
The Architecture Analysis and Design Language

and the Behavior Annex: A Denotational

Semantics

Stefan Björnander, Cristina Seceleanu, Kristina Lundqvist, and Paul Pettersson

School of School of Innovation, Design, and Engineering
Mälardalen University, Sweden

{stefan.bjornander, cristina.seceleanu, kristina.lundqvist, paul.pettersson}@mdh.se

January 7, 2011

Abstract

We present a denotational semantics for the Architecture Analysis and Design
Language with Behavior Annex and the Computational Tree logic. We also
present tool support as an OSATE plug-in as well as the Production Cell case
study.

Contents

1 Introduction 3

2 Background 4
2.1 AADL . 4

2.1.1 The AADL Behavior Annex 5
2.1.2 Computation Tree Logic . 6

3 Preliminaries 7
3.1 The Syntax of Architectural Elements 7

3.1.1 The AADL Structural Elements 7
3.1.2 The AADL Behavior Annex Structural Elements 8
3.1.3 An Example: Mutual Exclusive Critical Sections 10
3.1.4 Computation Tree Logic . 11

3.2 Values . 12
3.3 Abstract Data Types . 13

3.3.1 List . 13
3.3.2 Table . 14
3.3.3 Set . 15
3.3.4 Tree . 15

4 Semantics 17
4.1 The AADL Model . 18

4.1.1 System . 19
4.1.2 System Implementation . 19

4.2 The AADL Behavior Annex . 21
4.3 CTL Property Specification . 23
4.4 Initialization . 26
4.5 Expression Evaluation . 27
4.6 Connection . 29
4.7 Generation . 30
4.8 Property Specification Evaluation 32

5 Tool Support and Case Study 36
5.1 Input Language . 38
5.2 Case Study . 39

6 Related Work 42

7 Conclusions and Further Work 44

1

A An Example of Parsing 45

B The Production Cell Source Code 49

Chapter 1

Introduction

Time-critical embedded systems play a vital role in, among others, aerospace
applications, automotive systems, air traffic control, railway signaling, and
medicine. Design and development of such systems is challenging, because the
fulfillment of real time requirements and resource constraints has to be proven
in the development process. Of high practical interest is the architecture design
phase, because the timing behavior and resource consumption of systems depend
heavily on the architecture chosen for the system. Furthermore, architectural
mistakes that cause a system not to fulfill certain real-time requirements are
hard to correct in later development phases. As a result, a development process
for embedded systems should include verification techniques in the architecture
design phase to provide evidence that a system architecture has the potential
to fulfill its real-time requirements.

In this report we present a denotational semantics for the Architecture Anal-
ysis and Description Language (AADL) [9] with Behavior Annex [25]. AADL
has been chosen, due to the sound specification language and its industrial use
for the development of embedded systems in the automotive and avionic area.
Denotational semantics has been chosen due to its exact and stringent mathe-
matical notation and its close relationship to functional languages. As a part
of the semantic definition, we have implemented the semantics in standard ML
and encapsulated it in an OSATE (Open Source AADL Tool Environment1)
plug-in.

The rest of this report is organized as follows: chapter 2 describes AADL,
its Behavior Annex and the Computation Tree Logic (CTL), chapter 3 defines
the syntax of the model and some abstract data types, chapter 4 defines the
denotational semantics, chapter 6 deals with related work, and chapter 7 finally
discusses conclusions and further work.

1aadl.info

3

Chapter 2

Background

The denotational semantics of this report is built upon AADL with Behavior
Annex and the Computation Tree Logic.

2.1 AADL

AADL1 is a large and complete language intended for the design of both the
hardware and the software of a system. It is an Society of Automotive Engineers
(SAE2) standard and is based on MetaH and UML [9]. Compared to MARTE
[13], AADL is constrained in one respect: a specific phase of the development
life cycle is addressed, and other stages cannot be addressed by AADL [8]. The
component abstractions of the AADL are separated into three categories. The
first category is the application software:

� Thread. Can execute concurrently and be organized into thread groups

� Thread Group. Component abstraction for logically organizing threads
or thread groups components within a process.

� Process. Protected address space whose boundaries are enforced at run-
time.

� Data. Data types and static data.

� Subprogram. Model of a subprogram component that represents a
callable piece of source code.

The second category is the execution platform (the hardware):

� Processor. Schedules and executes threads.

� Memory. Stores code and data.

� Device. Represents sensors and actuators that interface with the external
environment.

1aadl.info
2www.sae.org

4

� Bus. Interconnects processors, memory, and devices.

The third category is the system component. System components are com-
posites that can consist of other systems as well as software or hardware com-
ponents. The components types are defined using a parameterized set of prop-
erties. Furthermore, components communicate with each other through ports.
It is possible to define physical port-to-port connections as well as logical flows
through chains of ports. Component definitions are divided into component
types holding the public (visible to other components) features, and component
implementations that define the private parts of the component.

The AADL standard includes runtime semantics for mechanisms of exchange
and control of data, including message passing, event passing, synchronized ac-
cess to shared components, thread scheduling protocols, and timing require-
ments.

AADL can be used to model and analyze systems already in use as well
as to design new systems. AADL can also be used in the analysis of partially
defined architectural patterns. Moreover, AADL supports the early prediction
and analysis of critical system qualities, such as performance, schedulability, and
reliability. Within the core language, property sets can be declared that add
new properties for components. Additional models and properties can also be
included by utilizing the extension capabilities of the language. The properties
and extensions can be used to incorporate analyses at the architectural design
level.

AADL components interact through defined interfaces. A component inter-
face consists of directional flow through data ports for state data, event data
ports for message data, event ports for asynchronous events, subprogram calls,
and explicit access to data components. Application components have proper-
ties that specify timing requirements such as period, worst-case execution time,
deadlines, space requirements, and arrival rates [11].

There is a number of tools developed for AADL. One of them is OSATE,
which is a plug-in for the Eclipse Development Environment3. It supports anal-
ysis and simulation of AADL models.

2.1.1 The AADL Behavior Annex

In order to increase the expressiveness of AADL, it is possible to add annexes.
One of them is the Behavior Annex [12] that models an abstract state machine
[5]. Each component of the model describes its logic by defining a behavior
model, which consists of three parts [10]:

� States. The states of the machine, one of them is the initial state.

� Transitions. The condition for a transition from one state to another (or
between the same state) is determined by a guard: an expression evaluated
to a logical value.

� State Variables. The state variables are similar to variables in program-
ming languages; they can be inspected and assigned.

3www.eclipse.org

2.1.2 Computation Tree Logic

Computation Tree Logic (CTL) is a branching-time temporal logic; that is, it
models time as a tree structure with a non-determined future. There are differ-
ent paths into the future and any one of them may be the one realized. There
are several operators involved in CTL: two child operators (All and Exists), op-
erating on the children of a node, and five path operators (Global, Final, Until,
Weak until, and Release), operating on the nodes along one path. Se table 2.1
for a closer description, figure 2.1 for some operator combinations, and section
3.1.4 for an example.

A ϕ ϕ must be satisfied for every child.
E ϕ ϕ must be satisfied for at least one child.
G ϕ ϕ must be satisfied for each node on the path.
F ϕ ϕ must be satisfied for at least one node on the path.
ϕ U φ ϕ must be satisfied for each node until (but not necessarily inclu-

sive) φ is satisfied.
ϕ W φ ϕ must be satisfied for each node until φ is satisfied. The differ-

ence against the Until operator is that φ does not have to become
satisfied. In that case, ϕ has to be satisfied for each node at the
path.

ϕ R φ φ must be satisfied until (and inclusive) ϕ is satisfied.

Table 2.1: Computational Tree Logic.

(a) All Global P.

(b) All Finally P.

(c) Exists Global P.

(d) Exists Finally P.

Figure 2.1: CTL Operator Combinations.

Chapter 3

Preliminaries

In order to understand the semantics, we need to set up some preliminaries.
The semantics is based on the syntax and each semantic rule follows is syntactic
counterpart. In order to store the values of the semantic input, we also need
some basic abstract data types: list, table, set, and tree.

3.1 The Syntax of Architectural Elements

In this section, we describe the syntax by defining a Backus Normal Form gram-
mar [16] for AADL with Behavior Annex and CTL property specification; it is
divided into three parts: the model, the behavior annex, and the property spec-
ification. The epsilon (ε) symbol denotes the empty string. It is also possible
to add comments rows, beginning with two hyphens and lasting to the end of
the row.

Definition ::= Model PropSpecS

3.1.1 The AADL Structural Elements

The AADL Model of this report is limited to systems. There are two kinds
of systems: the system that defines the port interface and the behavior annex
and the system implementation that defines the subcomponents and the port
connections between them.

Model ::= System SystemImpl

Components

A system is made up of optional features (input and output ports) and an op-
tional behavior annex (its syntax is given in section 3.1.2). As is evident from
the grammar, there has to be at least one system and exactly one system im-
plementation, which occurs at the end of the definition.

System ::= System System
∣ system Identifier SystemBody end ;

7

SystemBody ::= OptionalFeatures OptionalAnnex

The system implementation comprises optional subcomponents and optional
connections.

SystemImpl ::= system implementation Identifier . Identifier
SystemImplBody end ;

SystemImplBody ::= OptionalSubcomponents OptionalConnections

Connections

The features of a system is part of its interface against other systems and is
made up by input and output port. They are later connected with each other.

OptionalFeatures ::= features Feature
∣ ε

Feature ::= Feature Feature
∣ Identifier : in event port ;
∣ Identifier : out event port ;

Configuration

The configuration is made up of subcomponents and connections. The sub-
components are instances of earlier defined systems (equivalent to classes and
objects in object oriented languages) and the connections are drawn between
input and output ports in the subcomponents, not the systems. The systems
have fact in played out its role when the subcomponents have been defined.

OptionalSubcomponents ::= subcomponents Subcomponent
∣ ε

Subcomponent ::= Subcomponent Subcomponent
∣ Identifier : system Identifier ;

OptionalConnections ::= connections Connection
∣ ε

Connection ::= Connection Connection
∣ : event port Identifier . Identifier ->

Identifier . Identifier ;

3.1.2 The AADL Behavior Annex Structural Elements

As mention in section 2.1.1, the Behavior Annex models a state machine holding
states, transitions, and state variables. In this report, however, we extend the
annex with initialization lists and action lists. In both cases, the state vari-
ables can be assigned to values of expressions and output port can be triggered.
The initializations is a stand alone part of the annex while each action list is
connected to a transition.

With these extensions, the behavior annex comprises four parts: state vari-
ables, initializations of state variables and output ports, states, and transitions

with actions lists.

OptionalAnnex ::= Annex
∣ ε

Annex ::= annex Identifier {**
OptionalStateVariables OptionalInitializations
OptionalStates OptionalTransitions **} ;

Declaration

It is possible to define state variables and states. All state variables have integer
types, one of the states is the initial state.

OptionalStateVariables ::= state variables StateVariables
∣ ε

StateVariable ::= StateVariable StateVariable
∣ Identifier : integer ;

OptionalStates ::= states State
∣ ε

State ::= State State
∣ Identifier : initial state ;
∣ Identifier : state ;

Execution

The OptionalInitializations grammatical rule simple calls the Action grammat-
ical rule because the initialization lists are in fact action lists.

OptionalInitializations ::= initializations Action
∣ ε

An transition has a source state, a guard expression, a target state and an
optional list of actions.

OptionalTransitions ::= transitions Transition
∣ ε

Transition ::= Transition Transition
∣ Identifier -[ExpressionS]-> Identifier OptionalAction

In the action part, the state variables becomes initialized with values evalu-
ated from expressions and signals are sent to output ports. If the action list is
present, it is surrounded by braces; if not, it is replaced by a semicolon.

OptionalAction ::= { Action }
∣ ;

Each action is either an assignment of a state variable or the triggering of
an outport port. Each individual action is terminated by a semicolon.

subSystem2 subSystem1

:Main System

CriticalLeave

CriticalEnter

CriticalEnter

CriticalLeave

Figure 3.1: Mutual Exclusive Critical Sections.

Action ::= Action Action
∣ Identifier := ExpressionS ;
∣ Identifier ! ;

An expression can be a value, an identifier representing a state variable or
an input port followed by a question mark, or the sum, difference, product, or
quotient of two expressions. The S in ExpressionS stands for Syntax in order
to distinguish it from the Expression type in chapter 4.

ExpressionS ::= Value
∣ Identifier
∣ Identifier ?
∣ (ExpressionS)
∣ ExpressionS + ExpressionS
∣ ExpressionS − ExpressionS
∣ ExpressionS ∗ ExpressionS
∣ ExpressionS / ExpressionS

3.1.3 An Example: Mutual Exclusive Critical Sections

Below follows an example of an AADL with Behavior model. It is made up by
two subsystems with one critical section each. They communicate with port
signals in order to make sure they cannot reach their critical sections at the
same time. As seen in the listing below, the subsystems are similar. The only
different is that the first subsystem is initialized to trigger a CriticalLeave signal,
which means that the second subsystem is free to enter its critical section.

Each subsystem starts in the initial state Waiting and waits until it receives
the CriticalEnter signal from the other subsystem. Then it enter its critical sec-
tion and when it leaves it sends the CriticalLeave signal to the other subsystem
in order to allow it to enter its critical section.

system SubSystem1

features

CriticalEnter: in event port;

CriticalLeave: out event port;

annex SubSystemAnnex1 {**

initializations

CriticalLeave!;

states

Waiting :initial state;

Critical :state;

transitions

Waiting -[CriticalEnter?]-> Critical;

Critical -[true]-> Waiting {CriticalLeave!;}

**};

end SubSystem1;

system SubSystem2

features

CriticalEnter: in event port;

CriticalLeave: out event port;

annex SubSystemAnnex2 {**

states

Waiting :initial state;

Critical :state;

transitions

Waiting -[CriticalEnter?]-> Critical;

Critical-[true]-> Waiting {CriticalLeave!;}

**};

end SubSystem2;

The main system instantiate the two subsystems as subcomponents subsystem1
and subsystem2 as well as connecting them to each other with the CriticalLeave and
CriticalEnter ports, see figure 3.1. Also see chapter 5 for a more extensive example.

system implementation MainSystem

subcomponents

subSystem1: system SubSystem1;

subSystem2: system SubSystem2;

connections

event port subSystem1.CriticalLeave -> subSystem2.CriticalEnter;

event port subSystem2.CriticalLeave -> subSystem1.CriticalEnter;

end MainSystem.impl;

The process of determine whether a source code satisfying a grammar is called
parsing, see appendix A for an example.

3.1.4 Computation Tree Logic

Syntactically speaking, there are two kinds of properties: the tree and node property.
As stated in section 3.3.4, each node of a tree holds a value. The value of a tree
property (true or false) depends on the value of the tree node in question as well
as the values of the tree nodes of the subtree. The value of the node property only
depends on the value of the tree node.

The PropSpecS (the S stands for Syntax) grammatical rule supports the all and
exists child operators as well as the global, final, until, weak until, and release path
operators. As mentioned in section 2.1.2, the outmost operators must be a child and
path operator pair. In this syntax, the operators must be given in that order. The
syntax is also case sensitive, the operators shall be given in lower-case letters.

PropSpecS ::= a g PropSpecS
∣ a f PropSpecS
∣ a PropSpecS u PropSpecS
∣ a PropSpecS w PropSpecS
∣ a PropSpecS r PropSpecS
∣ e g PropSpecS
∣ e f PropSpecS
∣ e PropSpecS u PropSpecS
∣ e PropSpecS w PropSpecS
∣ e PropSpecS r PropSpecS
∣ NodePropSpecS

Node Property Specifications

The NodePropSpecS (the S stands for Syntax) grammatical rule is a logical, relational,
or arithmetic expression. It can also be an identifer followed by a dot and another iden-
tifer identifying the name of a subcomponent and the name of a state or state variable.

NodePropSpecS ::= (PropSpecS)
∣ not PropSpecS
∣ PropSpecS and PropSpecS
∣ PropSpecS or PropSpecS
∣ PropSpecS = PropSpecS
∣ PropSpecS ! = PropSpecS
∣ PropSpecS < PropSpecS
∣ PropSpecS <= PropSpecS
∣ PropSpecS > PropSpecS
∣ PropSpecS >= PropSpecS
∣ PropSpecS + PropSpecS
∣ PropSpecS − PropSpecS
∣ PropSpecS ∗ PropSpecS
∣ PropSpecS / PropSpecS
∣ Identifier . Identifier

An Example of a Property Specification

In section 3.1.3, a main system holding two subsystem with one critical section each
was presented. In order to make sure that the two subsystems never reach their critical
section at the same time, the property specification below can be formulated. The all
and global operator combination decides whether the expression is always evaluated to
true, which in turn means that the two subsystems never reach their critical section
at the same time.

a g not (subSystem1.Critical and subSystem2.Critical)

3.2 Values

An identifier is a string of character that begins with a letter or an underscore and
is followed by a number (possible zero) of letters, digits, or underscores. An integer
can hold any integer value. A boolean value is either false or true. A connection
holds the index of the sending subcomponent in the global subcomponent list (see
section 4.1.2) together with the output port name as well as the index of the receiving
subcomponent and the input port name.

An expression is a value, the name of a state variable or an input port, or an rela-
tional or arithmetic arithmetic expression. An action is either the sending of a signal

through an output port or the assignment of a evaluated expression value to a state
variable. A transition is the source state integer value, the guard expression, the tar-
get state integer value, and a (possible empty) list of actions. A system is the current
state integer value (initialized to zero, representing the initial state), the symbol table
holding the input and output ports, the state variable, and states as well as a (possible
empty) list of initializations (equivalent to actions), and a (possible empty) list of tran-
sitions. A Value is a state, boolean, or integer value, or an action, transition, or system.

Identifier = [a-zA-Z][a-zA-Z0-9]*
Integer = {..., -3, -2, -1, 0, 1, 2, 3, ...}
Boolean = {false, true}
Connection = Integer × Identifier × Integer × Identifier
Expression = value Value + identifier Identifier +

eq (Expression × Expression) +
ne (Expression × Expression) +
lt (Expression × Expression) +
le (Expression × Expression) +
gt (Expression × Expression) +
ge (Expression × Expression) +
add (Expression × Expression) +
sub (Expression × Expression) +
mul (Expression × Expression) +
div (Expression × Expression)

Action = send Identifier + assign (Identifier × Expression)
Transition = Identifier × Expression × Identifier × List
System = Integer × Table × List × List
Value = state Integer + boolean Boolean + integer Integer +

action Action + transition Transition +
system System

3.3 Abstract Data Types

In an AADL model, identifers are bound to values that needs to be stored for further
use. Therefore, we need the abstract data types List, Table, Set, and Tree to holds
values.

3.3.1 List

List is a recursively defined abstract data type with the operations list empty that
returns an empty list, list insert that adds a value at the beginning of the list, list add
that adds a value at the end of the list, list get that returns the value at the given
index in the list, list set that updates the value at the given index, list index of that
returns the index of a given value, and list split that returns the first value and the
rest of the list as a pair, and list merge that appends the second list to the first one.

List = list null + list enter List

list empty : List
list empty =

list null

list insert : Value × List → List
list insert value list =

list enter (value, list)

list add : Value × List → List
list add value1 (list enter (value2, tail)) =

list enter (value2, list add value1 tail)
list add value list null =

list enter (value, list null)

list get : Integer × List → Value
list get 0 (list enter (value, tail)) =

value
list get index (list enter (value, tail)) =

list get (index - 1) tail

list set : Integer × Value × List → List
list set 0 value1 (list enter (value2, tail)) =

list enter (value1, tail)
list set index value1 (list enter (value2, tail)) =

list enter (value2, list set value1 (index - 1) tail)

list index of : Value × List → Integer
list index of value1 (list enter (value2, tail)) =

if value1 = value2 then 0
else (list index of value1 tail) + 1

list split : List → (Value × List)
list split (list enter (value, tail)) =

(value, tail)

list merge : List × List → List
list merge list (list enter (head, tail)) =

list enter (head, list merge list tail)
list merge list list null =

list

3.3.2 Table

Table is a recursively abstract data that associates identifers (keys) with values. It
holds the operations table empty that returns an empty table, table set that associates
an identifier with a value (if the identifier already is associated with a value, that value
is dismissed), table get that look up the value associated with the given identifier, ta-
ble merge that merges two tables into one (if the same identifier is associated with a
value in both tables, the value of the second table is associated with the identifier in
the resulting table), and table to list that returns a list holding the values (not the
keys) of the table.

Table = table null + table enter ((Identifier × Value) × Table)

table empty : Table
table empty =

table null

table set : Identifier × Value × Table → Table
table set ident1 value1 (table enter ((ident2, value2), rest)) =

if ident1 = ident1 then table enter ((ident1, value2), rest)
else table enter ((ident2, value2), table set ident1 value1 rest)

table set ident value table null =
table enter ((ident, value), table null)

table get : Identifier × Table → Value
table get ident1 (table enter ((ident2, value), rest)) =

if ident1 = ident2 then value
else table get ident1 rest

table merge : Table × Table → Table
table merge (table enter ((ident, value), rest)) =

table enter ((ident, value), table to table rest)
table to table table null table =

table

table to list : Table → List
table to list (table enter ((ident, value), rest)) =

list insert value (table to list rest)
table to list value list null =

list empty

3.3.3 Set

Set is a recursively defined abstract data type holding the operations set empty that
returns an empty table, set add that adds a value to the set (unless it is already
present), and set exists that decides whether a value is present in the set.

Set = set null + set enter Set

set empty : Set
set empty =

set null

set add : Value × Set → Set
set add value1 (set enter (value2, tail)) =

if value1 = value2 then set enter (value2, tail)
else set add value1 tail

set add value set null =
set enter (value, set null)

set exists : Value × Set → Boolean
set exists value1 (set enter (value2, tail)) =

if value1 = value2 then true
else set exists value1 tail

set exists value set null =
false

3.3.4 Tree

Tree is a recursively defined abstract data type holding the operations tree create that
returns a tree with one node holding the given value, tree add child that adds a child
node, holding the given value, to the root node of the tree, tree set value that sets the
value of the root node of the tree, and tree get children that returns a list holding the
subtrees of the root node of the tree.

Tree = tree null + tree enter (Value × List)

tree create : Value → Tree
tree create value =

tree enter (value, tree null)

tree add child : Value × Tree → Tree
tree add child child (tree enter (value, child list)) =

tree enter (value, list add child child list)

tree get value : Tree → Value
tree get value (tree enter (value, child list)) =

value

tree get children : Tree → List
tree get children (tree enter (value, child list)) =

child list

Chapter 4

Semantics

In AADL, the semantics is made up by systems. Formally, a system is a tuple
(S, s0,Ainit, V,Pin, Pout, T) where S is a non-empty finite set of states and s0 ∈ S
is the compulsory initial state. V is a possible empty finite set of state variables.
Ainit ⊆ V ×E + Pout is a set of initializations, which can be either state variables as-
signed to expressions or signals sent to outports. Pin and Pout is the possible empty
finite sets of inports and outports, respectively. T ⊆ S ×E × S ×A is a possible empty
finite set of transitions. The possible empty finite action set A ⊆ V × E + Pout is a
set of assignments and output signal triggings similar to the Ainit set above. E is a
set of expression recursively defined as E = variable V + value C + inport Pin + add
(E × E) + sub (E × E) + mul(E × E) + div (E × E), where C is a constant integer
value. The input port expression has boolean type.

The semantics of this chapter is divided into several steps:

� The AADL Model. For each system, its input and output ports are saved in a
symbol table together with the behavior annex’s states and state variables. For
each system implementation, the subcomponent are stored in a global subcom-
ponent list (see section 4.1.2) and the connections between the subcomponents
are stored in a global connection list.

� The AADL Behavior Annex. For each behavior annex, its states and state
variables are stored in a symbol table. The initializations and transitions are
stored in lists.

� The CTL Property Specification. Made up by a combination of CTL logic
operators and regular expressions and is stored in an intern format that are used
in the Property Evaluation section below.

� Initialization. The initialization list of each subcomponent is executed and
the result is stored in the global subcomponent list.

� Expression Evaluation. When a transition is to be taken, we need to eval-
uate the guard expression into a boolean value in order to decide whether to
take the transition. When a state variable is to be assigned to an expression
in a initialization list or a transition action list, we also need to evaluate the
expression into a value, in this case an integer value.

� Connection. Before the transition list of each subcomponent is traversed, we
first need to execute any connections. That is, if an output port is set to true
in one subcomponent, we set it to false and set its corresponding input port (in
the same or another subcomponent) to true.

� Generation. We create a state tree where each node has an subcomponent
list as value. Determinism (exactly one transition can be taken) generates a

17

path from the root node to a leaf node. In case of non-determinism (several
transitions can be taken) each possible transition generates a new sub tree as a
child.

� Property Specification Evaluation. When the state tree is generated, it
needs to be evaluates against the CTL property in order to decide whether the
property yields true.

The definition semantics rule defines the overall process of the semantics of this
chapter. First, the model semantic rule extract the subcomponent table and the list
of connections between the subcomponents, then the prop spec semantic rule returns
the CTL property specification for further use. Moreover, the global subcomponent
list (converted from the subcomponent table with the table to list operation) is then
initialized by the traverse init list semantic rule. The resulting subcomponent list is
then stored as the value of the root node of the state tree. When the state tree has
been generated by the generate tree semantic rule, it is evaluated against the CTL
property, which finally yields the boolean result.

The information for each system is stored in the tuple (state, symbol table, init list,
trans list), where state is the current state of the annex, symbol table is holding the
input and output ports of the system as well as states and state variables of the annex,
init list holds the list of initializations, and trans list holds the list of transitions. For
each system, one such tuple is associated with the name of the system (the name of
the behavior annex is ignored). The table is then used in the subcomponent section,
where tuples are copied and placed in the subcomponent table (it needs to be a table
instead of list since components are needed to become looked up in the CTL property
specifications), which is global since only one system implementation is allowed. The
connections are placed in the global connection list. The subcomponent table is then
transformed into a list and initialized, it is repletely traversed during the construction
of the state tree and finally the property specification is evaluated against the state
tree.

definition : Model × PropSpecS → Boolean
definition ⟦M PS⟧ =

let (system table, conn list) = model M in
let prop spec = prop spec PS system table in
let inst list = initalize subcomponent list (table to list subcomp table) in
let init tree = tree create inst list in
let state tree = generate tree inst list conn list set empty init tree in

evaluate prop spec prop spec state tree

4.1 The AADL Model

The purpose of the semantic rules of this section is to collect and store information
about the model. There are three global tables and lists: the information about
the systems is stored in the system table (system table), the information about the
subcomponents is stored in the subcomponent table (subcomp table), and the infor-
mation about the connections between the subcomponent is stored the connection list
(conn list). As there is only one system implementation, the subcomponent table and
connection list are global. The system implementation name is ignored.

model : Model → Table
model ⟦S SI ⟧ =

let system table = system S in
system impl SI system table

4.1.1 System

A system is made up of optional features (input and output ports) and an optional
behavior annex (the semantics of the behavior annex is given in section 4.2). The se-
mantic rule system returns a system table holding information (current state, symbol
table, initialization list, and transition list) of each system.

system : System → Table
system ⟦S1 S2⟧ =

let system table1 = system S1 in
let system table2 = system S2 in

table merge system table1 system table2
system ⟦system I SB end ;⟧ =

table set I (system body SB) table empty

The system body contains an optional lists of features (input and output ports)
and an optional behavior annex (see section 4.2 for its semantics). The system is made
up of its current state, symbol table (holding input and output ports, states, and state
variables), initialization list, and transitions list. The current state of the system is
initialized to zero, representing the initial state.

system body : SystemBody → Value
system body ⟦OF OA⟧ =

let in out port table = optional features OF
let (var state table, init list, trans list) = optional annex OA in
let symbol table = table merge in out port table var state table in

system (0, symbol table, init list, trans list)

The input and output ports are boolean values, initialized to false. The feature
semantic rule needs neither the system table nor the subcomponent table, its task is
to simple collect the ports and store them as boolean values in the symbol table.

optional features : OptionalFeatures → Table
optional features ⟦features F⟧ =

feature F
optional features ⟦⟧ =

table empty

The feature semantic rule associates the name of each input and output port to
the boolean value false.

feature : Feature → Table
feature ⟦F1 F2⟧ =

let port table1 = feature F1 in
let port table2 = feature F2 in

table merge port table1 port table2
feature ⟦I : in event port⟧ =

table set I (boolean false) table empty
feature ⟦I : out event port⟧ =

table set I (boolean false) table empty

4.1.2 System Implementation

The system implementation is constituted by optional subcomponents and connec-
tions between the subcomponents (not between the systems). The system impl body
semantic rule needs the system table in order to look up systems and instantiate
subcomponent of them. It generates and returns a subcomponent table holding the

subcomponents and a list of connections between them.

system impl : SystemImpl × Table → (Table × List)
system impl ⟦system implementation I1.I2 SIB end ;⟧ system table =

system impl body SIB system table

system impl body : SystemImplBody × Table → (Table × List)
system impl body ⟦OS OC ⟧ system table =

let subcomp table = optional subcomponents OS system table in
let conn list = optional connections OC subcomp table in

(subcomp table, conn list)

The subcomponent semantic rule contributes to the global subcomponent table.
For each subcomponent, it stores a copy of the system by looking it up in the system
table. If there is no subcomponents, an empty table is returned.

optional subcomponents : OptionalSubcomponents × Table → Table
optional subcomponents ⟦subcomponents S⟧ system table =

subcomponent S system table
optional subcomponents ⟦⟧ system table =

table empty

subcomponent : Subcomponent × Table → Table
subcomponent ⟦SC1 SC2⟧ system table =

let subcomp table1 = subcomponent SC1 system table in
let subcomp table2 = subcomponent SC2 system table in

table merge subcomp table1 subcomp table2
subcomponent ⟦I1 : system I2 ;⟧ system table =

let subcomp = table get I2 system table in
table set I1 subcomp table empty

For each connection, the connection semantic rule gathers its information: the
index of source and target subcomponent in the subcomponent list (transformed from
table to list by table to list) and the name of the input and output ports. This infor-
mation is then stored in the global connection list.

optional connections : OptionalConnections × Table → List
optional connections ⟦connections S⟧ subcomp table =

connection S subcomp table
optional connections ⟦⟧ subcomp table =

list empty

connection : Connection × Table → List
connection ⟦C1 C2⟧ subcomp table =

let conn list1 = connection C1 subcomp table in
let conn list2 = connection C2 subcomp table in

table merge conn list1 conn list2
connection ⟦ event port I1. I2 -> I3. I4 ;⟧ subcomp table =

let inst list = table to list subcomp table in
let outsystem record = table get I1 subcomp table in
let outsystem index = list index of outsystem record inst list in
let insystem record = table get I3 subcomp table in
let insystem index = list index of insystem record inst list in

list add (connection (outsystem index, I2, insystem index, I4))

4.2 The AADL Behavior Annex

The behavior annex is the part of the AADL model that defines the behavior of the
model. It is based on the Abstract State Machine [5]. It holds states (among which
one is the initial state) and state variables, which can be initialized. It also holds
input and output signals connected to the ports of the surrounding system, the out-
put signals can be initialized. Finally, it holds a set of transitions between the states
[10]. Each transition can be equipped with a guard; that is, a boolean expression that
has to evaluated to true for the transition to be granted (technically, each transition
has a guard; however, it can be limited to the value true). A transition can also be
equipped with a list of actions; that is, assignments of state variables or sending of
signals to output ports. The annex semantic rules does not need the component and
subcomponent tables. They just return a tuple holding the symbol table with the
states and state variables, the initialization list, and the transitions of the annex. If
there is no annex, an empty table and empty lists are returned.

optional annex : OptionalAnnex → (Table × List × List)
optional annex ⟦A⟧ =

annex A
optional annex ⟦⟧ =

(table empty, list empty, list empty)

The annex semantic rule collects information about the annex parts. Even thought
the annex is named, we discard the name. As the annex is surrounded by a system,
the name of the system will be sufficient. The state variable table and the state table
is merged into one, we assume that each state variable and state is given a unique
name and that the state variable and state name sets are disjunct.

annex : Annex → (Table × List × List)
annex ⟦annex I {** OSV OI OS OT **} ;⟧ =

let var table = optional state variables OSV in
let init list = optional initalizations OI in
let state table = optional states OS in
let trans list = optional transitions OT state table in

(table merge var table state table, init list, trans list)

All state variables hold integer type and are associated with the zero value. How-
ever, they may be initialized to other integer values by the initialization semantic rule
below.

optional state variables : OptionalStateVariables → Table
optional state variables ⟦state variables SV ⟧ =

state variable SV
optional state variables ⟦⟧ =

table empty

state variable : StateVariable → Table
state variable ⟦SV1 SV2⟧ =

let state table1 = state variable SV1 in
let state table2 = state variable SV2 in

table merge state table1 state table2
state variable ⟦I : integer ;⟧ =

table add I (integer 0) table empty

The state semantic rule is called with the integer value one as the parameter num-
ber. In this way, the initial state will be associated with the integer value zero and

the other states will associated with unique positive integer values. As the semantic
rule is called with the integer value one, and it is increased by one each time a state
is associated with a value. The non-initial states will be given consecutive positive
integer values (starting from one).

optional states : OptionalStates → Table
optional states ⟦states S⟧ =

let (state table, state number) = states SV 1 in
state table

optional states ⟦⟧ =
table empty

state : State × Integer → (Table × Integer)
state ⟦S1 S2⟧ state number =

let (state table1, state number1) = state S1 state number in
let (state table2, state number2) = state S2 state number1 in

(table merge state table1 state table2, state number2)
state ⟦I : initial state⟧ state number =

(table set I (state 0) table empty, state number)
state ⟦I : state⟧ state number =

(table set I (state state number) table empty, state number + 1)

The optional initialization semantic rule just calls the action semantic rule, since
they perform the same task: gather the action associated with a transition or initial-
ization, respectively, in a list. An action is either the assignment of a value to a state
variable or the sending of a signal to an outport.

optional initialization : OptionalInitializations → List
optional initialization ⟦initializations I ⟧ =

action I
optional initialization ⟦⟧ =

list empty

For each transition, we look up the integer value of the source and target state (we
assume they are stored in the symbol table) as well as collect the guard expression
and the possible empty action list.

optional transition : OptionalTransision → List
optional transition ⟦transitions I ⟧ =

transition I
optional transition ⟦⟧ =

list empty

transition : Transition × Table → List
transition ⟦T1 T2⟧ symbol table =

let trans list1 = transition S1 symbol table in
let trans list2 = transition S2 symbol table in

list merge trans list1 trans list2
transition ⟦I1 -[E]-> I2 OA⟧ symbol table =

let state source state = table get I1 symbol table in
let state target state = table get I2 symbol table in

list add (transition (source state, expression E, target state,
optional action OA)) list empty

The action semantic rule collects the action associated with a transition. An ac-
tion may be the assignment of a state variable or the sending of a signal through a

port connection. We store the name of the state variable together with the expression
in the action list or the name of the output port.

optional action : OptionalAction → List
optional action ⟦{ A }⟧ =

action A
optional action ⟦;⟧ =

list empty

action : Action → List
action ⟦A1 A2⟧ =

let action list1 = action A1 in
let action list2 = action A2 in

list merge action list1 action list2
action ⟦I := E⟧ =

list add (action (assign (I, expression E))) list empty
action ⟦I ! ;⟧ =

list add (action (init I)) list empty

An expression may be an identifier (representing a state variable), value or input
port as well as the addition, subtraction, multiplication, or division of two expressions.

expression : ExpressionS → Expression
expression ⟦V ⟧ =

value V
expression ⟦I ⟧ =

identifier I
expression ⟦I ?⟧ =

receive I
expression ⟦(E)⟧ = E
expression ⟦E1 + E2⟧ =

add (E1, E2)
expression ⟦E1 - E2⟧ =

sub (E1, E2)
expression ⟦E1 * E2⟧ =

mul (E1, E2)
expression ⟦E1 / E2⟧ =

div (E1, E2)

4.3 CTL Property Specification

There are two kinds of property specifications: tree and node property. The tree spec-
ification affects the subtree of a node as well of the value of the node itself. The tags
single and double are necessary since we need to catch the path operators with one
operand (global and final) as well as those with two operands (until, weak, and release).

WidthOp = all + exists
DepthOp = global + final + until + weak + release
TreePropSpec = single PropSpec + double (PropSpec × PropSpec)
PropSpec = tree prop spec (WidthOp × DepthOp × TreePropSpec) +

node prop spec NodePropSpec

The node specification only affects the value of the node. On the whole, it is similar
to regular expressions. However, it can also be made up by a constant value, state vari-
able, or state. As the former two cases are syntactically equivalent, the path prop spec

semantic rule uses the symbol table to distinguish them.

NodePropSpec = not PropSpec +
and (PropSpec × PropSpec) + or (PropSpecn × PropSpec) +
eq (PropSpec × PropSpec) + ne (PropSpec × PropSpec) +
lt (PropSpec × PropSpec) + le (PropSpec × PropSpec) +
gt (PropSpec × PropSpec) + ge (PropSpec × PropSpec) +
add (PropSpec × PropSpec) + sub (PropSpec × PropSpec) +
mul (PropSpec × PropSpec) + div (PropSpec × PropSpec) +
value Value + state (Integer × Integer) +
variable (Integer × Identifier)

Each tree property specification must begin with a width operator (all or exists)
followed by a depth operator (until, weak, or release). It can also be a node property
specification.

prop spec : PropSpecS × Table → PropSpec
prop spec ⟦a g PS⟧ subcomp table =

let prop spec = prop spec PS subcomp table in
tree prop spec (all, global, single prop spec)

prop spec ⟦a f PS⟧ subcomp table =
let prop spec = prop spec PS subcomp table in

tree prop spec (all, final, single prop spec)
prop spec ⟦a PS1 u PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

tree prop spec (all, until, double (prop spec1, prop spec2))
prop spec ⟦a PS1 w PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

tree prop spec (all, weak, double (prop spec1, prop spec2))
prop spec ⟦a PS1 r PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

tree prop spec (all, release, double (prop spec1, prop spec2))
prop spec ⟦e g PS⟧ subcomp table =

let prop spec = prop spec PS subcomp table in
tree prop spec (exists, global, single prop spec)

prop spec ⟦e f PS⟧ subcomp table =
let prop spec = prop spec PS subcomp table in

tree prop spec (exists, final, single prop spec)
prop spec ⟦e PS1 u PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

tree prop spec (exists, until, double (prop spec1, prop spec2))
prop spec ⟦e PS1 w PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

tree prop spec (exists, weak, double (prop spec1, prop spec2))
prop spec ⟦e PS1 r PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

tree prop spec (exists, release, double (prop spec1, prop spec2))

prop spec ⟦NPS⟧ subcomp table =
node prop spec NPS subcomp table

The node specification only affects the value of the node. On the whole, it is similar
to the regular expression. However, it can also be made up by a constant value, state
variable, or state. As the former two cases are syntactically equal, the prop spec value
semantic rule uses the symbol table to distinguish them.

node prop spec : NodePropSpecS × Table → PropSpec
node prop spec ⟦(PS)⟧ subcomp table =

prop spec PS subcomp table
node prop spec ⟦not PS⟧ subcomp table =

let prop spec = prop spec PS subcomp table in
node node prop spec (not prop spec)

node prop spec ⟦PS1 and PS2⟧ subcomp table =
let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (and (prop spec1, prop spec2))
node prop spec ⟦PS1 or PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (or (prop spec1, prop spec2))
node prop spec ⟦PS1 = PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (eq (prop spec1, prop spec2))
node prop spec ⟦PS1 ! = PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (ne (prop spec1, prop spec2))
node prop spec ⟦PS1 < PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (lt (prop spec1, prop spec2))
node prop spec ⟦PS1 <= PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (le (prop spec1, prop spec2))
node prop spec ⟦PS1 > PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (gt (prop spec1, prop spec2))
node prop spec ⟦PS1 >= PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (ge (prop spec1, prop spec2))
node prop spec ⟦PS1 + PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (add (prop spec1, prop spec2))
node prop spec ⟦PS1 − PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (sub (prop spec1, prop spec2))

node prop spec ⟦PS1 ∗ PS2⟧ subcomp table =
let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (mul (prop spec1, prop spec2))
node prop spec ⟦PS1 / PS2⟧ subcomp table =

let prop spec1 = prop spec PS1 subcomp table in
let prop spec2 = prop spec PS2 subcomp table in

node prop spec (div (prop spec1, prop spec2)) node prop spec ⟦I1 . I2⟧ subcomp table =
let inst record = table get I1 subcomp table in
let inst index = list index of inst record (table to list subcomp table) in
let system (state, symbol table, init list, trans list) = inst record in
let value = table get I2 subcomp table in

node prop spec (prop spec value inst index value)

prop spec value : Integer × Value → NodeProp
prop spec value inst index (state state value) =

state (inst index, state value)
prop spec value inst index (integer int value) =

variable (inst index, int value)

4.4 Initialization

Before the process of generating the state tree begins, the subcomponent table must
become initialized; that is, the assignments state variables and the triggering of out-
port signals in the initialization part of the annexes must be performed. The inital-
ize subcomponent list semantic rule traverses the global subcomponent list and, for
each subcomponent, calls initalize subcomponent that initializes the subcomponent by
traversing the initialization list. The parameter of the semantic rule is the global sub-
component list and the return value is the same list with the symbol table of each
subcomponent updated in accordance to its initialization list. The list insert list func-
tion adds the new value at the beginning of the list (in contrast to the list add list
function that adds the value at the end of the list).

initalize subcomponent list : List → List
initalize subcomponent list inst list =

if not (list is empty inst list) then
let (subcomponent1, tail1) = list split inst list in
let subcomponent2 = initalize subcomponent subcomponent in
let tail2 = initalize subcomponent list tail1 in

list insert subcomponent2 tail2
else list empty

initialize subcomponent : Value → Value
initialize subcomponent record subcomp table =

let system (state, symbol table1, init list, trans list) = record in
let symbol table2 = traverse action list init list symbol table1 in

system (state, symbol table2, init list, trans list)

The traverse action list semantic rule traverses the action list and, for each action
in the list, calls the execute action semantic rule that executes the action and updates
the symbol table. When the complete list is traversed, the resulting symbol table is
returned.

traverse action list : List × Table → Table
traverse action list action list symbol table1 =

if not (list is empty action list) then
let (action, tail) = list split action list in
let symbol table2 = execute action action symbol table1 in

traverse action list tail symbol table2
else symbol table1

The evaluate expression semantic rule does not only return the value of the ex-
pression, it does also return a new symbol table as the expression may include the
reception of an input port signal. In that case the boolean value of the signal is set to
false and the resulting symbol table is returned. Note that state variables as well as
input and output port signals are stored in the same symbol table.

execute action : Value × Table → Table
execute action (action (send I)) symbol table =

table set I (boolean true) symbol table
execute action (action (assign (I, E))) symbol table1 =

let (value, symbol table2) = evaluate expression E symbol table1 in
table set I value symbol table2

4.5 Expression Evaluation

The evaluate expression semantic rule evaluates an expression. Besides the expres-
sion, it also takes a symbol table as parameter. It returns the value together with the
result symbol table. The resulting symbol table is different from the original table if
the expression includes the reception of an input port. In that case, its boolean value
become changed from true to false in the new symbol table, since the input signal
should be read only once.

evaluate expression : Expression × Table → (Value × Table)
evaluate expression (value V) symbol table =

(V, symbol table)
evaluate expression (identifier I) symbol table =

(table get I symbol table, symbol table)
evaluate expression (receive I) symbol table =

(table get I symbol table, table set I (boolean false) symbol table)
evaluate expression (not E) symbol table =

let (boolean bool value, symbol table1) =
evaluate expression E1 symbol table in
(boolean (not bool value), symbol table1)

evaluate expression (and (E1, E2))) symbol table =
let (boolean bool value1, symbol table1) =

evaluate expression E1 symbol table in
let (boolean bool value2, symbol table2) =

evaluate expression E2 symbol table1 in
(boolean (bool value1 and bool value2), symbol table2)

evaluate expression (or (E1, E2))) symbol table =
let (boolean bool value1, symbol table1) =

evaluate expression E1 symbol table in
let (boolean bool value2, symbol table2) =

evaluate expression E2 symbol table1 in
(boolean (bool value1 or bool value2), symbol table2)

evaluate expression (eq (E1, E2))) symbol table =
let (value1, symbol table1) =

evaluate expression E1 symbol table in
let (value2, symbol table2) =

evaluate expression E2 symbol table1 in
(evaluate equal value1 value2, symbol table2)

evaluate expression (ne (E1, E2))) symbol table =
let (value1, symbol table1) =

evaluate expression E1 symbol table in
let (value2, symbol table2) =

evaluate expression E2 symbol table1 in
(evaluate not equal value1 value2, symbol table2)

evaluate expression (lt (E1, E2))) symbol table =
let (integer int value1, symbol table1) =

evaluate expression E1 symbol table in
let (integer int value2, symbol table2) =

evaluate expression E2 symbol table1 in
(integer (int value1 < int value2), symbol table2)

evaluate expression (le (E1, E2))) symbol table =
let (integer int value1, symbol table1) =

evaluate expression E1 symbol table in
let (integer int value2, symbol table2) =

evaluate expression E2 symbol table1 in
(integer (int value1 <= int value2), symbol table2)

evaluate expression (gt (E1, E2))) symbol table =
let (integer int value1, symbol table1) =

evaluate expression E1 symbol table in
let (integer int value2, symbol table2) =

evaluate expression E2 symbol table1 in
(integer (int value1 > int value2), symbol table2)

evaluate expression (ge (E1, E2))) symbol table =
let (integer int value1, symbol table1) =

evaluate expression E1 symbol table in
let (integer int value2, symbol table2) =

evaluate expression E2 symbol table1 in
(integer (int value1 >= int value2), symbol table2)

evaluate expression (add (E1, E2))) symbol table =
let (integer int value1, symbol table1) =

evaluate expression E1 symbol table in
let (integer int value2, symbol table2) =

evaluate expression E2 symbol table1 in
(integer (int value1 + int value2), symbol table2)

evaluate expression (sub (E1, E2))) symbol table =
let (integer int value1, symbol table1) =

evaluate expression E1 symbol table in
let (integer int value2, symbol table2) =

evaluate expression E2 symbol table1 in
(integer (int value1 − int value2), symbol table2)

evaluate expression (mul (E1, E2))) symbol table =
let (integer int value1, symbol table1) =

evaluate expression E1 symbol table in
let (integer int value2, symbol table2) =

evaluate expression E2 symbol table1 in
(integer (int value1 ∗ int value2), symbol table2)

evaluate expression (div (E1, E2))) symbol table =
let (integer int value1, symbol table1) =

evaluate expression E1 symbol table in
let (integer int value2, symbol table2) =

evaluate expression E2 symbol table1 in
(integer (int value1 / int value2), symbol table2)

The eq and ne operators above accept that both operands are either integer and
boolean, why we need to call the evaluate equal and evaluate not equal, respectively.
The rest of the relational operates only accept integer values, and so do the arithmetic
operators.

evaluate equal : Value × Value → Value
evaluate equal (integer int value1) (integer int value2) =

boolean (int value1 = int value2)
evaluate equal (boolean bool value1) (boolean bool value2) =

boolean (bool value1 = bool value2)

evaluate not equal : Value × Value → Value
evaluate not equal (integer int value1) (integer int value2) =

boolean (int value1 ! = int value2)
evaluate not equal (boolean bool value1) (boolean bool value2) =

boolean (bool value1 ! = bool value2)

4.6 Connection

The traverse connection list semantic rule traverses the connection list and, for each
connection, calls execute connection that execute the connection.

traverse connection list : List × List → List
traverse connection list conn list subcomp list =

if not (list is empty conn list) then
let (connection1, tail1) = list split conn list in
let connection2 = execute connection connection1 subcomp list
let tail2 = traverse connection list tail1 connection2

traverse connection list tail2 connection2

else subcomp list

In the execute connection semantic rule, we first look up the subcomponent of the
output port and the output port boolean value. If it is true, we set its value to false
and look up the subcomponent of the input port and set the its value to true. Since
the value of the ports has been altered in both the symbol tables of the output and
input port subcomponents, we need to set the new subcomponent values in the sub-
component list (subcomp list).

execute connection : Value × List → List
execute connection (conn (out index, out ident, in index, in ident))

subcomp list1 =
let out subcomponent1 = list get out index subcomp list1 in
let system (out state, out table1, out init list, out trans list) =

out subcomponent1 in
if is true (table get out ident out table1) then

let out table2 = table set out ident (boolean false) out table1 in
let out subcomponent2 =

system (out state, out table2, out init list, out trans list) in
let subcomp list2 =

list set out index out subcomponent2 subcomp list1 in
let in subcomponent1 = list get in index subcomp list1 in
let system (in state, in table1, in init list, in trans list) =

in subcomponent1 in
let in table2 = table set in ident (boolean true) in table1 in
let in subcomponent2 =

(in state, in table2, in init list, in trans list) in
list set in index in subcomponent2 subcomp list2

else subcomp list

4.7 Generation

In this section, we generate the state tree. What makes it somewhat complicated is
that we construct the tree recursively: generate tree calls traverse subcomponent list,
which calls traverse trans list, which calls execute transition, which finally calls gener-
ate tree recursively. Each possible transition in each subcomponent generates a new
sub tree. If several transitions can be taken (in the same subcomponent or in a differ-
ent one), one sub tree for each transition will be constructed. The idea is that from
the start, the tree is made up of one single node that holds the subcomponent list
in its initial state. Then traverse subcomponent list goes through the subcomponents
and for each subcomponent goes traverse trans list through each transition. For each
transition that can be taken, execute transition updates the subcomponent list so that
the transition is taken and create a new sub tree with that list as root value, and attach
that sub tree as a child to the parameter main tree. Then it finally calls generate tree
which recursively continues to create sub trees until no more transitions can be taken
or the subcomponent list already has been attached to a ancestor node.

The generate tree semantic rule first traverses the connection list by calling tra-
verse connection list in order to establish any current connections, which results in an
updated subcomponent list. Then it traverses the subcomponent list which generates
a sub tree that is attached to the parameter main tree. However, one of its parameter
is a set stored with subcomponent lists that keeps track of the subcomponents. If the
same list reoccur (that is, one of the ancestor nodes holds the same subcomponent
list), the generation is aborted.

generate tree : List × List × Set × Tree → Tree
generate tree subcomp list conn list set1 main tree =

if not (set exists subcomp list set1) then
let set2 = set add subcomp list set1 in
let sub tree1 = tree create subcomp list in
let subcomp list2 = traverse connection list conn list subcomp list
in let sub tree2 = traverse subcomponent list subcomp list2

conn list set2 sub tree1 in
tree add child sub tree2 main tree

else main tree

The traverse subcomponent list semantic rule traverses the subcomponent list and,
for each subcomponent, traverse the transition list. As the traversing of the transi-
tions list may affect the state and the symbol table of the subcomponent, it need to
be stored in the subcomponent list. In this case, the complete subcomponent list is
kept since we need it in the recursive call to execute transition below. Instead of split-
ting the list as in similar cases above, we increase the index of the list. Each call to
traverse trans list generates a new tree that becomes the parameter to the next call
to traverse subcomponent list. When the list is is completely traversed, the resulting
tree of the last call to traverse subcomponent list is returned.

traverse subcomponent list : Integer × List × List × Set × Tree → Tree
traverse subcomponent list inst index subcomp list conn list set tree1 =

if inst index < (list size subcomp list) then
let system (state, symbol table, init list, trans list) =

list get inst index subcomp list in
let tree2 = traverse trans list trans list inst index subcomp list

conn list set tree1 in
traverse subcomponent list (inst index + 1) subcomp list
conn list set tree2

else tree1

The traverse trans list semantic rule traverses the transition list, and for each
transition calls execute transition that returns a new tree, which in turn becomes the
parameter tree in the next call to traverse trans list. When the list is completely tra-
versed, it returns the resulting tree from the last call to execute transition.

traverse trans list : List × Integer × List × List × Set × Tree → Tree
traverse trans list trans list inst index subcomp list conn list set tree1 =

if (list size trans list) > 0 then
let (head, tail) = list split trans list in
let tree2 = execute transition head inst index subcomp list

conn list set tree1 in
traverse trans list tail inst index subcomp list conn list set tree2

else tree1

The execute transition semantic rule executes a transition. If the current state of
the subcomponent is equal to the source state of the transition and the guard expres-
sion evaluates to true, the transition is taken and the subcomponent list is updated.
As each taken transition generates a new sub tree, generate tree is called with the
updated subcomponent list.

execute transition : Value × Integer × List × List × Set × Tree → Tree
execute transition trans value inst index subcomp list1 conn list set

main tree =
let transition (source state, guard expr, target state, action list) =

trans value in
let record1 = table get inst index subcomp list in
let system (state, symbol table1, init list, trans list) = record1 in
let (boolean is guard, symbol table2) =

evaluate guard expr symbol table1 in
if (state = sourceState) and is guard then

let symbol table3 = traverse action list init list symbol table2 in
let record2 =

system (target state, symbol table3, init list, trans list)
let subcomp list2 = list set inst index record2 subcomp list1 in

generate tree subcomp list2 conn list set main tree
else main tree

4.8 Property Specification Evaluation

When the state tree of section 4.7 has become generated, we are finally ready to eval-
uate it against the property specification created in section 4.3. First, we define the
two auxiliary semantic rules is true and is false that decide whether a boolean value
is true or false, respectively.

is true : Value → Boolean
is true (boolean B) = B

is false : Value → Boolean
is false (boolean B) = not B

The evaluate prop spec semantic rule evaluate a tree or node property.

evaluate prop spec : PropSpec × Tree → Value
evaluate prop spec (tree prop spec (width op, depth op, T)) tree =

boolean value (evaluate tree T tree width op depth op)
evaluate prop spec (node prop spec N) tree =

evaluate node N tree

The evaluate children and evaluate tree semantic functions call each other alter-
nately. Initially, evaluate tree is called for the root node, it calls evaluate children for
its children, which in turn calls evaluate tree for each of the children. These alternately
calls continue until the property specification has been satisfied or a leaf in the tree
has been reached.

The evaluate children traverses the children of the root node of a tree. If there is no
children, we have reached a leaf of the tree. Different values are returned depending
of the depth operator. In case of the global operator, the property has to hold for
each node on the path from the root node to the leaf. Therefore, the and operator
is applied to the node property values, and true is returned at the end of the path.
In case of final operator, it is enough that one property holds for the path from the
root node to the leaf node. Therefore, the or operator is applied to the node property
values and false is returned at the end of the path. In case of the until operator, the
property has to hold for at least one node on the path, which finally gives false as
return value. On the other hand, in case of the weak operator, it does not need to be
the case; therefore, true is returned. The same goes for the release operator, true is
returned in that case as well.

If the root node of the tree has one child, we simple evaluate it by calling evalu-
ate tree. If it has more than one children, we need to look into the width operators. In
case of the all operator, the property has to hold for all child nodes, why we apply the
and operator between the property value of the first child node and the evaluation of
the rest of the children. In case of the exists operator, the property has to hold for
only one of the children, why we instead apply the or operator.

evaluate children : TreeProp × List × WidthOp × DepthOp → Boolean
evaluate children TP child list width op depth op =

case (list size child list) of
0 ⇒ case depth op of

global ⇒ true
∣ final ⇒ false
∣ until ⇒ false
∣ weak ⇒ true
∣ release ⇒ true

∣ 1 ⇒ evaluate tree TP (list get 0 child list) width op depth op
∣ default ⇒ let (head, tail) = list split child list in

case width op of
all ⇒ (evaluate tree TP head width op depth op) and

(evaluate children TP tail width op depth op)
∣ exists ⇒ (evaluate tree TP head width op depth op) or

(evaluate children TP tail width op depth op)

The evaluate tree semantic rule evaluates the property of the root node of the tree
and compare it against the children. In case of the global operator, the property has
to hold for the root node and all the nodes to the leaf nodes. In case of the final
operator, it is enough if the property holds for one of them. In case of the until, weak,
and release operator, there are two properties to consider. In both the until and weak
cases, either the second property has to hold for the root node; if it does not, the first
property has to hold for the root node and the operators has to hold for the rest of
the children. However, they differ at the end of the path, see the evaluate children
semantic rule above. Finally, in case of the release operator, the second operator has
to hold for the root node; if it does not, either the first property has to hold for the
root node or the operator has to hold for the rest of the children.

evaluate tree : TreeProp × Tree × WidthOp × DepthOp → Boolean
evaluate tree PS tree width op depth op =

case depth op of
global ⇒ let (single subProp) = PS in
(is true (evaluate prop spec subProp tree)) and
(evaluate children PS (tree get children tree) width op depth op)

∣ final ⇒ let (single subProp) = PS in
(is true (evaluate prop spec subProp tree)) or
(evaluate children PS (tree get children tree) width op depth op)

∣ until ⇒ let (double (subProp1, subProp2)) = PS in
(is true (evaluate prop spec subProp2 tree)) or
((is true (evaluate prop spec subProp1 tree)) and
(evaluate children PS (tree get children tree) width op depth op))

∣ weak ⇒ let (double (subProp1, subProp2)) = PS in
(is true (evaluate prop spec subProp2 tree)) or
((is true (evaluate prop spec subProp1 tree)) and
(evaluate children PS (tree get children tree) width op depth op))

∣ release ⇒ let (double (subProp1, subProp2)) = PS in
(is true (evaluate prop spec subProp2 tree)) and
((is true (evaluate prop spec subProp1 tree)) or
(evaluate children PS (tree get children tree) width op depth op))

The evaluate node semantic rule is relative simple. It is similar to the evalu-
ate expression semantic rule in section 4.5 and evaluates the node property.

evaluate node : NodeProp × Tree → Value
evaluate node (not prop spec PS) tree =

let boolean bool value = evaluate prop spec PS tree in
boolean (not bool value)

evaluate node (and prop spec (PS1, PS2)) tree =
let boolean bool value1 = evaluate prop spec PS1 tree in
let boolean bool value2 = evaluate prop spec PS2 tree in

boolean (bool value1 and bool value2)
evaluate node (or prop spec (PS1, PS2)) tree =

let boolean bool value1 = evaluate prop spec PS1 tree in
let boolean bool value2 = evaluate prop spec PS2 tree in

boolean (bool value1 or bool value2)
evaluate node (eq prop spec (PS1, PS2)) tree =

let value1 = evaluate prop spec PS1 tree in
let value2 = evaluate prop spec PS2 tree in

evaluate equal value1 value2
evaluate node (ne prop spec (PS1, PS2)) tree =

let value1 = evaluate prop spec PS1 tree in
let value2 = evaluate prop spec PS2 tree in

evaluate not equal value1 value2
evaluate node (lt prop spec (PS1, PS2)) tree =

let integer int value1 = evaluate prop spec PS1 tree in
let integer int value2 = evaluate prop spec PS2 tree in

integer (int value1 < int value2)
evaluate node (le prop spec (PS1, PS2)) tree =

let integer int value1 = evaluate prop spec PS1 tree in
let integer int value2 = evaluate prop spec PS2 tree in

integer (int value1 <= int value2)
evaluate node (gt prop spec (PS1, PS2)) tree =

let integer int value1 = evaluate prop spec PS1 tree in
let integer int value2 = evaluate prop spec PS2 tree in

integer (int value1 > int value2)
evaluate node (ge prop spec (PS1, PS2)) tree =

let integer int value1 = evaluate prop spec PS1 tree in
let integer int value2 = evaluate prop spec PS2 tree in

integer (int value1 >= int value2)
evaluate node (add prop spec (PS1, PS2)) tree =

let integer int value1 = evaluate prop spec PS1 tree in
let integer int value2 = evaluate prop spec PS2 tree in

integer (int value1 + int value2)
evaluate node (sub prop spec (PS1, PS2)) tree =

let integer int value1 = evaluate prop spec PS1 tree in
let integer int value2 = evaluate prop spec PS2 tree in

integer (int value1 − int value2)

evaluate node (mul prop spec (PS1, PS2)) tree =
let integer int value1 = evaluate prop spec PS1 tree in
let integer int value2 = evaluate prop spec PS2 tree in

integer (int value1 ∗ int value2)
evaluate node (div prop spec (PS1, PS2)) tree =

let integer int value1 = evaluate prop spec PS1 tree in
let integer int value2 = evaluate prop spec PS2 tree in

integer (int value1 / int value2)
evaluate node (state prop S) tree =

evaluate state S tree
evaluate node (variable prop V) tree =

evaluate variable V tree
evaluate node (value prop V) tree =

V

The evaluate state semantic rule looks up the subcomponent and the state’s inte-
ger value and compares it to the parameter stat value.

evaluate state : (Integer × Integer) × Tree → Value
evaluate state (inst index, state value) tree =

let subcomp list = tree get value tree in
let record = list get inst index subcomp list in
let system (state, symbol table, init list, trans list) = record in

boolean value (state = state value)

The evaluate variable semantic rule looks up the subcomponent and the state vari-
able’s integer value.

evaluate variable : (Integer × Identifier) × Tree → Value
evaluate variable (inst index, var ident) tree =

let subcomp list = tree get value tree in
let record = list get inst index subcomp list in
let system (state, symbol table, init list, trans list) = record in

table get var ident symbol table

Chapter 5

Tool Support and Case
Study

In order to proof the correctness of the semantics of chapter 4, we have developed a
tool that is an Eclipse1 plug-in on top of the OSATE Framework2, which in itself is
an Eclipse plug-in, see figure 5.1. It evaluates a property specification on an AADL
model with behavior annexes.

The model and property specification are translated into standard ML format, the
translator is written in Java3, CUP4, and JLex5. We have tested our tool on the
Production Cell case study in chapter 5.2.

The semantics itself is implemented in Standard ML6 and is made up of seven
source code files:

� Utilities.ml. Definition of basic functions, trace printing and abstract data
types, such as Map, List, Tree, and Set.

� Storage.ml. Definitions of values and the Storage abstract data type.

� Parser.ml. Parses and semantically checks the AADL with Behavior Annex
input model. The model needs to be translated into ML source code, see figure
5.3 and section 5.1.

� Evaluator.ml. The evaluation of expressions.

� Initializor.ml. The initialization of each subcomponent.

� PropSpec.ml. The parsing and evaluation of a property specification against
the state tree.

� Generator.ml. The generation of the state tree.

The first part of the tool is a parser written in CUP and JLex that translates
the AADL with Behavior Annex model into a format readable to Standard ML, see
section 5.1.

The tool needs three directory paths: the Standard ML Path, Semantics Path, and
the Temporary Path, see figure 5.2. In the temporary path directory, four files are
generated:

1www.eclipse.org
2www.aadl.info/aadl/currentsite/tool/osate.html
3www.oracle.com/technetwork/java/index.html
4http://www2.cs.tum.edu/projects/cup/
5www.cs.princeton.edu/ appel/modern/java/JLex
6www.smlnj.org

36

Figure 5.1: The Semantics Tool.

Figure 5.2: Path Specification.

Parser Initializor Generator

Yes/No

Property

Evaluator

State

Tree

Property

Specification Model

Figure 5.3: The Semantics Tool Modules.

� Input.ml. The AADL with Behavior Annex model as well as the property
specification translated into ML by the parser mentioned above.

� Semantics.bat. The tool starts a subprocess executing this batch file. With
the settings of figure 5.2, it looks like the following:

"C:\Program Files\SMLNJ\bin\sml" < "C:\Temp\Semantics.ml"

> "C:\Temp\Semantics.log"

� Semantics.ml. The ML source file that do the actually work. It includes the
ML files above together with the ML versions of the AADL with Behavior Annex
model and the property specification. Finally, it starts the semantic evaluation
by calling the main function. With the settings of figure 5.2, it will looks like
the following:

use "C:\\Semantics\\Utilities.ml";

use "C:\\Semantics\\Storage.ml";

use "C:\\Semantics\\Parser.ml";

use "C:\\Semantics\\Evaluator.ml";

use "C:\\Semantics\\Initializor.ml";

use "C:\\Semantics\\PropSpec.ml";

use "C:\\Semantics\\Generator.ml";

use "C:\\Temp\\Input.ml";

ParseSpecification Model PropSpec;

� Semantics.log. The output of the execution of the ML files are logged, read
and interperted by the tool.

Similar to the semantics of chapter 4, the tool works in two steps: first the state
tree is generated holding each possible model state, then the tree is evaluated against
the CTL property specification. See figure 5.3.

5.1 Input Language

Since the semantics is implemented in ML, its input needs to be translated into ML
format. Therefore, a parser has been developed. It accepts an AADL with Behavior
Annex model or a CTL property specification. In both cases, a corresponding ML
syntax tree is generated. For instance, the property specification in section 2.1.2 is
translated into the following ML value. The value holding the property specification is
always named PropSpec. In case of an AADL with Behavior Annex model, the name
is always Model.

val PropSpec = (tree parse (all, global, (single parse (node parse

(not parse (node parse (and parse ((node parse (ident parse

("subsystem1", "Critical"))), (node parse (ident parse

("subsystem2", "Critical")))))))))));

However, note that the parser is just a parser, it only translates the code from one
format to another. All type checking is done by the ML semantics implementation
described in the previous section.

5.2 Case Study

In order to validate the approach of this report, a case study of a Production Cell
system has been constructed in AADL, its source code is given in appendix B. It is
based on an automated manufacturing system which is modeled on an industrial plant
in Karlsruhe in Germany. It was first described by Lewerentz in [18]. Ouimet defined
it in TASM in [21] as depicted in Figure 5.4.

The system is not controlled by a central unit. Instead, the components communi-
cates with each other through port connections. The components work concurrently,
when a component is ready to accept a new block it notifies the preceding compo-
nent, which in turn acknowledges that is has loaded the block. There is also a signal
acknowledging that the loading location of the component is free.

The system is composed of the robot arms Loader, BeltToPress, PressToPress, the
conveyer belts FeedBelt and DepositBelt as well as the Press. The system input is a
set of blocks arriving in a crate and the output is the same blocks with bolts attached
to them delivered by the deposit belt for further processing. Once a block has been
loaded, it is dragged through the system. See Figure 5.5 for a schematic description.

Figure 5.4: The Production Cell System as presented in [21].

While waiting, the loader is parked at the crate with the magnet turned off. When
it receives a signal from the feed belt that it is ready to receive a new block, the loader
turns the magnet on, moves the arm onto the beginning of the feed belt, turns the
magnet off, and signals the feed belt that it has loaded a block.

When the feed belt receives the loading signal, it starts the belt so the block moves
towards the end point. When the block has reached the end point, the belt is turned
off and a signal is sent backwards to the loader robot arm that the block has been
picked up. Then the robot arm moves back to the crate and waits for the next ready
signal from the feed belt. The feed belt also sends a signal forwards to the belt-to-press
robot arm that the block is ready to be picked up. Then it waits until the loader places
a new block on the belt.

FeedBelt

InBlockLoaded

Loader

InBlockReady

InBlockPicked

Press

BeltToPress

OutBlockLoaded

OutBlockReady

OutBlockPicked

DepositBelt PressToBelt

OutBlockLoaded

InBlockReady

InBlockLoaded

InBlockPicked

OutBlockPicked

OutBlockReady

InBlockLoaded

InBlockReady

InBlockPicked

OutBlockLoaded

OutBlockReady

OutBlockPicked

InBlockLoaded

OutBlockReady

OutBlockLoaded

OutBlockPicked

InBlockPicked

InBlockReady OutBlockReady

OutBlockPicked

InBlockLoaded

InBlockReady

InBlockPicked

OutBlockLoaded InBlockLoaded

OutBlockReady

OutBlockLoaded

OutBlockPicked

InBlockPicked

InBlockReady

InBlockLoaded

InBlockReady

InBlockPicked

OutBlockLoaded

OutBlockPicked

OutBlockReady

:ProductionCell

Figure 5.5: Schematic Description of the Production Cell System.

When the belt-to-press robot arm receives the loading signal from the feed belt, it
waits for the ready signal from the press. When it receives it, the robot arm turns on
the magnet and picks up the block, sends the picked-up signal backwards to the feed
belt, moves the block and drops it on the input plate of the press. When it receives
the picked-up signal from the press, it moves the arm back to the feed belt and waits
for the next loaded signal.

The press moves the block into the press position, sends the picked-up signal
backwards to the belt-to-press robot arm and starts pressing a bolt into the block.
When the bolt pressing process is finished, the block is moved to the departure position,
the ready signal is sent backwards to the belt-to-press robot arm and the loaded signal
is sent forwards to the press-to-belt robot arm.

When the press-to-belt robot arm receives the loaded signal, it waits for the ready
signal from the deposit belt. When it receives it, it picks up the block by turning
on the magnet, moves the block onto the deposit belt, turn off the magnet and sends
the loaded signal to the deposit belt. When it receives the picked-up signal from the
deposit belt, it moves backwards to the press and sends the ready signal to the press.

Finally, when the deposit belt receives the loaded signal from the press-to-belt
robot arm, it starts the belt, sends the picked-up signal to the press-to-belt robot arm
and moves the block to further processing. When the block has reached the end of the
feed-belt, it stops the belt and sends the ready signal backwards to the press-to-belt
robot arm.

The source code for the Production Cell system is given in appendix B. It has the
systems Loader, FeedBelt, BeltToPress, Press, PressToBelt, and DepositBelt. These
systems are instantiated into the subcomponents feedBelt, beltToPress, press, pressTo-
Belt, depositBelt, and storer.

In order to assure that a block is always moved through the Production Cell system
and not become (permanently) stuck somewhere on the way, we examen whether the
state variable storedBlocks in the storer subcomponent will be assigned the value one,
meaning that one block has gone thought the whole system. The test can be formally

Figure 5.6: Property Specification.

Figure 5.7: Property Solution.

stated in CTL as follows:

a f storer.StoredBlocks = 1

As evident from figure 5.6 and 5.7, all paths finally lead to a state where stored-
Blocks is equals to one, meaning that the block will always be dragged through the
Production Cell system.

Chapter 6

Related Work

There has been some attempts to define semantics for AADL and its annexes. Al-
Nayeem et al. [2] present an architecture pattern for ensuring synchronous compu-
tation semantics using the Physically-Asynchronous Logically-Synchronous (PALS)
protocol [23]. They have also developed a modeling framework in AADL to auto-
matically transform a synchronous design of a real-time distributed system into an
asynchronous design satisfying the PALS protocol.

Abdoul et al. [1] presents an AADL model transformation that covers three as-
pects: structure, behavior description and execution semantics. They complete the
AADL meta model in order to improve system behavior, they also implement these
rules using the Kermeta meta modeling platform.

Varona-Gomez and Villar [26] presents the AADL simulation tool AADS, which
supports the performance analysis of the AADL specification throughout the refine-
ment process from the initial system architecture until the complete, detailed applica-
tion and execution platform are developed. In this way, AADS enables the verification
of the initial timing constraints during the complete design process.

Rugina et al. [22] presents an iterative dependency-driven approach for depend-
ability modeling using AADL, which is part of a complete framework that allows
the generation of dependability analysis and evaluation models from AADL models
to support the analysis of software and system architectures, in critical application
domains.

Relying on the MARTE Time Model [13] and the operational semantics of the
Clock Constraint Specification Language (CCSL) [19], Mellat et al. [20] equip UML
activities to the execution semantics of an AADL specification as a part of a broader
effort to build a generic simulator for UML models with the semantics explicitly defined
within the model.

Gui et al. [14] regards AADL as an Model-Driven Architecture method. They use
the linear hybrid automata to abstract the semantics of the software components ex-
plicitly and use the TIMES tool [3] to simulate the semantics of linear hybrid automata
and the scheduling execution trace of AADL software components, respectively.

Berthomieu et al. [4] give a high-level view of the tools involved and describe the
successive transformations performed by their verification process. They also report
on an experiment carried out in order to evaluate our framework and give the first
experimental results obtained on real-size models.

Sokolsky et al. [24] discuss the use of formal methods for the analysis of ar-
chitectural models expressed in AADL. They describe the system as a collection of
interacting components where the AADL standard prescribes semantics for the thread
components and rules of interaction between threads and other components in the
system. They also present a semantics-preserving translation of AADL models into

42

the real-time process algebra ACSR [17], which allows schedulability analysis of AADL
models.

França et al. [12] present an evaluation of the AADL Behavioral Annex currently
in evaluation phase. They relate their experiment with respect to a development
concerning the re-engineering of flight software. This experiments has led them to
introduce hierarchical aspects and study the link especially with AADL modes. They
discuss the definition of a semantics for the AADL execution model and propose some
enhancements.

Yang et al. [27] propose a formal semantics for the AADL behavior annex using
Timed Abstract State Machine (TASM). They give the semantics of AADL default
execution model, then they formally define some aspects semantics of behavior annex.
A prototype of real-time behavior modeling and verification is proposed, and a case
study is given to validate its feasibility.

De Niz et al. [6] present an approach to model replication patterns in AADL
and analyze potentially unintended behaviors. That approach takes advantage of the
strong semantics of AADL to model replication patterns at the architecture level.
They develop two AADL models, where the first one defines the intended behavior
in synchronous call sequences, and the second model describes the replication archi-
tecture. These two models are then compared using a differential model in Alloy [15]
where the requirements of the first model and the concurrency and potential failure
of the second are combined.

Chapter 7

Conclusions and Further
Work

We have developed a denotational semantics with which help it is possible to prove
CTL property specifications of a model defined in AADL with Behavior Annex. We
have also developed a tool that implements the semantics, a tool with a graphical user
interface as an OSATE plug-in that has been tested on the Production Cell system.

There are several ways to continue the work of this report. One obvious approach is
to optimize the algorithms behind the semantics when it comes to state tree generation
and property specification evaluation. In our approach, we use a set to determine
whether a state is repeated along a path in the tree. However, is should be possible to
use a global set that is capable of catching whether a state is repeated along another
path. It should also be possible to evaluate the tree ”on the fly”; that is, the evaluation
takes place during the tree generation. In that way, no more of the tree than necessary
in order to determine the value of the property specification will be generated.

Another interesting extension of the semantics is to add time annotation to the
transitions in order to determine the minimal an maximal time frame for a property
specification to be satisfied. One other possible way forward it to look into other ar-
chitecture design languages, such as MARTE [19] or EAST-ADL [7] as input language
for the denotational semantics.

44

Appendix A

An Example of Parsing

The process of determine whether a source code satisfying a grammar is called parsing.
The parsing methods can be divided into top-down parsing, starting from the grammar
start symbol and ending with the source code, or bottom-up parsing, starting with the
source code and ending with the grammar start symbol. Tables A.1, A.2, A.3, and
A.4 illustrates a top-down parsing of the SubSystem1 system below.

system SubSystem1

features

CriticalEnter: in event port;

CriticalLeave: out event port;

annex SubSystemAnnex1 {**

initializations

CriticalLeave!;

states

Waiting :initial state;

Critical :state;

transitions

Waiting -[CriticalEnter?]-> Critical;

Critical -[true]-> Waiting {CriticalLeave!;}

**};

end SubSystem1;

System
system Identifier SystemBody end ;
system SubSystem1 SystemBody end ;
system SubSystem1 OptionalFeatures OptionalAnnex end ;
system SubSystem1 features Feature OptionalAnnex end ;
system SubSystem1 features Feature Feature OptionalAnnex end ;
system SubSystem1 features Identifier : in event port ; Feature Option-
alAnnex end ;
system SubSystem1 features CriticalEnter : in event port ; Feature
OptionalAnnex end ;

Table A.1: The top-down parsing of the SubSystem1 system, part 1.

45

system SubSystem1 features CriticalEnter : in event port ; Identifier
: out event port ; OptionalAnnex end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; OptionalAnnex end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; Annex end ;
system SubSystem1 features CriticalEnter : in event port ; Criti-
calLeave : out event port ; annex Identifier {** OptionalStateVariables
OptionalInitializations OptionalStates OptionalTransitions **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** OptionalInitial-
izations OptionalStates OptionalTransitions **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
Identifier !; OptionalStates OptionalTransitions **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; OptionalStates OptionalTransitions **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states State OptionalTransitions **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states State State OptionalTransitions **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Identifer : initial state ; State OptionalTransitions
**} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; State OptionalTransitions
**} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Identifier : state ;
OptionalTransitions **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
OptionalTransitions **} ; end ;

Table A.2: The top-down parsing of the SubSystem1 system, part 2.

system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Transition **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Transition Transition **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Identifier -[ExpressionS]-> Identifier OptionalAction Transition
**} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Waiting -[ExpressionS]-> Identifier OptionalAction Transition
**} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Waiting -[Identifier ?]-> Identifier OptionalAction Transition
**} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ; tran-
sitions Waiting -[CriticalEnter ?]-> Identifier OptionalAction Transition
**} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ; tran-
sitions Waiting -[CriticalEnter ?]-> Critical OptionalAction Transition
**} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Waiting -[CriticalEnter ?]-> Critical ; Transition **} ;
end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ; tran-
sitions Waiting -[CriticalEnter ?]-> Critical ; Identifier -[ExpressionS
]-> Identifier OptionalAction **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ; tran-
sitions Waiting -[CriticalEnter ?]-> Critical ; Critical -[ExpressionS
]-> Identifier OptionalAction **} ; end ;

Table A.3: The top-down parsing of the SubSystem1 system, part 3.

system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Waiting -[CriticalEnter ?]-> Critical ; Critical -[true]->
Identifier OptionalAction **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Waiting -[CriticalEnter ?]-> Critical ; Critical -[true]->
Waiting OptionalAction **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Waiting -[CriticalEnter ?]-> Critical ; Critical -[true]->
Waiting Identifier ! ; **} ; end ;
system SubSystem1 features CriticalEnter : in event port ; Critical-
Leave : out event port ; annex SubSystemAnnex1 {** initializations
CriticalLeave ! ; states Waiting : initial state ; Critical : state ;
transitions Waiting -[CriticalEnter ?]-> Critical ; Critical -[true]->
Waiting CriticalLeave! ; **} ; end ;

Table A.4: The top-down parsing of the SubSystem1 system, part 4.

Appendix B

The Production Cell Source
Code

system Loader

features

-- Forwards.

InFeedBeltReady: in event port;

OutBlockReady: out event port;

annex Loader {**

state variables

LoadedBlocks :integer;

initializations

LoadedBlocks := 0;

states

Waiting :initial state;

Loading :state;

transitions

Waiting -[(LoadedBlocks < 1) and

(InFeedBeltReady?)]-> Loading;

Loading -[true]-> Waiting {OutBlockReady!;

LoadedBlocks := LoadedBlocks + 1;}

**};

end Loader;

system FeedBelt

features

-- Backwards.

InBlockReady: in event port;

InFeedBeltReady: out event port;

-- Forwards.

InArmReady: in event port;

OutBlockReady: out event port;

annex FeedBelt {**

initializations

InFeedBeltReady!;

states

NoBlock_MotorOff :initial state;

BlockAtBeginning_MotorOn, BlockAtEnd_MotorOff :state;

49

transitions

NoBlock_MotorOff -[InBlockReady?]-> BlockAtBeginning_MotorOn;

BlockAtBeginning_MotorOn -[true]-> BlockAtEnd_MotorOff {OutBlockReady!;}

BlockAtEnd_MotorOff -[InArmReady?]-> NoBlock_MotorOff {InFeedBeltReady!;}

**};

end FeedBelt;

system BeltToPress

features

-- Backwards.

InBlockReady: in event port;

InArmReady: out event port;

-- Forwards.

PressReady: in event port;

OutBlockReady: out event port;

annex BeltToPress {**

initializations

InArmReady!;

states

MagnetOff_AtBelt_Retracted :initial state;

MagnetOn_AtBelt_Retracted :state;

MagnetOn_AtBelt_Extracted :state;

MagnetOn_AtPress_Extracted :state;

MagnetOn_AtPress_Retracted :state;

MagnetOff_AtPress_Retracted :state;

MagnetOff_AtPress_Extracted :state;

MagnetOff_AtBelt_Extracted :state;

transitions

MagnetOff_AtBelt_Retracted -[InBlockReady?]-> MagnetOn_AtBelt_Retracted;

MagnetOn_AtBelt_Retracted -[true]-> MagnetOn_AtBelt_Extracted;

MagnetOn_AtBelt_Extracted -[true]-> MagnetOn_AtPress_Extracted;

MagnetOn_AtPress_Extracted -[true]-> MagnetOff_AtPress_Retracted;

MagnetOff_AtPress_Retracted -[PressReady?]-> MagnetOff_AtPress_Retracted;

MagnetOff_AtPress_Retracted -[true]-> MagnetOff_AtPress_Extracted;

MagnetOff_AtPress_Extracted -[true]-> MagnetOff_AtBelt_Extracted;

MagnetOff_AtBelt_Extracted -[true]-> MagnetOff_AtBelt_Retracted

{InArmReady!; OutBlockReady!;}

**};

end BeltToPress;

system Press

features

-- Backwards.

InBlockReady: in event port;

PressReady: out event port;

-- Forwards.

OutArmReady: in event port;

OutBlockReady: out event port;

annex ArmA {**

initializations

PressReady!;

states

Waiting :initial state;

Pressing :state;

transitions

Waiting -[InBlockReady?]-> Pressing;

Pressing -[true]-> Waiting {OutBlockReady!; PressReady!;}

**};

end Press;

system PressToBelt

features

-- Backwards.

InBlockReady: in event port;

OutArmReady: out event port;

-- Forwards.

OutFeedBeltReady: in event port;

OutBlockReady: out event port;

annex PressToBelt {**

initializations

OutArmReady!;

states

MagnetOff_AtPress_Retracted :initial state;

MagnetOn_AtPress_Retracted :state;

MagnetOn_AtPress_Extracted :state;

MagnetOn_AtBelt_Extracted :state;

MagnetOn_AtBelt_Retracted :state;

MagnetOff_AtBelt_Retracted :state;

MagnetOff_AtBelt_Extracted :state;

MagnetOff_AtPress_Extracted :state;

transitions

MagnetOff_AtPress_Retracted -[InBlockReady?]-> MagnetOn_AtPress_Retracted;

MagnetOn_AtPress_Retracted -[true]-> MagnetOn_AtPress_Extracted;

MagnetOn_AtPress_Extracted -[true]-> MagnetOn_AtBelt_Extracted;

MagnetOn_AtBelt_Extracted -[true]-> MagnetOff_AtBelt_Retracted;

MagnetOff_AtBelt_Retracted -[true]-> MagnetOn_AtBelt_Retracted;

MagnetOn_AtBelt_Retracted -[true]-> MagnetOff_AtBelt_Extracted;

MagnetOff_AtBelt_Extracted -[true]-> MagnetOff_AtPress_Extracted;

MagnetOff_AtPress_Extracted -[OutFeedBeltReady?]->

MagnetOff_AtPress_Retracted {OutBlockReady!;}

**};

end PressToBelt;

system DepositBelt

features

-- Backwards.

InBlockReady: in event port;

OutFeedBeltReady: out event port;

-- Forwards.

StorerReady: in event port;

OutBlockReady: out event port;

annex FeedBelt {**

initializations

OutFeedBeltReady!;

states

NoBlock_MotorOff :initial state;

BlockAtBeginning_MotorOn, BlockAtEnd_MotorOff :state;

transitions

NoBlock_MotorOff -[InBlockReady?]-> BlockAtBeginning_MotorOn;

BlockAtBeginning_MotorOn -[StorerReady?]-> BlockAtEnd_MotorOff

{OutBlockReady!;}

BlockAtEnd_MotorOff -[true]-> NoBlock_MotorOff {OutFeedBeltReady!;}

**};

end DepositBelt;

system Storer

features

-- Backwards.

StorerReady: out event port;

InStorerBlockReady: in event port;

annex Storer {**

state variables

StoredBlocks :integer;

initializations

StorerReady!;

StoredBlocks := 0;

states

Waiting :initial state;

Storing :state;

transitions

Waiting -[InStorerBlockReady?]-> Storing;

Storing -[true]-> Waiting {StoredBlocks := StoredBlocks + 1;

StorerReady!;}

**};

end Storer;

system implementation ProductionCell.impl

subcomponents

loader: system Loader;

feedBelt: system FeedBelt;

beltToPress: system BeltToPress;

press: system Press;

pressToBelt: system PressToBelt;

depositBelt: system DepositBelt;

storer: system Storer;

connections

-- Loader -> FeedBelt

event port feedBelt.InFeedBeltReady -> loader.InFeedBeltReady;

event port loader.OutBlockReady -> feedBelt.InBlockReady;

-- FeedBelt -> BeltToPress

event port beltToPress.InArmReady -> feedBelt.InArmReady;

event port feedBelt.OutBlockReady -> beltToPress.InBlockReady;

-- BeltToPress -> Press

event port press.PressReady -> beltToPress.PressReady;

event port beltToPress.OutBlockReady -> press.InBlockReady;

-- Press -> PressToBelt

event port pressToBelt.OutArmReady -> press.OutArmReady;

event port press.OutBlockReady -> pressToBelt.InBlockReady;

-- PressToBelt -> DepositBelt

event port depositBelt.OutFeedBeltReady -> pressToBelt.OutFeedBeltReady;

event port pressToBelt.OutBlockReady -> depositBelt.InBlockReady;

-- DepositBelt -> Storer

event port storer.StorerReady -> depositBelt.StorerReady;

event port depositBelt.OutBlockReady -> storer.InStorerBlockReady;

end ProductionCell.impl;

evaluate children : TreeProp × List × WidthOp × DepthOp → Boolean
evaluate children TP child list width op depth op =

case (list size child list) of
0 ⇒ case depth op of

global ⇒ true
∣ final ⇒ false

∣ 1 ⇒ evaluate tree TP (list get 0 child list) width op depth op
∣ default ⇒ let (head, tail) = list split child list in

case width op of
all ⇒ (evaluate tree TP head width op depth op) and

(evaluate children TP tail width op depth op)
∣ exists ⇒ (evaluate tree TP head width op depth op) or

(evaluate children TP tail width op depth op)

evaluate tree : TreeProp × Tree × WidthOp × DepthOp → Boolean
evaluate tree PS tree width op depth op =

case depth op of
global ⇒ let (single subProp) = PS in
(is true (evaluate prop spec subProp tree)) and
(evaluate children PS (tree get children tree) width op depth op)

∣ final ⇒ let (single subProp) = PS in
(is true (evaluate prop spec subProp tree)) or
(evaluate children PS (tree get children tree) width op depth op)

Bibliography

[1] Thomas Abdoul, Joël Champeau, Philippe Dhaussy, Pierre Yves Pillain, and
Jean-Charles Roger. AADL execution semantics transformation for formal veri-
fication. In ICECCS, pages 263–268. IEEE Computer Society, 2008.

[2] Abdullah Al-Nayeem, Mu Sun, Xiaokang Qiu, Lui Sha, Steven P. Miller, and
Darren D. Cofer. A formal architecture pattern for real-time distributed systems.
In Theodore P. Baker, editor, Proceedings of the 30th IEEE Real-Time Systems
Symposium, RTSS 2009, Washington, DC, USA, 1-4 December 2009, pages 161–
170. IEEE Computer Society, 2009.

[3] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang
Yi. TIMES: a Tool for Schedulability Analysis and Code Generation of Real-Time
Systems. In Proceedings of the 1st International Workshop on Formal Modeling
and Analysis of Timed Systems (FORMATS ’03), 2003.

[4] B. Berthomieu, Jean-Paul Bodeveix, Silvano Dal Zilio, Pierre Dissaux, Mamoun
Filali, Pierre Gaufillet, Sebastien Heim, and F. Vernadat. Formal verification of
AADL models with fiacre and tina (regular paper). In European Congress on
Embedded Real-Time Software (ERTS), Toulouse, 19/05/2010-21/05/2010, page
(electronic medium). SIA/3AF/SEE, 2010.

[5] Egon Borger and Robert Stark. Abstract State Machines - A Method for High-
level System Design and Analysis. Springer-Verlag Berlin And Heidelberg Gmbh
and Co. Kg, 2003.

[6] Dionisio de Niz and Peter H. Feiler. Verification of replication architectures in
AADL. In ICECCS, pages 365–370. IEEE Computer Society, 2009.

[7] Vincent Debruyne, Franoise Simonot-Lion, and Yvon Trinquet. EAST-ADL an
architecture description language validation and verification aspects. Architecture
Description Languages, 176:181–195, 2005.

[8] M. Faugere. MARTE: Also an UML Profile for Modelling AADL Applications
Engineering Complex Computer Systems. In 12th IEEE International Conference,
pages 359 – 364, 2007.

[9] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture Analysis and Design
Language (AADL): An Introduction. Technical Report CMU/SEI-2006-TN-011,
Society of Automotive Engineers, 2006.

[10] Peter Feiler and Bruce Lewis. SAE Architecture Analysis and Design Language
(AADL) Annex Volume 1. Technical Report AS5506/1, Society of Automobile
Engineers, 2006.

[11] Peter Feiler and Ana Rugina. Dependability modeling with the architecture anal-
ysis and design language (AADL). Technical Report CMU/SEI-2007-TN-043,
Carnegie Mellon University, 2007.

54

[12] Ricardo Bedin França, Jean-Paul Bodeveix, Mamoun Filali, Jean-François Rol-
land, David Chemouil, and Dave Thomas. The AADL behaviour annex - ex-
periments and roadmap. In ICECCS, pages 377–382. IEEE Computer Society,
2007.

[13] Object Management Group. UML Profile for MARTE, beta 2. Technical Report
ptc/08-06-08, The ProMARTE Consortium, http://hdl.handle.net/2142/11897,
2008.

[14] Shenglin Gui, Lei Luo, Yun Li, and Lijie Wang. Formal schedulability analysis
and simulation for aadl. In The 2008 International Conference on Embedded
Software and Systems (ICESS2008), 2008.

[15] D. Jackson. Alloy: A lightweight object modelling notation. Technical Report
797, MIT, 2000.

[16] Donald E. Knuth. Communications of the ACM, 7:735–736, 1964.

[17] I. Lee, P. Bremond-Gregoire, and R. Gerber. A process algebraic approach to the
specification and analysis of resource-bound real-time systems. In Proceedings of
the IEEE, pages 158–171, 1994.

[18] C. Lewerentz and T. Lindner. Formal development of reactive systems, case study
production cell. In C. Lewerentz and T. Lindner, editors, Formal Development
of Reactive Systems, Lecture Notes in Computer Science, pages 21–54. Springer-
Verlag, 1995.

[19] F. Mallet. Ccsl: specifying clock constraints with UML/Marte. ISSE, 4(3):309–
314, 2008.

[20] Frédéric Mallet, Charles André, and Julien DeAntoni. Executing AADL models
with UML/MARTE. In ICECCS, pages 371–376. IEEE Computer Society, 2009.

[21] Martin Ouimet and Kristina Lundqvist. Modeling the Production Cell System
in the TASM Language. Technical Report ESL-TIK-00209, Embedded Systems
Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA,
2007.

[22] Ana-Elena Rugina, Karama Kanoun, and Mohamed Kaaniche. An architecture-
based dependability modeling framework using AADL. In Proc. 10th IASTED
International Conference on Software Engineering and Applications (SEA’2006),
Dallas (USA), 13-15 November2006 (13/11/2006), pages 222–227, April 06 2006.

[23] L. Sha, A. Al-Nayeem, M. Sun, J. Meseguer, and P. C. Olveczky. MPALS: Physi-
cally Asynchronous Logically Synchronous Systems. Technical report, University
of Illinois at Urbana-Champaign, http://hdl.handle.net/2142/11897, 2009.

[24] Oleg Sokolsky, Insup Lee, and Duncan Clarke. Schedulability analysis of AADL
models. In IPDPS. IEEE, 2006.

[25] The SAE Technical Standards Board. The annex behavior specification. Technical
Report AS5506, SAE International, 2007.

[26] Roberto Varona-Gomez and Eugenio Villar. AADL simulation and performance
analysis in systemC. In ICECCS, pages 323–328. IEEE Computer Society, 2009.

[27] Zhibin Yang, Kai Hu, Dianfu Ma, and Lei Pi. Towards a formal semantics for the
AADL behavior annex. In DATE, pages 1166–1171. IEEE, 2009.

