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Abstract

There is a need for compact, high-speed, and low-power vision systems for en-
abling real-time mobile autonomous applications. One approach to achieve this
is to implement the low- to intermediate-level applications in hardware. Recon-
figurable hardware have all these qualities without the limitation of fixed func-
tionality that accompanies application-specific circuits. Resource constraints
in reconfigurable hardware calls for resource optimized implementations with
maintained performance.

The research group in Robotics at Mälardalens University ismoving to-
ward the completion of a reconfigurable hardware-platform for stereo vision,
coupled with a compact embedded computer. This system will incorporate
hardware-based preprocessing components enabling visualperception for au-
tonomous machines. This thesis covers the reconfigurable hardware section
of the vision system concerning the realization of scene depth extraction. It
shows the advantages of image preprocessing in hardware andpropose a re-
source optimized approach to stereo matching. The work quantifies the impact
of reduced resource utilization and a desire for increased accuracy in disparity
estimation. The implemented stereo matching approach performs on par with
recent similar implementations in terms of accuracy, but excels in terms of re-
source utilization and resource sharing, as the external memory requirement is
removed for larger images.

Future work aims to further include processes for navigation, and structure
and object recognition. Furthermore, the system will be adapted to real world
scenarios, both indoors and outdoors.
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Chapter 1

Introduction

Self-parking cars, pedestrian-sensitive self-braking trucks, driver-less mining-
machines, and museum guiding-robots are all examples of intelligent and au-
tonomous agents. Autonomous agents are entities that are assigned a task and
execute it without further guidance or interference from the task originator.
Such an agent senses its environment, adopts an approach accordingly, and
executes an action toward the fulfillment of the task. Those are the same fun-
damentals which form the definition of a robot: sense, plan, and act.

Spatial awareness is elementary in any autonomous mobile machine. There
are two fundamentals in the concept of spatial awareness - a knowledge of the
environment, and one’s own relation to that environment. (It can be argued
that an autonomous agent is really not in an environment, butpart of the en-
vironment.) Knowledge of the environment requires sensors, and the degree
of perception is determined by the properties of the sensors. Regardless of
sensor type, the resolution, accuracy and speed of the sensor limit the aware-
ness. There are several types of sensors for sensing the surrounding space, but
the two predominant types used in robotics and industry are rangefinders and
vision.

Rangefinders (such as radar, sonar and laser) are active systems that emit
waves (such as electromagnetic or light) and then measure the reflections of
the waves off an object. Vision sensors, or cameras, are passive sensors that
measure whatever light that falls onto the sensor, whether direct or reflected.
Common for rangefinders is that they are not as fast as passivevisual systems
as they rely on returned waves, whereas cameras can measure at much shorter
intervals as the light flow is one-directional and constant.These passive and
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4 Chapter 1. Introduction

general properties make cameras versatile, but also limited in the application of
range finding as they lack the built-in ranging property of rangefinders. With-
out knowledge of the temporal origin of the measured light, cameras cannot
use the time-of-flight or accumulation methods used by the range-finders, but
need to correlate the sensed data over a spatial difference.This is commonly
performed by triangulation of views from different angles of the same scene,
either by a movement of a single camera or by the use of multiple cameras,
referred to as stereo vision.

All types of rangefinders are well suited for map generation and obstacle
detection, but they are not optimal for object recognition,or tracking, as they
only convey the structure of the surroundings, and nothing about its colors or
patterns. Stereo-vision systems are an approximation of human eyes and can
enable machines to match or relate to our perception of the world. All infor-
mation about the environment exist in the data generated by the cameras. It
simply needs to be extracted. This simple part has occupied the large computer
vision research community for many years, and still do.

In this thesis, we present a stereo vision system for embedded mobile
robotics. The end goal with this research platform is to fit a real-time au-
tonomous system for navigation and object recognition in a compact and power
efficient hardware system. In order to fit all system parts, each component must
be made as compact and efficient as possible. This thesis focuses on reducing
the task of extracting depth information of a scene through matching of view-
separated images.

1.1 Background

Computer vision involves digital processing of images. Images are captured
with a sensor measuring the light falling onto the sensor surface. The amount
of light is transformed into a digital representation whichis communicated off
the sensor. The quality of an image is contingent on the sensor architecture, the
lens, the converter electronics, the circuit board design,and many more factors.
A great deal of research is dedicated to improving the performance of image
sensors. Our research is focused on the application of the image sensor, and
the process of extracting the information embedded in the sensor data. Many
applications and algorithms exist for image processing, and those concerned
with using the images to enable machines to see are labeled asbelonging to
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machine, or computer, vision.
Computer vision algorithms can generally be characterizedby complex

and repetitive operations, and large amounts of data, as detailed by Ratha and
Jain [1]. Moreover, vision algorithms can be classified as belonging to either
low-level, intermediate-level (segmentation), or high-level (higher order struc-
ture and matching). Regardless of level, vision algorithmsare all preprocess-
ing steps for a main algorithm, such as navigation or object recognition, but
the separation is far from distinct. A complete vision system needs to integrate
solutions for all levels in order to complete the main application. In this thesis,
we are concerned with low-level algorithms.

By definition, the performance of a system is contingent on the perfor-
mance of its parts. Being the initial node in the chain, the sensors set the
performance limit. Image sensors can provide high frame rates, but require the
receivers of their pixel stream to match their speed. If a receiver is to receive
and process images continuously, it needs to be able to both receive and execute
operations on every pixel in time before the next pixel arrives. This implies an
operating frequency several times higher than the pixel frequency of the image
sensor. Real-time image processing requires reading and operating on millions
of pixels per second, putting a hard requirement on the throughput ability of the
processing system. The concept of real-time will vary with the topic, and by
real-time we mean the execution time of an action or reactionthat is adequate
to mimic the human counterpart. Concerning cameras, a framerate of around
30 Hz is sufficient to not appear jerky to the human eye at moderate transitions
in the scene. For completely smooth motions an update frequency of above 60
frames per second is required. We use 30 frames per second as the frame rate
definition of real-time.

1.1.1 Reconfigurable Hardware

As opposed to standard sequential computer systems, which require a process-
ing frequency several orders of magnitude greater than the pixel frequency,
reconfigurable hardware enables pixel-wise image processing at a frequency
matching that of the pixels. Reconfigurable hardware, such as FPGAs, is a
hardware component where the functionality is loaded at startup. The central
processing unit of a typical PC fetches its instructions from memory, executes
them, and then stores the result back into memory. In the FPGA, the physical
configuration itself is the instructions and there is no setup delay [1]. It is a
standalone component that executes like a fixed state machine without an op-
erating system or external components. The big advantage ofFPGAs is that
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they enable concurrent processing of multiple data by parallelization. This re-
moves the need for the processing unit to operate at a frequency above that of
the vision sensor.

An important parameter of reconfigurable hardware is the limited available
resources. Being a component of fixed size where the functionality is deter-
mined by the physical interconnect of its logic elements, only a certain amount
of instructions can be concurrently realized. Moreover, shifting of instruction
sets is not possible as resources cannot be reallocated during run-time. In other
words, FPGAs can get full [1].

The type of algorithms appropriate for FPGAs are also limited due to the
types of operations possible with the internal circuitry. Any type of operation
can be realized in theory, but the cost in doing so might render it impracti-
cal. Registers, comparators, adders, multipliers, and internal memory are all
in finite numbers and realizing complex algorithms might require more than
available. Implementations of algorithms thus have to fit both in type and size.
The functionality of an FPGA is described with code written in a Hardware
Description Language (HDL) such as VHDL or Verilog. FPGAs are easily re-
configured using tools ranging from low-level programming languages, such
as HDL, to more general languages, such as variants of C and Python.

1.1.2 Feature detectors

In certain applications, such as navigation and object recognition, limited parts
of an image is often of more interest than the rest. These parts are features of
an object or a scene, and can be used as descriptors for that object or scene. Al-
gorithms identifying and extracting these defining parts ofan image is referred
to as Feature Detectors. Different feature detectors are good for different ap-
plications, but their common task is to identify salient areas (areas with low
similarity in the surrounding area), such as edges, corners, blobs, etc. Their
primary function is to reduce the amount of data associated with an object or
scene, without sacrificing the important information. One of the most impor-
tant properties of a feature detector is its repeatability:the ability to repeatedly
identify the same feature on any two separate occasions. This ability is crucial
when locating features between multiple images, as in matching for tracking,
depth, shape, etc. Another important parameter is the information content of a
feature detector, a measure of the distinctiveness of a salient point. The more
spread out the features are over an object, the higher the information content,
and the higher the likelihood of a successful match [2].

A multitude of feature detectors exists, and in Paper A the Stephen and Har-
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ris Combined Corner and Edge Detector [3] is used. It has beenwidely used
in computer vision applications for a long time, due to its high repeatability
and information content [4]. The Stephen and Harris detector, also common in
many other feature detectors, looks at the intensity of eachpixel and how it re-
lates to that of its neighbors. A pixel is evaluated based on how well it matches
the defined feature types - sharp discontinuity in one direction equals an edge,
and in two or more directions equals a corner. The better the match, the higher
the absolute cornerness value (positive for corners, negative for edges). The
algorithm produces only this definition of a feature, which makes a feature-
to-feature correlation challenging. Although similar in fashion, the edges and
corners have one small difference: corners are by definitionisolated objects not
linked to other corners, whereas edges have a stronger relation to other edges
and can be formed into lines or curves possible to use for matching [5].

1.1.3 Feature Matching

Matching of individual pixels based solely on their intensity is an almost im-
possible task. Performing the same operation on corners or edges from the
Stephen and Harris detector can be less difficult, but is veryscene and pa-
rameter dependent as the amount of features impact the matching confidence.
Finding a single point from one image in another image of thousands, or even
only hundreds, of points with only a single value to compare,is not trivial. An
approach is to look at several features and their individualrelations, and match
them as a point cloud [6]. Such operations are highly iterative, and not suitable
for a resource constrained real-time system.

To reduce the challenge of correlation, it is possible to increase the feature
uniqueness by including more properties of the feature and its surroundings,
such as angle or scale. This property specification adds descriptors to the fea-
tures, such that it is possible to look at the feature descriptors individually and
not simply at their mutual relation. A good example of a feature descriptor
is SIFT (Scale Invariant Feature Transform) [7]. However, the added descrip-
tiveness is computationally intense and of an iterative nature, and the matching
process can be very time consuming for extensive feature sets [8].

Matching of non-aligned images, irrespectively of whetherbased on indi-
vidual points or areas, require a costly 2-dimensional search across the other
image for every element. The remedy is to transform the images into the same
coordinate system, a process called rectification. Rectification involves iden-
tifying the intrinsic and extrinsic parameters of the imagecapturing device to
determine the relation of the projection planes of respective images. This in-
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cludes correction of lens distortion, and aligning the images so that image scan-
lines are parallel and aligned between images. The matchingproblem is thus
reduced to a 1-dimensional search, significantly reducing the complexity, as
long as the geometric distortion is at a minimum [9]. The rectification pro-
cess is computationally heavy, and needs to be performed forevery image pair
of unknown relation. For fixed stereo camera systems, the calculation of the
rectification parameters need only be performed once as the parameters of the
capturing devices are static. Rectification is then performed by image transfor-
mation through applying a constant set of parameter-based coordinate shifts.

The concept of extensive feature descriptors, such as SIFT,is to include
more than just the saliency of the point, and also include additional information
on the neighborhood, such as qualities of other salient parts (edges) in the
area, the saliency at different scales, etc. The reason is obvious, identification
is easier the more information available. This notion can beapplied to the
underlying pixels directly, without performing an analysis of their properties.
Area-based approaches match an area instead of a point, and they are the most
used approach to stereo matching in computer vision.

1.1.4 Stereo Matching

The area of computer vision contains many branches, and stereo matching, or
stereo correspondence, is one of the widest. It deals with extracting depth in-
formation from 2-dimensional images by way of finding corresponding points
in two, or more, images. The sole purpose of using two camerasis to cap-
ture a scene from two different views at any given time in order to extract
3-dimensional data of the scene.

Any vision approach concerned with depth needs to solve the correspon-
dence problem, that is, which part in one image correlates towhich part in
another image. In the machine vision community, the majority of approaches
can be categorized into either of two groups, global or local[10]. In general
terms, the global algorithms are considering the estimation of the separation,
or disparity, of the two view-diverging images as an optimization problem. A
global cost function incorporates both data (matching) andsmoothness terms,
which the disparity selection seeks to minimize. Local algorithms, on the other
hand, only consider a limited area surrounding the point under evaluation for
disparity estimation.

Global methods generally outperform local methods in termsof accuracy,
but suffer from a high computational cost. Global methods usually consist
of several, often iterative, steps in their refinement of an initial disparity map,
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often attained with a local method [10]. As a consequence, they are not optimal
for real-time applications.

Local methods can be further divided into area-based or feature-based cor-
relation. Both are sprung out of the same basic notion - a pixel in itself gives
poor correlation data with low confidence in matching, thus alarger view is
required. Both approaches use the neighbors, to more or lessextent, of the
current pixel for more defining data. Area-based methods usethem to corre-
late with another same-size area, whereas feature-based methods use them to
determine the interest level of the pixel and use that ratherthan the underlying
image data.

Area-based matching techniques usually create a dense map with depth
information for every pixel. Feature-based techniques canonly create a sparse
map as information is removed from the images. However, it isargued that
the confidence in the match is higher with feature-based techniques as they are
only matching on individual pixels, rather than a set of pixels [9]. Nevertheless,
which technique to use should be based on the application.

Feature-based matching techniques are more concerned withfinding a re-
lation to the scene or image as a whole than to get a complete 3-dimensional
reconstruction of the scene. They can be used, for example, to determine the
ego-motion of the agent, or to correctly identify the rotation and translation of
an object. Working with feature images also significantly reduces the amount
of data in the system, leaving room for additional calculations or an increased
frequency. Thus, for applications not in need of depth information in the whole
scene but rather high speed, such as certain object recognition [11], the feature-
based approach is a good candidate. An additional advantageis that a crystal-
lization of the important information in the lower-level can both reduce the
amount of data as well as its rate. The data rate reduction is advantageous for
higher level processes, but only if the data is sufficient.

1.1.5 Area-based Matching

Area-based methods correlate the entire pixel neighborhood, element by ele-
ment, through the use of a support window. The support windowis compared
with same size support windows in the other image, and is usually in the form
of a square. To evaluate the similarities of two windows, a correlation measure
is required. Several exist, but one of the simplest and most straightforward to
implement, and thus widely used, is the SAD (Sum of Absolute Differences).
With the SAD, the matching cost for two points residing in twodifferent im-
ages is calculated through an aggregation of the element-wise absolute differ-



10 Chapter 1. Introduction

ences of the support windows for respective point.
One of the fundamental problems of window-matching is the selection of

the window-size [12]. A small window achieves higher precision in the dis-
parity estimation, but exhibits more noise. Large windows reduce noise by an
increase of the matching data, but reduce the precision, especially at depth dis-
continuities. Thus, the optimal window size will vary from scene to scene, but
also within a scene.

Several approaches have been proposed to solve the size selection problem.
Variable-size windows, as proposed by Kanade and Okutomi [12], are adapting
to the conditions of the underlying image and have been shownto significantly
improve the matching, but lack in terms of speed. This idea have been refined
to variable window shapes, as presented by Mei et al. [13] andweighting of
the support window, as proposed by Yoon et al. [14], to only consider informa-
tion on similar data, such as color. All these approaches strive to improve the
outcome of the matching algorithm, the generated disparitymap.

1.1.6 Disparity Map Creation

The role of the disparity map is to convey the depth in an imagerepresented as
the distance of the index of a certain point between two images. The matching
algorithm will approximate the real-world depth relation for the entire image,
but hard-to-match areas of the image, such as those of low texture or low signal-
to-noise ratio, will generate false matches. Additionally, foreground objects
occlude background objects, and due to the different perspectives in the two
images, the parts that are occluded will differ in the two images. This causes
pixels adjacent to object borders, or depth discontinuities, to be estimated at
the depth of the foreground object as the edge is a very prominent feature. This
causes the disparity maps to extend outside of the foreground object, and is
called foreground fattening. The inadequacies of the area-based approaches
limit the possible quality of the disparity map, and severalapproaches have
been proposed to deal with this.

Approaches seeking to create dense disparity maps try to remedy the defi-
ciencies, whereas those aiming for a sparse but highly confident disparity map
simply remove them. Regardless of the approach, the initialstep is to identify
the erroneous values, which can be done using as set of assumptions about the
underlying image. They act as constraints on the disparity map, and can be
used to determine the validity of a match, as explained by Ozanian and Tak-
ouhi [15].

The surface continuity constraint states that a scene is made up of solid sur-
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faces which vary smoothly. As a consequence, adjacent pixels are most likely
at the same depth. The uniqueness constraint states that a point in one image
can only have one corresponding point in the other image, which is natural
as the images depict physical objects. The ordering constraint states that the
order of pixels in one image must be fulfilled in the disparitymap. Violations
of these constraints occur, for instance, at depth discontinuities, heavily slanted
surfaces, and occlusion. However, for the most part they canbe used to validate
the estimated disparity of a pixel in rectified images.

One of the common ways of finding these violations is to perform a left-
right consistency check (LRC) [16]. A regular matching procedure uses one of
the images as the base and then tries to find corresponding pixels in the other
image. Pixels that have no corresponding mate, as they are not visible in the
other image, will generate false matches. The LRC also performs matching
with the other image as the base and then checks to see that a pixel indicated
as the match in one image is referring back to the indicating pixel in the other
image, that is, that they select each other as the best match.This is a very
robust method that identifies the majority of false matches due to perspective
distortion [17].

After false matches are identified, sparse approaches just discard them and
leave the pixels void of disparity. Dense approaches need toassign a value
though, and the constraints mentioned earlier can also be utilized for this pur-
pose. Instead of estimating the disparity by correlation, similarity in adjacent
pixels, which are assumed to be of same surface according to above constraints,
can approximate the disparity. A popular method is to use median-filtering to
remove noise and smooth the disparity map. As surfaces are more likely to be
smooth than bumpy, this increases the quality of the map. Another approach
is to interpolate or propagate values from surrounding pixels to fill in empty
areas.

The quality, or correctness, of a disparity map is assessed through compar-
ison with the scene ground truth. A set of stereo image pairs were proposed by
Scharstein and Szeliski [10] and they are used as the benchmark of correspon-
dence approaches today, with tools available online [18].

1.2 Motivation

Reducing the workload in a visual perception application can be achieved in
two ways: reduce the amount of data by only sending data of interest to the
application, or extract necessary information so that the receiver only needs
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to consume, not process. The first scenario is realized with afeature detector,
and the second with any of several transforms: depth extraction, segmentation,
object identification, etc.

The initial project with our stereo camera system was to produce a fast nav-
igation application capable of simultaneous localizationand mapping (SLAM)
through the use of vision [6],[19]. In short, SLAM is a process where an agent
enters an unknown environment, picks out identifying landmarks or geometries
so that it can move around and always find its way back to the starting point
with the help of the identified visual cues. As the agent traverses the environ-
ment, it continuously builds a map of the environment which it later uses for
navigation.

Common approaches are to use the SIFT [7] or SURF [20] featuredescrip-
tors for landmark matching. The biggest challenge of SLAM isto identify
salient areas with high confidence in the estimated depth. The SIFT approaches
rely on unique identifiers which is slow and/or large in implementation. Sim-
pler feature detectors can be made faster, but lose in matching confidence.
However, a lack of accuracy might be compensated with higherfrequency.
We thus opted for a fast but less accurate approach in an attempt to reduce the
computational complexity.

To improve the accuracy of the initial approach, we then propose a concur-
rent simple correspondence approach for an increase of the disparity estima-
tion confidence. A stereo matching component running concurrently with the
simple feature detector, delivering depth information forthe features. This ap-
proach needs to be resource optimized to not hinder the application processes.

Disparity map estimation, however, is a non-trivial problem which the com-
munity is only now starting to find a complete solution to. However, these so-
lutions either require bulky systems or extended computation time. For mobile
autonomous systems, real-time operation is required. Extracting depth from
two images of half a million pixels at this rate is no small feat. Addition-
ally, a complete vision system residing in an FPGA requires several processing
components just for preprocessing the image data, such as, image rectification,
motion artifact compensation, and depth estimation. Furthermore, higher-level
applications, such as tracking, object recognition, or navigation, should also
fit. Fitting all these parts of an autonomous agent onto a compact and power-
constrained embedded mobile system is a real challenge.

It is necessary to adopt an approach that is capable of meeting the require-
ments for the low-level processing to enable high-level processing, but that
can also fit the high-level processes concurrently. Thus, all building blocks
need to be reduced. Enabling more computations in the FPGA, by reducing
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the components for preprocessing, will improve the capability and flexibility
of the system. Furthermore, it is not important to achieve maximum accuracy
in the algorithms. With a high-speed system, correction or filtering can be
used to compensate. A high sample rate allows for more simplealgorithms.
Then, rather than trying to develop a new feature detector orcorrespondence
algorithm, our focus is on utilizing "good enough" algorithms by combining
and optimizing them for reconfigurable hardware. The end goal is a small and
high-speed hardware system working as the eyes and visual cortex of any type
of autonomous vehicle or robot.

1.3 Outline of thesis

The continuation of this thesis consists of two main parts. The first part con-
sists of 3 chapters: Chapter 2 presents the related work; Chapter 3 provides an
overview of the included research papers; Chapter 4 presents overall contribu-
tions and conclusions together with possible future work. The second part of
this thesis consists of Chapters 5 through 7 and is a collection of the research
publications which form the basis of this thesis.





Chapter 2

Related Work

The concept of using reconfigurable hardware for image processing is not new.
Several competent approaches exist, but most have one or more tradeoffs: qual-
ity, resource utilization, or limitation in image size. Which is the most impor-
tant parameter is an application specific question, but for our purpose, resource
utilization is important as we seek to fit an entire autonomous agent in our
system.

2.1 Visual Navigation

Several SLAM approaches have been presented, such as Barfoot [21], Bertolli
et al. [6], and Montemerlo et al. [22]. However, the approaches are not suitable
for FPGA implementation. An FPGA implementation of SURF is presented
by Svab et al. in [23]. However, they only implement part of the algorithm
as the complexity and time-consuming nature of the algorithm makes it diffi-
cult to realize on the FPGA. The descriptor generation is handled in software
on a Power-PC, and the complete navigation system is residing on a laptop.
Hence, another approach is required to fit a complete navigation system in an
embedded system.

2.2 Stereo Matching

Performance measurements of correspondence algorithms, such as presented
by Hirschmüller and Scharstein [24], mostly focus on the accuracy of the dis-
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parity map, whereas real-time implementations rank the throughput, or frame
rate, higher.

2.3 Resource Constraint

Since the aim of our work is to achieve an acceptable performance at a low
resource usage, we need to specify what low resource usage is. Resource uti-
lization in an FPGA is normally expressed in slices and LUTs (LookUp-Table
which realize boolean operations). In our previous work, our system produced
an acceptable disparity map at 1221 slices when implementedin a Spartan-3
FPGA. This is just above 4% of the available slices on the chip.

Several stereo matching approaches with low resource usagehave been pro-
posed, such as by Arias-Estrada et al. [25]. Their utilization is only 4.2K slices
on a Virtex-II, but with a fair disparity map. The implementation presented by
Lee et al. [26] comes in at a resource usage below 10K slices. The produced
disparity map is moderate showing extensive blurring of edges and noise.

For higher quality disparity maps, the resource usage inevitably go up. Very
good results are presented by Zhang et al. [27], but the utilization is 95K slices
plus a large amount of ALUTs and DSP blocks, leaving little room for concur-
rent processing. A collection of proposed FPGA implementations is presented
by Lazaros et al. in [28].

2.4 Area Matching

Very accurate results have been presented for area-based approaches [18], but
the high quality of these implementations mostly come at theexpense of com-
putational power and, hence, processing time.

Recently a number of non-global near real-time implementations have been
presented. They are not truly local as they are akin to globalmethods such
as Dynamic Programming [29], but operate on a limited area [30]. The near
real-time software implementations tend to utilize special purpose hardware,
such as GPUs [31],[13], to accelerate the processing. Although impressive in
their performance, they are not really suitable for mobile and embedded sys-
tems, considering the cost, size and power requirements. Transferring these ap-
proaches to an FPGA is not optimal, as they resort to iterative approaches with
computational and memory requirements that are hard to realize for the limited
resources of an FPGA [31]. Large memory can be included when constructing
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an FPGA-system, but the memory speeds required are above thecapacity of
standard FPGAs.

2.5 Support Window

There are numerous proposals to overcome the static window issue, as dis-
cussed before. Adaptive window approaches suggested by Kanade and Oku-
tomi [12] or the one by Boykov et al. [32] are an ill match for our system,
as they exhibit the same problems as we do with noise and sensitivity to low-
texture areas. Additionally, they rely on models with empirically derived pa-
rameters unique to every scene. This might not be much different from em-
pirical selection of window size for our standard approach,but it is not an
improvement either.

Hirschmüller et al. [33] suggests an approach using multiple windows for
good depth discontinuity performance. Although based on SAD, it requires a
large memory. Another multiple window approach proposed byChonghun et
al. [34] seems promising at first, but their reason for multiple windows is the
refinement of an overly-smoothed noise-free first estimation, the inverse from
our approach.

Adaptive support-weight approaches, as suggested by Yoon et al. [14] and
Gu et al. [35], produce good disparity maps but at a low frame rate.

Yi et al. [36] found that the effect of the shape of the supportwindow has
less impact than the number of pixels in the window. This together with the
result from Lee in [26] that square matching windows can be reduced to half
the height without substantial reduction in quality, leadsto a question of to
what extent a window height reduction can be compensated with a increased
width. Ambrosch showed that for window widths beyond the commonly used
sizes (up to 21 pixels) the accuracy actually degrades [37].

The ultimate reduction in window height is the 1-dimensional window. It
is not extensively found in literature, possibly because its produced disparity
map is noisy. However, a few implementations can be found.

Ambrosch [37] uses a 1x1 SAD, for weighting the comparison ofa Cen-
sus matching approach in advantage of the center pixel. Calin et al. use a
1-dimensional SSD [38] implementation. It runs at 30 fps producing dense
disparity maps of 160x120 pixels on an FPGA. The objects of the disparity
map are excessively bloated, as to be expected when using a wide correlation
window, and the depth resolution is limited, partially due to the small image
size. Lefebvre et al. [39] presents an approach for 1-dimensional matching



18 Chapter 2. Related Work

paired with a confidence estimation. The work produces semi-dense dispar-
ity maps with associated match confidence map. However, the matching is
made through multiple 1-dimensional windows of different sizes and not in
real-time. An interesting conclusion of theirs is that the basic 1-dimension ap-
proach yields better results than the 2-dimensional in areas of texture and near
depth discontinuities [40]. The difference is actually quite substantial for larger
window sizes, with the advantage of the 2-dimensional in other areas being
marginal. The matching algorithm is SSD, but any correlation technique may
be used to construct the correlation volume from which the estimate the dispar-
ity and confidence. They show that 1-dimensional windows contain sufficient
information for estimating semi-dense disparity maps withgood confidence.
The approach is far from real-time with a calculation time of7 seconds for the
Tsukuba image pair.

2.6 Disparity Map Improvements

For completing hollow disparity maps, common approaches are to interpolate
or propagate disparity values from nearby matched pixels. Yoon et al. [41]
perform a spatial interpolation by the use of median filtering. In propaga-
tion, the approach is that a window of estimated disparity values completes
the non-valid elements with the least value available in thewindow to limit
the foreground fattening, Fusiello et al. [42]. However, a propagation of back-
ground disparity values will thin out and often break thin foreground objects.
The propagation window can instead be weighted to include disparity informa-
tion only from same object neighbors. Sun et al. [30] restrict the selection to
pixels of similar color, supported by the color-disparity constraint. Although
producing good results, propagation methods rely on a fairly accurate first dis-
parity estimation. Moreover, it is common with streaking artifacts in methods
of propagation [30].



Chapter 3

Research Summary

The research group in Robotics at Mälardalens Högskola is focused on visual
pre-processing for robots and autonomous machines. This initial and crucial
stage of autonomy deals with information gathering and environment percep-
tion - such as navigation based on visual cues, and object recognition. The
work presented has been performed within this group, and thefocus has been
on electronics, hardware, and looking at computer vision from an electronics
perspective.

This chapter presents a short overview of the underlying papers of this the-
sis.

3.1 Paper Overview

3.1.1 Paper A

Two Camera System for Robot Applications; Navigation, Jörgen Lidholm, Fredrik
Ekstrand and Lars Asplund, In proceedings of the IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), Hamburg,
Germany, September 2008

Summary We present a hardware-based stereo vision system for navigation.
The objective is to create a system for simultaneous location and mapping
through the use of vision on an embedded reconfigurable hardware system.

SLAM is a complex task with a lot of data to process and many parameters
to consider. Our approach is to see if it is possible to use only a limited feature
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descriptor, instead of SIFT or SURF, at high speed to identify landmarks. Al-
though only concerned with a limited number of reasonably separated features,
the confidence in a straight-forward matching technique (SAD on cornerness)
is too low as the corner descriptors are too simple for matching on individual
basis. This led to the alternative approach suggested here,which is a combina-
tion of traditional stereo matching, back-projection [43]and tracking.

We propose to remove the problem of outlier detection and removal by
matching of 3D coordinates. The approach is similar to that of area-based
matching. For every feature in one image we match with all possible features
in the other image, constrained by the rectified image condition limiting the
search area to 1-dimensional. There is no selection performed, all the possible
matches are stored (similar to the Disparity Space Image in left-right consis-
tency check implementations). Within this set there can be only one valid
match.

This landmark set is stored and the robot is moved slightly. By tracking
the motion using wheel-based odometry, we have a notion on how the correct
features should have moved in 3D space, and by back-projecting this onto the
stored landmark set coordinates, we get their expected new coordinates. Cor-
relating these with the newly acquired landmark set, only those representing
the correct landmark should match. The confidence of the landmark increases
with the uniqueness and stability (number of correlations). Of course, wheel-
based odometry is not reliable over longer paths, so as soon as a sufficient
set of landmarks with good confidence is generated, it is superseded by visual
odometry.

An FPGA implementation of Stephen and Harris combined edge and corner
detector is used to reduce the data amount in the main application. A novel
approach focused on a high frame rate to reduce the problem ofmatching and
tracking is proposed. The approach, however, was not fully developed and a
modified approach was presented in [44] by the use of clustering.

My contribution I am the second author of this paper contributing with elec-
tronics design and implementation, co-implementation of VHDL-components,
co-developing the idea, and formulating sections of the text.

3.1.2 Paper B

Resource Limited Hardware-based Stereo Matching for High-Speed Vision Sys-
tem, Fredrik Ekstrand, Carl Ahlberg, Mikael Ekström, Lars Asplund and Gia-
como Spampinato, In proceedings of the 5th International Conference on Au-
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tomation Robotics and Applications (ICARA), Wellington, New Zealand, De-
cember 2011 (to appear)

Summary The depth assessment in Paper A was not satisfactory. An al-
ternative approach is to work with features with a good initial 3D coordinate
guess. A matching component providing valid disparity information in the
salient parts of the image only, will allow for depth information without fea-
ture matching (by superposition). This concurrent matching component must
use only a limited set of resources, in order not to restrict the other processes.

The task is to find a stereo matching approach suitable for resource con-
strained implementation. An important issue is also the memory requirement
of the matching component when handling large images, as thehigher level
processes may not be blocked from memory access by the correspondence
component.

A constrained implementation of two popular correlation approaches specif-
ically suited for hardware implementation, SAD and Census,showed that the
basic approach performed best with significant limitation of the matching area.
A 1D SAD implementation resulted in a resource optimized disparity compo-
nent suitable for the task, fulfilling the prerequisites of no limitations in terms
of external memory or image size.

My contribution I am the main author of this paper contributing with the
idea, literature survey, algorithm and hardware implementation, and verifica-
tion. The second author provided relevant insights, data for the publication,
software-based validation of findings, and paper revision.The other authors
have contributed by giving feedback on the theory and actively participating in
paper revisions.

3.1.3 Paper C

Utilization and Performance Considerations in Resource Optimized Stereo Match-
ing for Real-Time Reconfigurable Hardware, Fredrik Ekstrand, Carl Ahlberg,
Mikael Ekström, Lars Asplund and Giacomo Spampinato, Technical Report

Summary As a direct result of the findings in Paper B, we formulated an ex-
tension of the approach into a matching component producinga dense disparity
map with retained low resource utilization. Established methods for improving
area-based matching methods are implemented from a hardware perspective.
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The approach significantly improves the performance of the implementation
from Paper B and performs on par with recently published real-time dense dis-
parity map components. The resource utilization is kept lowand the memory
and image size restrictions are maintained.

My contribution I am the main author of the paper, contributing with the
state of the art and formulating the approach, as well as performing the hard-
ware implementation and verification. The second author contributed with
problem identification, initial testing, development of the approach, and software-
based validation. The third author contributed with relevant feedback and in-
sights together with paper revisions. The other authors have contributed by
giving feedback on the theory and actively participating inpaper revisions.

3.2 Research Methodology

The research is based on literature surveys to perceive the state of the art. Ap-
proaches are evaluated based on suitability of implementation through empiri-
cal methodologies including analysis of quantitative databy community prac-
tice.



Chapter 4

Conclusions and Future
Work

This thesis gives a quick overview and introduction to image-processing in
reconfigurable hardware. Important aspects for implementing in hardware is
the suitability of the algorithm in terms of speed, complexity and resource
utilization. We have looked at minimizing the system impactto enable con-
current processing of traditionally computationally expensive operations. The
key aspect is to focus on speed and process on the go without retaining data in
low-level processing.

4.1 Contributions

The work presented in this thesis enables different levels of depth extraction.
For the minimized approach of running next to a feature-based navigation sys-
tem, the approach can supply 3D data in salient areas in high speed and at
very low resource usage. Salient regions are important in a wide range of ap-
plications, and feature detectors use these regions to enable everything from
autonomous navigation to face-detection. Combining feature-based matching
with a compact, fast and potent disparity estimator can relieve some of the
need for expensive feature descriptors. The benefits would be higher speed and
lower resource usage, enabling higher system integration.

We have shown in this thesis that it is possible to retain the quality of one
of the most widely used stereo matching algorithm while removing a few of
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its downsides. For approaches with a demand for more dense 3Ddata, the
improved versions can produce semi-dense disparity maps ata high speed, and
without a limitation on the size of the images processed.

The removal of matching data introduces noise, which can be removed by
filtering, especially in area-based matching. The median-filtered 1-dimensional
stereo matching component effectively reduce the resourceutilization, but with
retained accuracy. Moreover, the median filter does not improve the 2-dimensional
approach with any significance, which is why the 1-dimensional implementa-
tion in certain aspects actually outperforms its larger counterpart.

4.2 Future Work

Future work includes integration of the feature detector and the disparity esti-
mator to provide feature matching and tracking with high confidence. Another
interesting question is if an advanced confidence measurement can invalidate
false matches at an early stage, and thereby keep the noise from ever entering
the disparity domain. For this to have any relevance, an extended propaga-
tion function is required. As is evident in this thesis, removal of data requires
compensation.

The next step is to run the autonomous system performing navigation in-
doors. Coming future work is to adopt the system for outdoors. A whole new
range of parameters will then need to be considered, such as motion compen-
sation, radiometric distortion, visual noise, etc.
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Abstract

Current approaches to feature detection and matching in images strive to in-
crease the repeatability of the detector and minimize the degree of outliers in
the matching. In this paper we present a new approach; we suggest that a lower
performance feature detector can produce a result more thanadequate for robot
navigation irrespectively of the amount of outliers. By using an FPGA together
with two cameras we can remove the need for descriptors by performing what
we call spurious matching and the use of 3D landmarks. The approach by-
passes the problem of outliers and reduces the time consuming task of data
association, which slows many matching algorithms down.



5.1 Introduction 35

5.1 Introduction
Navigation, object detection and object recognition are fundamental problems
in robotics - all which can be resolved with vision. The fundamental task in
any of these applications is the reduction of the image complexity. In order
to reduce the image information it is necessary to extract salient properties of
the image using for example a line, edge or corner detector, or a combination
thereof. Various approaches have been made on adapting these principle fea-
ture detectors into more complex, high-level detectors with different sets of
descriptors. The idea is to increase the invariant properties of the detector and
thereby increase what is by many viewed as the most importantfactor of the
detector, the repeatability. However, in general, the morecomplex the detector
the more computational heavy it becomes. When features havebeen extracted,
the next step is to perform some sort of matching, either by tracking a feature
in subsequent images or by matching in two cameras. The general idea is that
if this is to be performed at a high frame rate (around 30 frames per second)
it requires a high repeatability detector and a computationally light matching
algorithm with minimal dynamic properties or at least a known worst case ex-
ecution time.

In this paper we present a new approach. We suggest that it is possible to
produce a result adequate for navigating a mobile robot witha lower perfor-
mance feature detector. We use reprogrammable hardware (FPGA) together
with two cameras to generate a real-time, stereo-vision, feature detector and
matching application. By using the motion of the robot we canreduce the
problems associated with feature matching. The advantagesof an FPGA are
manifold; the parallel properties of an FPGA makes for a high-throughput,
small footprint system, and the comparatively low power consumption makes
it ideal for mobile applications.

5.2 Related work

Robot navigation is a well-explored subject with vision based navigation being
where the current focus lies. The approach of using an FPGA for the system is
also becoming widely adopted as it enables real-time image processing [1] [2],
which is a crucial part in mobile applications [3]. For certain applications
FPGAs are better suited than desktop computers due to their parallel structure.
In [4] an FPGA implementation outperforms a PC by one order ofmagnitude
for the SIFT detector [5]. The power of the FPGA is further shown in [6]
where they are unable to run Harris corner detector in real-time on a computer
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with an Opteron processor running at 2.6 GHz. This advantageover personal
computers is likely to remain as both technologies are evolving in a similar
fashion performance-wise.

Navigation by vision requires matching of images, or ratherfeatures in
separate images. Tracking features in real-time in subsequent images from a
camera is not a trivial task, partially due to the fact that itrequires a very stable
feature detector with high repeatability [7]. The current feature detectors with
the highest repeatability, such as SIFT [5] and SURF [8], create descriptors
for each feature in order to simplify the matching task. Unfortunately, the high
dimensionality of such a descriptor means that it is computationally intense [9].

All matching algorithms are faced with the correspondence problem, i.e.,
how to match corresponding features from two images withoutassigning any
incorrect matches. A common approach is to use a statisticalmethod to mea-
sure how well a matching pattern matches. Examples of methods arecross-
correlationandsum of squared differences, but there will always be outliers,
features not correctly matched, or not matched at all. Many have tried to mini-
mize the occurrence of outliers, and in [10] a comparison, and a new approach,
is presented.

5.3 Experimental platform

We have designed an FPGA based vision system intended to workas a general
purpose research platform. With up to four 5-megapixel cameras and an eight
million gate equivalents FPGA.

5.3.1 Image sensors

The system uses the MT9P031 5-megapixel CMOS digital image sensor from
Micron. The sensor elements are organized in a Bayer pattern, i.e., the first line
consists of green and red pixels and the second line consistsof blue and green
pixels, see figure 5.1.

The pixels can be read in a number of ways. The readout followsthat of
the Bayer pattern, however the order can be mirrored and pixels skipped for
both the row and column. In skipping mode, a number of row-pairs and/or
column-pairs are not sampled, i.e. skipped, thereby reducing the resolution
and increasing the frame rate but preserving the field of view.

It is possible to combine the adjacent skipped pixels in order to reduce the
effect of aliasing introduced by skipping. This is called binning and results in
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Figure 5.1: The Bayer pattern pixel layout with one row of green (light gray)
and red (medium gray) pixels, and one row of blue (dark gray) and green pixels.

a more coherent/smooth image, than with skipping, but also in lower perfor-
mance as all the pixel elements need to be sampled.

Figure 5.2: MT9P031 image sensor from Micron mounted on our carrier board
(the lens is not mounted).

Additionally, one can specify what region of the image sensor to read,
which is useful when only a limited field of view is needed and ahigher frame
rate desired. The imaging sensor is capable of running at 96 MHz, and the
frame rate is dependent on the clock frequency and the frame size, i.e., the
number of pixels read.

5.3.2 FPGA board

The FPGA board has a size of 70×55mm and is equipped with a Xilinx Virtex
II XC2V8000 FPGA together with 256 Mbit flash, 512 Mbit SDRAM and a
CPLD. The flash memory stores FPGA configurations and it accommodates
8 different configurations. At power on the CPLD loads the FPGA according
to the configuration selector setting. The configuration selector is fitted on
the Carrier Board (section 5.3.3) and may be overrun by for example a micro
controller. See figure 5.3.
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Table 5.1: Micron MT9P031 CMOS image sensor features [11]
MT9P031 features

Color filter array RGB Bayer pattern
Maximum data rate 96 Mp/s at 96 MHz
Power consumption 381mW at 14 fps

full resolution
Pixel size 2.2µm×2.2µm

Maximum frame rates
2592×1944 14 fps
1280×720 skipping 60 fps
640×480 with binning 53 fps
640×480 with skipping 123 fps

Figure 5.3: Block diagram of the camera system, a maximum of four cameras
can be connected.

5.3.3 Carrier board

The carrier board has a size of 110×90mm and have four camera connections,
with all signals, individual to each camera and generated bythe FPGA. Addi-
tionally, the carrier board incorporates a program selector, power supply, a USB
controller, serial port and control-IO signals. It is also fitted with a FireWire
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connector for future extension.

5.4 Feature detectors

A feature can be a corner, line or any salient region which canbe extracted
from an image.

One of the first feature detectors was Moravec’s corner detector [12], from
1977, which Harriset. al. improved in 1988 [13]. Since then, many other
feature detectors have been developed with different qualities [14]. Most de-
tectors are designed with repeatability in mind, although some are designed for
other properties, such as speed [6]. Repeatability, as defined in [14], is an im-
portant property, however, for our application, localization accuracy and speed
are paramount. Harris is still one of the most robust detectors available and
this together with its speed when implemented on an FPGA makes it a suitable
detector for this application.

5.4.1 Stephen and Harris combined corner and edge detector

In [14] the authors concluded that, among the tested featuredetectors, (Foerst-
ner, Cottier, Heitger, Horaud, Harris and Improved Harris), the improved ver-
sion of the Harris corner detector performed best regardingrepeatability and
information content. The original implementation of the same detector was,
however, not far behind.

Moravec’s corner detector measures the variation in intensity in an image
and looks for low self-similarity in a point. A corner is defined as a point with
low similarity to the surrounding region in all directions,i.e., a point where
the minimum change in intensity, in any direction, is large (above a certain
threshold) [13].

According to Stephen and Harris, Moravec’s detector, however, suffers
from a number of problems which they try to correct with theircombined cor-
ner and edge detector. In order to remove the anisotropy and noise of the
discrete, rectangular window in which the variation is calculated, they intro-
duce an analytic expansion about the shift origin together with smoothing with
a Gaussian filter. By also taking into account the direction of shift they can
produce a rotationally invariant detector that is not oversensitive to edges.

Stephen and Harris also introduce a response function in order to select
isolated interest points, as opposed to simply classify theregion as containing
a potential feature. This response function, which includes a structure matrix
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calculated from image derivatives, indicates the quality of the detected feature
and allows for the filtering out of less distinctive featureswith the use of a
threshold similar to Moravec’s.

5.4.2 FPGA implementation of Harris corner detector

We have a VHDL implementation of the Stephens and Harris combined corner
and edge detector. It was originally implemented as a undergraduate thesis for
an older vision system. We have adapted it to a new, larger FPGA, allowing us
to increase the parallelism and thus improve the speed.

Some operations need to be performed sequentially for practical purposes.
One of the most limiting factors of the FPGA is the number of multipliers
available. Certain steps in the algorithm requires simultaneous multiplications,
and the need for multipliers would surpass the available numbers if parallelled
to the full extent. In order to save computational resources, the units needs to
be "reused", i.e., not exclusive to a single task. Due to the fact that the corner
detector measures the intensity in the image and not the saturation or color
values, we need only measure the contribution in one point ofthe Bayer matrix,
i.e., the green pixel. We chose to use only one value per colorquadrant and thus
we only feed the corner detector with a new pixel every other column every
other row. This leaves room for sequential operations on four clock cycles for
every pixel.

Figure 5.4: A block diagram of our VHDL implementation of theHarris corner
detector.

The corner detector uses 3×3 and 5×5 pixel windows. This is the only
buffering required, all other processing is performed as the pixel data arrives.
Our implementation of the Stephen and Harris combined corner and edge de-
tector can be seen in the block diagram in figure 5.4. The process consists of 7
major, internally piped, blocks. The first block creates a 3×3 sliding window.
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When two pixel rows plus one pixel have been extracted from the camera the
first window is passed on to the "Derivative Mask" block.

The derivative block calculates the intensity x- and y-gradients. These val-
ues, the first derivatives, are then passed onto the window generator for the
multiplication/Gaussian stage, which creates a 5×5 sliding window.

In the multiplication stage, the structure matrix is calculated and then run
through a Gaussian filter. The Gaussian filter is constructedusing shift opera-
tions, as opposed to multiplications, in order to save multipliers that can be used
for either increased parallelization or multiplier-heavypostprocessing. The fil-
ter is not a true Gaussian function as the values are selectedto enable shift-
ing, but no performance degradation has been observed for the approximation,
which can be supported by [15] that shows that Gaussian weighting need not
be the optimal weighting function.

The filtered value is then used in the response function and the result is
fed to a new window generator. The last stage of the pipe filters the response
value so that only the local maxima within the 3×3 sliding window generates
a corner response, as long as it exceeds the current threshold.

5.5 Interest point location

An interest point is, what we call, a stereo matched feature that can be located
in a coordinate system as a landmark, that a robot can use for navigation. In
this section we describe how we can calculate the location ofa landmark from
two stereo matched features. The same procedure, in reverseorder, can be
followed to calculate the pixel coordinate at which a landmark should appear,
given the robots current location and attitude.

We use the right-handed coordinate system with positiveX to the right,
positiveY in front and positiveZ above.

The full definition of the robot absolute vector defines the position in three
dimensions and the attitude in three dimensions (5.1). The robot center is lo-
cated at the floor in the center of the robot in thex, y plane.

R = (Xr, Yr, Zr, αr, βr, γr) (5.1)

Since the robot is moving in a controlled indoor environmentwithout slopes,
we can considerZr constant and zero. The same applies forαr andβr. The
stereo camera rig has a fixed location on the robot and the constant relative vec-
tor of each camera is defined in (5.2), wheren marks the camera, left or right.
The vector is relative to the robot center. To simplify the stereo matching thêβ
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Figure 5.5: Right-handed coordinate system

factor should be zero and thêα should be the same for both cameras, resulting
in that linel in the left camera corresponds to linel in the right camera.

cn =
(

xn, yn, zn, α̂n, β̂n, γ̂n

)

(5.2)

The absolute vector of each camera can be calculated by adding the relative
camera vector to the absolute robot vector, see (5.3, 5.4).

Cn = (Xr + xn, Yr + yn, Zr + zn,

α̂n, β̂n, γr + γ̂n) (5.3)

= (Xn, Yn, Zn, αn, βn, γn) (5.4)

Every pixel in an image corresponds to a two dimensional direction which
can be calculated from the focal length of the lensf and the pixel separation on
the camera chipPwidth andPheight. The two anglesθ andφ and an unknown
lengthr, form a polar vector(r, θ, φ).

(Xp, Yp) denotes the pixel coordinate, with the camera center at(0, 0).

θ = arctan

(

Xp ∗ Pwidth

f

)

(5.5)

φ = arctan

(

Yp ∗ Pheight

f

)

(5.6)

By using (5.5) and (5.6) we can find the angular distance between every
pixel. The MT9P031 camera chip has a pixel separation of2.2µm (table 5.1)



5.5 Interest point location 43

but we are only sampling every second pixel column and row, thus doubling
the pixel separation to4.4µm. The focal length of the lens is 6 mm. This
results in approximately 0.7 milliradians per sampled pixel in both horizontal
and vertical directions at the center of the image.

θ of each pixel is the angle from the center line, since the pixels are enu-
merated with (0,0) at the center of the camera. To apprehendθl andθr as seen
in figure 5.6

Figure 5.6: The angles from each camera to a feature point.θ for the left and
right camera, the camera separationSc andφ, which should be the same for
both cameras.

Lets consider the case where we know which feature in the leftcamera
corresponds to which feature in the right camera. By forminga triangle with
corners at the two camera centers and the interest point withangles as seen
in figure 5.6 we can calculate the distance of the two unknown triangle edges
by using the law of sine, see equation (5.10-5.12). The camera separation is
known and denotedSc.
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θl =
π

2
− θ + cl,γ̂ (5.7)

θr =
π

2
+ θ + cr,γ̂ (5.8)

φl = φr =
π

2
− φ (5.9)

λ = π − θl − θr (5.10)

ϑn

sin(θn)
=

Sc

sin(λ)
, n ∈ {l, r} (5.11)

ϑn =
Sc ∗ sin(θn)

sin(λ)
, n ∈ {l, r} (5.12)

Usingϑn, θn andφn we can form a relative polar vector from each camera
to an interest point,(ϑl, θl, φl) and(ϑr, θr, φr).

By converting the relative polar vector(ϑn, θn, φn) to a cartesian coordi-
nate and adding it to the absolute cartesian coordinate of the corresponding
camera we get absolute cartesian coordinate of the interestpoint (5.15). Note
that the polar vector is rotated to the attitude of the camera, which is necessary
when forming the triangle.

C andP marks the cartesian and polar coordinate system respectively or a
transformation between the two.
The cartesian location of cameran.

C(Cn) = (Xn, Yn, Zn) (5.13)

The direction and distance to the interest pointk.

P (Ik) = (ϑn, θn, φn) (5.14)

The space location of the interest point.

C(Ik) = C(Cn) + C(P (Ik)) (5.15)

The conversion from polar vector to cartesian coordinate requires the use of
sineandcosineas seen below, wherer is the vector length.cos(θ) is, however,
equal tosin(π

2
− θ) which allows asine only implementation in the FPGA

using look-up-table (LUT).
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x = r ∗ sinφ ∗ cos θ (5.16)

= r ∗ sinφ ∗ sin(
π

2
− θ) (5.17)

y = r ∗ sinφ ∗ sin θ (5.18)

z = r ∗ cosφ (5.19)

= r ∗ sin(
π

2
− φ) (5.20)

5.5.1 Image sequence feature tracking

To track features in an image sequence is not a trivial problem, feature extrac-
tors like Harris corner detector have minor problems with repeatability result-
ing in features disappearing and reappearing.

Tests have shown that a simple tracker, like nearest neighbor is not reliable
enough [7]. To successfully track features in an image a moreadvanced algo-
rithm is required, possibly where information of the feature neighborhood is
known.

A factor which makes it even harder is that we have a resolution of 0.7 mil-
liradians per pixel which at one meter distance correspondsto approximately
1 mm, making minor vibrations result in large displacementsof features in the
image.

A common method of improving the matching performance is to use fea-
ture descriptors. Feature descriptors provide more information about a fea-
ture, by including neighborhood data. The descriptor makesthe features more
distinctive and unique. Even though the stereo matching problem is simpli-
fied, descriptor based algorithms require quite a lot of computations. SIFT
based navigation systems as an example, often can not managemore than a
few frames per second on a regular desktop PC. The most commonway of
performing stereo matching is by using statistical methodswhich are not de-
terministic.

We choose an approach to the stereo matching problem which does not
require feature tracking in an image sequence and no statistical methods.

5.5.2 Spurious matching and landmark evaluation

To match a feature in the left image with a feature in the rightimage is known
as the correspondence problem. A common approach is to use a correlation
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window around the features and with a statistical method calculate a matching
score. The score with the highest value is the most likely to be the correct
match. To successfully use statistical methods it is necessary to calculate the
matching score for many different matching pairs to find the match with the
highest possible score. It is also necessary to find the outliers or false matches.

Our approach is adapted for a real-time vision system where the data is
processed as a stream. No image is stored as a whole, line buffers are however
used.

A feature appearing at pixel rown in the left camera must appear, if ex-
isting, on rown ±m, wherem is a camera calibration accuracy value which
under the condition that the camera distortion is correctedand that the cameras
are perfectly aligned is equal to one, because of the discrete pixel values. The
horizontal limitations can be found by knowing the attitudeof the cameras.
The search window denotedWm(Fi) represents the maximum area in which
a feature in the right image must be located to correspond to featureFi in the
left image.

By matching every featureFi in the left image with every feature within
Wm(Fi) in the right image we get a set of possible landmarksLMK(Fi).
Within this set of 3D coordinates there can be only one that corresponds to
the actual landmark, which one is unknown. We call this spurious match-
ing. Instead of trying to find the correct stereo correspondences, we try to find
which landmarks in the environment are the correct ones. While moving the
robot, measuring the location of the robot using wheel basedodometry, and
continuously calculating the possible landmark location for every featureFi,
the reappearing landmarks are then put in a landmark database with an increas-
ing confidence related to uniqueness and stability of the landmark location.

To rely on odometry can be risky because it is a relative measurement sys-
tem with no point of calibration. Wheel slip can cause huge faults, which can
be hard to recover from. For shorter distances, less than onemeter, the ac-
curacy provided by wheel based odometry should be sufficient. As soon as
enough landmarks has been located with good confidence the odometry sys-
tem can be used solely as a support system and is no longer required for the
vision based navigation, which can be used for visual odometry.

When a number of landmarks has successfully been located it is unneces-
sary to try and relocate them in the manner described above. By predicting the
robots location and attitude before each iteration, using for example a Kalman
filter, we can find the pixel coordinate for each possibly visible landmark and
exclude those features from the images. This reduces the amount of features in
the images which need to be matched.
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Another way of reducing the amount of possible matches is to adapt the dis-
crimination level according to how many features was detected in the previous
images in order to have a sufficient amount of features.

The camera system is a resource limited system. A navigationsystem like
this will collect many landmarks, requiring large amounts of preferably volatile
memory so that data can be retained during a power down. A robot always has
a computer for controlling the high level strategy, taking actions on sensors and
planning future strategies. The vision based navigation system presented here
is supposed to work like an advanced sensor. The vision system can report all
landmarks, confidently located in the environment, to the main computer which
stores them in a database and sends them back to the vision system when they
will reappear in the visual field. This approach allows the vision system to only
keep a minor amount of landmarks in local storage, like blockram or SDRAM,
which is available on the FPGA board.

Computational requirements

Calculating the space location of a feature pair, as seen in (5.5-5.15), requires
25 operations. Harris extracts approximately 300 corners from a 320×480
pixel frame without being too cluttered. In average this means less than one
corner per line, the maximum number of corners possible on a single line is
320

3
= 106, though very unlikely (see section 5.4.2).
A pessimistic number of matches per feature could be around 20, which

would render in 6000 landmark calculations per frame. 25 operations on 6000
landmarks would result in 150’000 operations per frame, which is less than
0.18% of what Stephen and Harris algorithm requires.

5.5.3 Experiments

In the experiments the older system based on OmniVision OV7610 cameras has
been used. The OV7610 chip has a pixel separation of8.4× 8.4 µm, since the
same sampling method is used here, the horizontal pixel separation is doubled.
The robot has moved in a straight line from 2000 mm from a single point up to
the distance 230 mm. The result is shown in figure 5.7. As can beseen there
are some discrepancies. The mounting of the cameras does notguarantee that
they are in parallel, and separate measurements of the focallength of the lens
does not give the expected focal length of 6 mm, but 7 mm. One uncertainty
that has been calibrated away is lining of the cameras, i.e. that they have the
same forward direction. Other uncertain parameters are lens mounting relative
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Figure 5.7: Stereo calculated distances to a single point, with plus minus one
pixel error bars

to the camera chip, camera separation and camera calibration. The correction
of the pointing direction was concluded from the errors at the largest distance.
The separation at larger distance is smallest and any error in the orientation will
have the largest effect at these distances. The correction from measurement are
found to be 11 pixels by minimizing the sum of squared differences of the
calculation errors. A separation offset of 11 pixels corresponds to a misplace-
ment of the lens of 0.18 mm. The pixel coordinates are discrete values which
corresponds to the pixels location plus minus half a pixel. The separation of a
matched corner pair thus have a possible deviation of plus minus one pixel. The
deviations are illustrated with vertical bars. It is obvious that a stereo camera
system like this requires automated calibration of severalparameters, such that
the 3D location of a landmark can be calculated with sufficiently high accuracy
for the spurious matching to be applicable.

5.6 Results

Our FPGA based stereo vision system is capable of real-time feature extraction,
using the implemented Stephen and Harris combined corner and edge detector.
To stereo match these features, for landmark location, is not a trivial problem.
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We present a novel approach which we call spurious matching allowing us to
validate which matches correspond to actual landmarks by moving the robot
and extracting the features at different viewpoints.

In the current implementation of Stephen and Harris combined corner and
edge detector 75 out of 150 available multipliers are used, this could easily
be reduced to 25 by sharing multipliers in the factorizationstep of the Harris
algorithm. For performance results of the corner detector see tables 5.2 and
5.3. See table 5.4 for frame rates of Harris corner detector on our system.

Table 5.2: Computational performance of our implementation of Harris corner
detector.

Op/Block
Calc of
edge mask

Fact. and
Gaussian
filter

Calc. rep-
sons func-
tion

Add 4 120 1
Sub 6 0 2
Shifts 0 75 0
Mul 0 75 3
Total 10 270 6

Table 5.3: Performance total of Harris corner detector at different frame rates

pixels/frame fps Instr./pix Cameras MIPS
148’800 27 286 2 2’298
148’800 34 286 2 2’894

Table 5.4: Performance of our implementation of Harris corner detector.
Frame size Cam freq. FPGA freq. FPS
320×480 96MHz 100MHz 65 fps*
320×480 50MHz 100MHz 34 fps
320×480 40MHz 100MHz 27 fps

* Theoretical value which we have not been able to verify.
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5.7 Future work

Perform tests on the new stereo camera rig and automate calibration of camera
parameters. The proposed spurious matching algorithm has not been fully ver-
ified yet, there are several performance factors which need to be evaluated like,
camera discrepancy, odometry precision and landmark localization accuracy.
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Abstract

This paper proposes a 1-dimensional implementation of area-based stereo match-
ing with minimal resource utilization. It achieves an acceptable disparity map
without the use of expensive resources. The matching accuracy for the ap-
proach can in some extent even outperform that of its 2-dimensional counter-
part. Additionally, as it excels in terms of frame rate and resource utilization,
it is highly suitable for real-time stereo-vision systems.
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6.1 Introduction

Image preprocessing aims at a reduction of the amount of datawithout losing
significant information, or to elevate the information density of the collected
data before forwarding it to the main application. This often involves extraction
of 3-dimensional information from 2-dimensional images. Retrieving the depth
information implies solving the correspondence problem, that is, matching a
segment, or pixel, in two images from separate views.

Area-based stereo-matching techniques are widely accepted as one of the
best approaches for generating dense depth maps for real-time systems. Several
approaches exist, with numerous implementations for everyapproach [1], [2],
[3], [4], [5]. For a comprehensive overview of the subject and techniques we
refer to Scharstein and Szeliski [6]. Implementations for specific platforms,
such as FPGAs, are presented by Lazaros et al. [7]. For off-line processing,
the accuracy of the depth map is the most important aspect, and for real-time
applications the frame rate is added as an important parameter. The maximum
possible depth range detectable also frequents the performance evaluation lists,
and for robotics and autonomous applications, the implementation size and
resource utilization is also of great importance.

Correctly estimating the separation, or disparity, of the same point in two
separate images does not necessarily infer a reduction of the amount of data.
The disparity is estimated for every pixel and the bit count between an 8-bit
gray-scale image and a depth map is likely to be identical if communicated
off chip. Constantly sending large amounts of data off-chipwill yield a heavy
load on the communication lines. Since one of embedded systems biggest bot-
tlenecks is intercommunication, it is straightforward to argue that minimizing
the amount of data necessary to send off-chip would increasethe throughput
and the speed of the system, similar to that of image and file compression for
network streaming. Retaining the data on-chip for further processing and re-
duction is clearly desirable.

A small and resource limited implementation will enable same-chip co-
processing. However, if the implementation causes heavy loading of the mem-
ory, it will effectively limit the memory bandwidth for any co-process. Re-
moving the need for external memory - or other limited, exclusive resource -
in the preprocessing, extends the range of concurrent algorithms possible. The
more data-intense the process, the more the system will benefit from a reduced
utilization of shared resources [2]. The goal is thus to minimize the resource
usage of the low-level correspondence part in order to increase the resources
available for application specific processing.
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A possible application of this minimal correspondence component is to
increase the match confidence of an embedded, visual odometry-based naviga-
tion system [8]. Providing an early depth estimate for the tracked features will
significantly increase the confidence in matching as well as reduce the outliers.
A direct validation of the matched features will be possiblewhen executed
concurrently.

We have examined the implications of resource limitations for two exten-
sively used stereo-matching approaches by removal of the time and resource in-
tense memory utilization. The goal is to see if it is possibleto get an acceptable
disparity map with a radical reduction of the matching data.We greatly reduce
the use of system resources in an FPGA-based implementationto enable ex-
tensive on-chip, hardware-based image co-processing. Theproposed approach
is to remove the inter-scanline dependency of standard square or rectangular
area-matching techniques.

6.2 Matching Algorithms

For our implementations, we assume rectified and parallel images with a uni-
fied baseline. In a live system, a rectification process is usually required before
the matching - an additional motivation for advocating minimal system occu-
pance by the correspondence component.

Among the most common approaches in area-based matching areSAD
(Sum of Absolute Differences), SSD (Sum of Squared Differences), and NCC
(Normalized Cross Correlation). The difference in outcome for these approaches
are for a basic implementation minimal, hence the complexity and system
suitability are more important factors for our purpose. TheSSD and NCC
approaches require multipliers, an often limiting resource in FPGAs, heavy
used in image rectification and other image-processing [9].The SAD is the
preferred choice due to its minimal resource utilization (no multipliers) and
straightforward implementation composed of a series of operations, accord-
ing to (6.1), requiring only adders and comparator - abundant in FPGAs. The
IL andIR in (6.1) are the intensity values of left and right images at pixel x
andx − d, respectively, withd being the disparity under consideration, andw

denoting the width of the correlation window.

SAD =

w−1
∑

x=0

|IL(x)− IR(x− d)| (6.1)
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Another similar approach popular for hardware implementations, due to its
robustness to radiometric distortion and straightforwardimplementation (no
multipliers), is the Census Transform [10]. The Census Transform is not a
matching algorithm, but a non-parametric local transform evaluating the local
structure of the area. It is acting like a preprocessing stepto enhance the image
before matching.

The intensity value of each pixel in the image is replaced by abit string
composed of the result of a boolean comparison between itself and its sur-
rounding pixels according to comparison function (6.2).ζ is a bit to be placed
in the string, and is decided by the pixel intensity valuesis in relation to the
center pixel’s intensityic in the center pixel neighborhood.

ζ(ic, is) =

{

1, ic < is
0, ic > is

(6.2)

The bit-string values are then correlated between the two images for every
pixel within a matching window by calculating the Hamming distance, which
is the number of differing positions between two strings of equal length. In
both the Census and SAD approaches, the best match is found byfinding the
least sum of differences.

Woodfill and Zabih [10] claims that the relative ordering of the intensity
values of the Census algorithm is less susceptible to noise and outliers, and
matching implementations using the transform are reportedto outperform stan-
dard correlation techniques, such as SAD and SSD [11],[12].

6.3 Related Work

SAD and matching using a Census-transformed image can be categorized as
area-based correspondence methods. The matching window for area-based ap-
proaches are usually a square, and the matching localization improves with
increased window size. The reverse holds for the accuracy, especially in areas
with sharp depth-discontinuities, due to the averaging effect of the window.
However, as the shift between the two images to be matched is assumed to be
purely horizontal, the vertical information holds less weight in the disparity
estimation.

Lee [13] concludes that a rectangular window for SAD correspondence
saves close to half of the implementation cost without sacrificing the quality.
Although stating that the surrounding vertical pixels onlyfunction as noise
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reduction, and presenting matching scores for various window sizes and ratios,
Lee does not show any results for 1-dimensional windows.

Calin describes an implementation of a 1-dimensional disparity map esti-
mation by use of SSD [14]. It is capable of producing dense disparity maps
of 160x120 pixel images at 30 fps running in an FPGA. The presented results
are moderate as the disparity objects are excessively bloated, as to be expected
when using a wide correlation window, and the depth resolution is limited,
partially due to the small image size.

Figure 6.1: The Tsukuba original and its groundtruth.

6.4 Implementation

We implemented 1-dimensional versions of both the SAD and the Census
methods in VHDL for execution in an FPGA. As a comparison, we also imple-
mented the regular square-window approaches for both methods. Additionally,
we verified the implementations in MATLAB and received practically identical
results as for the VHDL.

6.4.1 SAD

Our implementation of the SAD algorithm is straightforward. The difference
calculations are performed over the entire disparity rangein parallel through
multiple instances of the pixel-wise AD calculation unit. The input to the ADs
are the latest pixels from the left image according to the window size, together
with the in registers stored pixels for the disparity range from the right image.
The least sum is then found through a tournament selection process.

For the square implementation the window-generator from [8] was used
and the above implementation multiplied by the window size and run in paral-
lel.
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6.4.2 Census

As a local transform, the Census Transform rely heavily on its neighbors and
minimizing the neighborhood significantly reduces the accuracy of the ap-
proach. The fact that the Census correspondence is calculated in two separate
window-sets - 1: the transform; 2: the Hamming distance - makes the informa-
tion reduction two-fold and causes the performance to deteriorate more than for
the SAD. To compensate for this loss of data, we substituted the intensity with
its underlying RGB values and separated them into parallel matching channels.
Thus the matching data is increased three-fold (together with the resource us-
age), and an increased matching accuracy can be observed in figure 6.2 (see
next chapter for how to evaluate the image). This contradicts the data presented
by Bleyer [15]; that substituting intensity with color in the Census Transform
will not improve the matching. The issue needs further investigation, but it is
evident in our matches that color yields an improved result.However, with in-
creased window width, this difference between intensity and RGB diminishes,
although still remains.

Figure 6.2: The 1-dimensional Census Transform matching improves with
RGB (left) over intensity (right).

The 1-dimensional Census implementation is similar to the SAD with the
main difference being the three parallel matching stages for handling the color
channels in the Census. The image data is shifted into three arrays sized ac-
cording to the matching window. The Census Transform is performed in paral-
lel for all pixels, and the referencing is for the same channel center pixel only,
no cross-color evaluation. The Hamming distance is then performed in two
steps for all disparity positions for all channels in parallel - 1: the channels are
individually compared; 2: and subsequently summed for every possible dis-
parity in the range. The last step is to select the minimum value within the
disparity range.
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The square Census implementation is using the same implementation with
the RGB channels multiplied with the window size and filled with data from
the previously mentioned window generator. This significantly increases the
resource usage, which requires a dramatic improvement to bewarranted.

Figure 6.3: The colormap for the disparity images. Blue indicates a small
disparity, and red a big disparity.

6.5 Results

The commonly used stereo pair from the Tsukuba University [16] was used to
evaluate the implementations at an image size of 384 by 288 pixels. The orig-
inal scene is shown in figure 6.1 together with the ground truth, where lighter
means closer, supplied with the test images. The disparity maps presented in
this paper have been colormapped according to figure 6.3 to better illustrate
the differences in disparity. The range of the colormap represents the disparity
in the image, the blue color is a small disparity (futher away) and the red is a
large disparity (closer).

As opposed to the results from Hirschmüller [12], the Censuscorrespon-
dence is outperformed by the SAD in the standard implementations. For larger
windows the differences are marginal, but for smaller window sizes the differ-
ences increase, as can be seen in figure 6.4.

The Census disparity maps are far more noisy, which is even more promi-
nent in the 1-dimensional implementations. The performance reduction result-
ing from flattening the window height to a single row can be seen in figure 6.5,
where resulting images from two matching windows of the samewidth but dif-
fering height for both SAD and Census are shown. The same typeof reduction
exists in both approaches, but it is more evident in the Census. It appears that
the Census Transform suffers more from the window reductionthan the SAD
does.

However, as the width of the windows increase the differences diminish,
and although the 1-dimensional SAD version suffers from a loss of surface
continuity, it is actually better than the square version interms of precision for
valid pixels, especially around object boundaries, as can be seen in figure 6.6.
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Figure 6.4: Square matching window versions for Census (left) and SAD
(right). The window sizes are, from the top: 11, 7 and 3.

This improvement is due to the absence of vertical smoothinggenerated by the
multiple scanlines of a square window.

Table 6.1 shows the resource utilization for standard implementations ver-
sus flattened, for the SAD and the Census at a maximum disparity of 16 on
images of 384 by 288 pixels. The listed resources are for the correspondence
components only, the surrounding system components used for reading, stor-
ing and sending of the test images and match data are not included. In a more
extensive implementation of the 2-dimensional SAD matching method, a large
memory is usually included in the design. Its purpose is to hold the pixel and
disparity data of previously processed pixels in order to perform right-left con-
sistency check, to further remove matching errors and improve the disparity
map. Thus, the real implications of flattening the correlation window are even
greater for the resource utilization, as been discussed previously, than the direct
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Figure 6.5: The information loss for SAD (top) and Census (bottom) when
reduced from 3x3 (left) to 1x3 (right).

reduction shown in table 6.1.
Note: For the purpose of evaluation, external memory is usedin the imple-

mentations to store the test images. However, those resources are not included
in the data of resource utilization.

6.6 Conclusions

In this paper we propose an approach to a limited correspondence implemen-
tation. It is limited in the use of system resources to enableextensive on-
chip/embedded high-level post-processing. The implementation is based on
one of the most commonly used approaches for stereo correspondence, the
SAD (Sum of Absolute Differences).

The limited implementation of the SAD performs remarkably well, and
even challenges the original square window version for larger widths, due to
the absence of smoothing errors brought on by the averaging effect of the win-
dow. It is evident that although there is a reduction in disparity map quality,
it is possible to achieve acceptable disparity maps withoutextensive memory
usage. With further post-processing or inclusion of a cost-function for dis-
parity continuity, the result may be improved toward that ofthe costly square
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Resource Slices LUTs
SAD 3x3 1,434 5,581
SAD 1x3 611 1,746
SAD 1x7 761 3,489
Census 3x3 2,013 11,676
Census 1x3 1,035 3,553
Census 1x7 1,579 7,489

Available 33,280 33,280

Table 6.1: Resource utilization

window-matching implementations. Even without this post-processing, the 1-
dimensional implementation is more than adequate for autonomous applica-
tions such as navigation, mapping, and obstacle avoidance.It is particularly
suitable for applications requesting sparse depth information, such as for fea-
tures, by providing a confident match in salient regions.

Figure 6.6: The SAD versions for 11x11 (left) and 1x11 (right).

Operating this approach on larger images, even of several Megapixels, will
not affect the throughput or the resource utilization. Image data is only stored
in registers in the FPGA and will not demand any external memory or other
resource utilization regardless of the image size. It is implemented with a max-
imum disparity range of 64 for a window size of 21 pixels.

The implementation run at 125 MHz, the system clock of our FPGA-board
[8]. As the implementation is fully piped, the frame rate is dependent on the
speed of the cameras and the size of the frame. Theoretically, it is capable of
processing over 100 frames per second for Megapixel images.
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Abstract

This paper presents a quantitative evaluation of a set of approaches for in-
creasing the accuracy of area-based stereo matching methods. It is targeting
real-time FPGA systems focused on low resource usage and maximized im-
provement per cost unit to enable concurrent processing. The methods are
applied to a resource optimized correspondence implementation and the indi-
vidual and cumulative costs and improvements are assessed.A combination of
the implemented approaches perform close to other area-matching implemen-
tations, but at substantially lower resource usage. Additionally, the limitation
in image size associated with standard methods is removed. As fully piped
complete on-chip solutions, all improvements are highly suitable for real-time
stereo-vision systems.
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7.1 Introduction

Applications such as navigation and object avoidance require real-time infor-
mation about their environment, and vision is a good provider due to its versa-
tility and speed. This visual perception includes depth information, implying
real-time matching of multiple view-separated 2D images, preferably from a
stereo camera setup due to the reduced complexity with a known relation be-
tween the images.

The extraction of depth data through the localization of thesame point in
two images is not trivial. Stereo matching of an entire sceneis computation-
ally intense, and processing a scene, or an image pair, 30 times per second
(real-time) is computationally demanding, and require high-performing hard-
ware. Implementations range from regular computers, to specialized hardware
such as GPUs and FPGAs. Lazaros et al. [1] make a thorough presentation of
various implementations.

FPGAs, often referred to as reconfigurable parallel hardware, are utilized
in mobile applications using vision, as they outperform other approaches in
terms of speed, size, and power requirements [1]. The major obstacle is the
limited resources, which restricts which algorithms are possible to implement.
Non-iterative approaches with small memory footprints, such as pipelined pro-
cessing of streamed high frame-rate camera data, are preferred.

Stereo matching is a well-covered problem with many suggested approaches,
and a comprehensive overview on the subject is presented by Scharstein and
Szeliski [2]. In general, the approaches are divided into global and local meth-
ods. Global approaches consider the entire image when estimating the dis-
parity, usually with high accuracy. Their iterative natureand high memory
bandwidth requirements [3] make them not optimal for FPGA implementa-
tion. Local approaches consider only small parts of the image, called support
windows, which are matched using a correlation measure. Basic local algo-
rithms do not attain the accuracy of global methods, but theyhave been the
preferred real-time stereo matching approach for a long time due to ease of
implementation and speed [1].

Two popular correlation measures of local methods for stereo correspon-
dence are SAD (Sum of Absolute Differences) and SSD (Sum of Squared Dif-
ferences). Both are of similar performance [4] and straight-forwardto imple-
ment in an FPGA, but the SAD consumes less resources than the SSD [5], an
important factor in hardware systems.

An important parameter with hardware implementations is the limited re-
sources available. A complete vision system residing in an FPGA requires
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several processing components just for preprocessing the image. For instance,
image rectification, motion compensation, and depth estimation are all low-
level tasks. Additionally, higher-level tasks, such as tracking, object recogni-
tion, or navigation, should also fit. Enabling more computations in the FPGA,
by reducing the components for preprocessing, will improvethe capability and
flexibility of the system.

We examine the impact of heavily reducing the resource usageof a stereo
matching approach in [6]. The 1D implementation shows an acceptable result
for the application at hand - disparity estimation around edges - at a very small
footprint. The natural drawback is excessive noise, especially in known diffi-
cult regions of low-texture and/or low signal-to-noise ratio. Positive aspects,
besides the resource usage, is the removal of external memory regardless of
image size, and the removal of the image size restriction implicit in 2D ap-
proaches - a larger image does not increase the resource usage of the corre-
spondence component. In this paper we will present the improvements gained
and the costs incurred by a number of resource optimized implementations of
established approaches for improving this basic correspondence method. An
evaluation can then be made on whether these improvements are justified con-
sidering the increased resource usage, depending on the needs of the targeted
application.

This work is part of the Two Camera-project at Malardalen University. The
aim is to construct a compact, vision-based autonomous system encompassing
both sequential and parallel processing units [7]. The majority of the low-level
data-intense processing will reside in an FPGA, while high-level computation-
intense processes are handled in an embedded sequential computer. The code
composing the components in this paper will be made available as an open
source project to promote FPGA-based image processing on our publicly avail-
able vision system.

Figure 7.1: The Middlebury test image Tsukuba with the associated ground
truth.
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7.2 Background

This section will look at some common approaches of improving basic area-
based matching and how they can be adopted to our system. The end-goal is to
incorporate as much of the processing for an autonomous system as possible in
the FPGA. In order to encompass concurrent processing, priorities and trade-
offs need to be made. As a result, we have adopted a system approach to stereo
matching with the explicit aim of reducing system impact with an implementa-
tion. We have constructed an FPGA-based system [8] for autonomous machine
applications, and implemented a resource optimized basic stereo matching al-
gorithm [6].

Local correspondence algorithms consider a limited area surrounding the
point under evaluation for disparity estimation - the support window. The SAD
matching cost for two points residing in two different images is calculated
through an aggregation of the element-wise absolute differences of the support
windows for respective point. A common assumption of stereo-matching algo-
rithms is that of rectified and parallel images with unified baseline and common
scan-lines. With this assumption it is safe to reduce the correspondence prob-
lem to a 1-dimensional search [2]. As such, correlation is performed by evalu-
ating the difference between windows in different images but of same scanline,
no disparity perpendicular to the scanlines needs to be taken into account. For
all approaches, we assume rectified and parallel images witha unified baseline.

The implementations are evaluated using the stereo images and online tool
provided by the vision department at Middlebury University[9]. One of the
images used in our tests is shown in figure 7.1 along with its true disparity map.
The disparity maps generated by our implementation are using a maximum
disparity range according to the stated disparity range of the evaluation images.

In [6], we show that SAD is a good candidate for a resource optimized
correspondence implementation for real-time systems. The1D approach pro-
duces a disparity map with preserved details and reduced foreground fattening
compared to the standard 2D implementation. The increased noise is primarily
located in low-texture areas with low signal-to-noise ratio, as can be seen in
figure7.2.

7.3 Related Work

Since the aim of our work is to achieve an acceptable performance at a low
resource usage, we need to specify what low resource usage is. An FPGA



72 Paper C

Figure 7.2: The areas with the most noise (red circles) have low-texture and/or
low signal-to-noise ratio.

consists of different elements that can be configured in a multitude of ways.
Resource utilization is normally expressed in slices and LUTs (LookUp-Table
which realize boolean operations). The 1D implementation from [6] produced
the disparity map of figure 7.2 from 1221 slices when implemented in a Spartan-
3 FPGA. This is just above 4% of the available slices in the chip.

Several other stereo matching approaches with low resourceusage exists,
such as the one proposed by Arias-Estrada et al. [10]. The utilization is only
4.2K slices on a Virtex-II, but the disparity map is only fair. The implementa-
tion is capable of 71 fps with images of 320x240 pixels. Lee etal. [11] present
an implementation below 10K slices in resource usage. The resulting disparity
map is moderate with extensive blurring of edges and noise. For higher quality
disparity maps, the resource usage goes up. Very good results are presented
by Zhang et al. [12], but the utilization is 95K slices, whichis 3 times the
total number of slices available in our FPGA. Additionally,they use a large
amount of special ALUTs and DSP blocks, leaving little room for concurrent
processing.

A comparison between software- and hardware-based correspondence al-
gorithms, show a clear separation of focus [12]. In general,software-based
methods produce much more accurate disparity maps, but failto produce real-
time output at high quality. Real-time software implementations generally do
not produce much better result than hardware-based ones. Onthe other hand,
hardware-based implementations produce frame rate far exceeding those of
software-based. This is starting to change, though, as software-based algo-
rithms are being transformed to fit hardware, and software-based systems are
starting to achieve high throughput by utilizing GPUs. However, PC and GPU
approaches are still too bulky for embedded systems.
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7.4 Improvements

We will now present a set of common approaches to improve disparity images.
They are not specifically oriented at reconfigurable hardware, but are more or
less established in the area of stereo matching.

7.4.1 Support Window

Being rudimentary for the performance of area-based approaches, the window
size selection is of great importance. Generally, smaller windows increase the
matching precision, but exhibit more noise. Consequently,large windows re-
duce noise and produce better results in low-textured areas, but blur in areas of
depth discontinuities, and cause an effect known as foreground fattening [13].
Common window sizes for the 2D SAD range from 9x9 to 17x17 [13]. Beyond
this size the accuracy is actually starting to degrade, as shown by Ambrosch et
al. [14], and there is no global optimal selection due to the scene dependency.

Several proposals for improving the lack of conformity of square static
windows to the dynamic conditions of a scene [3] have been proposed, such
as adaptive [15], multiple [4], or weighted [16] windows. However, the adap-
tive window approaches suggested by Kanade and Okutomi [15]or the one by
Boykov et al. [17] does not offer much improvement, only different problem
areas (ill-defined edges, noisy surfaces, sensitivity to low-texture areas, non-
realtime performance). Additionally, they rely on models with empirically de-
rived parameters unique to every scene, which is not a huge improvement from
the empirical selection of window sizes. More recent adaptations of this notion
produce better results, such as the work by Sun et al. [18], but they are still
iterative and slow.

The approach by Hirschmüller et al. [4] suggests the use of multiple win-
dows for good depth discontinuity performance. It is based on SAD, but un-
fortunately requires high memory bandwidth. The bi-level window refinement
proposed by Chonghun et al. [19] first calculates a disparitymap using a large
16x16 window and then refines it with a small 5x5 window. Theirreason for
refinement is that of an overly-smoothed first estimation, which is rather noise-
free but blurred, as opposed to our noisy first estimation.

7.4.2 False Matches

False matches occur from the fundamentals of matching two images from dif-
ferent viewpoints. Parts of the image which are visible in one view are not
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visible in the other because of projective distortion, Kanade and Okutomi [15].
Fusing two views together will leave areas where depth estimation is impossi-
ble as they are occluded in one of the views. Other conditions, such as light-
ing and image noise, give rise to ambiguities in the matching. This affects
all area-based approaches, but is even more evident for smaller support win-
dows as they have lower signal-to-noise ratio. Post-processing of the estimated
disparity map is usually adopted to remove noise and false matches. Popu-
lar post-processing methods include left-right consistency check (LRC) [20],
propagation, confidence evaluation and median filtering.

7.4.3 Consistency Check

The left-right consistency check verifies that only disparity values with mutual
correspondence are accepted as matches. Mutual correspondence occur when
the matched pixels in the two images select each other as the best match. This
requires matching of the whole image, using both images as the reference to
account for pixels not visible in the other view. The check invalidates false
matches, and either simply voids the disparity value or employs a subsequent
correction stage, as detailed by Fusiello et al. [21].

The left-right consistency constraint is very robust but expensive as it re-
quires a second pass over the images [22]. A common implementation ap-
proach, as used by Mühlmann et al. in [23], is to store all matching costs for
all possible disparities as a Disparity Space Image (DSI). The DSI cuboid con-
sumes a large amount of memory as its volume is given by the width and height
of the images and the disparity search range. The left-rightconsistency check
is straightforward when using a DSI by simply traversing thecuboid, but time
consuming.

7.4.4 Confidence Evaluation

Areas of low-texture exhibit low variance and are difficult to match as unique
identifiers do not exist. A common approach to solve this is tolook at the
matching confidence of the estimated disparity [18]. The confidence is often
estimated by relating to the difference in correlation costof the best matching
candidates. Mei et al. [24] adopt an approach that compares the estimated
disparity with that of its previous neighbor. The concept isthat the disparity is
supposed to vary smoothly for but a fraction of the entire image, according to
the surface continuity constraint formulated by Marr and Poggio [25]. Mei et
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al. use this constraint-based smoothness term in a cost-function to select highly
confident matches to be used in a well-performing propagation approach.

7.4.5 Textureless Areas

Textureless areas and areas without sufficient informationfor a confident match
cannot be matched, and their disparity must be estimated otherwise. Non-
consistent matches are labeled to be either removed or improved in a subse-
quent correction component. For dense disparity maps, the replacement option
is the preferred, but it is also the most difficult due to occlusion. A common
approach is to interpolate or propagate disparity values from nearby confident
matched pixels. Yoon et al. [5] perform a spatial interpolation after error re-
duction by the use of median filtering. Sun et al. [18] proposea propagation
approach where the propagated value comes from a pixel of similar color. The
approach performs well, however, they rely on a relatively good first estimate
by way of the Census. The approach is not real-time due to iterative pro-
cessing and time-consuming segmentation. A simpler approach suggested by
Fusiello et al. [21] fills non-valid positions with the minimum value in a prop-
agation window. The minimum value is used to limit the foreground fattening
common in area-based methods, which hopefully have been removed with the
left-right consistency check. The approach successfully fills areas cleared by
the consistency check, but it too is dependent on a confident initial estimate.

7.4.6 Filtering

The obvious improvement that was left out in our previous work is the ap-
plication of a filter. Median filtering is a well-known approach to remove
sporadic noise and is frequently used in post-processing toimprove disparity
maps [23]. Several of previously mentioned implementations used a median
filter: [5], [15], [13].

7.4.7 Color

A natural step from the minimal approach is to match color values instead of
intensity. It has been reported that the use of color information can increase the
signal-to-noise ratio by roughly 20% [26], which should substantially improve
the matching. Implementation of an RGB-based matching is accomplished
simply by invoking three parallel SAD channels and sum the individual SADs
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for every disparity. The cost, however, is substantial as wetriple the amount of
computations performed in parallel and thus also the resource usage.

7.5 Our Implementation

Figure 7.3: Impact of applying LRC (left), or not (right). Both images have
been median filtered as the last stage.

7.5.1 Support Window

All of the suggested window-altering approaches could improve on the basic
2D implementation, but have limited impact on the 1D implementation. The
much larger area in square windows make them lose precision,and adapting
the window shape and size is a way of reducing this loss. For 1Dwindows
the effect is much smaller because of the reduced area. Additionally, adaptive
approaches are slow and introduce scene dependent parameters that add to the
complexity and reduce the application scope. Transformation of the support
window is primarily aimed at improving the matching accuracy, but not with
a retained speed. Moreover, our challenge lies in too much noise, which voids
the stated approaches as they look for refinement and we aim for selective
smoothing.

7.5.2 Consistency Check

The basic memory-intense approach of left-right consistency check is neither
suitable for a parallel or resource constraint system, nor necessary. The check
will always be relatively expensive, as it needs to match theimages both ways,
it is not necessary to retain more data than covers the matching of the pixels
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in the disparity range at any given time. Our implementationpractically dou-
bles the resource usage for the matching process (1221 vs 2399 slices), but no
external memory nor any reduction in system performance need to result from
it.

Figure 7.4: The median filter preceding the propagation (left) does not per-
form as well as the reverse (right). LRC-check was performedinitially on both
images.

At any given clock cycle, a SAD is calculated for every pixel in the disparity
range in the right image. These SADs make up the disparity space for one pixel
in the left image. The least sum is then extracted from that disparity space
through a tournament selection. The SADs for a pixel in the right image are
calculated over time as it traverses the disparity range, one step every clock
cycle. The least sum for a pixel in the right image is then calculated piece-wise
by a simple compare function. Register delays assure synchronized output with
a disparity for the left pixel after cleared check.

The effect of the consistency check can be observed in figure 7.3. The
images are with and without consistency check, but both havemedian filtering
performed at the end, to minimize the empty regions. The consistency check
identifies almost all of the occluded areas. However, it alsoremoves pixels that
are not occluded but still differ due to poor correlation data. Noteworthy is the
deterioration of the lamp arm, partly due to the check but also due to the filter.
The removal of data in the disparity map reduces the quality,and it is evident
that the median filter (here a 7x1) is not filling the empty areas. For this to
happen we need to propagate.

7.5.3 Propagation

With propagation, the underlying data is important. A logicassumption is
that it is important to remove as much noise as possible before performing
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propagation, to avoid propagating false matches. As can be seen in figure 7.4,
there is a difference between performing median filtration before or after the
propagation. Propagation directly after the consistency check followed by a
median filter produces a disparity map of the highest accuracy. However, some
areas deteriorate, such as the lamp arm, when compared to a not consistency
checked image.

Figure 7.5: The median filter (right column) significantly reduces the noise for
the 1D (top) but not the 2D (bottom) approach.

The propagation rules covering the execution of our implementation are: If
the median value of the filter window is separate from zero (that is, a majority
of the pixels in the window have valid data), the median of thenon-zero values
is propagated. Should the number of non-zero elements in thefilter be subor-
dinate, the minimum value will be propagated. When no non-zero values exist,
the latest propagated value is used. Since the propagation relies on median
value it is realized with a copy of the median filter component.

7.5.4 Filtering

Realization of median filtering is a search and rank problem with large filters
being difficult to implement for real-time [27]. However, filters of limited size
have been utilized with good results [23]. We have implemented the median
filter as a classic systolic array, according to Vega-Rodriguez et al. [27], for
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Approach Non-Occ % All % Disc %
SAD 7x1 29.1 30.7 27.4
SAD-MED 7x1 22.2 23.9 24.3
SAD 7x7 22.7 24.4 28.6
SAD-MED 7x7 21.9 23.6 28.1

Table 7.1: Performance and cost for median filtering. The % isthe errors in the
image compared to the ground truth for Non-occluded, All, and regions near
Discontinuities.

sorting 9 elements. This translates to a 9x1 median filter for1D and a 3x3 filter
for 2D.

The improvement with a median filter are quite significant forthe 1D ap-
proach, but not so much for the 2D, as can be seen in figure 7.5 and in table 7.1.
The filter removes noise and the 2D implementation is alreadynoise reduced
by design. It is obvious that the noise in the 1D approach fits the characteristics
of a median filter. Noteworthy is the fact that the 1D approachoutperforms the
standard 2D in regions of discontinuities, due to the lack ofvertical summing.
This is the case already with the basic 1D, but is even more improved with
the added filter. The cost of the filter is very low, only 247 slices, an increase
of 20%. As a conclusion, median filtering closes the gap between 1D and 2D
implementations.

7.5.5 Color

The effects of using separate color channels instead of intensity are presented in
figure 7.6. As can be observed, the substantial increase in resource utilization
for color (double for matching component) is not warranted unless it is critical
for the application, such as for scenes with radiometric distortion as shown by
Hirschmüller and Scharstein [28].

7.6 Result Summary

Table 7.2 shows the improvement for the stereo matching component with
the implemented approaches, both individually and combined. The listed re-
sources are for the evaluated stereo components only, the system components
used for reading, storing and sending of the test images and match data are not
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Approach Non-Occ % All % Disc % Slices LUTs
SAD 29.1 30.7 27.4 1,221 6,086
LRC 40.5 41.9 40.1 2,399 7,689
Median 22.2 23.9 24.3 1,468 6,371
LRC-Med 38.6 39.9 39.5 3,135 8,204
LRC-Prop 27.2 28.4 24.9 3,174 8,237
LRC-Med-Prop 31.1 32.0 28.8 3,986 8,844
LRC-Prop-Med 20.4 21.8 21.7 3,986 8,844

Available 33,280 33,280

Table 7.2: Impact of improvements; individually and combined. All values are
for a 7x1 implementation

included. The improvements are evaluated with the Middlebury stereo evalu-
ation tool [9] which show the error percentage in the disparity image. Three
different parameters are presented: Non-occluded pixels which are visible in
both images; Pixel at or around discontinuities in the image; All of the image.
From observing the matching scores in table, it can be concluded that certain
tools have certain aspects, and when combining tools for improvement, their
individual order is important.

Figure 7.6: Substituting intensity (left) with color (right) does not improve
significantly to warrant the doubling in resource usage.

Note: For the purpose of evaluation, external memory is usedin the imple-
mentations to store the test images. However, those resources are not included
in the data of resource utilization, nor do they affect the performance.
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7.7 Conclusions

In this paper we assess approaches to improve a resource optimized correspon-
dence implementation. The approaches have been evaluated quantitatively by
showing the cost and quality enhancement achieved when implemented. The
1D implementation is approximating the accuracy of the standard 2D version
by a set of established enhancement methods. The performance difference be-
tween the 1D and 2D implementations is rather small, but the 1D achieves it at
a low resource usage.

Utilizing an inexpensive median filter effectively closes the gap to the 2D
approach. From a cost/performance perspective, only usinga median filter is
the best approach. However, there is only so much a 1D median filter can do
with noisy data. For further improvement noise reduction isa must. A func-
tion removing, or never allowing, false matches in the disparity map, through
confidence assessment, could render a substantial improvement together with
a competent propagation method. Implementing a small confidence measure-
ment would be a good continuance of this work.

It is further evident that it is possible to achieve acceptable disparity maps
without extensive memory usage and without a limitation on image size. Megapixel
images will not affect the throughput or the resource utilization. Image data is
stored in a shift register approach without the need for multi-scanline retention.
Furthermore, the proposed 1D implementation is more than adequate for au-
tonomous applications such as navigation, mapping, and obstacle avoidance,
and can be fitted to practically any FPGA. It has been implemented with a
maximum disparity range of 64 for images of 1024x1024 pixels.

The implementations run at 125 MHz, the system clock of our FPGA-board
[8]. As the implementations are fully piped, the frame rate is dependent on the
speed of the cameras and the size of the frame. Theoretically, it is capable of
processing over 100 frames per second for Megapixel images.
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