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Abstract

There is a need for compact, high-speed, and low-powenvigistems for en-
abling real-time mobile autonomous applications. One @g@gi to achieve this
is to implement the low- to intermediate-level applicai@mhardware. Recon-
figurable hardware have all these qualities without thetéition of fixed func-
tionality that accompanies application-specific circui®esource constraints
in reconfigurable hardware calls for resource optimizedémgntations with
maintained performance.

The research group in Robotics at Malardalens Universitydsing to-
ward the completion of a reconfigurable hardware-platfasnstereo vision,
coupled with a compact embedded computer. This system mdgtrporate
hardware-based preprocessing components enabling yistadption for au-
tonomous machines. This thesis covers the reconfiguraltiviage section
of the vision system concerning the realization of scendhdegtraction. It
shows the advantages of image preprocessing in hardwarprapdse a re-
source optimized approach to stereo matching. The worktdigsthe impact
of reduced resource utilization and a desire for increasedracy in disparity
estimation. The implemented stereo matching approacloimasfon par with
recent similar implementations in terms of accuracy, baeéxin terms of re-
source utilization and resource sharing, as the externalonerequirement is
removed for larger images.

Future work aims to further include processes for navigatimd structure
and object recognition. Furthermore, the system will begssthto real world
scenarios, both indoors and outdoors.
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Chapter 1

Introduction

Self-parking cars, pedestrian-sensitive self-brakingks, driver-less mining-
machines, and museum guiding-robots are all examplesefigent and au-
tonomous agents. Autonomous agents are entities thatsigmed a task and
execute it without further guidance or interference frora thsk originator.
Such an agent senses its environment, adopts an approamitiagty, and
executes an action toward the fulfillment of the task. Thosdlze same fun-
damentals which form the definition of a robot: sense, plad,axt.

Spatial awareness is elementary in any autonomous mobdbkinmea There
are two fundamentals in the concept of spatial awarenessewl&dge of the
environment, and one’s own relation to that environment.céh be argued
that an autonomous agent is really not in an environmentparitof the en-
vironment.) Knowledge of the environment requires sensamd the degree
of perception is determined by the properties of the sensBegardless of
sensor type, the resolution, accuracy and speed of therséngiche aware-
ness. There are several types of sensors for sensing tleeisding space, but
the two predominant types used in robotics and industryamgefinders and
vision.

Rangefinders (such as radar, sonar and laser) are actiesrsytiat emit
waves (such as electromagnetic or light) and then measareeftections of
the waves off an object. Vision sensors, or cameras, arévpasnsors that
measure whatever light that falls onto the sensor, whetiectdor reflected.
Common for rangefinders is that they are not as fast as pagsival systems
as they rely on returned waves, whereas cameras can measwelashorter
intervals as the light flow is one-directional and constdriese passive and
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general properties make cameras versatile, but also trinitéhe application of

range finding as they lack the built-in ranging property ofgefinders. With-

out knowledge of the temporal origin of the measured lightneras cannot
use the time-of-flight or accumulation methods used by thgedinders, but
need to correlate the sensed data over a spatial differdigs.is commonly

performed by triangulation of views from different angldgtte same scene,
either by a movement of a single camera or by the use of meltipmeras,
referred to as stereo vision.

All types of rangefinders are well suited for map generatiot abstacle
detection, but they are not optimal for object recognitiontracking, as they
only convey the structure of the surroundings, and nothbapaits colors or
patterns. Stereo-vision systems are an approximation mihieyes and can
enable machines to match or relate to our perception of thitelwall infor-
mation about the environment exist in the data generatetidgameras. It
simply needs to be extracted. This simple part has occupeelhtge computer
vision research community for many years, and still do.

In this thesis, we present a stereo vision system for emlubduzbile
robotics. The end goal with this research platform is to fiealdtime au-
tonomous system for navigation and object recognition inragact and power
efficient hardware system. In order to fit all system partsheamponent must
be made as compact and efficient as possible. This thesisds@n reducing
the task of extracting depth information of a scene througkching of view-
separated images.

1.1 Background

Computer vision involves digital processing of images. demare captured
with a sensor measuring the light falling onto the sensdiaser The amount
of light is transformed into a digital representation whisltommunicated off
the sensor. The quality of an image is contingent on the semsbitecture, the
lens, the converter electronics, the circuit board desigd,many more factors.
A great deal of research is dedicated to improving the perémce of image
sensors. Our research is focused on the application of thgemsensor, and
the process of extracting the information embedded in theaedata. Many
applications and algorithms exist for image processing, those concerned
with using the images to enable machines to see are labeledl@sging to
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machine, or computer, vision.

Computer vision algorithms can generally be characterlaedomplex
and repetitive operations, and large amounts of data, adetbby Ratha and
Jain [1]. Moreover, vision algorithms can be classified deriging to either
low-level, intermediate-level (segmentation), or highidl (higher order struc-
ture and matching). Regardless of level, vision algoritlamesall preprocess-
ing steps for a main algorithm, such as navigation or objectgnition, but
the separation is far from distinct. A complete vision sgsteeeds to integrate
solutions for all levels in order to complete the main apiien. In this thesis,
we are concerned with low-level algorithms.

By definition, the performance of a system is contingent an fibrfor-
mance of its parts. Being the initial node in the chain, thesees set the
performance limit. Image sensors can provide high framesrdaut require the
receivers of their pixel stream to match their speed. If @ixex is to receive
and process images continuously, it needs to be able to éothve and execute
operations on every pixel in time before the next pixel @sivThis implies an
operating frequency several times higher than the pixgufeacy of the image
sensor. Real-time image processing requires reading adtipg on millions
of pixels per second, putting a hard requirement on the titrput ability of the
processing system. The concept of real-time will vary wiitl topic, and by
real-time we mean the execution time of an action or reat¢hiahis adequate
to mimic the human counterpart. Concerning cameras, a frateeof around
30 Hz is sufficient to not appear jerky to the human eye at naidéransitions
in the scene. For completely smooth motions an update frexyus above 60
frames per second is required. We use 30 frames per secohd frarme rate
definition of real-time.

1.1.1 Reconfigurable Hardware

As opposed to standard sequential computer systems, waqclire a process-
ing frequency several orders of magnitude greater than itted frequency,
reconfigurable hardware enables pixel-wise image prawgsdi a frequency
matching that of the pixels. Reconfigurable hardware, secRRGAs, is a
hardware component where the functionality is loaded atugia The central
processing unit of a typical PC fetches its instructionsfirmemory, executes
them, and then stores the result back into memory. In the FR@physical
configuration itself is the instructions and there is no getalay [1]. Itis a
standalone component that executes like a fixed state newelitihout an op-
erating system or external components. The big advantag®®GfAs is that
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they enable concurrent processing of multiple data by [wdicadtion. This re-
moves the need for the processing unit to operate at a freguwdiove that of
the vision sensor.

An important parameter of reconfigurable hardware is thddidnavailable
resources. Being a component of fixed size where the furalttgris deter-
mined by the physical interconnect of its logic elementsy arcertain amount
of instructions can be concurrently realized. Moreoveiftigly of instruction
sets is not possible as resources cannot be reallocatedyduri-time. In other
words, FPGAs can get full [1].

The type of algorithms appropriate for FPGAs are also lithilee to the
types of operations possible with the internal circuitrywyAype of operation
can be realized in theory, but the cost in doing so might reitdenpracti-
cal. Registers, comparators, adders, multipliers, arefrialt memory are all
in finite numbers and realizing complex algorithms mightuiegi more than
available. Implementations of algorithms thus have to fihbo type and size.
The functionality of an FPGA is described with code writtenai Hardware
Description Language (HDL) such as VHDL or Verilog. FPGAs aasily re-
configured using tools ranging from low-level programmiagduages, such
as HDL, to more general languages, such as variants of C ahdiRy

1.1.2 Feature detectors

In certain applications, such as navigation and objectgeition, limited parts
of an image is often of more interest than the rest. Thess pagtfeatures of
an object or a scene, and can be used as descriptors for jbet obscene. Al-
gorithms identifying and extracting these defining partamfmage is referred
to as Feature Detectors. Different feature detectors avd fmr different ap-
plications, but their common task is to identify salienterdareas with low
similarity in the surrounding area), such as edges, coyidobs, etc. Their
primary function is to reduce the amount of data associaiduan object or
scene, without sacrificing the important information. Of¢he most impor-
tant properties of a feature detector is its repeatabilitg:ability to repeatedly
identify the same feature on any two separate occasions.abflity is crucial
when locating features between multiple images, as in nragdbr tracking,
depth, shape, etc. Another important parameter is therirdtion content of a
feature detector, a measure of the distinctiveness of emtgibint. The more
spread out the features are over an object, the higher tbhemation content,
and the higher the likelihood of a successful match [2].

A multitude of feature detectors exists, and in Paper A teplstn and Har-
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ris Combined Corner and Edge Detector [3] is used. It has hegely used
in computer vision applications for a long time, due to itgthrepeatability
and information content [4]. The Stephen and Harris deteatso common in
many other feature detectors, looks at the intensity of pae and how it re-
lates to that of its neighbors. A pixel is evaluated basedam\ell it matches
the defined feature types - sharp discontinuity in one dveatquals an edge,
and in two or more directions equals a corner. The better titetmthe higher
the absolute cornerness value (positive for corners, ivegitr edges). The
algorithm produces only this definition of a feature, whichkas a feature-
to-feature correlation challenging. Although similar ashion, the edges and
corners have one small difference: corners are by defirgmated objects not
linked to other corners, whereas edges have a strongepretatother edges
and can be formed into lines or curves possible to use forhmragg5s].

1.1.3 Feature Matching

Matching of individual pixels based solely on their intépss an almost im-
possible task. Performing the same operation on cornersigesefrom the
Stephen and Harris detector can be less difficult, but is gegne and pa-
rameter dependent as the amount of features impact the imgumbnfidence.
Finding a single point from one image in another image of amals, or even
only hundreds, of points with only a single value to comparept trivial. An
approach is to look at several features and their individelations, and match
them as a point cloud [6]. Such operations are highly iteeatind not suitable
for a resource constrained real-time system.

To reduce the challenge of correlation, it is possible todase the feature
uniqueness by including more properties of the feature endurroundings,
such as angle or scale. This property specification addsig&ss to the fea-
tures, such that it is possible to look at the feature desarspndividually and
not simply at their mutual relation. A good example of a featdescriptor
is SIFT (Scale Invariant Feature Transform) [7]. Howeviee, added descrip-
tiveness is computationally intense and of an iterativameatind the matching
process can be very time consuming for extensive featusd&et

Matching of non-aligned images, irrespectively of whethased on indi-
vidual points or areas, require a costly 2-dimensionalceacross the other
image for every element. The remedy is to transform the image the same
coordinate system, a process called rectification. Reatifio involves iden-
tifying the intrinsic and extrinsic parameters of the imag@turing device to
determine the relation of the projection planes of respedthages. This in-
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cludes correction of lens distortion, and aligning the iegmgo that image scan-
lines are parallel and aligned between images. The matghiviglem is thus
reduced to a 1-dimensional search, significantly redudiegcomplexity, as
long as the geometric distortion is at a minimum [9]. The ifeeettion pro-
cess is computationally heavy, and needs to be performexvéy image pair
of unknown relation. For fixed stereo camera systems, thauledion of the
rectification parameters need only be performed once asattaneters of the
capturing devices are static. Rectification is then peréatiny image transfor-
mation through applying a constant set of parameter-basadinate shifts.

The concept of extensive feature descriptors, such as 8H®,include
more than just the saliency of the point, and also includétiael information
on the neighborhood, such as qualities of other saliensgadges) in the
area, the saliency at different scales, etc. The reasorvisud) identification
is easier the more information available. This notion carapplied to the
underlying pixels directly, without performing an anakysif their properties.
Area-based approaches match an area instead of a poinheyndre the most
used approach to stereo matching in computer vision.

1.1.4 Stereo Matching

The area of computer vision contains many branches, angbsteatching, or
stereo correspondence, is one of the widest. It deals withaing depth in-
formation from 2-dimensional images by way of finding copmsding points
in two, or more, images. The sole purpose of using two camiertts cap-
ture a scene from two different views at any given time in oreextract
3-dimensional data of the scene.

Any vision approach concerned with depth needs to solve dhespon-
dence problem, that is, which part in one image correlateghich part in
another image. In the machine vision community, the majaitapproaches
can be categorized into either of two groups, global or |§£@]. In general
terms, the global algorithms are considering the estimatiothe separation,
or disparity, of the two view-diverging images as an optitian problem. A
global cost function incorporates both data (matching) amdothness terms,
which the disparity selection seeks to minimize. Local dthms, on the other
hand, only consider a limited area surrounding the poineuredaluation for
disparity estimation.

Global methods generally outperform local methods in tesfreccuracy,
but suffer from a high computational cost. Global methodsallg consist
of several, often iterative, steps in their refinement ofratial disparity map,
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often attained with a local method [10]. As a consequenes,dine not optimal
for real-time applications.

Local methods can be further divided into area-based ouffediased cor-
relation. Both are sprung out of the same basic notion - a pixiéself gives
poor correlation data with low confidence in matching, thuarger view is
required. Both approaches use the neighbors, to more oeksst, of the
current pixel for more defining data. Area-based methodghem to corre-
late with another same-size area, whereas feature-bagbddsaise them to
determine the interest level of the pixel and use that rdtrar the underlying
image data.

Area-based matching techniques usually create a dense itfamepth
information for every pixel. Feature-based techniquesardy create a sparse
map as information is removed from the images. However, dtrggied that
the confidence in the match is higher with feature-baseditqabs as they are
only matching on individual pixels, rather than a set of f5xX8]. Nevertheless,
which technique to use should be based on the application.

Feature-based matching techniques are more concernefivdihg a re-
lation to the scene or image as a whole than to get a compldie&asional
reconstruction of the scene. They can be used, for examptetermine the
ego-motion of the agent, or to correctly identify the ratatand translation of
an object. Working with feature images also significantlyuees the amount
of data in the system, leaving room for additional calcolasior an increased
frequency. Thus, for applications not in need of depth imfation in the whole
scene but rather high speed, such as certain object reimg[dil ], the feature-
based approach is a good candidate. An additional advaistéigat a crystal-
lization of the important information in the lower-levelrcédoth reduce the
amount of data as well as its rate. The data rate reducticaivesngageous for
higher level processes, but only if the data is sufficient.

1.1.5 Area-based Matching

Area-based methods correlate the entire pixel neighbahelement by ele-
ment, through the use of a support window. The support windawmpared
with same size support windows in the other image, and isllysnahe form
of a square. To evaluate the similarities of two windows, medation measure
is required. Several exist, but one of the simplest and msghtforward to
implement, and thus widely used, is the SABufm of Absolute Differences
With the SAD, the matching cost for two points residing in tdifferent im-
ages is calculated through an aggregation of the elemesg-abisolute differ-
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ences of the support windows for respective point.

One of the fundamental problems of window-matching is thecsi®on of
the window-size [12]. A small window achieves higher pramisin the dis-
parity estimation, but exhibits more noise. Large windoaduce noise by an
increase of the matching data, but reduce the precisiopcesly at depth dis-
continuities. Thus, the optimal window size will vary frormesie to scene, but
also within a scene.

Several approaches have been proposed to solve the sizeéseproblem.
Variable-size windows, as proposed by Kanade and Okuta?hj fte adapting
to the conditions of the underlying image and have been showignificantly
improve the matching, but lack in terms of speed. This idea teeen refined
to variable window shapes, as presented by Mei et al. [13]vegighting of
the support window, as proposed by Yoon et al. [14], to onlysider informa-
tion on similar data, such as color. All these approachésestn improve the
outcome of the matching algorithm, the generated disparép.

1.1.6 Disparity Map Creation

The role of the disparity map is to convey the depth in an immageesented as
the distance of the index of a certain point between two irmagae matching
algorithm will approximate the real-world depth relatiar the entire image,
but hard-to-match areas of the image, such as those of Iduréssr low signal-
to-noise ratio, will generate false matches. Additiondibreground objects
occlude background objects, and due to the different petisps in the two
images, the parts that are occluded will differ in the twoges This causes
pixels adjacent to object borders, or depth discontingiitie be estimated at
the depth of the foreground object as the edge is a very pemhfaature. This
causes the disparity maps to extend outside of the foregrobject, and is
called foreground fattening. The inadequacies of the besed approaches
limit the possible quality of the disparity map, and sevexgproaches have
been proposed to deal with this.

Approaches seeking to create dense disparity maps try tedgthe defi-
ciencies, whereas those aiming for a sparse but highly camtfisparity map
simply remove them. Regardless of the approach, the isitggd is to identify
the erroneous values, which can be done using as set of assosgbout the
underlying image. They act as constraints on the disparép,nand can be
used to determine the validity of a match, as explained byn@maand Tak-
ouhi [15].

The surface continuity constraint states that a scene ig madf solid sur-
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faces which vary smoothly. As a consequence, adjacentguixelmost likely

at the same depth. The unigueness constraint states thattarpone image

can only have one corresponding point in the other imagechwis natural

as the images depict physical objects. The ordering cansstates that the
order of pixels in one image must be fulfilled in the dispantgp. Violations

of these constraints occur, for instance, at depth discoitigs, heavily slanted
surfaces, and occlusion. However, for the most part theypearsed to validate
the estimated disparity of a pixel in rectified images.

One of the common ways of finding these violations is to penfarleft-
right consistency check (LRC) [16]. A regular matching rdare uses one of
the images as the base and then tries to find correspondials jnixthe other
image. Pixels that have no corresponding mate, as they anésilgle in the
other image, will generate false matches. The LRC also pedganatching
with the other image as the base and then checks to see thatlangpiicated
as the match in one image is referring back to the indicatirgl jin the other
image, that is, that they select each other as the best matuis. is a very
robust method that identifies the majority of false matches t perspective
distortion [17].

After false matches are identified, sparse approachesigestrd them and
leave the pixels void of disparity. Dense approaches needs@n a value
though, and the constraints mentioned earlier can alsoiliedtfor this pur-
pose. Instead of estimating the disparity by correlatiomilarity in adjacent
pixels, which are assumed to be of same surface accordihgt@aonstraints,
can approximate the disparity. A popular method is to useianefiltering to
remove noise and smooth the disparity map. As surfaces arelikely to be
smooth than bumpy, this increases the quality of the map.ther@pproach
is to interpolate or propagate values from surroundinglpit@fill in empty
areas.

The quality, or correctness, of a disparity map is asse$seddgh compar-
ison with the scene ground truth. A set of stereo image pagre wroposed by
Scharstein and Szeliski [10] and they are used as the bemklwiheorrespon-
dence approaches today, with tools available online [18].

1.2 Motivation

Reducing the workload in a visual perception applicatiom ba achieved in
two ways: reduce the amount of data by only sending data efést to the
application, or extract necessary information so that geziver only needs
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to consume, not process. The first scenario is realized witlatare detector,
and the second with any of several transforms: depth extrgcegmentation,
object identification, etc.

The initial project with our stereo camera system was to pecedh fast nav-
igation application capable of simultaneous localizatiad mapping (SLAM)
through the use of vision [6],[19]. In short, SLAM is a prosaghere an agent
enters an unknown environment, picks out identifying landka or geometries
so that it can move around and always find its way back to thérsgggpoint
with the help of the identified visual cues. As the agent tree® the environ-
ment, it continuously builds a map of the environment whiclater uses for
navigation.

Common approaches are to use the SIFT [7] or SURF [20] fed&serip-
tors for landmark matching. The biggest challenge of SLAMoiddentify
salient areas with high confidence in the estimated depth STRT approaches
rely on unique identifiers which is slow and/or large in impéntation. Sim-
pler feature detectors can be made faster, but lose in nmatadunfidence.
However, a lack of accuracy might be compensated with higfeguency.
We thus opted for a fast but less accurate approach in angitterreduce the
computational complexity.

To improve the accuracy of the initial approach, we then psam concur-
rent simple correspondence approach for an increase ofisharity estima-
tion confidence. A stereo matching component running caeatly with the
simple feature detector, delivering depth informationtfa features. This ap-
proach needs to be resource optimized to not hinder thecapipih processes.

Disparity map estimation, however, is a non-trivial prablhich the com-
munity is only now starting to find a complete solution to. Her, these so-
lutions either require bulky systems or extended compridtime. For mobile
autonomous systems, real-time operation is required.aEtitrg depth from
two images of half a million pixels at this rate is no smalltfe@ddition-
ally, a complete vision system residing in an FPGA requiesegal processing
components just for preprocessing the image data, sucimageirectification,
motion artifact compensation, and depth estimation. Furttore, higher-level
applications, such as tracking, object recognition, origegtion, should also
fit. Fitting all these parts of an autonomous agent onto a e@trgnd power-
constrained embedded mobile system is a real challenge.

It is necessary to adopt an approach that is capable of ngabgrequire-
ments for the low-level processing to enable high-levekpssing, but that
can also fit the high-level processes concurrently. Thusuilding blocks
need to be reduced. Enabling more computations in the FP@Aeducing
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the components for preprocessing, will improve the capiglahd flexibility
of the system. Furthermore, it is not important to achieve&imam accuracy
in the algorithms. With a high-speed system, correction lterfing can be
used to compensate. A high sample rate allows for more sialptrithms.
Then, rather than trying to develop a new feature detectepmespondence
algorithm, our focus is on utilizing "good enough" algorith by combining
and optimizing them for reconfigurable hardware. The end igaasmall and
high-speed hardware system working as the eyes and vistekad any type
of autonomous vehicle or robot.

1.3 Outline of thesis

The continuation of this thesis consists of two main partse first part con-
sists of 3 chapters: Chapter 2 presents the related worlpt€ha provides an
overview of the included research papers; Chapter 4 presgetall contribu-
tions and conclusions together with possible future worke $econd part of
this thesis consists of Chapters 5 through 7 and is a calecti the research
publications which form the basis of this thesis.






Chapter 2

Related Work

The concept of using reconfigurable hardware for image [giieg is not new.
Several competent approaches exist, but most have one ettradeoffs: qual-
ity, resource utilization, or limitation in image size. Whiis the most impor-
tant parameter is an application specific question, butdioparpose, resource
utilization is important as we seek to fit an entire autonosnagent in our
system.

2.1 Visual Navigation

Several SLAM approaches have been presented, such as afhdertolli
et al. [6], and Montemerlo et al. [22]. However, the appraechre not suitable
for FPGA implementation. An FPGA implementation of SURF isgented
by Svab et al. in [23]. However, they only implement part of #igorithm
as the complexity and time-consuming nature of the algorithakes it diffi-
cult to realize on the FPGA. The descriptor generation iglleghin software
on a Power-PC, and the complete navigation system is rgsatina laptop.
Hence, another approach is required to fit a complete naeigaystem in an
embedded system.

2.2 Stereo Matching

Performance measurements of correspondence algoritluets,as presented
by Hirschmiller and Scharstein [24], mostly focus on theuaacy of the dis-

15
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parity map, whereas real-time implementations rank theutiinput, or frame
rate, higher.

2.3 Resource Constraint

Since the aim of our work is to achieve an acceptable perfoceat a low

resource usage, we need to specify what low resource usaBessurce uti-
lization in an FPGA is normally expressed in slices and LUJsokUp-Table

which realize boolean operations). In our previous work,system produced
an acceptable disparity map at 1221 slices when implemeéntadspartan-3
FPGA. This is just above 4% of the available slices on the.chip

Several stereo matching approaches with low resource hsagdeen pro-
posed, such as by Arias-Estrada et al. [25]. Their utilorats only 4.2K slices
on a Virtex-1l, but with a fair disparity map. The implemetita presented by
Lee et al. [26] comes in at a resource usage below 10K slichs.pfoduced
disparity map is moderate showing extensive blurring ofesdand noise.

For higher quality disparity maps, the resource usagetalelyigo up. Very
good results are presented by Zhang et al. [27], but theattitin is 95K slices
plus a large amount of ALUTs and DSP blocks, leaving littlermofor concur-
rent processing. A collection of proposed FPGA implemématis presented
by Lazaros et al. in [28].

2.4 Area Matching

Very accurate results have been presented for area-basseahapes [18], but
the high quality of these implementations mostly come atttpense of com-
putational power and, hence, processing time.

Recently a number of non-global near real-time implemémathave been
presented. They are not truly local as they are akin to glotethods such
as Dynamic Programming [29], but operate on a limited ar€ [The near
real-time software implementations tend to utilize splegiapose hardware,
such as GPUs [31],[13], to accelerate the processing. Athampressive in
their performance, they are not really suitable for mobild ambedded sys-
tems, considering the cost, size and power requiremerdssierring these ap-
proaches to an FPGA is not optimal, as they resort to itexatpproaches with
computational and memory requirements that are hard tzedak the limited
resources of an FPGA [31]. Large memory can be included whestaucting
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an FPGA-system, but the memory speeds required are abowaplaeity of
standard FPGAs.

2.5 Support Window

There are numerous proposals to overcome the static winsewe| as dis-
cussed before. Adaptive window approaches suggested bgd€aand Oku-
tomi [12] or the one by Boykov et al. [32] are an ill match forraystem,
as they exhibit the same problems as we do with noise andtiségsd low-
texture areas. Additionally, they rely on models with engailly derived pa-
rameters unique to every scene. This might not be much difffrom em-
pirical selection of window size for our standard approault, it is not an
improvement either.

Hirschmdiller et al. [33] suggests an approach using meltighdows for
good depth discontinuity performance. Although based ob Sfrequires a
large memory. Another multiple window approach propose€hgnghun et
al. [34] seems promising at first, but their reason for migtipindows is the
refinement of an overly-smoothed noise-free first estinmatioe inverse from
our approach.

Adaptive support-weight approaches, as suggested by Yoan[é4] and
Gu et al. [35], produce good disparity maps but at a low fraate.r

Yi et al. [36] found that the effect of the shape of the suppandow has
less impact than the number of pixels in the window. This togewith the
result from Lee in [26] that square matching windows can loiiced to half
the height without substantial reduction in quality, leads question of to
what extent a window height reduction can be compensatddanibcreased
width. Ambrosch showed that for window widths beyond the ownly used
sizes (up to 21 pixels) the accuracy actually degrades [37].

The ultimate reduction in window height is the 1-dimensiomizdow. It
is not extensively found in literature, possibly becausepitbduced disparity
map is noisy. However, a few implementations can be found.

Ambrosch [37] uses a 1x1 SAD, for weighting the comparisoa @fen-
sus matching approach in advantage of the center pixel.n@alal. use a
1-dimensional SSD [38] implementation. It runs at 30 fpsduwng dense
disparity maps of 160x120 pixels on an FPGA. The objects efdisparity
map are excessively bloated, as to be expected when usindeacairelation
window, and the depth resolution is limited, partially doethhe small image
size. Lefebvre et al. [39] presents an approach for 1-dilaasmatching
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paired with a confidence estimation. The work produces skmse dispar-
ity maps with associated match confidence map. However, titehimg is
made through multiple 1-dimensional windows of differeizies and not in
real-time. An interesting conclusion of theirs is that tlasib 1-dimension ap-
proach yields better results than the 2-dimensional insaoétexture and near
depth discontinuities [40]. The difference is actuallytgqubstantial for larger
window sizes, with the advantage of the 2-dimensional ireotreas being
marginal. The matching algorithm is SSD, but any correfatechnique may
be used to construct the correlation volume from which thienade the dispar-
ity and confidence. They show that 1-dimensional windowdaiarsufficient
information for estimating semi-dense disparity maps wjittod confidence.
The approach is far from real-time with a calculation tim& @econds for the
Tsukuba image pair.

2.6 Disparity Map Improvements

For completing hollow disparity maps, common approaches@amterpolate
or propagate disparity values from nearby matched pixelsonYet al. [41]
perform a spatial interpolation by the use of median filtgrinin propaga-
tion, the approach is that a window of estimated disparityes completes
the non-valid elements with the least value available invifredow to limit
the foreground fattening, Fusiello et al. [42]. Howeverragagation of back-
ground disparity values will thin out and often break thimefground objects.
The propagation window can instead be weighted to inclusigadity informa-
tion only from same object neighbors. Sun et al. [30] resthe selection to
pixels of similar color, supported by the color-disparignstraint. Although
producing good results, propagation methods rely on a/fagturate first dis-
parity estimation. Moreover, it is common with streakintifacts in methods
of propagation [30].



Chapter 3

Research Summary

The research group in Robotics at Malardalens Hogskolecissied on visual
pre-processing for robots and autonomous machines. Titil iand crucial
stage of autonomy deals with information gathering andrenvihent percep-
tion - such as navigation based on visual cues, and objecgnéton. The
work presented has been performed within this group, anfbthes has been
on electronics, hardware, and looking at computer visiomfan electronics
perspective.

This chapter presents a short overview of the underlyingsagf this the-
sis.

3.1 Paper Overview

3.1.1 PaperA

Two Camera System for Robot Applications; Navigati@mgen Lidholm, Fredrik
Ekstrand and Lars Asplund, In proceedings of the IEEE Igonal Confer-
ence on Emerging Technologies and Factory Automation (B TRamburg,
Germany, September 2008

Summary We present a hardware-based stereo vision system for tiaviga
The objective is to create a system for simultaneous locaiod mapping
through the use of vision on an embedded reconfigurable fzaedsystem.
SLAM is a complex task with a lot of data to process and mangpaters
to consider. Our approach is to see if it is possible to usg atimited feature
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descriptor, instead of SIFT or SURF, at high speed to idgfdaiidmarks. Al-
though only concerned with a limited number of reasonaljppsated features,
the confidence in a straight-forward matching techniquel®# cornerness)
is too low as the corner descriptors are too simple for matgbn individual
basis. This led to the alternative approach suggested\bieh is a combina-
tion of traditional stereo matching, back-projection [48[ tracking.

We propose to remove the problem of outlier detection andowainby
matching of 3D coordinates. The approach is similar to tHadrea-based
matching. For every feature in one image we match with alsiids features
in the other image, constrained by the rectified image cardlimiting the
search area to 1-dimensional. There is no selection peefdrail the possible
matches are stored (similar to the Disparity Space Imagefifright consis-
tency check implementations). Within this set there can hlg one valid
match.

This landmark set is stored and the robot is moved slightly.trBcking
the motion using wheel-based odometry, we have a notion anthe correct
features should have moved in 3D space, and by back-pnogettiis onto the
stored landmark set coordinates, we get their expected nervdinates. Cor-
relating these with the newly acquired landmark set, onbs#hrepresenting
the correct landmark should match. The confidence of thehankl increases
with the uniqueness and stability (number of correlatio®)course, wheel-
based odometry is not reliable over longer paths, so as se@nsafficient
set of landmarks with good confidence is generated, it isrseped by visual
odometry.

An FPGA implementation of Stephen and Harris combined eddearner
detector is used to reduce the data amount in the main appiicaA novel
approach focused on a high frame rate to reduce the problenatzhing and
tracking is proposed. The approach, however, was not fdlebbped and a
modified approach was presented in [44] by the use of cluggeri

My contribution |1 am the second author of this paper contributing with elec-
tronics design and implementation, co-implementationldDV.-components,
co-developing the idea, and formulating sections of the tex

3.1.2 PaperB

Resource Limited Hardware-based Stereo Matching for Fogleed Vision Sys-
tem Fredrik Ekstrand, Carl Ahlberg, Mikael Ekstrom, Lars Aspd and Gia-
como Spampinato, In proceedings of the 5th Internationaf€ence on Au-
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tomation Robotics and Applications (ICARA), WellingtoneW Zealand, De-
cember 2011tp appeaj

Summary The depth assessment in Paper A was not satisfactory. An al-
ternative approach is to work with features with a good ahi8D coordinate
guess. A matching component providing valid disparity infation in the
salient parts of the image only, will allow for depth infortiza without fea-
ture matching (by superposition). This concurrent matgltiomponent must
use only a limited set of resources, in order not to resthietdther processes.

The task is to find a stereo matching approach suitable faurees con-
strained implementation. An important issue is also the prgmequirement
of the matching component when handling large images, akitieer level
processes may not be blocked from memory access by the gon@snce
component.

A constrained implementation of two popular correlatiopmaches specif-
ically suited for hardware implementation, SAD and Censhswed that the
basic approach performed best with significant limitatibthe matching area.
A 1D SAD implementation resulted in a resource optimizegaligy compo-
nent suitable for the task, fulfilling the prerequisites oflimitations in terms
of external memory or image size.

My contribution | am the main author of this paper contributing with the
idea, literature survey, algorithm and hardware implemon, and verifica-
tion. The second author provided relevant insights, datahfe publication,
software-based validation of findings, and paper revisidbhe other authors
have contributed by giving feedback on the theory and dgtjparticipating in
paper revisions.

3.1.3 PaperC

Utilization and Performance Considerations in Resourcé®jzed Stereo Match-
ing for Real-Time Reconfigurable Hardwareredrik Ekstrand, Carl Ahlberg,
Mikael Ekstrom, Lars Asplund and Giacomo Spampinato, TethiReport

Summary As a direct result of the findings in Paper B, we formulated>an e
tension of the approach into a matching component producdense disparity
map with retained low resource utilization. Establishedods for improving
area-based matching methods are implemented from a hargheaspective.
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The approach significantly improves the performance of thglémentation
from Paper B and performs on par with recently publishedties dense dis-
parity map components. The resource utilization is keptdo the memory
and image size restrictions are maintained.

My contribution | am the main author of the paper, contributing with the
state of the art and formulating the approach, as well a®opaifig the hard-
ware implementation and verification. The second authotritaried with
problemidentification, initial testing, development oépproach, and software-
based validation. The third author contributed with refevf@aedback and in-
sights together with paper revisions. The other authore ltantributed by
giving feedback on the theory and actively participatingaper revisions.

3.2 Research Methodology

The research is based on literature surveys to perceivéateeds the art. Ap-
proaches are evaluated based on suitability of implemientdirough empiri-
cal methodologies including analysis of quantitative dgt@ommunity prac-
tice.



Chapter 4

Conclusions and Future
Work

This thesis gives a quick overview and introduction to impgecessing in

reconfigurable hardware. Important aspects for implemgnti hardware is
the suitability of the algorithm in terms of speed, comptgyxdnd resource
utilization. We have looked at minimizing the system imptactnable con-
current processing of traditionally computationally expige operations. The
key aspect is to focus on speed and process on the go withairting data in

low-level processing.

4.1 Contributions

The work presented in this thesis enables different levietiepth extraction.
For the minimized approach of running next to a feature-tbaseigation sys-
tem, the approach can supply 3D data in salient areas in ipgbdsand at
very low resource usage. Salient regions are important irda vange of ap-
plications, and feature detectors use these regions tdeeeaérything from
autonomous navigation to face-detection. Combining feabased matching
with a compact, fast and potent disparity estimator carevelisome of the
need for expensive feature descriptors. The benefits wahddher speed and
lower resource usage, enabling higher system integration.

We have shown in this thesis that it is possible to retain thadity of one
of the most widely used stereo matching algorithm while reimgp a few of
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its downsides. For approaches with a demand for more dens#agh) the
improved versions can produce semi-dense disparity mapbkigh speed, and
without a limitation on the size of the images processed.

The removal of matching data introduces noise, which careb®wved by
filtering, especially in area-based matching. The mediterdid 1-dimensional
stereo matching component effectively reduce the resadilcation, but with
retained accuracy. Moreover, the median filter does notinmthe 2-dimensional
approach with any significance, which is why the 1-dimenasiamplementa-
tion in certain aspects actually outperforms its largemterpart.

4.2 Future Work

Future work includes integration of the feature detectal e disparity esti-
mator to provide feature matching and tracking with highfigence. Another
interesting question is if an advanced confidence measunteraa invalidate
false matches at an early stage, and thereby keep the noisefrer entering
the disparity domain. For this to have any relevance, annelete propaga-
tion function is required. As is evident in this thesis, remmf data requires
compensation.

The next step is to run the autonomous system performingyatiwon in-
doors. Coming future work is to adopt the system for outdoArashole new
range of parameters will then need to be considered, sucltoismtompen-
sation, radiometric distortion, visual noise, etc.
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Abstract

Current approaches to feature detection and matching igematrive to in-
crease the repeatability of the detector and minimize tlgeegeof outliers in
the matching. In this paper we present a new approach; westitigat a lower
performance feature detector can produce a result morattequate for robot
navigation irrespectively of the amount of outliers. Byngsan FPGA together
with two cameras we can remove the need for descriptors bgno@ng what
we call spurious matching and the use of 3D landmarks. Theoaph by-
passes the problem of outliers and reduces the time conguask of data
association, which slows many matching algorithms down.
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5.1 Introduction

Navigation, object detection and object recognition arelhmental problems
in robotics - all which can be resolved with vision. The fundmtal task in
any of these applications is the reduction of the image cerifyl In order
to reduce the image information it is necessary to extrditrggroperties of
the image using for example a line, edge or corner deteat@ ,combination
thereof. Various approaches have been made on adaptireyhiasiple fea-
ture detectors into more complex, high-level detectoré wlitferent sets of
descriptors. The idea is to increase the invariant proggedi the detector and
thereby increase what is by many viewed as the most impdidatur of the
detector, the repeatability. However, in general, the ncoraplex the detector
the more computational heavy it becomes. When featurestiesueextracted,
the next step is to perform some sort of matching, either &gking a feature
in subsequent images or by matching in two cameras. The @dden is that
if this is to be performed at a high frame rate (around 30 fraper second)
it requires a high repeatability detector and a computatlgright matching
algorithm with minimal dynamic properties or at least a knomorst case ex-
ecution time.

In this paper we present a new approach. We suggest thatdsglpe to
produce a result adequate for navigating a mobile robot iliwer perfor-
mance feature detector. We use reprogrammable hardwa@A)-®gether
with two cameras to generate a real-time, stereo-visiatufe detector and
matching application. By using the motion of the robot we caduce the
problems associated with feature matching. The advantafgas FPGA are
manifold; the parallel properties of an FPGA makes for a hiyloughput,
small footprint system, and the comparatively low powerstonption makes
it ideal for mobile applications.

5.2 Related work

Robot navigation is a well-explored subject with visioné@dgavigation being
where the current focus lies. The approach of using an FPGthésystem is
also becoming widely adopted as it enables real-time imaggegsing [1] [2],
which is a crucial part in mobile applications [3]. For cémtapplications
FPGAs are better suited than desktop computers due to theiligl structure.
In [4] an FPGA implementation outperforms a PC by one ordenafjnitude
for the SIFT detector [5]. The power of the FPGA is furtherwhdn [6]
where they are unable to run Harris corner detector in igad-bn a computer
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with an Opteron processor running at 2.6 GHz. This advarmage personal
computers is likely to remain as both technologies are éwglin a similar
fashion performance-wise.

Navigation by vision requires matching of images, or ratteatures in
separate images. Tracking features in real-time in sulesgqonages from a
camera is not a trivial task, partially due to the fact tha¢guires a very stable
feature detector with high repeatability [7]. The curresdtiire detectors with
the highest repeatability, such as SIFT [5] and SURF [8lateralescriptors
for each feature in order to simplify the matching task. Utfoately, the high
dimensionality of such a descriptor means that it is contpartally intense [9].

All matching algorithms are faced with the correspondenoblem, i.e.,
how to match corresponding features from two images witlasgigning any
incorrect matches. A common approach is to use a statistiediod to mea-
sure how well a matching pattern matches. Examples of methogtross-
correlationandsum of squared differencesut there will always be outliers,
features not correctly matched, or not matched at all. Mawehried to mini-
mize the occurrence of outliers, and in [10] a comparisod,aanew approach,
is presented.

5.3 Experimental platform

We have designed an FPGA based vision system intended toasageneral
purpose research platform. With up to four 5-megapixel camand an eight
million gate equivalents FPGA.

5.3.1 Image sensors

The system uses the MT9P031 5-megapixel CMOS digital imagsos from
Micron. The sensor elements are organized in a Bayer patterrthe first line
consists of green and red pixels and the second line cowéibtae and green
pixels, see figure 5.1.

The pixels can be read in a number of ways. The readout foltbatsof
the Bayer pattern, however the order can be mirrored andspsképped for
both the row and column. In skipping mode, a number of rowspand/or
column-pairs are not sampled, i.e. skipped, thereby reduitie resolution
and increasing the frame rate but preserving the field of .view

It is possible to combine the adjacent skipped pixels in omleeduce the
effect of aliasing introduced by skipping. This is calledring and results in



5.3 Experimental platform 37

N .

ey

Figure 5.1: The Bayer pattern pixel layout with one row ofegrélight gray)
and red (medium gray) pixels, and one row of blue (dark graglgaeen pixels.

a more coherent/smooth image, than with skipping, but aldower perfor-
mance as all the pixel elements need to be sampled.

Figure 5.2: MT9P031 image sensor from Micron mounted on atnier board
(the lens is not mounted).

Additionally, one can specify what region of the image sertsoread,
which is useful when only a limited field of view is needed arfdgher frame
rate desired. The imaging sensor is capable of running at198,Mnd the
frame rate is dependent on the clock frequency and the fragee is., the
number of pixels read.

5.3.2 FPGA board

The FPGA board has a size of ¥85mm and is equipped with a Xilinx Virtex
Il XC2V8000 FPGA together with 256 Mbit flash, 512 Mbit SDRAMd a
CPLD. The flash memory stores FPGA configurations and it aotodates
8 different configurations. At power on the CPLD loads the RR{&cording
to the configuration selector setting. The configuratioeder is fitted on
the Carrier Board (section 5.3.3) and may be overrun by fampte a micro
controller. See figure 5.3.
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Table 5.1: Micron MT9P031 CMOS image sensor features [11]

MT9PO031 features
Color filter array RGB Bayer pattern
Maximum data rate 96 Mp/s at 96 MHz
Power consumption 381mW at 14 fpg
full resolution
Pixel size 2.2mx2.2um
Maximum frame rates
2592x 1944 14 fps
1280x 720 skipping 60 fps
640x 480 with binning 53 fps
640x 480 with skipping 123 fps

Camera 1 Camera 2

121 12 1
A
PESES EPBEET owans| .| 256Mbit
= a nY g o 2% Addressbus Flash
o &3 n =93
) ? Databus|e 2 .| 512Mbit
FPGA Addressbus SDRAM
5 CPLD
Tx/Rx g o ,}’
- iy
USB LVDS
1MBit GPIO RS-232

Figure 5.3: Block diagram of the camera system, a maximurowf éameras
can be connected.

5.3.3 Carrier board

The carrier board has a size of :490mm and have four camera connections,
with all signals, individual to each camera and generatethbyFPGA. Addi-
tionally, the carrier board incorporates a program sefeptawer supply, a USB
controller, serial port and control-1O signals. It is alsiefil with a FireWire
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connector for future extension.

5.4 Feature detectors

A feature can be a corner, line or any salient region which lmmxtracted
from an image.

One of the first feature detectors was Moravec’s corner tmtgr2], from
1977, which Harriset. al. improved in 1988 [13]. Since then, many other
feature detectors have been developed with different igslil4]. Most de-
tectors are designed with repeatability in mind, althouhe are designed for
other properties, such as speed [6]. Repeatability, asetkfin[14], is an im-
portant property, however, for our application, locali@gataccuracy and speed
are paramount. Harris is still one of the most robust detsawailable and
this together with its speed when implemented on an FPGA miakesuitable
detector for this application.

5.4.1 Stephen and Harris combined corner and edge detector

In [14] the authors concluded that, among the tested fedttextors, (Foerst-
ner, Cottier, Heitger, Horaud, Harris and Improved Haytisg improved ver-
sion of the Harris corner detector performed best regardépgatability and
information content. The original implementation of thengadetector was,
however, not far behind.

Moravec’s corner detector measures the variation in iiteirsan image
and looks for low self-similarity in a point. A corner is defithas a point with
low similarity to the surrounding region in all directionsg., a point where
the minimum change in intensity, in any direction, is largbdve a certain
threshold) [13].

According to Stephen and Harris, Moravec’s detector, h@nesuffers
from a number of problems which they try to correct with thmimbined cor-
ner and edge detector. In order to remove the anisotropy aise of the
discrete, rectangular window in which the variation is oddted, they intro-
duce an analytic expansion about the shift origin togethtir smoothing with
a Gaussian filter. By also taking into account the directibshift they can
produce a rotationally invariant detector that is not ogasitive to edges.

Stephen and Harris also introduce a response function iar dodselect
isolated interest points, as opposed to simply classifyelgeon as containing
a potential feature. This response function, which inctualestructure matrix
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calculated from image derivatives, indicates the qualitshe detected feature
and allows for the filtering out of less distinctive featureish the use of a
threshold similar to Moravec's.

5.4.2 FPGA implementation of Harris corner detector

We have a VHDL implementation of the Stephens and Harris éoedxorner
and edge detector. It was originally implemented as a umddtgte thesis for
an older vision system. We have adapted it to a new, large®;-Rlwing us
to increase the parallelism and thus improve the speed.

Some operations need to be performed sequentially foripehpurposes.
One of the most limiting factors of the FPGA is the number ofitipliers
available. Certain steps in the algorithm requires sinmeltaus multiplications,
and the need for multipliers would surpass the availablebemif parallelled
to the full extent. In order to save computational resoyrttessunits needs to
be "reused", i.e., not exclusive to a single task. Due to déleethat the corner
detector measures the intensity in the image and not theasiatu or color
values, we need only measure the contribution in one potitieoBayer matrix,
i.e., the green pixel. We chose to use only one value per qoladrant and thus
we only feed the corner detector with a new pixel every otlwduron every
other row. This leaves room for sequential operations ondtack cycles for
every pixel.

I
¢ Ix Gaussian
; | Window Generator
3x3 Window » Derivative Mask -
Generator ly Gaussian
Window Generator

3x3 Window Calculate Gaussian

Generator 7 Candidate < Filter

Corners

Find Corners (&
¢X,Y,T

Figure 5.4: A block diagram of our VHDL implementation of tHarris corner
detector.

A

The corner detector uses<3 and 5<5 pixel windows. This is the only
buffering required, all other processing is performed aspixel data arrives.
Our implementation of the Stephen and Harris combined cane edge de-
tector can be seen in the block diagram in figure 5.4. The gsocensists of 7
major, internally piped, blocks. The first block createsB3liding window.
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When two pixel rows plus one pixel have been extracted froencimera the
first window is passed on to the "Derivative Mask" block.

The derivative block calculates the intensity x- and y-ggats. These val-
ues, the first derivatives, are then passed onto the windoergtor for the
multiplication/Gaussian stage, which creates5liding window.

In the multiplication stage, the structure matrix is cadtatl and then run
through a Gaussian filter. The Gaussian filter is construesany shift opera-
tions, as opposed to multiplications, in order to save pligtis that can be used
for either increased parallelization or multiplier-heggstprocessing. The fil-
ter is not a true Gaussian function as the values are seleztedable shift-
ing, but no performance degradation has been observeddapibroximation,
which can be supported by [15] that shows that Gaussian wegheed not
be the optimal weighting function.

The filtered value is then used in the response function aaddsult is
fed to a new window generator. The last stage of the pipedittes response
value so that only the local maxima within the 3 sliding window generates
a corner response, as long as it exceeds the current thdeshol

5.5 Interest point location

An interest point is, what we call, a stereo matched featwmedan be located
in a coordinate system as a landmark, that a robot can usetigation. In
this section we describe how we can calculate the locati@enl@afidmark from
two stereo matched features. The same procedure, in revaisg can be
followed to calculate the pixel coordinate at which a landashould appear,
given the robots current location and attitude.

We use the right-handed coordinate system with posilivio the right,
positiveY in front and positiveZ above.

The full definition of the robot absolute vector defines thsifion in three
dimensions and the attitude in three dimensions (5.1). ©hetrcenter is lo-
cated at the floor in the center of the robot in the plane.

R: (XT7E7ZT7QT7BT7’YT) (5'1)

Since the robotis moving in a controlled indoor environnveitiout slopes,
we can considef, constant and zero. The same appliesdprand3,.. The
stereo camerarig has a fixed location on the robot and theardnslative vec-
tor of each camera is defined in (5.2), whermarks the camera, left or right.
The vector is relative to the robot center. To simplify thereb matching the
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Figure 5.5: Right-handed coordinate system

factor should be zero and tldeshould be the same for both cameras, resulting
in that linel in the left camera corresponds to lihim the right camera.

¢, = (Inaynvznvdnvﬁna'}n) (52)

The absolute vector of each camera can be calculated bygtidimelative
camera vector to the absolute robot vector, see (5.3, 5.4).

(Cn = (Xr'i_xnayvr'i_ynazr'i_zna

dnaBna'%“ +'AYn) (5'3)
= (Xnaanznvanvﬂna’yn) (54)

Every pixel in an image corresponds to a two dimensionakttime which
can be calculated from the focal length of the I¢rend the pixel separation on
the camera chifyiqin and Preigne. The two angled and¢ and an unknown
lengthr, form a polar vecto(r, 0, ¢).

(X,p,Y,) denotes the pixel coordinate, with the camera centé, at).

0 = arctan (W) (5.5)
¢ = arctan (W) (5.6)

By using (5.5) and (5.6) we can find the angular distance batvevery
pixel. The MT9P031 camera chip has a pixel separatiohZyim (table 5.1)
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but we are only sampling every second pixel column and rous ttoubling
the pixel separation td.4um. The focal length of the lens is 6 mm. This
results in approximately 0.7 milliradians per sampled piréoth horizontal
and vertical directions at the center of the image.

0 of each pixel is the angle from the center line, since thelpiaee enu-
merated with (0,0) at the center of the camera. To apprefieamdd,. as seen
in figure 5.6

Figure 5.6: The angles from each camera to a feature péiiot: the left and
right camera, the camera separati®nand ¢, which should be the same for
both cameras.

Lets consider the case where we know which feature in theclafiera
corresponds to which feature in the right camera. By fornaingangle with
corners at the two camera centers and the interest pointamigies as seen
in figure 5.6 we can calculate the distance of the two unkneoiangle edges
by using the law of sine, see equation (5.10-5.12). The carseparation is
known and denoted...
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™

=5 -0+a, (5.7)

b, =5 +0+cs (5.8)
¢z:¢r:g—¢ (5.9)
A=m—0 -0, (5.10)
sif(gn) - SH?W n e {l,r} (5.11)
9, = Sexsin(ln) ne (L) 5.12)

sin(\)

Using4.,, 6,, and¢,, we can form a relative polar vector from each camera
to an interest pointd;, 6;, ¢;) and(9,., 0,., d,.).

By converting the relative polar vectéd,,, 9, ¢,,) to a cartesian coordi-
nate and adding it to the absolute cartesian coordinateeotdhresponding
camera we get absolute cartesian coordinate of the inteo@st (5.15). Note
that the polar vector is rotated to the attitude of the capnvelnéch is necessary
when forming the triangle.

C and P marks the cartesian and polar coordinate system resplyativa
transformation between the two.
The cartesian location of cameta

C(Cp) = (X0, Yy, Zn) (5.13)
The direction and distance to the interest péint
P(Ik) = (In,bn, ¢n) (5.14)
The space location of the interest point.
C(Iy) = C(C,) + C(P(I)) (5.15)
The conversion from polar vector to cartesian coordinataires the use of
sineandcosineas seen below, wheres the vector lengthcos(6) is, however,

equal tosin(§ — #) which allows asine only implementation in the FPGA
using look-up-table (LUT).
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T =r*sin¢ * cos (5.16)
= r*sin¢*sin(g —0) (5.17)
y =1 *sing *sinf (5.18)
2 =7 %Cos¢ (5.19)
—rx sin(g — ) (5.20)

5.5.1 Image sequence feature tracking

To track features in an image sequence is not a trivial propleature extrac-
tors like Harris corner detector have minor problems withesgability result-
ing in features disappearing and reappearing.

Tests have shown that a simple tracker, like nearest neighbot reliable
enough [7]. To successfully track features in an image a radvanced algo-
rithm is required, possibly where information of the featmeighborhood is
known.

A factor which makes it even harder is that we have a resaluf®.7 mil-
liradians per pixel which at one meter distance corresptmapproximately
1 mm, making minor vibrations result in large displacemeifgatures in the
image.

A common method of improving the matching performance isg®e iea-
ture descriptors. Feature descriptors provide more inddion about a fea-
ture, by including neighborhood data. The descriptor mékes$eatures more
distinctive and unique. Even though the stereo matchinglpro is simpli-
fied, descriptor based algorithms require quite a lot of cstapons. SIFT
based navigation systems as an example, often can not mar@agethan a
few frames per second on a regular desktop PC. The most commprof
performing stereo matching is by using statistical metheldih are not de-
terministic.

We choose an approach to the stereo matching problem whie$ ot
require feature tracking in an image sequence and no gtatistethods.

5.5.2 Spurious matching and landmark evaluation

To match a feature in the left image with a feature in the rigtage is known
as the correspondence problem. A common approach is to useeation
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window around the features and with a statistical methocutaie a matching
score. The score with the highest value is the most likelyedhe correct
match. To successfully use statistical methods it is necgds calculate the
matching score for many different matching pairs to find thetah with the

highest possible score. It is also necessary to find thecosithr false matches.

Our approach is adapted for a real-time vision system whHeralata is
processed as a stream. No image is stored as a whole, lirerdafe however
used.

A feature appearing at pixel row in the left camera must appear, if ex-
isting, on rown + m, wherem is a camera calibration accuracy value which
under the condition that the camera distortion is correatetithat the cameras
are perfectly aligned is equal to one, because of the dspirel values. The
horizontal limitations can be found by knowing the attituafethe cameras.
The search window denotéd,,, (F;) represents the maximum area in which
a feature in the right image must be located to corresponéatufeF; in the
leftimage.

By matching every featuré; in the left image with every feature within
Wi (F;) in the right image we get a set of possible landmakld K (F;).
Within this set of 3D coordinates there can be only one thatesponds to
the actual landmark, which one is unknown. We call this spugimatch-
ing. Instead of trying to find the correct stereo correspords, we try to find
which landmarks in the environment are the correct ones.léNhoving the
robot, measuring the location of the robot using wheel baskimetry, and
continuously calculating the possible landmark locationdvery feature?;,
the reappearing landmarks are then put in a landmark daabtsan increas-
ing confidence related to uniqueness and stability of therteark location.

To rely on odometry can be risky because it is a relative nteasent sys-
tem with no point of calibration. Wheel slip can cause hugdtéawhich can
be hard to recover from. For shorter distances, less thamater, the ac-
curacy provided by wheel based odometry should be suffici&stsoon as
enough landmarks has been located with good confidence threeaidy sys-
tem can be used solely as a support system and is no longéreedor the
vision based navigation, which can be used for visual odomet

When a number of landmarks has successfully been locateditrieces-
sary to try and relocate them in the manner described abgvpreglicting the
robots location and attitude before each iteration, usimgkample a Kalman
filter, we can find the pixel coordinate for each possiblyblsiandmark and
exclude those features from the images. This reduces thaergrabfeatures in
the images which need to be matched.
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Another way of reducing the amount of possible matches idaptthe dis-
crimination level according to how many features was detkit the previous
images in order to have a sufficient amount of features.

The camera system is a resource limited system. A navigayistem like
this will collect many landmarks, requiring large amourftpr@ferably volatile
memory so that data can be retained during a power down. A edlvays has
a computer for controlling the high level strategy, takiotj@ns on sensors and
planning future strategies. The vision based navigatistesy presented here
is supposed to work like an advanced sensor. The visionmysa® report all
landmarks, confidently located in the environment, to theareemputer which
stores them in a database and sends them back to the vistemsysen they
will reappear in the visual field. This approach allows thetam system to only
keep a minor amount of landmarks in local storage, like black or SDRAM,
which is available on the FPGA board.

Computational requirements

Calculating the space location of a feature pair, as seeb.’i5.15), requires
25 operations. Harris extracts approximately 300 cornens fa 320<480
pixel frame without being too cluttered. In average this nsekess than one
corner per line, the maximum number of corners possible anglesline is
3—§0 = 106, though very unlikely (see section 5.4.2).

A pessimistic number of matches per feature could be aroOnavRich
would render in 6000 landmark calculations per frame. 25atms on 6000
landmarks would result in 150’000 operations per frame,clhs less than
0.18% of what Stephen and Harris algorithm requires.

5.5.3 Experiments

Inthe experiments the older system based on OmniVision QU¢&meras has
been used. The OV7610 chip has a pixel separati®yok 8.4 um, since the
same sampling method is used here, the horizontal pixetaépais doubled.
The robot has moved in a straight line from 2000 mm from a sipgint up to
the distance 230 mm. The result is shown in figure 5.7. As caseba there
are some discrepancies. The mounting of the cameras dogsaantee that
they are in parallel, and separate measurements of theléggh of the lens
does not give the expected focal length of 6 mm, but 7 mm. Owrerntainty
that has been calibrated away is lining of the cameras, i@ they have the
same forward direction. Other uncertain parameters agerteunting relative
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= Calculated Distance

Figure 5.7: Stereo calculated distances to a single poith, plus minus one
pixel error bars

to the camera chip, camera separation and camera califordiie correction
of the pointing direction was concluded from the errors atlé#rgest distance.
The separation at larger distance is smallest and any ertioe iorientation will
have the largest effect at these distances. The correctionrheasurement are
found to be 11 pixels by minimizing the sum of squared diffiees of the
calculation errors. A separation offset of 11 pixels cquoegls to a misplace-
ment of the lens of 0.18 mm. The pixel coordinates are disoralues which
corresponds to the pixels location plus minus half a pixéle $eparation of a
matched corner pair thus have a possible deviation of plassione pixel. The
deviations are illustrated with vertical bars. It is obvédhat a stereo camera
system like this requires automated calibration of seymaeameters, such that
the 3D location of a landmark can be calculated with suffigyemgh accuracy
for the spurious matching to be applicable.

5.6 Results

Our FPGA based stereo vision system is capable of real-gatarfe extraction,
using the implemented Stephen and Harris combined corezdge detector.
To stereo match these features, for landmark location,tis tdvial problem.
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We present a novel approach which we call spurious matcHiogiag us to
validate which matches correspond to actual landmarks byingahe robot
and extracting the features at different viewpoints.

In the current implementation of Stephen and Harris contbawner and
edge detector 75 out of 150 available multipliers are udeid,dould easily
be reduced to 25 by sharing multipliers in the factorizastep of the Harris
algorithm. For performance results of the corner deteaertables 5.2 and
5.3. See table 5.4 for frame rates of Harris corner detectaun system.

Table 5.2: Computational performance of our implementedioHarris corner
detector.

Fact. and] Calc. rep-

Calc  of .
Op/Block edge mask (_Bau55|an sons func-
filter tion
Add 4 120 1
Sub 6 0 2
Shifts 0 75 0
Mul 0 75 3
Total 10 270 6

Table 5.3: Performance total of Harris corner detectorféemint frame rates

pixels/frame| fps | Instr./pix | Cameras| MIPS
148'800 27 286 2 2'298
148’800 34 286 2 2'894

Table 5.4: Performance of our implementation of Harris eodetector.
Frame size | Cam freq. | FPGA freq. | FPS
320x480 96MHz 100MHz 65 fps*
320x480 50MHz 100MHz 34 fps
320x480 40MHz 100MHz 27 fps

* Theoretical value which we have not been able to verify.
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5.7 Future work

Perform tests on the new stereo camera rig and automateatadibof camera
parameters. The proposed spurious matching algorithmdtdseen fully ver-
ified yet, there are several performance factors which rebd evaluated like,
camera discrepancy, odometry precision and landmarkizatiin accuracy.
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Abstract

This paper proposes a 1-dimensional implementation oflbasad stereo match-
ing with minimal resource utilization. It achieves an adedyte disparity map
without the use of expensive resources. The matching acgdoa the ap-
proach can in some extent even outperform that of its 2-déneal counter-
part. Additionally, as it excels in terms of frame rate ansbrgrce utilization,

it is highly suitable for real-time stereo-vision systems.
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6.1 Introduction

Image preprocessing aims at a reduction of the amount ofvdtttaut losing
significant information, or to elevate the information dgnsf the collected
data before forwarding it to the main application. This pfite/olves extraction
of 3-dimensional information from 2-dimensional imagestrieving the depth
information implies solving the correspondence probldmat is, matching a
segment, or pixel, in two images from separate views.

Area-based stereo-matching techniques are widely aat@gtene of the
best approaches for generating dense depth maps formeabyistems. Several
approaches exist, with numerous implementations for eappyoach [1], [2],
[3], [4], [5]- For a comprehensive overview of the subjeatl a@chniques we
refer to Scharstein and Szeliski [6]. Implementations foecific platforms,
such as FPGAs, are presented by Lazaros et al. [7]. Forn&fgdrocessing,
the accuracy of the depth map is the most important aspettioameal-time
applications the frame rate is added as an important paesumidte maximum
possible depth range detectable also frequents the peafmerevaluation lists,
and for robotics and autonomous applications, the impleatiem size and
resource utilization is also of great importance.

Correctly estimating the separation, or disparity, of tams point in two
separate images does not necessarily infer a reductioreariount of data.
The disparity is estimated for every pixel and the bit coustileen an 8-bit
gray-scale image and a depth map is likely to be identicabihmunicated
off chip. Constantly sending large amounts of data off-ahilpyield a heavy
load on the communication lines. Since one of embeddedragdtéggest bot-
tlenecks is intercommunication, it is straightforward tgue that minimizing
the amount of data necessary to send off-chip would incréeséhroughput
and the speed of the system, similar to that of image and filgpcession for
network streaming. Retaining the data on-chip for furthcpssing and re-
duction is clearly desirable.

A small and resource limited implementation will enable sachip co-
processing. However, if the implementation causes headihg of the mem-
ory, it will effectively limit the memory bandwidth for anyoeprocess. Re-
moving the need for external memory - or other limited, exivle resource -
in the preprocessing, extends the range of concurrentitiige possible. The
more data-intense the process, the more the system wilfiboen a reduced
utilization of shared resources [2]. The goal is thus to miré the resource
usage of the low-level correspondence part in order to asae¢he resources
available for application specific processing.
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A possible application of this minimal correspondence congmt is to
increase the match confidence of an embedded, visual odotreted naviga-
tion system [8]. Providing an early depth estimate for theked features will
significantly increase the confidence in matching as welkkdsce the outliers.
A direct validation of the matched features will be possisleen executed
concurrently.

We have examined the implications of resource limitatiarstfvo exten-
sively used stereo-matching approaches by removal ofrtteedind resource in-
tense memory utilization. The goalis to see if it is possiblget an acceptable
disparity map with a radical reduction of the matching d&e.greatly reduce
the use of system resources in an FPGA-based implementatiemable ex-
tensive on-chip, hardware-based image co-processingpiip@sed approach
is to remove the inter-scanline dependency of standardrsgquarectangular
area-matching techniques.

6.2 Matching Algorithms

For our implementations, we assume rectified and parallapes with a uni-
fied baseline. In a live system, a rectification process iallystequired before
the matching - an additional motivation for advocating mnmal system occu-
pance by the correspondence component.

Among the most common approaches in area-based matchingAdde
(Sum of Absolute DifferencgsSSD Sum of Squared Differengesind NCC
(Normalized Cross Correlatign The difference in outcome for these approaches
are for a basic implementation minimal, hence the complexitd system
suitability are more important factors for our purpose. BfD and NCC
approaches require multipliers, an often limiting reseuirc FPGAs, heavy
used in image rectification and other image-processing T SAD is the
preferred choice due to its minimal resource utilization (multipliers) and
straightforward implementation composed of a series ofatfmns, accord-
ing to (6.1), requiring only adders and comparator - abuhteRPGAs. The
I;, andIy in (6.1) are the intensity values of left and right imagesiaélpx
andx — d, respectively, withd being the disparity under consideration, and
denoting the width of the correlation window.

w—1

SAD = |1 (z) — Ip(x — d)] (6.1)

z=0
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Another similar approach popular for hardware impleméoiat, due to its
robustness to radiometric distortion and straightforwiandlementation (no
multipliers), is the Census Transform [10]. The Census Jii@am is not a
matching algorithm, but a non-parametric local transfowalgating the local
structure of the area. Itis acting like a preprocessingtstemhance the image
before matching.

The intensity value of each pixel in the image is replaced Hjt atring
composed of the result of a boolean comparison betweerf &grdlits sur-
rounding pixels according to comparison function (6@js a bit to be placed
in the string, and is decided by the pixel intensity valuem relation to the
center pixel's intensity, in the center pixel neighborhood.

C(Z’cgis) — { é? ic < is (62)

le > 1s

The bit-string values are then correlated between the tvegés for every
pixel within a matching window by calculating the Hammingtdince, which
is the number of differing positions between two strings goi@ length. In
both the Census and SAD approaches, the best match is foufimdiyg the
least sum of differences.

Woodfill and Zabih [10] claims that the relative ordering bétintensity
values of the Census algorithm is less susceptible to noideoatliers, and
matching implementations using the transform are repdotedtperform stan-
dard correlation techniques, such as SAD and SSD [11],[12].

6.3 Related Work

SAD and matching using a Census-transformed image can bgaraed as
area-based correspondence methods. The matching windewe-based ap-
proaches are usually a square, and the matching localizatiproves with
increased window size. The reverse holds for the accurapgaally in areas
with sharp depth-discontinuities, due to the averagingafdf the window.
However, as the shift between the two images to be matchesisraed to be
purely horizontal, the vertical information holds less gdiin the disparity
estimation.

Lee [13] concludes that a rectangular window for SAD coroesfence
saves close to half of the implementation cost without fiaorg the quality.
Although stating that the surrounding vertical pixels ofiypction as noise
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reduction, and presenting matching scores for variousevirglzes and ratios,
Lee does not show any results for 1-dimensional windows.

Calin describes an implementation of a 1-dimensional digpaap esti-
mation by use of SSD [14]. It is capable of producing denspatity maps
of 160x120 pixel images at 30 fps running in an FPGA. The prieskresults
are moderate as the disparity objects are excessivelydalpas to be expected
when using a wide correlation window, and the depth resmhuis limited,
partially due to the small image size.

Figure 6.1: The Tsukuba original and its groundtruth.

6.4 Implementation

We implemented 1-dimensional versions of both the SAD ardGensus
methods in VHDL for execution in an FPGA. As a comparison, ise anple-
mented the regular square-window approaches for both rsti#alditionally,
we verified the implementations in MATLAB and received pieaity identical
results as for the VHDL.

6.4.1 SAD

Our implementation of the SAD algorithm is straightforwaithe difference
calculations are performed over the entire disparity ranggarallel through
multiple instances of the pixel-wise AD calculation unihelinput to the ADs
are the latest pixels from the left image according to thedwimsize, together
with the in registers stored pixels for the disparity rangef the right image.
The least sum is then found through a tournament selectmeps.

For the square implementation the window-generator from&s used
and the above implementation multiplied by the window sizé &un in paral-
lel.
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6.4.2 Census

As a local transform, the Census Transform rely heavily eméighbors and
minimizing the neighborhood significantly reduces the aacy of the ap-
proach. The fact that the Census correspondence is cadufatwo separate
window-sets - 1: the transform; 2: the Hamming distance -asdke informa-
tion reduction two-fold and causes the performance to aetee more than for
the SAD. To compensate for this loss of data, we substititeditensity with
its underlying RGB values and separated them into parabéthing channels.
Thus the matching data is increased three-fold (togethtbrtive resource us-
age), and an increased matching accuracy can be observediia 6.2 (see
next chapter for how to evaluate the image). This contradiet data presented
by Bleyer [15]; that substituting intensity with color ingtCensus Transform
will not improve the matching. The issue needs further itigasion, but it is
evident in our matches that color yields an improved residivever, with in-
creased window width, this difference between intensity RGB diminishes,
although still remains.

Figure 6.2: The 1-dimensional Census Transform matchingrones with
RGB (left) over intensity (right).

The 1-dimensional Census implementation is similar to th® Siith the
main difference being the three parallel matching stageldadling the color
channels in the Census. The image data is shifted into thragsasized ac-
cording to the matching window. The Census Transform isquaréd in paral-
lel for all pixels, and the referencing is for the same chénaster pixel only,
no cross-color evaluation. The Hamming distance is thefopaed in two
steps for all disparity positions for all channels in pahll1: the channels are
individually compared; 2: and subsequently summed foryepessible dis-
parity in the range. The last step is to select the minimuraevalithin the
disparity range.
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The square Census implementation is using the same imptatizenwith
the RGB channels multiplied with the window size and filledhndlata from
the previously mentioned window generator. This signifigaimcreases the
resource usage, which requires a dramatic improvementiabmnted.

Figure 6.3: The colormap for the disparity images. Blue ¢atés a small
disparity, and red a big disparity.

6.5 Results

The commonly used stereo pair from the Tsukuba Univers&y\das used to
evaluate the implementations at an image size of 384 by 2&8%iThe orig-
inal scene is shown in figure 6.1 together with the groundtrwhere lighter
means closer, supplied with the test images. The dispasdysmpresented in
this paper have been colormapped according to figure 6.3tterbkustrate
the differences in disparity. The range of the colormapesents the disparity
in the image, the blue color is a small disparity (futher ayayd the red is a
large disparity (closer).

As opposed to the results from Hirschmdller [12], the Cereusespon-
dence is outperformed by the SAD in the standard implemientFor larger
windows the differences are marginal, but for smaller windizes the differ-
ences increase, as can be seen in figure 6.4.

The Census disparity maps are far more noisy, which is ever promi-
nentin the 1-dimensional implementations. The perforrearduction result-
ing from flattening the window height to a single row can bensedigure 6.5,
where resulting images from two matching windows of the seuidiéh but dif-
fering height for both SAD and Census are shown. The samedtygeluction
exists in both approaches, but it is more evident in the Cenis@ppears that
the Census Transform suffers more from the window redudtian the SAD
does.

However, as the width of the windows increase the differsriminish,
and although the 1-dimensional SAD version suffers fromss lof surface
continuity, it is actually better than the square versioterms of precision for
valid pixels, especially around object boundaries, as @seen in figure 6.6.
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Figure 6.4: Square matching window versions for Census) (lefd SAD
(right). The window sizes are, from the top: 11, 7 and 3.

This improvement is due to the absence of vertical smootipamgrated by the
multiple scanlines of a square window.

Table 6.1 shows the resource utilization for standard impletations ver-
sus flattened, for the SAD and the Census at a maximum digpdrit6 on
images of 384 by 288 pixels. The listed resources are forahespondence
components only, the surrounding system components useddding, stor-
ing and sending of the test images and match data are notlettlun a more
extensive implementation of the 2-dimensional SAD matghmethod, a large
memory is usually included in the design. Its purpose is tid kiee pixel and
disparity data of previously processed pixels in order tdgeen right-left con-
sistency check, to further remove matching errors and ingtbe disparity
map. Thus, the real implications of flattening the correlatvindow are even
greater for the resource utilization, as been discussetiusgy, than the direct
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Figure 6.5: The information loss for SAD (top) and Censudtfiro) when
reduced from 3x3 (left) to 1x3 (right).

reduction shown in table 6.1.

Note: For the purpose of evaluation, external memory is uséte imple-
mentations to store the test images. However, those resoare not included
in the data of resource utilization.

6.6 Conclusions

In this paper we propose an approach to a limited correspmedenplemen-
tation. It is limited in the use of system resources to enaixtensive on-
chip/embedded high-level post-processing. The impleatiemt is based on
one of the most commonly used approaches for stereo comdspoe, the
SAD (Sum of Absolute Differences).

The limited implementation of the SAD performs remarkablgliwvand
even challenges the original square window version fordavgdths, due to
the absence of smoothing errors brought on by the averaffeg ef the win-
dow. lItis evident that although there is a reduction in digpanap quality,
it is possible to achieve acceptable disparity maps witleatensive memory
usage. With further post-processing or inclusion of a éasttion for dis-
parity continuity, the result may be improved toward thathef costly square
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Resource Slices | LUTs

SAD 3x3 1,434 | 5,581
SAD 1x3 611 1,746
SAD 1x7 761 3,489
Census 3x3 2,013 | 11,676
Census 1x3 1,035 | 3,553
Census 1x7| 1,579 | 7,489

Available | 33,280] 33,280]

Table 6.1: Resource utilization

window-matching implementations. Even without this ppaicessing, the 1-
dimensional implementation is more than adequate for aum@us applica-
tions such as navigation, mapping, and obstacle avoidahdg particularly
suitable for applications requesting sparse depth inféomasuch as for fea-
tures, by providing a confident match in salient regions.

Figure 6.6: The SAD versions for 11x11 (left) and 1x11 (r)ght

Operating this approach on larger images, even of severgaMeels, will
not affect the throughput or the resource utilization. Imdgta is only stored
in registers in the FPGA and will not demand any external nmgroo other
resource utilization regardless of the image size. It idémgnted with a max-
imum disparity range of 64 for a window size of 21 pixels.

The implementation run at 125 MHz, the system clock of our ER®ard
[8]. As the implementation is fully piped, the frame rate epéndent on the
speed of the cameras and the size of the frame. Theoretitadycapable of
processing over 100 frames per second for Megapixel images.
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Abstract

This paper presents a quantitative evaluation of a set ofoagpes for in-
creasing the accuracy of area-based stereo matching nsetktod targeting
real-time FPGA systems focused on low resource usage anihmizax im-

provement per cost unit to enable concurrent processing riéthods are
applied to a resource optimized correspondence implerientand the indi-
vidual and cumulative costs and improvements are asse&sammbination of

the implemented approaches perform close to other areeghimgtimplemen-
tations, but at substantially lower resource usage. Aaluttiy, the limitation

in image size associated with standard methods is removadiully piped

complete on-chip solutions, all improvements are highiyesle for real-time
stereo-vision systems.
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7.1 Introduction

Applications such as navigation and object avoidance reqeal-time infor-
mation about their environment, and vision is a good praville to its versa-
tility and speed. This visual perception includes deptbiimfation, implying
real-time matching of multiple view-separated 2D imageseferably from a
stereo camera setup due to the reduced complexity with arkmelation be-
tween the images.

The extraction of depth data through the localization ofg¢hme point in
two images is not trivial. Stereo matching of an entire sdsreomputation-
ally intense, and processing a scene, or an image pair, 3% tpar second
(real-time) is computationally demanding, and requirehipgrforming hard-
ware. Implementations range from regular computers, toiajized hardware
such as GPUs and FPGAs. Lazaros et al. [1] make a thorougariegi®n of
various implementations.

FPGASs, often referred to as reconfigurable parallel hardwane utilized
in mobile applications using vision, as they outperformeothpproaches in
terms of speed, size, and power requirements [1]. The mé&jstaole is the
limited resources, which restricts which algorithms arssilole to implement.
Non-iterative approaches with small memory footprintshsas pipelined pro-
cessing of streamed high frame-rate camera data, are @efer

Stereo matching is a well-covered problem with many suggespproaches,
and a comprehensive overview on the subject is presentedir&ein and
Szeliski [2]. In general, the approaches are divided intdgl and local meth-
ods. Global approaches consider the entire image whenastgnthe dis-
parity, usually with high accuracy. Their iterative nataed high memory
bandwidth requirements [3] make them not optimal for FPG/Alamenta-
tion. Local approaches consider only small parts of the enaglled support
windows, which are matched using a correlation measureic Basal algo-
rithms do not attain the accuracy of global methods, but theye been the
preferred real-time stereo matching approach for a long tilme to ease of
implementation and speed [1].

Two popular correlation measures of local methods for stemrespon-
dence are SADSum of Absolute Differendeand SSD $um of Squared Dif-
ferencel Both are of similar performance [4] and straight-forwsmdmple-
ment in an FPGA, but the SAD consumes less resources tharsb¢5$, an
important factor in hardware systems.

An important parameter with hardware implementations ésliited re-
sources available. A complete vision system residing in BG4 requires



70 Paper C

several processing components just for preprocessingthga. For instance,
image rectification, motion compensation, and depth esitimare all low-
level tasks. Additionally, higher-level tasks, such ashmag, object recogni-
tion, or navigation, should also fit. Enabling more compotat in the FPGA,
by reducing the components for preprocessing, will imptbescapability and
flexibility of the system.

We examine the impact of heavily reducing the resource ushgestereo
matching approach in [6]. The 1D implementation shows aeptatble result
for the application at hand - disparity estimation aroungle=d at a very small
footprint. The natural drawback is excessive noise, egfigdn known diffi-
cult regions of low-texture and/or low signal-to-noiséaatPositive aspects,
besides the resource usage, is the removal of external maegardless of
image size, and the removal of the image size restrictioriéihin 2D ap-
proaches - a larger image does not increase the resource ok#ue corre-
spondence component. In this paper we will present the ivgmnents gained
and the costs incurred by a number of resource optimizedceimg@htations of
established approaches for improving this basic corredgaore method. An
evaluation can then be made on whether these improvemertsstified con-
sidering the increased resource usage, depending on the okthe targeted
application.

This work is part of the Two Camera-project at Malardalenvdrsity. The
aim is to construct a compact, vision-based autonomousrsyshcompassing
both sequential and parallel processing units [7]. The nitgjof the low-level
data-intense processing will reside in an FPGA, while Heylel computation-
intense processes are handled in an embedded sequentjaltesnThe code
composing the components in this paper will be made availablan open
source project to promote FPGA-based image processingrgrublicly avail-
able vision system.

Figure 7.1: The Middlebury test image Tsukuba with the assed ground
truth.
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7.2 Background

This section will look at some common approaches of imprg\asic area-
based matching and how they can be adopted to our systemntigoal is to
incorporate as much of the processing for an autonomousmyas possible in
the FPGA. In order to encompass concurrent processingjt@and trade-
offs need to be made. As a result, we have adopted a systeweapyp stereo
matching with the explicit aim of reducing system impactvan implementa-
tion. We have constructed an FPGA-based system [8] for antons machine
applications, and implemented a resource optimized bésiesmatching al-
gorithm [6].

Local correspondence algorithms consider a limited areasnding the
point under evaluation for disparity estimation - the suppindow. The SAD
matching cost for two points residing in two different image calculated
through an aggregation of the element-wise absolute difigzs of the support
windows for respective point. A common assumption of stanedching algo-
rithms is that of rectified and parallel images with unifiedédane and common
scan-lines. With this assumption it is safe to reduce theespondence prob-
lem to a 1-dimensional search [2]. As such, correlation rfgpmed by evalu-
ating the difference between windows in different imagdasatbgame scanline,
no disparity perpendicular to the scanlines needs to betiake account. For
all approaches, we assume rectified and parallel imageswitlified baseline.

The implementations are evaluated using the stereo imagksrdine tool
provided by the vision department at Middlebury Univer$@}. One of the
images used in our tests is shown in figure 7.1 along withuts disparity map.
The disparity maps generated by our implementation aregusimaximum
disparity range according to the stated disparity rangk@évaluation images.

In [6], we show that SAD is a good candidate for a resourcentiptéd
correspondence implementation for real-time systems. IThapproach pro-
duces a disparity map with preserved details and reducedifound fattening
compared to the standard 2D implementation. The increasied i primarily
located in low-texture areas with low signal-to-noiseaats can be seen in
figure7.2.

7.3 Related Work

Since the aim of our work is to achieve an acceptable perfoceat a low
resource usage, we need to specify what low resource usagenis=PGA
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Figure 7.2: The areas with the most noise (red circles) hawvedxture and/or
low signal-to-noise ratio.

consists of different elements that can be configured in ditumdé of ways.
Resource utilization is normally expressed in slices and'$ (.ookUp-Table
which realize boolean operations). The 1D implementatiomf[6] produced
the disparity map of figure 7.2 from 1221 slices when impleteém a Spartan-
3 FPGA. This is just above 4% of the available slices in th@chi

Several other stereo matching approaches with low resasa@ge exists,
such as the one proposed by Arias-Estrada et al. [10]. Theatiton is only
4.2K slices on a Virtex-11, but the disparity map is only falthe implementa-
tion is capable of 71 fps with images of 320x240 pixels. Leal dtl1] present
an implementation below 10K slices in resource usage. Thdtieg disparity
map is moderate with extensive blurring of edges and noisehigher quality
disparity maps, the resource usage goes up. Very goodseselipresented
by Zhang et al. [12], but the utilization is 95K slices, whiish3 times the
total number of slices available in our FPGA. Additionallgey use a large
amount of special ALUTs and DSP blocks, leaving little romndoncurrent
processing.

A comparison between software- and hardware-based comdspce al-
gorithms, show a clear separation of focus [12]. In genamwfitware-based
methods produce much more accurate disparity maps, bubfaibduce real-
time output at high quality. Real-time software impleméiotas generally do
not produce much better result than hardware-based onetheQuther hand,
hardware-based implementations produce frame rate fareelg those of
software-based. This is starting to change, though, asvaodtbased algo-
rithms are being transformed to fit hardware, and softwaisetl systems are
starting to achieve high throughput by utilizing GPUs. HoerePC and GPU
approaches are still too bulky for embedded systems.
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7.4 Improvements

We will now present a set of common approaches to improvedtygmages.
They are not specifically oriented at reconfigurable hardwaut are more or
less established in the area of stereo matching.

7.4.1 Support Window

Being rudimentary for the performance of area-based appexa the window
size selection is of great importance. Generally, smaliadaws increase the
matching precision, but exhibit more noise. Consequelaige windows re-
duce noise and produce better results in low-textured goeéblur in areas of
depth discontinuities, and cause an effect known as fotegtfattening [13].
Common window sizes for the 2D SAD range from 9x9 to 17x17 [B&yond
this size the accuracy is actually starting to degrade, asstyy Ambrosch et
al. [14], and there is no global optimal selection due to ttens dependency.

Several proposals for improving the lack of conformity ofiace static
windows to the dynamic conditions of a scene [3] have beepgsed, such
as adaptive [15], multiple [4], or weighted [16] windows. Wever, the adap-
tive window approaches suggested by Kanade and Okutomoflthe one by
Boykov et al. [17] does not offer much improvement, only eliéint problem
areas (ill-defined edges, noisy surfaces, sensitivity Wotlexture areas, non-
realtime performance). Additionally, they rely on modeighwempirically de-
rived parameters unigque to every scene, which is not a hugmirament from
the empirical selection of window sizes. More recent adagria of this notion
produce better results, such as the work by Sun et al. [18]tHay are still
iterative and slow.

The approach by Hirschmiller et al. [4] suggests the use diipreiwin-
dows for good depth discontinuity performance. It is based&AD, but un-
fortunately requires high memory bandwidth. The bi-levaidow refinement
proposed by Chonghun et al. [19] first calculates a dispardp using a large
16x16 window and then refines it with a small 5x5 window. Themson for
refinement is that of an overly-smoothed first estimatiorictvis rather noise-
free but blurred, as opposed to our noisy first estimation.

7.4.2 False Matches

False matches occur from the fundamentals of matching tvagés from dif-
ferent viewpoints. Parts of the image which are visible ire efew are not
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visible in the other because of projective distortion, Kdemand Okutomi [15].
Fusing two views together will leave areas where depth edtim is impossi-

ble as they are occluded in one of the views. Other conditisumsh as light-
ing and image noise, give rise to ambiguities in the matchimbis affects

all area-based approaches, but is even more evident fotesrsapport win-

dows as they have lower signal-to-noise ratio. Post-peing®f the estimated
disparity map is usually adopted to remove noise and falsehea. Popu-
lar post-processing methods include left-right consisgezheck (LRC) [20],

propagation, confidence evaluation and median filtering.

7.4.3 Consistency Check

The left-right consistency check verifies that only dispavalues with mutual
correspondence are accepted as matches. Mutual corresmenolccur when
the matched pixels in the two images select each other ag#ieratch. This
requires matching of the whole image, using both imagesaseterence to
account for pixels not visible in the other view. The checkaiidates false
matches, and either simply voids the disparity value or eygph subsequent
correction stage, as detailed by Fusiello et al. [21].

The left-right consistency constraint is very robust bytensive as it re-
quires a second pass over the images [22]. A common implati@mtap-
proach, as used by Mihlmann et al. in [23], is to store all matgcosts for
all possible disparities as a Disparity Space Image (D3I DSI cuboid con-
sumes a large amount of memory as its volume is given by thénaittl height
of the images and the disparity search range. The left-dghsistency check
is straightforward when using a DSI by simply traversinge¢hboid, but time
consuming.

7.4.4 Confidence Evaluation

Areas of low-texture exhibit low variance and are difficaltrhatch as unique
identifiers do not exist. A common approach to solve this itotk at the

matching confidence of the estimated disparity [18]. Thefidence is often
estimated by relating to the difference in correlation ajghe best matching
candidates. Mei et al. [24] adopt an approach that compaegedtimated
disparity with that of its previous neighbor. The concephist the disparity is
supposed to vary smoothly for but a fraction of the entiregmaaccording to
the surface continuity constraint formulated by Marr anddto [25]. Mei et
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al. use this constraint-based smoothness term in a costidario select highly
confident matches to be used in a well-performing propagaipproach.

7.4.5 Textureless Areas

Textureless areas and areas without sufficient informédioa confident match
cannot be matched, and their disparity must be estimateshwite. Non-
consistent matches are labeled to be either removed or wagrio a subse-
quent correction component. For dense disparity mapsefiiacement option
is the preferred, but it is also the most difficult due to os@un. A common
approach is to interpolate or propagate disparity valuas fnearby confident
matched pixels. Yoon et al. [5] perform a spatial interpolaafter error re-
duction by the use of median filtering. Sun et al. [18] prop@ag®opagation
approach where the propagated value comes from a pixel désicolor. The
approach performs well, however, they rely on a relativelgdyfirst estimate
by way of the Census. The approach is not real-time due tatiter pro-
cessing and time-consuming segmentation. A simpler appreaggested by
Fusiello et al. [21] fills non-valid positions with the miniim value in a prop-
agation window. The minimum value is used to limit the fomgrd fattening
common in area-based methods, which hopefully have beeovexhwith the
left-right consistency check. The approach successfulyydreas cleared by
the consistency check, but it too is dependent on a confidéial iestimate.

7.4.6 Filtering

The obvious improvement that was left out in our previousknisrthe ap-

plication of a filter. Median filtering is a well-known appiato remove

sporadic noise and is frequently used in post-processiimpoove disparity

maps [23]. Several of previously mentioned implementatiosed a median
filter: [5], [15], [13].

7.4.7 Color

A natural step from the minimal approach is to match colougalinstead of
intensity. It has been reported that the use of color inféignaan increase the
signal-to-noise ratio by roughly 20% [26], which should stamtially improve
the matching. Implementation of an RGB-based matching é®maplished
simply by invoking three parallel SAD channels and sum thi#vidual SADs
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for every disparity. The cost, however, is substantial asripke the amount of
computations performed in parallel and thus also the resousage.

7.5 Our Implementation

Figure 7.3: Impact of applying LRC (left), or not (right). Boimages have
been median filtered as the last stage.

7.5.1 Support Window

All of the suggested window-altering approaches could owpron the basic
2D implementation, but have limited impact on the 1D implatation. The

much larger area in square windows make them lose precismmhadapting
the window shape and size is a way of reducing this loss. Fowiridows

the effect is much smaller because of the reduced area. iBddily, adaptive
approaches are slow and introduce scene dependent parathateadd to the
complexity and reduce the application scope. Transfoonadf the support
window is primarily aimed at improving the matching accysamt not with

a retained speed. Moreover, our challenge lies in too muenwhich voids
the stated approaches as they look for refinement and we aisefective

smoothing.

7.5.2 Consistency Check

The basic memory-intense approach of left-right conssteeck is neither
suitable for a parallel or resource constraint system, roessary. The check
will always be relatively expensive, as it needs to matchreges both ways,
it is not necessary to retain more data than covers the nmgtafithe pixels
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in the disparity range at any given time. Our implementapcactically dou-
bles the resource usage for the matching process (1221 @sslgés), but no
external memory nor any reduction in system performancd teeeesult from
it.

Figure 7.4: The median filter preceding the propagation)(des not per-
form as well as the reverse (right). LRC-check was performigidily on both
images.

Atany given clock cycle, a SAD is calculated for every pixethie disparity
range in the rightimage. These SADs make up the disparityesfoa one pixel
in the left image. The least sum is then extracted from thspatity space
through a tournament selection. The SADs for a pixel in thatrimage are
calculated over time as it traverses the disparity range,sbep every clock
cycle. The least sum for a pixel in the right image is thenwalked piece-wise
by a simple compare function. Register delays assure synidad output with
a disparity for the left pixel after cleared check.

The effect of the consistency check can be observed in figie The
images are with and without consistency check, but both headian filtering
performed at the end, to minimize the empty regions. Theisterey check
identifies almost all of the occluded areas. However, it edsaoves pixels that
are not occluded but still differ due to poor correlationaddtioteworthy is the
deterioration of the lamp arm, partly due to the check bud dlse to the filter.
The removal of data in the disparity map reduces the quailitgl,it is evident
that the median filter (here a 7x1) is not filling the empty areBor this to
happen we need to propagate.

7.5.3 Propagation

With propagation, the underlying data is important. A loggsumption is
that it is important to remove as much noise as possible egierforming
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propagation, to avoid propagating false matches. As caedr is figure 7.4,
there is a difference between performing median filtratiefole or after the
propagation. Propagation directly after the consistermck followed by a
median filter produces a disparity map of the highest acgutdmwever, some
areas deteriorate, such as the lamp arm, when compared tocansistency
checked image.

Figure 7.5: The median filter (right column) significantigtees the noise for
the 1D (top) but not the 2D (bottom) approach.

The propagation rules covering the execution of our implaai#on are: If
the median value of the filter window is separate from zerat(th a majority
of the pixels in the window have valid data), the median ofrtbe-zero values
is propagated. Should the number of non-zero elements ffiltdrebe subor-
dinate, the minimum value will be propagated. When no naw-zalues exist,
the latest propagated value is used. Since the propagaties on median
value it is realized with a copy of the median filter component

7.5.4 Filtering

Realization of median filtering is a search and rank probldth large filters
being difficult to implement for real-time [27]. Howevertéfs of limited size
have been utilized with good results [23]. We have implerménhe median
filter as a classic systolic array, according to Vega-Radriget al. [27], for
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Approach Non-Occ % | All% | Disc %
SAD 7x1 29.1 30.7 | 274
SAD-MED 7x1 | 22.2 239 | 243
SAD 7x7 22.7 24.4 | 28.6
SAD-MED 7x7 | 21.9 236 | 28.1

Table 7.1: Performance and cost for median filtering. The #itésrrors in the
image compared to the ground truth for Non-occluded, Al eggions near
Discontinuities.

sorting 9 elements. This translates to a 9x1 median filtet Bband a 3x3 filter
for 2D.

The improvement with a median filter are quite significanttfar 1D ap-
proach, but not so much for the 2D, as can be seenin figure d.Baable 7.1.
The filter removes noise and the 2D implementation is alresudye reduced
by design. Itis obvious that the noise in the 1D approachifésharacteristics
of a median filter. Noteworthy is the fact that the 1D approawatperforms the
standard 2D in regions of discontinuities, due to the lackesfical summing.
This is the case already with the basic 1D, but is even moreawsgal with
the added filter. The cost of the filter is very low, only 248, an increase
of 20%. As a conclusion, median filtering closes the gap betwib and 2D
implementations.

7.5.5 Color

The effects of using separate color channels instead afsityeare presented in
figure 7.6. As can be observed, the substantial increassdauree utilization
for color (double for matching component) is not warrantatbss it is critical
for the application, such as for scenes with radiometritodi®n as shown by
Hirschmiiller and Scharstein [28].

7.6 Result Summary

Table 7.2 shows the improvement for the stereo matching oot with
the implemented approaches, both individually and contbiriéhe listed re-
sources are for the evaluated stereo components only, stensyomponents
used for reading, storing and sending of the test images atchndata are not
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Approach Non-Occ % | All% | Disc % | Slices | LUTs
SAD 29.1 30.7 | 274 1,221 | 6,086
LRC 40.5 419 | 40.1 2,399 | 7,689
Median 22.2 239 | 24.3 1,468 | 6,371
LRC-Med 38.6 39.9 | 395 3,135 | 8,204
LRC-Prop 27.2 28.4 | 24.9 3,174 | 8,237
LRC-Med-Prop| 31.1 32.0 | 28.8 3,986 | 8,844
LRC-Prop-Med| 20.4 21.8 | 21.7 3,986 | 8,844
| Available | | | | 33,280] 33,280]

Table 7.2: Impact of improvements; individually and condainAll values are
for a 7x1 implementation

included. The improvements are evaluated with the Middiglstereo evalu-
ation tool [9] which show the error percentage in the diggdamage. Three
different parameters are presented: Non-occluded pixkishnare visible in
both images; Pixel at or around discontinuities in the imadleof the image.
From observing the matching scores in table, it can be cdeduhat certain
tools have certain aspects, and when combining tools forawgment, their
individual order is important.

Figure 7.6: Substituting intensity (left) with color (righdoes not improve
significantly to warrant the doubling in resource usage.

Note: For the purpose of evaluation, external memory is uséte imple-
mentations to store the test images. However, those res®are not included
in the data of resource utilization, nor do they affect théqrenance.
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7.7 Conclusions

In this paper we assess approaches to improve a resourngzgaticorrespon-
dence implementation. The approaches have been evalusetitgtively by
showing the cost and quality enhancement achieved whereimgited. The
1D implementation is approximating the accuracy of the ddad 2D version
by a set of established enhancement methods. The perfoerdéference be-
tween the 1D and 2D implementations is rather small, but Bnadhieves it at
a low resource usage.

Utilizing an inexpensive median filter effectively closégtgap to the 2D
approach. From a cost/performance perspective, only @wsimgdian filter is
the best approach. However, there is only so much a 1D mediiandan do
with noisy data. For further improvement noise reductioa imust. A func-
tion removing, or never allowing, false matches in the digpanap, through
confidence assessment, could render a substantial impenteagether with
a competent propagation method. Implementing a small cemdéiel measure-
ment would be a good continuance of this work.

It is further evident that it is possible to achieve accelgtalisparity maps
without extensive memory usage and without a limitationmage size. Megapixel
images will not affect the throughput or the resource wtian. Image data is
stored in a shift register approach without the need for insgknline retention.
Furthermore, the proposed 1D implementation is more thaquate for au-
tonomous applications such as navigation, mapping, anthdbsavoidance,
and can be fitted to practically any FPGA. It has been impldatewith a
maximum disparity range of 64 for images of 1024x1024 pixels

The implementations run at 125 MHz, the system clock of o Amoard
[8]. As the implementations are fully piped, the frame ratdependent on the
speed of the cameras and the size of the frame. Theoretitadycapable of
processing over 100 frames per second for Megapixel images.
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