se ;
127 int theSampleCount = 0 ;
128
129 // Arrays t ha t maintain the t r i p window
130 // The s i z e o f a window corresponds to the s p e c i f i e d

de lay
131 TBoolArray trip1Window ;
132 TBoolArray trip2Window ;
133 TBoolArray trip3Window ;
134 TBoolArray trip4Window ;
135
136 // Var iab l e s t ha t are t rue i f a channel i s t r i p p i n g

g iven the de lay
137 boolean theTrip1 = true ;
138 boolean theTrip2 = true ;
139 boolean theTrip3 = true ;
140 boolean theTrip4 = true ;
141 int winPosCounter = 0 ;
142
143 // Var iab l e s t ha t i n d i c a t e t ha t the f i r s t s i g n a l i s

a r r i v i n g on a channel
144 // Needed f o r error hand l ing reasons
145 boolean f i rstTimeOn1 ;
146 boolean f i rstTimeOn2 ;

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 281

147 boolean f i rstTimeOn3 ;
148 boolean f i rstTimeOn4 ;
149
150 // Var iab l e f o r keep ing t rack o f the number o f l o s t

samples
151 int noOfMissedSamples = 0 ;
152 // Loop counter f o r the missed samples l o g i c
153 int i =0;
154
155 // S ta t e v a r i a b l e s t h a t keep t rack o f which channe ls

are connected
156 boolean theChannelActive1 = fa l se ;
157 boolean theChannelActive2 = fa l se ;
158 boolean theChannelActive3 = fa l se ;
159 boolean theChannelActive4 = fa l se ;
160
161 // S ta t e v a r i a b l e s t h a t keep t rack o f the l a t e s t

observed t r i p va lue f o r each channe l s
162 boolean l astObservedTrip1 = fa l se ;
163 boolean l astObservedTrip2 = fa l se ;
164 boolean l astObservedTrip3 = fa l se ;
165 boolean l astObservedTrip4 = fa l se ;
166
167 // S ta t e v a r i a b l e s t h a t keep t rack o f the l a t e s t

observed time stamp fo r each channe l s
168 int lastObservedSampleCount1 = 0 ;
169 int lastObservedSampleCount2 = 0 ;
170 int lastObservedSampleCount3 = 0 ;
171 int lastObservedSampleCount4 = 0 ;
172
173 // Var iab l e s t ha t keeps t rack o f the sample count range
174 TSystemParameters theSystemParameters ;
175 int theMaxSampleCount = 0 ;
176 int theMinSampleCount = 0 ;
177 // Var i b l e used f o r c a l c u l a t i n g a normi l i z ed sample

count in the form 0 − N
178 int theNormalizedSampleCountOffset = 0 ;
179
180
181 int theValue = 0 ;
182 boolean XOutOf4Tripped=fa l se ;
183
184 int numberOfActiveChannels = 0 ;
185 boolean e r r o r = fa l se ;
186
187 int tempSampleCount = 0 ;
188 int tempIntValue ;
189 string tempStrValue ;
190 boolean tempBoolValue ;

282 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

191 f loat tempFloatValue ;
192
193
194 #include "Common// Inc lude s //CommandIsEquals . c c l "
195 #include "Common// Inc lude s // I s S e l f . c c l "
196 #include "Common// Inc lude s // IsBroadcast . c c l "
197
198 proc boolean ResetTripWindows ()
199 {
200 int i =0;
201
202 for (i =0; i<theDelay ; i++)
203 {
204 trip1Window [i] = fa l se ;
205 trip2Window [i] = fa l se ;
206 trip3Window [i] = fa l se ;
207 trip4Window [i] = fa l se ;
208 }
209 return true ;
210 }
211
212 proc boolean CheckForTrip () {
213
214 boolean samplesTimeSynched = fa l se ;
215 int tr ipCount = 0 ;
216
217 // Check i f "theXOutOf4" t r i p channe ls are t rue .
218 // I f a t r i p channel i s l e f t unconnected in an assembly

i t i s f a l s e by d e f a u l t .
219 // F i r s t check t ha t a l l a c t i v e (connected) channe l s are

in synch
220
221 // I f a l l channe l s are a c t i v e . . .
222 i f (theChannelActive1 && theChannelActive2 &&

theChannelActive3 && theChannelActive4)
223 i f ((lastObservedSampleCount1 ==

lastObservedSampleCount2) &&
224 (lastObservedSampleCount2 ==

lastObservedSampleCount3) &&
225 (lastObservedSampleCount3 ==

lastObservedSampleCount4))
226 samplesTimeSynched = true ;
227
228 // I f a l l but one channal are a c t i v e . . .
229 i f (theChannelActive1 && theChannelActive2 &&

theChannelActive3 && ! theChannelActive4)
230 i f ((lastObservedSampleCount1 ==

lastObservedSampleCount2) &&

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 283

231 (lastObservedSampleCount2 ==
lastObservedSampleCount3))

232 samplesTimeSynched = true ;
233 i f (theChannelActive1 && theChannelActive2 &&

! theChannelActive3 && theChannelActive4)
234 i f ((lastObservedSampleCount1 ==

lastObservedSampleCount2) &&
235 (lastObservedSampleCount2 ==

lastObservedSampleCount4))
236 samplesTimeSynched = true ;
237 i f (theChannelActive1 && ! theChannelActive2 &&

theChannelActive3 && theChannelActive4)
238 i f ((lastObservedSampleCount1 ==

lastObservedSampleCount3) &&
239 (lastObservedSampleCount3 ==

lastObservedSampleCount4))
240 samplesTimeSynched = true ;
241 i f (! theChannelActive1 && theChannelActive2 &&

theChannelActive3 && theChannelActive4)
242 i f ((lastObservedSampleCount2 ==

lastObservedSampleCount3) &&
243 (lastObservedSampleCount3 ==

lastObservedSampleCount4))
244 samplesTimeSynched = true ;
245
246 // I f two channe l s are a c t i v e . . .
247 i f (theChannelActive1 && theChannelActive2 &&

! theChannelActive3 && ! theChannelActive4)
248 i f (lastObservedSampleCount1 ==

lastObservedSampleCount2)
249 samplesTimeSynched = true ;
250 i f (theChannelActive1 && ! theChannelActive2 &&

theChannelActive3 && ! theChannelActive4)
251 i f (lastObservedSampleCount1 ==

lastObservedSampleCount3)
252 samplesTimeSynched = true ;
253 i f (theChannelActive1 && ! theChannelActive2 &&

! theChannelActive3 && theChannelActive4)
254 i f (lastObservedSampleCount1 ==

lastObservedSampleCount4)
255 samplesTimeSynched = true ;
256 i f (! theChannelActive1 && theChannelActive2 &&

theChannelActive3 && ! theChannelActive4)
257 i f (lastObservedSampleCount2 ==

lastObservedSampleCount3)
258 samplesTimeSynched = true ;
259 i f (! theChannelActive1 && theChannelActive2 &&

! theChannelActive3 && theChannelActive4)

284 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

260 i f (lastObservedSampleCount2 ==
lastObservedSampleCount4)

261 samplesTimeSynched = true ;
262 i f (! theChannelActive1 && ! theChannelActive2 &&

theChannelActive3 && theChannelActive4)
263 i f (lastObservedSampleCount3 ==

lastObservedSampleCount4)
264 samplesTimeSynched = true ;
265
266 // I f on ly one channel are a c t i v e . . .
267 i f (theChannelActive1 && ! theChannelActive2 &&

! theChannelActive3 && ! theChannelActive4)
268 samplesTimeSynched = true ;
269 i f (! theChannelActive1 && theChannelActive2 &&

! theChannelActive3 && ! theChannelActive4)
270 samplesTimeSynched = true ;
271 i f (! theChannelActive1 && ! theChannelActive2 &&

theChannelActive3 && ! theChannelActive4)
272 samplesTimeSynched = true ;
273 i f (! theChannelActive1 && ! theChannelActive2 &&

! theChannelActive3 && theChannelActive4)
274 samplesTimeSynched = true ;
275
276 // I f a l l a c t i v e channe l s are synchronized , check i f

s u f f i c i e n t l y many o f them are t r i p p i n g
277 i f (samplesTimeSynched)
278 {
279 i f (theTrip1)
280 tr ipCount++;
281 i f (theTrip2)
282 tr ipCount++;
283 i f (theTrip3)
284 tr ipCount++;
285 i f (theTrip4)
286 tr ipCount++;
287 i f (tr ipCount >= theXOutOf4)
288 {
289 return true ;
290 }
291 }
292 return fa l se ;
293 }
294
295 start −> i n i t i a l i z i n g {
296 action {
297 theUID = uid ;
298 theUID [2] = "PTRC" ;
299 theDelay = delay ;
300 theXOutOf4 = xOutOf4 ;

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 285

301 theChannelActive1 = channelAct ive1 ;
302 theChannelActive2 = channelAct ive2 ;
303 theChannelActive3 = channelAct ive3 ;
304 theChannelActive4 = channelAct ive4 ;
305 theSystemParameters = systemParameters ;
306 theMaxSampleCount =

theSystemParameters [C_PPS_UpperBoundIndex] ;
307 theMinSampleCount =

theSystemParameters [C_PPS_LowerBoundIndex] ;
308 f i rstTimeOn1 = true ;
309 f i rstTimeOn2 = true ;
310 f i rstTimeOn3 = true ;
311 f i rstTimeOn4 = true ;
312
313 theTrip1 = fa l se ;
314 theTrip2 = fa l se ;
315 theTrip3 = fa l se ;
316 theTrip4 = fa l se ;
317
318 // I n i t i l i z e the t r i p window fo r each channel
319 for (i =0; i < theDelay ; i++)
320 {
321 trip1Window [i] = fa l se ;
322 trip2Window [i] = fa l se ;
323 trip3Window [i] = fa l se ;
324 trip4Window [i] = fa l se ;
325 }
326 // Ca l cu l a t e o f f s e t f o r normal i z ing sample count

in t o the form 0 to N
327 i f ((theMinSampleCount < 0) | | (theMinSampleCount >

0))
328 theNormalizedSampleCountOffset =

−theMinSampleCount ;
329 else i f (theMinSampleCount == 0)
330 theNormalizedSampleCountOffset = 0 ;
331
332 // Check t ha t the "theXOutOf4" doesn ’ t exceed

number o f a c t i v e channe l s
333 numberOfActiveChannels = 0 ;
334 i f (theChannelActive1 == true)
335 numberOfActiveChannels++;
336 i f (theChannelActive2 == true)
337 numberOfActiveChannels++;
338 i f (theChannelActive3 == true)
339 numberOfActiveChannels++;
340 i f (theChannelActive4 == true)
341 numberOfActiveChannels++;
342 i f (numberOfActiveChannels < theXOutOf4)
343 e r r o r = true ;

286 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

344 }
345 }
346
347 i n i t i a l i z i n g −> l i s t e n i n g {
348 }
349
350
351 //−−−−−−−−−−−− hand l ing the s t a r t p ins
352 l i s t e n i n g −> re c e i v i n gS t a r t 1 {
353 trigger ^Star t1 ;
354 }
355
356 r e c e i v i n gS t a r t 1 −> execut ingSta r t1 {
357 }
358
359 execut ingSta r t1 −> l i s t e n i n g {
360 action {
361 $Start1 () ;
362 }
363 }
364
365
366 l i s t e n i n g −> re c e i v i n gS t a r t 2 {
367 trigger ^Star t2 ;
368 }
369
370 r e c e i v i n gS t a r t 2 −> execut ingSta r t2 {
371 }
372
373 execut ingSta r t2 −> l i s t e n i n g {
374 action {
375 $Start2 () ;
376 }
377 }
378
379
380 l i s t e n i n g −> re c e i v i n gS t a r t 3 {
381 trigger ^Star t3 ;
382 }
383
384 r e c e i v i n gS t a r t 3 −> execut ingSta r t3 {
385 }
386
387 execut ingSta r t3 −> l i s t e n i n g {
388 action {
389 $Start3 () ;
390 }
391 }
392

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 287

393
394 l i s t e n i n g −> re c e i v i n gS t a r t 4 {
395 trigger ^Star t4 ;
396 }
397
398 r e c e i v i n gS t a r t 4 −> execut ingSta r t4 {
399 }
400
401 execut ingSta r t4 −> l i s t e n i n g {
402 action {
403 $Start4 () ;
404 }
405 }
406
407
408
409 //−−−−−−−−−− hand l ing t r i p inpu t s
410
411
412 //TripIn1
413 l i s t e n i n g −> gotTripIn1 {
414 trigger ^Trip1 ;
415 action {
416 i f (theXOutOf4 == 1)
417 {
418 lastObservedSampleCount1= Trip1 . xSampleCount ;
419 theValue = Trip1 . xFaultValue ;
420 XOutOf4Tripped = true ;
421 }
422 else
423 {
424 i f (f irstTimeOn1)
425 {
426 l astObservedTrip1 = Trip1 . xTrip ;
427 f i rstTimeOn1 = fa l se ;
428 }
429 else i f
430 (
431 (theNormalizedSampleCountOffset
432 +
433 Trip1 . xSampleCount
434 −
435 theNormalizedSampleCountOffset
436 +
437 lastObservedSampleCount1 == 1)
438 | |
439 (theNormalizedSampleCountOffset
440 +
441 theMaxSampleCount

288 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

442 −
443 theNormalizedSampleCountOffset
444 +
445 lastObservedSampleCount1
446 +
447 theNormalizedSampleCountOffset
448 +
449 Trip1 . xSampleCount) == 0)
450)
451 {
452 // The samples are in co r r e c t order , go ahead

and c a l c u l a t e the t r i p window
453 l astObservedTrip1 = Trip1 . xTrip ;
454 }
455 else
456 {
457 // One or more samples missed !
458 // Assume l a t e s t observed va lue f o r a l l missed

samples
459
460 // Ca l cu l a t e number o f misses in the normal ized

form (0 to N)
461 noOfMissedSamples =
462 theNormalizedSampleCountOffset
463 +
464 Trip1 . xSampleCount
465 −
466 theNormalizedSampleCountOffset
467 +
468 lastObservedSampleCount1 ;
469
470 // Check i f sequence number wrap around . . .
471 i f (noOfMissedSamples < 0)
472 {
473 noOfMissedSamples =
474 theNormalizedSampleCountOffset
475 +
476 theMaxSampleCount
477 −
478 theNormalizedSampleCountOffset
479 +
480 lastObservedSampleCount1
481 +
482 theNormalizedSampleCountOffset
483 +
484 Trip1 . xSampleCount ;
485 }
486 for (i =1; i<=noOfMissedSamples ; i++)
487 {

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 289

488 trip1Window [
489 (theNormalizedSampleCountOffset
490 +
491 lastObservedSampleCount1
492 + i) % theDelay] = lastObservedTrip1 ;
493 }
494 l astObservedTrip1 = Trip1 . xTrip ;
495 }
496 lastObservedSampleCount1 = Trip1 . xSampleCount ;
497
498 // Put the l a t e s t sample in t o the t r i p window

ring−b u f f e r
499 trip1Window [
500 (theNormalizedSampleCountOffset
501 +
502 lastObservedSampleCount1) % theDelay] =

Trip1 . xTrip ;
503
504 // Check i f " theDelay " number o f consecu t i v e

t r i p s have been observed
505 theTrip1 = true ;
506 for (winPosCounter=0; winPosCounter<theDelay ;

winPosCounter++)
507 {
508 i f (trip1Window [winPosCounter] == fa l se)
509 theTrip1 = fa l se ;
510 }
511
512 // l o g i c to be used in a l l 4 s t a t e s
513 theValue = Trip1 . xFaultValue ;
514 XOutOf4Tripped = CheckForTrip () ;
515 }
516 }
517 }
518
519 gotTripIn1 −> l i s t e n i n g {
520 guard ! XOutOf4Tripped ;
521 action $Trip1 () ;
522 }
523
524 gotTripIn1 −> execute1 {
525 guard XOutOf4Tripped ;
526 action {
527 XOutOf4Tripped = fa l se ;
528 // Should we a l s o r e s e t the PTRC here ?
529 ^Trip (theUID , true , lastObservedSampleCount1 ,

theValue) ;
530 }
531 }

290 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

532
533 execute1 −> l i s t e n i n g {
534 trigger $Trip ;
535 action {
536 $Trip1 () ;
537 }
538 }
539
540 //TripIn2
541 l i s t e n i n g −> gotTripIn2 {
542 trigger ^Trip2 ;
543 action {
544 i f (theXOutOf4 == 1)
545 {
546 lastObservedSampleCount2= Trip2 . xSampleCount ;
547 theValue = Trip2 . xFaultValue ;
548 XOutOf4Tripped = true ;
549 }
550 else
551 {
552 i f (f irstTimeOn2)
553 {
554 l astObservedTrip2 = Trip2 . xTrip ;
555 f i rstTimeOn2 = fa l se ;
556 }
557 else i f
558 (
559 (theNormalizedSampleCountOffset
560 +
561 Trip2 . xSampleCount
562 −
563 theNormalizedSampleCountOffset
564 +
565 lastObservedSampleCount2 == 1)
566 | |
567 (
568 theNormalizedSampleCountOffset
569 +
570 theMaxSampleCount
571 −
572 theNormalizedSampleCountOffset
573 +
574 lastObservedSampleCount2
575 +
576 theNormalizedSampleCountOffset
577 +
578 Trip2 . xSampleCount == 0)
579)
580 {

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 291

581 // The samples are in co r r e c t order ,
582 //go ahead and c a l c u l a t e the t r i p window
583 l astObservedTrip2 = Trip2 . xTrip ;
584 }
585 else
586 {
587 // One or more samples missed !
588 // Assume l a t e s t observed va lue f o r a l l missed

samples
589
590 // Ca l cu l a t e number o f misses in the normal ized

form (0 to N)
591 noOfMissedSamples =
592 theNormalizedSampleCountOffset
593 +
594 Trip2 . xSampleCount
595 −
596 theNormalizedSampleCountOffset
597 +
598 lastObservedSampleCount2 ;
599
600 // Check i f sequence number wrap around . . .
601 i f (noOfMissedSamples < 0)
602 {
603 noOfMissedSamples =
604 theNormalizedSampleCountOffset
605 +
606 theMaxSampleCount
607 −
608 theNormalizedSampleCountOffset
609 +
610 lastObservedSampleCount2
611 +
612 theNormalizedSampleCountOffset
613 +
614 Trip2 . xSampleCount ;
615 }
616
617 for (i =1; i<=noOfMissedSamples ; i++)
618 {
619 trip2Window [(theNormalizedSampleCountOffset

+ lastObservedSampleCount2 + i) % theDelay]
= lastObservedTrip2 ;

620 }
621 l astObservedTrip2 = Trip2 . xTrip ;
622 }
623 lastObservedSampleCount2 = Trip2 . xSampleCount ;
624

292 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

625 // Put the l a t e s t sample in t o the t r i p window
ring−b u f f e r

626 trip2Window [(theNormalizedSampleCountOffset +
lastObservedSampleCount2) % theDelay] =
Trip2 . xTrip ;

627
628 // Check i f " theDelay " number o f consecu t i v e

t r i p s have been observed
629 theTrip2 = true ;
630 for (winPosCounter=0; winPosCounter<theDelay ;

winPosCounter++)
631 {
632 i f (trip2Window [winPosCounter] == fa l se)
633 theTrip2 = fa l se ;
634 }
635
636 // l o g i c to be used in a l l 4 s t a t e s
637 theValue = Trip2 . xFaultValue ;
638 XOutOf4Tripped = CheckForTrip () ;
639 }
640 }
641 }
642
643 gotTripIn2 −> l i s t e n i n g {
644 guard ! XOutOf4Tripped ;
645 action $Trip2 () ;
646 }
647
648 gotTripIn2 −> execute2 {
649 guard XOutOf4Tripped ;
650 action {
651 // Should we a l s o r e s e t the PTRC here ?
652 XOutOf4Tripped = fa l se ;
653 ^Trip (theUID , true , lastObservedSampleCount2 ,

theValue) ;
654 }
655 }
656
657 execute2 −> l i s t e n i n g {
658 trigger $Trip ;
659 action {
660 $Trip2 () ;
661 }
662 }
663
664 //TripIn3
665 l i s t e n i n g −> gotTripIn3 {
666 trigger ^Trip3 ;
667 action

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 293

668 {
669 i f (theXOutOf4 == 1)
670 {
671 lastObservedSampleCount3 = Trip3 . xSampleCount ;
672 theValue = Trip3 . xFaultValue ;
673 XOutOf4Tripped = true ;
674 }
675 else
676 {
677 i f (f irstTimeOn3)
678 {
679 l astObservedTrip3 = Trip3 . xTrip ;
680 f i rstTimeOn3 = fa l se ;
681 }
682 else i f
683 (
684 (
685 theNormalizedSampleCountOffset
686 +
687 Trip3 . xSampleCount
688 −
689 theNormalizedSampleCountOffset
690 +
691 lastObservedSampleCount3 == 1)
692 | |
693 (
694 theNormalizedSampleCountOffset
695 +
696 theMaxSampleCount
697 −
698 theNormalizedSampleCountOffset
699 +
700 lastObservedSampleCount3
701 +
702 theNormalizedSampleCountOffset
703 +
704 Trip3 . xSampleCount == 0)
705)
706 {
707 // The samples are in co r r e c t order , go ahead

and c a l c u l a t e the t r i p window
708 l astObservedTrip3 = Trip3 . xTrip ;
709 }
710 else
711 {
712 // One or more samples missed !
713 // Assume l a t e s t observed va lue f o r a l l missed

samples
714

294 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

715 // Ca l cu l a t e number o f misses in the normal ized
form (0 to N)

716 noOfMissedSamples =
717 theNormalizedSampleCountOffset
718 +
719 Trip3 . xSampleCount
720 −
721 theNormalizedSampleCountOffset
722 +
723 lastObservedSampleCount3 ;
724
725 // Check i f sequence number wrap around . . .
726 i f (noOfMissedSamples < 0)
727 {
728 noOfMissedSamples =
729 theNormalizedSampleCountOffset
730 + theMaxSampleCount
731 − theNormalizedSampleCountOffset
732 + lastObservedSampleCount3
733 + theNormalizedSampleCountOffset
734 + Trip3 . xSampleCount ;
735 }
736
737 for (i =1; i<=noOfMissedSamples ; i++)
738 {
739 trip3Window [
740 (theNormalizedSampleCountOffset
741 + lastObservedSampleCount3 + i)
742 % theDelay] = lastObservedTrip3 ;
743 }
744 l astObservedTrip3 = Trip3 . xTrip ;
745 }
746 lastObservedSampleCount3 = Trip3 . xSampleCount ;
747
748 // Put the l a t e s t sample in t o the t r i p window

ring−b u f f e r
749 trip3Window [(theNormalizedSampleCountOffset +

lastObservedSampleCount3) % theDelay] =
Trip3 . xTrip ;

750
751 // Check i f " theDelay " number o f consecu t i v e

t r i p s have been observed
752 theTrip3 = true ;
753 for (winPosCounter=0; winPosCounter<theDelay ;

winPosCounter++)
754 {
755 i f (trip3Window [winPosCounter] == fa l se)
756 theTrip3 = fa l se ;
757 }

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 295

758
759 // l o g i c to be used in a l l 4 s t a t e s
760 theValue = Trip3 . xFaultValue ;
761 XOutOf4Tripped = CheckForTrip () ;
762 }
763 }
764 }
765
766 gotTripIn3 −> l i s t e n i n g {
767 guard ! XOutOf4Tripped ;
768 action $Trip3 () ;
769 }
770
771 gotTripIn3 −> execute3 {
772 guard XOutOf4Tripped ;
773 action {
774 // Should we a l s o r e s e t the PTRC here ?
775 XOutOf4Tripped = fa l se ;
776 ^Trip (theUID , true , lastObservedSampleCount3 ,

theValue) ;
777 }
778 }
779
780 execute3 −> l i s t e n i n g {
781 trigger $Trip ;
782 action {
783 $Trip3 () ;
784 }
785 }
786
787 //TripIn4
788 l i s t e n i n g −> gotTripIn4 {
789 trigger ^Trip4 ;
790 action
791 {
792 i f (theXOutOf4 == 1)
793 {
794 lastObservedSampleCount4 = Trip4 . xSampleCount ;
795 theValue = Trip4 . xFaultValue ;
796 XOutOf4Tripped = true ;
797 }
798 else
799 {
800 i f (f irstTimeOn4)
801 {
802 f i rstTimeOn4 = fa l se ;
803 l astObservedTrip4 = Trip4 . xTrip ;
804 }
805 else i f

296 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

806 (
807 (theNormalizedSampleCountOffset
808 +Trip4 . xSampleCount
809 − theNormalizedSampleCountOffset
810 + lastObservedSampleCount4 == 1)
811 | |
812 (theNormalizedSampleCountOffset
813 + theMaxSampleCount
814 − theNormalizedSampleCountOffset
815 + lastObservedSampleCount4
816 + theNormalizedSampleCountOffset
817 +Trip4 . xSampleCount == 0)
818)
819 {
820 // The samples are in co r r e c t order , go ahead

and c a l c u l a t e the t r i p window
821 l astObservedTrip4 = Trip4 . xTrip ;
822 }
823 else
824 {
825 // One or more samples missed !
826 // Assume l a t e s t observed va lue f o r a l l missed

samples
827
828 // Ca l cu l a t e number o f misses in the normal ized

form (0 to N)
829 noOfMissedSamples =
830 theNormalizedSampleCountOffset
831 +Trip4 . xSampleCount
832 − theNormalizedSampleCountOffset
833 + lastObservedSampleCount4 ;
834
835 // Check i f sequence number wrap around . . .
836 i f (noOfMissedSamples < 0)
837 {
838 noOfMissedSamples =
839 theNormalizedSampleCountOffset
840 + theMaxSampleCount
841 − theNormalizedSampleCountOffset
842 + lastObservedSampleCount4
843 + theNormalizedSampleCountOffset
844 + Trip4 . xSampleCount ;
845 }
846
847 for (i =1; i<=noOfMissedSamples ; i++)
848 {
849 trip4Window [
850 (theNormalizedSampleCountOffset
851 + lastObservedSampleCount4 + i)

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 297

852 % theDelay] = lastObservedTrip4 ;
853 }
854 l astObservedTrip4 = Trip4 . xTrip ;
855 }
856 lastObservedSampleCount4 = Trip4 . xSampleCount ;
857
858 // Put the l a t e s t sample in t o the t r i p window

ring−b u f f e r
859 trip4Window [
860 (theNormalizedSampleCountOffset
861 + lastObservedSampleCount4)
862 % theDelay] = Trip4 . xTrip ;
863
864 // Check i f " theDelay " number o f consecu t i v e

t r i p s have been observed
865 theTrip4 = true ;
866 for (winPosCounter=0; winPosCounter<theDelay ;

winPosCounter++)
867 {
868 i f (trip4Window [winPosCounter] == fa l se)
869 theTrip4 = fa l se ;
870 }
871
872 // l o g i c to be used in a l l 4 s t a t e s
873 theValue = Trip4 . xFaultValue ;
874 XOutOf4Tripped = CheckForTrip () ;
875 }
876 }
877 }
878
879 gotTripIn4 −> l i s t e n i n g {
880 guard ! XOutOf4Tripped ;
881 action $Trip4 () ;
882 }
883
884 gotTripIn4 −> execute4 {
885 guard XOutOf4Tripped ;
886 action {
887 // Should we a l s o r e s e t the PTRC here ?
888 XOutOf4Tripped = fa l se ;
889 ^Trip (theUID , true , lastObservedSampleCount4 ,

theValue) ;
890 }
891 }
892
893 execute4 −> l i s t e n i n g {
894 trigger $Trip ;
895 action {
896 $Trip4 () ;

298 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

897 }
898 }
899
900
901 //−−−−−−−−−−−−−−− command and acknowledge
902
903 l i s t e n i n g −> executingCommand {
904 trigger ^CommandIn ;
905 action {
906 tempDoExecuteCommand = fa l se ;
907 tempCmd = CommandIn .xCommand ;
908 tempSrcUID = CommandIn . xSource ;
909 tempDestUID = CommandIn . xDest inat ion ;
910 tempStrValue = "" ;
911 tempIntValue = 0 ;
912 tempBoolValue = fa l se ;
913 tempFloatValue = 0 . 0 ;
914 i f (I s S e l f (theUID , tempDestUID) | |

(I sBroadcast (tempDestUID))
915 { // @@@ s e l f = broadcas t
916 // only accep t commands i f xDes t ina t ion == s e l f
917 %{
918 PRINT_DEBUG((
919 "CSWI␣Command␣ r e c e i v ed ␣ from␣=␣␣%s\n" ,
920 ccltempSrcUID [3])) ;
921 %}
922 eva l = CommandIsEquals (
923 tempCmd, "CMD" , "SET" , "OPERATIONMODE" , "") ;
924 i f (eva l == true) {
925 %{
926 PRINT_DEBUG(("Command␣ eva luated ␣=␣

SetOperationmode\n")) ;
927 %}
928
929 i f (CommandIn . xStr ingVal == "BLOCK") {
930 tempOperationMode = C_Block ;
931 }
932 i f (CommandIn . xStr ingVal == "UNBLOCK") {
933 tempOperationMode = C_Unblock ;
934 }
935 i f (tempOperationMode != theOperationMode) {
936 tempCmd [0] = "ACK" ;
937 tempDoExecuteCommand = true ;
938 theOperationMode = tempOperationMode ;
939 tempDestUID = tempSrcUID ;
940 tempStrValue = CommandIn . xStr ingVal ;
941 }
942 }
943 eva l = CommandIsEquals (

B.2. PCL COMPONENT SPECIFICATION FOR PTRC 299

944 tempCmd,
945 "CMD" , "GET" , "OPERATIONMODE" , "") ;
946 i f (eva l == true) {
947 tempDoExecuteCommand = true ;
948 tempCmd [0] = "ACK" ;
949 tempDestUID = tempSrcUID ;
950 i f (theOperationMode == C_Block) {
951 tempStrValue = "BLOCK" ;
952 }
953 else {
954 tempStrValue = "UNBLOCK" ;
955 }
956 }
957 eva l = CommandIsEquals (
958 CommandIn . xCommand,
959 "CMD" , "GET" , "PARAMETER" , "XOutOf4") ;
960 i f (eva l == true) {
961 tempDoExecuteCommand = true ;
962 tempCmd [0] = "ACK" ;
963 tempDestUID = tempSrcUID ;
964 tempIntValue = theXOutOf4 ;
965 }
966 eva l = CommandIsEquals (
967 CommandIn . xCommand,
968 "CMD" , "SET" , "PARAMETER" , "Delay") ;
969 i f (eva l == true) {
970 tempDoExecuteCommand = true ;
971 tempCmd [0] = "ACK" ;
972 tempDestUID = tempSrcUID ;
973 theDelay = CommandIn . xIntVal ;
974 tempIntValue = theDelay ; // and send i t out

again !
975 }
976 eva l = CommandIsEquals (
977 CommandIn . xCommand,
978 "CMD" , "GET" , "PARAMETER" , "Delay") ;
979 i f (eva l == true) {
980 tempDoExecuteCommand = true ;
981 tempCmd [0] = "ACK" ;
982 tempDestUID = tempSrcUID ;
983 tempIntValue = theDelay ;
984 }
985 eva l = CommandIsEquals (
986 tempCmd, "CMD" , "RESET" , "" , "") ;
987 i f (eva l == true) {
988 tempDoExecuteCommand = true ;
989 ComposeAcknowledgeCommand("RESET" , "" , "" ,

tempCmd) ;
990 tempDestUID = tempSrcUID ;

300 APPENDIX B. EXAMPLES FROM SOFT P&C CASE STUDY

991 // Reset the t r i p window
992 ResetTripWindows () ;
993 // Reset the t r i p i n d i c a t i on f o r each channel
994 theTrip1 = fa l se ;
995 theTrip2 = fa l se ;
996 theTrip3 = fa l se ;
997 theTrip4 = fa l se ;
998 }
999 }

1000 }
1001 }
1002
1003 executingCommand −> acknowledging {
1004 guard tempDoExecuteCommand ;
1005 action {
1006 tempDoExecuteCommand = fa l se ;
1007 ^CommandOut(
1008 theUID ,
1009 tempDestUID ,
1010 tempCmd,
1011 tempSampleCount ,
1012 tempStrValue ,
1013 tempIntValue ,
1014 tempBoolValue ,
1015 tempFloatValue) ;
1016 }
1017 }
1018
1019 acknowledging −> l i s t e n i n g {
1020 trigger $CommandOut ;
1021 action {
1022 $CommandIn () ;
1023 }
1024 }
1025
1026 executingCommand −> l i s t e n i n g {
1027 guard ! tempDoExecuteCommand ;
1028 action {
1029 $CommandIn () ;
1030 }
1031 }
1032 }
1033 }

Appendix C

Acronyms

301

302 APPENDIX C. ACRONYMS

Table C.1: Acroynms

λ∗ Performance Reasoning Framework

λ-ABA
Performance Reasoning Framework, Average Case, with Block-
ing and Asynchronous Interaction

λ-WBA
Performance Reasoning Framework, Worst Case, with Block-
ing and Asynchronous Interaction

λ-SS Performance Reasoning Framework, Sporadic Server
AADL Architecture Analysis and Design Language
ABAS Attribute–Based Architecture Style
ADL Architecture Description Language
API Application Programming Interface
CBS COTS–Based Systems
CBSE Component Based Software Engineering
CEGAR Counterexample Guided Abstraction Refinement
ComFoRT Component Formal Reasoning Technology
COTS Commercial Off–The–Shelf
CSP Communicating Sequential Processes (a process algebra)
CTL Computation Tree Logic
DLL Dynamically Linked Library
FDR Failure Divergence Refinement (model checker)
FIFO First In First Out
FSP Finite State Processes (a process algebra)
HKL Concurrent pipeline pattern named for the authors of [62]
IED Intelligent Electronic Device (from IEC–1850)
GOOSE Generic Object–Oriented Substation Event (from IEC61850)
GRMA Generalized Rate Monotonic Analysis
GRMT Generalized Rate Monotonic Scheduling Theory
LCM Least Common Multiple (from IEC61850)
LN Logical Node (from IEC61850)
LTL Linear Temporal Logic
LTSA Labeled Transition System Analyzer (model checker)
MBE Model–Based Engineering
MRE Magnitude of Relative Error
NATO North Atlantic Treaty Organization
ORC Open Robot Controller
PACC Predictable Assembly from Certifiable Components
PCC Proof–Carrying Code
PCL Pin Component Language
PECT Prediction–Enabled Component Technology
PMM Performance Metamodel
PSK PACC Starter Kit
RMS Rate Monotonic Analysis
RTOS Real Time Operating System
RTQT Real Time Queueing Theory
SAS Substation Automation Systems
SAV Sampled Values (from IEC61850)

(continued next page)

303

Table C.1: (continued)

SEI Software Engineering Institute
SE–LTL State–Event Linear Temporal Logic
Soft P&C Soft Protection and Control
SS Sporadic Server
TCB Trusted Computing Base
UML Unified Modeling Language

304 APPENDIX C. ACRONYMS

Bibliography

[1] Abadi, M., and Lamport, L. Conjoining specifications. ACM Transactions
on Programming Languages and Systems 3, 17 (1995), 507–531.

[2] Abowd, G., Allen, R., and Garlan, D. Using style to understand
descriptions of software architecture. In SIGSOFT ’93: Proceedings of the
1st ACM SIGSOFT symposium on Foundations of software engineering (New
York, NY, USA, 1993), ACM Press, pp. 9–20.

[3] Abowd, G. D., Allen, R., and Garlan, D. Formalizing style to un-
derstand descriptions of software architecture. ACM Trans. Softw. Eng.
Methodol. 4, 4 (1995), 319–364.

[4] Achermann, F., and Nierstrasz, O. Applications = Components +
Scripts — A Tour of Piccola. In Software Architectures and Component Tech-
nology, M. Aksit, Ed. Kluwer, 2001, pp. 261–292.

[5] Aldrich, J. Using types to enforce architectural structure. In Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008) (Los Alami-
tos, CA, USA, 2008), IEEE Computer Society.

[6] Alexander, C. Notes on the Synthesis of Form. Harvard University Press,
Cambridge, MA, Jan 1964.

[7] Alexander, C. A Pattern Language. Oxford University Press, 1977.

[8] Allen, R., and Garlan, D. Formalizing architectural connection. In ICSE
’94: Proceedings of the 16th international conference on Software engineering
(Los Alamitos, CA, USA, 1994), IEEE Computer Society Press, pp. 71–80.

[9] Allen, R. J. A Formal Approach to Software Architecture. PhD thesis,
Carnegie Mellon University, Mar 1997. CMU–CS–97–144.

[10] Alpern, B., and Schneider, F. B. Recognizing safety and liveness. Dis-
tributed Computing 2 (1987), 117–126.

[11] Anderson, P. More is different. Science 177 (1972), 393–396.

[12] Babar, M. A., and Lago, P. Design decisions and design rationale in
software architecture. Journal of Systems and Software 82, 8 (2009), 1195 –
1197. SI: Architectural Decisions and Rationale.

[13] Bachmann, F., Bass, L., and Klein, M. Deriving architectural tactics:
A step toward methodical architectural design. Technical Report CMU/SEI-
2003-TR-004, Software Engineering Institute, Carnegie Mellon University,
4500 Fifth Avenue, Pittsburgh, PA, 15026, 2003.

305

306 BIBLIOGRAPHY

[14] Ball, T., Cook, B., Levin, V., and Rajamaii, S. Slam and static driver
verifier: Technology transfer of formal methods inside microsoft. In Integrated
Formal Methods (2004).

[15] Ball, T., Majumar, R., Millstein, T., and Rajamani, S. Automatic
predicate abstraction of c programs. In 2001 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI) (New York,
NY., June 2001), Association for Computing Machinery (ACM), pp. 203–213.

[16] Bass, L., Clements, P., and Kazman, R. Software Architecture in Prac-
tice, second ed. Pearson Education, 2003.

[17] Basu, A., Bozga, M., and Sifakis, J. Modeling heterogeneous real-time
components in bip. In SEFM ’06: Proceedings of the Fourth IEEE Interna-
tional Conference on Software Engineering and Formal Methods (Washing-
ton, DC, USA, 2006), IEEE Computer Society, pp. 3–12.

[18] Becker, S., Koziolek, H., and Reussner, R. Model-based performance
prediction with the palladio component model. In WOSP ’07: Proceedings
of the 6th international workshop on Software and performance (New York,
NY, USA, 2007), ACM, pp. 54–65.

[19] Berry, G., and Boudol, G. The chemical abstract machine. In POPL ’90:
Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (New York, NY, USA, 1990), ACM, pp. 81–94.

[20] Bilchev, G., and Parmee, I. C. The ant colony metaphor for search-
ing continuous design spaces. In Selected Papers from AISB Workshop on
Evolutionary Computing (London, UK, 1995), Springer-Verlag, pp. 25–39.

[21] Bobaru, M. G., Pasareanu, C., and Giannakopoulou, D. Automated
assume–guarantee reasoning by abstraction refinement. In International Con-
ference on Computer–Aided Verification (CAV 08) (2008), vol. 5123 of Lecture
Notes in Computer Science.

[22] Both, A., and Zimmermann, W. Automatic protocol conformance check-
ing of recursive and parallel component-based systems. In CBSE ’08: Pro-
ceedings of the 11th International Symposium on Component-Based Software
Engineering (Berlin, Heidelberg, 2008), Springer-Verlag, pp. 163–179.

[23] Brooks, Jr., F. P. No Silver Bullet: Essence and Accidents of Software
Engineering. Computer 20, 4 (1987), 10–19.

[24] Burge, J. e. Design rationale: Researching under uncertainty. Artif. Intell.
Eng. Des. Anal. Manuf. 22, 4 (2008), 311–324.

[25] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M. Pattern–Oriented Software Architecture, Volume 1, A System of
Patterns. Wiley, 1996.

[26] Caetano, C., and Pernes, M. Introducing iec61850 in distribution substa-
tions. In Powergrid Europe Transmission and Distribution (Madrid, Spain,
June 26–28 2007).

[27] Carpenter, B., Roman, M., Vasilatos, N., and Zimmerman, M. The
rtx real–time subsystem for windows nt. In USENIX Windows NT Workshop
(August 1997).

BIBLIOGRAPHY 307

[28] Chaki, S. Sat-based software certification. Technical Report CMU/SEI-
2006-TN-004, Software Engineering Institute,Carnegie Mellon University,
Pittsburgh, PA, USA, February 2006.

[29] Chaki, S., Clarke, E. M., Sinha, N., and Thati, P. Automated assume–
guarantee reasoning for simulation conformance. In International Conference
on Computer–Aided Verification (CAV 05) (2005), vol. 3576 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 534–547.

[30] Chaki, S., Edmund, Clarke, E. M., Sharygina, N., and Sinha, N.
State/event-based software model checking. In Integrated Formal Methods
(Berlin - Heidelberg - New York, 2004), Springer-Verlag, pp. 128–147.

[31] Chaki, S., Gurfinkel, A., Wallnau, K., and Weinstock, C. Assur-
ance cases for proofs as evidence. In Workshop on Proof-Carrying Code and
Software Certification (PCC’09) (August 2009), E. Denney and T. Jensen,
Eds., Affiliated with Twenty-Fourth IEEE Symposium on Logic in Computer
Science (LICS’09).

[32] Chaki, S., Ivers, J., Lee, P., Wallnau, K., and Zeilberger, N. Certi-
fied binaries for software components. Technical Report CMU/SEI-2007-TR-
001, Software Engineering Institute, Carnegie Mellon University, 4500 Fifth
Avenue, Pittsburgh, PA, 15026, 2007.

[33] Chaki, S., Ivers, J., Lee, P., Wallnau, K., and Zeilberger, N.
Model-driven construction of certified binaries. In Model Driven Engineer-
ing Languages and Systems (Berlin - Heidelberg - New York, 2007), Lecture
Notes in Computer Science, Springer-Verlag, pp. 668–681.

[34] Chaki, S., Ivers, J., Sharygina, N., and Wallnau, K. The comfort
reasoning framework. In 17th International Conference on Computer Aided
Verification (July 2005), vol. 3576 of Lecture Notes in Computer Science.

[35] Chaki, S., Oaknine, J., Yoray, K., and Clark, E. Automated com-
positional abstraction refinement for concurrent c programs: A two–level ap-
proach. ENTCS 89, 3 (2003).

[36] Chaki, S., and Strichman, O. Optimized l*–based assume–guarantee
reasoning. In TACAS 07 (2007), vol. 4424 of Lecture Notes in Computer
Science, pp. 276–291.

[37] Cimatti, A., Clark, E., Giunchiglia, F., and Roveri, M. Nusmv:
A new symbolic model verifier. International Journal on Software Tools for
Technology Transition 2, 4 (2000), 410–425.

[38] Clark, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H.
Counterexample-guided abstraction refinement. In 12th International Con-
ference on Computer–Aided Verification (CAV 2000) (2000), vol. 1855 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 154–169.

[39] Clark, E., Grumberg, O., and Long, D. Model checking and abstrac-
tion. In 19th Annual SIGPLAN–SIGACT Symposium on the Principles of
Programming Languages (January 1992), Association for Computing Machin-
ery (ACM), pp. 343–354.

308 BIBLIOGRAPHY

[40] Clark, E., Long, D., and McMillan, K. Compositional model check-
ing. In 4th International Symposium on Logic in Computer Science (1989),
pp. 353–362.

[41] Clarke, E. M. The birth of model checking. In 25 Years of Model Check-
ing: History, Achievements, Perspectives, O. Grumberg and H. Veith, Eds.
Springer-Verlag, Berlin, Heidelberg, 2008, pp. 1–26.

[42] Clarke, E. M., and Emerson, A. A. The design and synthesis of synchro-
nization the design and synthesis of synchronization skeletons using temporal
logic. In Workshop Workshop on Logics of Programs, (Berlin - Heidelberg -
New York, 1981), no. 131 in Lecture Notes in Computer Science, Springer-
Verlag, pp. 52–71.

[43] Clarke, E. M., Grumberg, O., Jham, S., Lu, Y., and Veith, H.
Counterexample-guided abstraction reinement for symbolic counterexample-
guided abstraction re nement for symbolic counterexample–guided abstrac-
tion refinement for symbolic model checking. Journal of the ACM (JACM)
50, 5 (September 2003), 752–794.

[44] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Lit-
tle, R., Nord, R., and Stafford, J. Documenting Software Architec-
tures: Views and Beyond. Pearson Education, 2002.

[45] Coplien, J. O., and Schmidt, D. C. Pattern Languages of Program
Design. Addison-Wesley, 1995.

[46] Crnkovic, I., Sentilles, S., Vulgarakis, A., and Chaudron, M.
R. V. A Classification Framework for Component Models. IEEE Trans-
actions on Software Engineering (submitted).

[47] Cusumano, M. A. The Software Factory: A Historical Interpretation. IEEE
Software 6, 1 (March 1989), 23–30.

[48] Dijkstra, E. W. On the cruelty of really teaching computing science. cir-
culated privately, Dec. 1988.

[49] Doytchinov, B., Lehoczky, J., and Shreve, S. Real-time queues in
heavy traffic with earliest- deadline-first queue discipline. Annals of Applied
Probability 11, 2 (2001), 332–378.

[50] Dwyer, M. B., Hatcliff, J., Hoosier, M., and Robby. Building your
own software model checker using the bogor extensible model checking frame-
work. In Computer Aided Verification, K. Etessami and S. K. Rajamani,
Eds., vol. 3576 of Lecture Notes in Computer Science. Springer-Verlag, 2005,
pp. 148–152.

[51] Fielding, R. T. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, Irvine, 2000. Chair-
Richard N. Taylor.

[52] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Design. Addison-Wesley, 1995.

BIBLIOGRAPHY 309

[53] Garlan, D., Allen, R., and Ockerbloom, J. Exploiting style in archi-
tectural design environments. In SIGSOFT ’94: Proceedings of the 2nd ACM
SIGSOFT symposium on Foundations of software engineering (New York,
NY, USA, 1994), ACM Press, pp. 175–188.

[54] Garlan, D., Monroe, R., and Wile, D. Acme: an architecture descrip-
tion interchange language. In CASCON ’97: Proceedings of the 1997 con-
ference of the Centre for Advanced Studies on Collaborative research (1997),
IBM Press, pp. 169–183.

[55] Giannakopoulou, D. Model Checking for Concurrent Software Architec-
tures. PhD thesis, Imperial College of Science Technology and Medicine,
University of London, March 1999.

[56] Goodenough, J., and Sha, L. The priority ceiling protocol: A method for
minimizing the blocking of high-priority ada tasks. Special Report CMU/SEI-
88-SR-004, Software Engineering Institute, Carnegie Mellon University, 4500
Fifth Avenue, Pittsburgh, PA, 15026, 1988.

[57] Graf, S., and Saïdi, H. Construction of abstract state graphs with pvs.
In 9th International Conference on Computer Aided Verification (CAV ’97)
(June 22–25 1997), vol. 1254 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 72–83.

[58] Gui, S., Luo, L., Liu, Q., Guo, F., and Lu, S. Ucas: A schedulability
analysis tool for aadl models. Embedded and Ubiquitous Computing, IEEE/I-
FIP International Conference on 2 (2008), 449–454.

[59] Hanninen, K., J., M.-T., Nolin, M., Lindberg, M., Lundback, J.,
and Lundback, K. The rubus component the rubus component model
for resource constrained real-time systems. In International Symposium on
Industrial Embedded Systems SIES 2008 (2008), pp. 177–183.

[60] Hansen, J., and Moreno, G. A. Overview of the lambda-star performance
reasoning frameworks. Technical Report CMU/SEI-2008-TR-020, Software
Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue, Pitts-
burgh, PA, 15213–3890, February 2008.

[61] Harbour, G., Garcia, G., Gutierrez, P., and Moyano, D. Mast:
Modeling and anaysis suite for real–time applications. In Euromicro Confer-
ence on Real–Time Systems (ECRTS) (June 2001), IEEE Computer Society.

[62] Harbour, G., Klein, M. H., and Lehoczky, J. Fixed priority scheduling
of periodic tasks with varying execution priority. In Proceedings of IEEE Real-
Time Systems Symposium (San Antonio, Texas, December, December 1991),
IEEE Computer Society Press, pp. 116–128.

[63] Harbour, M. G., and Sha, L. An application-level implementation of the
sporadic server. Technical Report CMU/SEI-91-TR-026, Software Engineer-
ing Institute, Carnegie Mellon University, 4500 Fifth Avenue, Pittsburgh, PA,
15026, 1991.

[64] Hardin, R., Z. Har’El, Z., and Kurshan, R. Cospan. In 8th Inter-
national Conference Computer Aided Verification (CAV 1996) (Berlin - Hei-
delberg - New York, 1996), vol. 1102 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 423–427.

310 BIBLIOGRAPHY

[65] Heineman, G. T., and Councill, W. T. Component Based Software
Engineering: Putting the Pieces Together, first ed. Addison-Wesley, 2001.

[66] Henzinger, T., Jhala, R., Majumar, R., and Sutre, G. Lazy ab-
straction. In 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 02) (New York, NY, USA, January 2002),
vol. 37 of SIGPLAN Notices, ACM Press, pp. 58–70.

[67] Hissam, S., , Klein, M., Lehoczky, J., Merson, P., and Wallnau, G.
M. K. Performance property theories for predictable assembly from certifi-
able components (pacc). Technical Report CMU/SEI-2004-TR-017, Software
Engineering Institute, Carnegie Mellon University, 4500 Fifth Avenue, Pitts-
burgh, PA, 15026, 2004.

[68] Hissam, S., Hudak, J., Ivers, J., Klein, M., (ABB), M. L., Moreno,
G., Northrop, L., Plakosh, D., Stafford, J., Wallnau, K., and
Wood, W. Predictable assembly of substation automation systems: An
experiment report, 2nd edition. Technical Report CMU/SEI-2002-TR-031,
Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Av-
enue, Pittsburgh, PA, 15026, 2003.

[69] Hissam, S., Ivers, J., Plakosh, D., and Wallnau, K. Pin component
technology (v1.0) and its c interface. Technical Note CMU/SEI-2005-TN-
001, Software Engineering Institute, Carnegie Mellon University, 4500 Fifth
Avenue, Pittsburgh, PA, 15026, 2005.

[70] Hissam, S., Moreno, G., Stafford, J., and Wallnau, K. Packaging
predictable assembly with prediction-enabled component technology. Techni-
cal Report CMU/SEI-2001-TR-024, Software Engineering Institute, Carnegie
Mellon University, 4500 Fifth Avenue, Pittsburgh, PA, 15026, 2001.

[71] Hissam, S., Moreno, G., Stafford, J., and Wallnau, K. Packaging
predictable assembly. In Component Deployment, J. Bishop, Ed., vol. 2370
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2002,
pp. 108–124.

[72] Hissam, S., Moreno, G., and Wallnau, K. Predictability by Construc-
tion (Tutorial). In 30th International Conference on Software Engineering
(New York, NY, USA, 2008), ACM.

[73] Hissam, S. A., Moreno, G. A., and Wallnau, K. C. Using containers
to enforce smart constraints for performance in industrial systems. Techni-
cal Note CMU/SEI-2005-TN-040, Software Engineering Institute, Carnegie
Mellon University, 4500 Fifth Avenue, Pittsburgh, PA, 15026, 2005.

[74] Hoare, C. Algebra and Models. SIGSOFT Software Engineering Notes 18,
5 (December 1993), 1–8.

[75] Hoare, C. A. R., and Hoare, C. A. R. Communicating sequential pro-
cesses. Communications of the ACM 21 (1985), 666–677.

[76] Hunt, J. M. A practical state machine project. In ACM-SE 47: Proceedings
of the 47th Annual Southeast Regional Conference (New York, NY, USA,
2009), ACM, pp. 1–6.

BIBLIOGRAPHY 311

[77] Hunt, J. M., and McGregor, J. D. Building software that is predictable
by construction. J. Comput. Small Coll. 25, 2 (2009), 203–204.

[78] IEC-TC57-WG10/11/12. Iec61850: Communications networks and sys-
tems in substations. International Electrotechnical Commission Stanmdard,
1999.

[79] Inverardi, P., and Wolf, A. L. Formal specification and analysis of
software architectures using the chemical abstract machine model. IEEE
Trans. Softw. Eng. 21, 4 (1995), 373–386.

[80] Ivers, J. Lessons learned model checking an industrial communications
library. Technical Note CMU/SEI-2005-TN-039, Software Engineering Insti-
tute, Carnegie Mellon University, September 2006.

[81] Ivers, J., and Sharygina, N. Overview of comfort: A model checkin rea-
soning framework. Technical Note CMU/SEI-2004-TN-018, Carnegie Mellon
University, Software Engineering Institute, April 2004.

[82] Ivers, J., Sinha, N., and Wallnau, K. A basis for composition language
cl. Technical Report CMU/SEI-2002-TN-026, Software Engineering Institute,
Carnegie Mellon University, 4500 Fifth Avenue, Pittsburgh, PA, 15026, 2002.

[83] Ivers, J., and Wallnau, K. C. Preserving Real Concurrency. In 2003
ECOOP Workshop on Correctness of Model-Based Software Composition
(CMC) (July 2003), vol. Technical Report 2003-13, Universitat Karlsruhe.

[84] Jackson, D., Martyn, T., and Millett, L. I. Software for Dependable
Systems: Sufficient Evidence? National Academy Press, Washington, DC,
USA, 2007.

[85] Jacobs, B., and Rutten, J. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin 62 (1997), 62–222.

[86] kerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Håkans-
son, J., Möller, A., Pettersson, P., and Tivoli, M. The save approach
to component-based development of vehicular systems. J. Syst. Softw. 80, 5
(2007), 655–667.

[87] Klein, M., and Kazman, R. Attribute-Based Architectural Styles. Techni-
cal Report CMU/SEI–99–TR–022, Software Engineering Institute, Carnegie
Mellon University, 4500 Fifth Avenue, Pittsburgh, PA, 15213–3890, Oct 1999.

[88] Klein, M. H., Kazman, R., Bass, L. J., Carrière, S. J., Barbacci,
M., and Lipson, H. F. Attribute-based architecture styles. In WICSA1:
Proceedings of the TC2 First Working IFIP Conference on Software Ar-
chitecture (WICSA1) (Deventer, The Netherlands, The Netherlands, 1999),
Kluwer, B.V., pp. 225–244.

[89] Klein, M. H., Ralya, T., Pollak, B., Obenza, R., and Harbour,
M. G. A practitioner’s handbook for real-time analysis. Kluwer Academic
Publishers, Norwell, MA, USA, 1993.

[90] Kleinrock, L. Queueing Systems Volume1: Theory. Wiley-Interscience,
1975.

312 BIBLIOGRAPHY

[91] Krahl, D. Extend: the extend simulation environment. In 34th Winter Sim-
ulation Conference WSC–02 (Arlington, VA, December 2001), IEEE Com-
puter Society.

[92] Krishnan, R., and Palki, B. First experiences with design and engineering
of iec 61850 based substation automation systems in india. In Conference on
Electric Power Supply Industry (CEPSI) 2006 (Mumbai, India, 2006).

[93] Kruchten, P. The 4+1 view model of architecture. IEEE Softw. 12, 6
(1995), 42–50.

[94] Kupferman, O., and Vardi, M. From complementation to certification. In
10th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 04) (2004), vol. 2988 of Lecture Notes in
Computer Science, pp. 591–606.

[95] Kurshan, R. Computer–Aided Verification of Coordinating Process: the
Automata–Theoretic Apprlach. Princeton University Press, Princeton, NJ,
1994.

[96] Lakoff, G., and Johnson, M. Metaphors We Live By. University of
Chicago Press, Chicago, IL, USA, 1980.

[97] Lakoff, G., and nez, R. N. Where Mathematics Comes From. Basic
Books, a member of Perseus Books Group, New York, NY, USA, 1990.

[98] Larson, M. Predicting Quality Attributes in Component-based Software Sys-
tems. PhD thesis, Malardalen University, 2004. Doctoral Dissertation No.8.

[99] Larson, M., Wall, A., and Wallnau, K. Predictable assembly: The
crystal ball to software! ABB Review, 2 (2005).

[100] Lenz, G., and Wienands, C. Practical Software Factories in .NET. Apress,
2008.

[101] Lewis, R. Programming industrial control systems using IEC 1131-3, re-
vised ed. No. 50 in IEE Control Engineering Series. The Institution of Electri-
cal Engineers (IEE), IEE, Michael Faraday House, Six Hills Way, Stevenage,
Herts. SG1 2AY, United Kingdom., 1999.

[102] Li, B., Jeon, W., Kalter, W., Nahrstedt, K., and hyuk Seo, J.
Adaptive middleware architecture for a distributed omni-directional visual
tracking system. In Proceedings of SPIE/ACM MMCN 2000 (2000), pp. 101–
112.

[103] Liskov, B., and Zilles, S. Programming with abstract data types. SIG-
PLAN Not. 9, 4 (1974), 50–59.

[104] Liskov, B. H., and Wing, J. M. A behavioral notion of subtyping. ACM
Trans. Program. Lang. Syst. 16, 6 (1994), 1811–1841.

[105] Loiseaux, C., Graf, S., Sifakis, J., Bouajiani, A., and Bensalem, S.
Property preserving abstractions for the verification of concurrent systems.
Formal Methods in System Design 6, 1 (1995), 11–44.

[106] Lumpe, M. A π–Calculus Based Approach for Software Composition. PhD
thesis, Institute für Informatiik und angewandte Mathematik, 1999.

BIBLIOGRAPHY 313

[107] Madsen, K. H. A guide to metaphorical design. Communications of the
ACM 37, 12 (1994), 57–62.

[108] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. Specifying dis-
tributed software architectures. In Proceedings of the 5th European Software
Engineering Conference (London, UK, 1995), Springer-Verlag, pp. 137–153.

[109] Magee, J., and Kramer, J. Dynamic structure in software architec-
tures. In SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium
on Foundations of software engineering (New York, NY, USA, 1996), ACM
Press, pp. 3–14.

[110] Magee, J., and Kramer, J. Concurrency: State Models & Java Programs.
John Wiley & Sons, April 1999.

[111] Magee, J., and Kramer, J. Concurrency: State Models & Java Con-
currency: State Models and Java Programs. Wiley, West Sussex, England,
2001.

[112] Magee, J., Kramer, J., and Giannakopoulou, D. Behaviour analysis
of software architectures. In WICSA1: Proceedings of the TC2 First Work-
ing IFIP Conference on Software Architecture (WICSA1) (Deventer, The
Netherlands, The Netherlands, 1999), Kluwer, B.V., pp. 35–50.

[113] Martinez, P. L., Medina, J. L., and Drake, J. M. Sim–mast: Simulador
de sistemas distribuidos de tiempo real. In XII Jornadas de Concurrencia y
Sistemas Distribuidos (2004).

[114] Mcilroy, M. D. ’mass produced’ software components. In Software Engi-
neering: A Report On a Conference Sponsored by the NATO Science Com-
mittee (October 1968), P. Naur and B. Randell, Eds., pp. 138–155.

[115] McMillan, K. A composition rule for hardware design refinement. In 9th
International Conference on Computer Aided Verification (CAV ’97) (1997),
vol. 1254 of Lecture Notes in Computer Science, Springer-Verlag, pp. 24–35.

[116] Medvidovic, N., Oreizy, P., Robbins, J. E., and Taylor, R. N. Us-
ing object-oriented typing to support architectural design in the c2 style. In
SIGSOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium on Foun-
dations of software engineering (New York, NY, USA, 1996), ACM Press,
pp. 24–32.

[117] Mehta, N. R., Medvidovic, N., and Phadke, S. Towards a taxonomy
of software connectors. In ICSE ’00: Proceedings of the 22nd international
conference on Software engineering (New York, NY, USA, 2000), ACM Press,
pp. 178–187.

[118] Mellor, S., and Balcer, M. Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley, Boston, MA, 2002.

[119] Meyer, B. Applying "design by contract". Computer 25, 10 (1992), 40–51.

[120] Meyer, B., Mingins, C., and Schmidt, H. Providing trusted components
to the industry. Computer 31, 5 (1998), 104–105.

[121] Milner, R. A Calculus of Communicating Systems. No. 92 in Lecture Notes
in Computer Science. Springer-Verlag, 1980.

314 BIBLIOGRAPHY

[122] Milner, R. Communicating and Mobile Systems: The π–Calculus. Cam-
bridge University Press, 1999.

[123] Milner, R., Tofte, M., and Harper, R. The definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1990.

[124] Moreno, G., Hissam, S., and Wallnau, K. Statistical models for empir-
ical component properties and assembly-level property predictions. In Fifth
ICSE Workshop on Component-Based Software Engineering (New York, NY,
USA, 2002), ACM.

[125] Moreno, G. A. Creating custom containers with generative techniques.
In GPCE ’06: Proceedings of the 5th international conference on Generative
programming and component engineering (New york, NY, USA, 2006), ACM,
pp. 29–38.

[126] Moreno, G. A., and Merson, P. Model–driven performance analysis. In
4th International Conference on the Quality of Software Architectures (2008).

[127] Moreno, G. A., Smith, C. U., and Williams, L. G. Performance anal-
ysis of real-time component architectures: a model interchange approach. In
WOSP ’08: Proceedings of the 7th international workshop on Software and
performance (New york, NY, USA, 2008), ACM, pp. 115–126.

[128] Mosses, P. D. Denotational semantics. In Handbook of theoretical computer
science (vol. B): formal models and semantics. Elsevier Science, 1990, ch. 11,
pp. 575–631.

[129] Namjoshi, K. S. Certifying model checkers. In CAV ’01: Proceedings of
the 13th International Conference on Computer Aided Verification (London,
UK, 2001), Springer-Verlag, pp. 2–13.

[130] Necula, G. Proof Carrying Code. In Proceedings of the 24th Symposium on
Principles of Programming Langauges (POPL í97) (Paris, France, January
1997), SIGPLAN-SIGACT, Association for Computing Machinery, pp. 106–
119.

[131] Necula, G., and P., L. Safe kernel extensions without runtime checking. In
2nd USENIX Symposium on Operating System Design and Implementation
(OSDI 96) (1996), ACM Press, pp. 229–243.

[132] Palesi, M., and Givargis, T. Multi-objective design space exploration
using genetic algorithms. In CODES ’02: Proceedings of the tenth inter-
national symposium on Hardware/software codesign (New York, NY, USA,
2002), ACM, pp. 67–72.

[133] Parnas, D. L. On the criteria to be used in decomposing systems into
modules. Commun. ACM 15, 12 (1972), 1053–1058.

[134] Parnas, D. L., and Clements, P. C. A rational design process: How and
why to fake it. IEEE Trans. Softw. Eng. 12, 2 (1986), 251–257.

[135] Perry, D. E., and Wolf, A. L. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes 17, 4 (1992), 40–
52.

BIBLIOGRAPHY 315

[136] Pierce, B. C., and Turner, D. N. Pict: A programming language based
on the pi-calculus. In Proof, Language and Interaction: Essays in Honour of
Robin Milner (2000), G. Plotkin, C. Stirling, and M. Tofte, Eds., MIT Press.

[137] Plakosh, D., Smith, D., and Wallnau, K. Builder’s Guide for Water-
beans Components. Technical Report CMU/SEI-99-TR-024, Software Engi-
neering Institute, Carnegie Mellon University, 4500 Fifth Avenue, Pittsburgh,
PA, 15026, December 1999.

[138] Plotkin, G. D. A structural approach to operational semantics. Journal of
Logic and Algebraic Programming 60-61 (December 2004), 17–139.

[139] Pnueli, A. The temporal logic of programs. In 18th IEEE Symposium on
Foundations of Computer Science (1977), IEEE Computer Society, pp. 46–57.

[140] Preiss, O., and Wegmann, A. Towards a composition model problem
based on iec61850. Journal of Systems and Software 65 (2003).

[141] Räihä, O., Koskimies, K., and Mäkinen, E. Genetic synthesis of software
architecture. In SEAL ’08: Proceedings of the 7th International Conference
on Simulated Evolution and Learning (Berlin, Heidelberg, 2008), Springer-
Verlag, pp. 565–574.

[142] Roscoe, A. Model–checking csp. In A Classical Mind, Essays in Honour of
C.A.R. Hoare. Prentice–Hall, 1994.

[143] Roy, B. The outranking approach and the foundations of electre methods.
Theory and Decision 31 (1991), 49–73.

[144] Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F. Pattern–
Oriented Software Architecture, Volume 1, Patterns for Concurrent and Net-
worked Objects. Wiley, 1996.

[145] Scott, J., and Kazman, R. Realizing and refining architectural tactics:
Availability. Technical Report CMU/SEI-2009-TR-006, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, USA, August 2009.

[146] Sentilles, S., Vulgarakis, A., Bureš, T., Carlson, J., and
Crnković, I. A component model for control-intensive distributed embed-
ded systems. In CBSE ’08: Proceedings of the 11th International Sympo-
sium on Component-Based Software Engineering (Berlin, Heidelberg, 2008),
Springer-Verlag, pp. 310–317.

[147] Sha, L., Rajkumar, R., and Lehoczky, J. Priority inheritance protocols:
An approach to real–time synchronization. IEEE Transactions on Computers
39, 9 (1990), 1175–1185.

[148] Sharygina, N., Kurshan, R., and Brown, J. A formal object–oriented
analysis for software reliability. In 4th International Conference on Formal
Aspects of Software Engineering (FACE 2001) (Genova, Italy, April 2001),
vol. 2029 of Lecture Notes in Computer Science.

[149] Shaw, M. Truth vs knowledge: The difference between what a component
does and what we know it does. In IWSSD ’96: Proceedings of the 8th
International Workshop on Software Specification and Design (Washington,
DC, USA, 1996), IEEE Computer Society, p. 181.

316 BIBLIOGRAPHY

[150] Shaw, M., and Garlan, D. Characteristics of Higher-level Languages for
Software Architecture. Tech. Rep. CMU-CS-94-210, Carnegie Mellon Univer-
sity, School of Computer Science, December 1994.

[151] Simon, H. A. Models of man: social and rational: mathematical essays on
rational human behavior in a social setting. Wiley, 1957.

[152] Simon, H. A. Sciences of the Artificial, third ed. MIT Press, 1996.

[153] Smith, L. M. C., and Samadzadeh, M. H. An annotated bibliography of
literate programming. SIGPLAN Not. 26, 1 (1991), 14–20.

[154] Sprunt, B., Sha, L., and Lehoczky, J. Scheduling sporadic and aperiodic
events in a hard real-time system. Technical Report CMU/SEI-89-TR-011,
Software Engineering Institute, Carnegie Mellon University, 4500 Fifth Av-
enue, Pittsburgh, PA, 15026, 1989.

[155] Standard. IEEE Standard for a Software Quality Metrics Methodology.
No. IEEE Std 1061-1998. IEEE Computer Society, 1998.

[156] Standard. Software engineering – Product quality – Part 3: Internal met-
rics. No. ISO/IEC TR 9126-3:2003. International Organization for Standard-
ization (ISO), 2003.

[157] Stevens, W., Meyers, G., and Constantine, L. Structured design. IBM
Systems 3, 2 (1974), 115–139.

[158] Sullivan, K. M., and Grivell, I. Qsim: A queueing theory model with
various probability distribution functions. Tech. Rep. NUWC-NPT Technical
Document 11,418, Naval Undersea Warfare Center, Newport, Rhode Island,
March 2003.

[159] Sutherland, D. F. The Code of Many Colors: Semi-automated Reasoning
about Multi-Thread Policy for Java. PhD thesis, School of Computer Science
Carnegie Mellon University, May 2008.

[160] Szyperski, C., Gruntz, D., and Murer, S. Component software: be-
yond object-oriented programming, second ed. Component Software Series.
Addison-Wesley, 2002.

[161] Tang, A., Babar, M. A., Gorton, I., and Han, J. A survey of archi-
tecture design rationale. J. Syst. Softw. 79, 12 (2006), 1792–1804.

[162] Taylor, F. W. Principles of Scientific Management. Gutenberg Project,
http://www.gutenberg.org/etext/6465, 1911.

[163] Taylor, F. W. Shop Management. Gutenberg Project,
http://www.gutenberg.org/etext/6464, 1911.

[164] Taylor, F. W. Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, 2004.

[165] Tayor, B., and Kuyatt, C. Guidelines for evaluating and expressing the
uncertainty of nist measurement results. Tech. Rep. NIST Technical Note
1297, US National Institute of Science and Technology (NIST), Gathersburg,
MD, 1994.

BIBLIOGRAPHY 317

[166] van Ommering, R. Building product populations with software components.
In ICSE ’02: Proceedings of the 24th International Conference on Software
Engineering (New York, NY, USA, 2002), ACM Press, pp. 255–265.

[167] Van Wyk, C. J. Literate programming. Commun. ACM 30, 12 (December
1987), 1000–1010.

[168] Vassilev, V. K., Fogarty, T. C., and Miller, J. F. Smoothness,
ruggedness and neutrality of fitness landscapes: from theory to application.
3–44.

[169] Wallnau, K. Volume III: A technology for predictable assembly from certi-
fiable components. Technical Report CMU/SEI-2003-TR-009, Software Engi-
neering Institute, Carnegie Mellon University, 4500 Fifth Avenue, Pittsburgh,
PA, 15026, 2003.

[170] Wallnau, K. C., Hissam, S. A., and Seacord, R. C. Building Sys-
tems from Commercial Components. Software Engineering. Addison-Wesley
Longman, Lowell, MA, Jun 2002.

[171] Wilhelm, R. Informatics - 10 Years Back. 10 Years Ahead, vol. 2001 of
Lecture Notes in Computer Science. Springer, 2001.

[172] Wirth, N. Program development by stepwise refinement. Communications
of the ACM 14, 4 (April 1971), 221–227.

[173] Xie, F., Brown, J., and Levin, V. Objectcheck: Model checking tool for
model checking executable object-oriented software designs. In Fundamental
Aspects of Software Engineering (FACE-2002) (Berlin - Heidelberg - New
York, April 2002), vol. 489 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 64–79.

	Titelsidor_mall_diss
	spikblad_mall
	theSeamMain.pdf

