
Task-Level Probabilistic Scheduling Guarantees for
Dependable Real-Time Systems - A Designer Centric Approach

Hüseyin Aysan, Radu Dobrin, and Sasikumar Punnekkat
Mälardalen Real-Time Research Centre, Mälardalen University

Västerås, Sweden
{huseyin.aysan, radu.dobrin, sasikumar.punnekkat}@mdh.se

Abstract—Dependable real-time systems typically consist of
tasks of mixed-criticality levels with associated fault tolerance
(FT) requirements and scheduling them in a fault-tolerant
manner to efficiently satisfy these requirements is a challenging
problem. From the designers’ perspective, the most natural way
to specify the task criticalities is by expressing the reliability
requirements at task level, without having to deal with low
level decisions, such as deciding on which FT method to use,
where in the system to implement the FT and the amount of
resources to be dedicated to the FT mechanism. Hence, it is
extremely important to devise methods for translating the high-
level requirement specifications for each task into the low-level
scheduling decisions needed for the FT mechanism to function
efficiently and correctly.

In this paper, we focus achieving FT by redundancy in the
temporal domain, as it is the commonly preferred method in
embedded applications to recover from transient and inter-
mittent errors, mainly due to its relatively low cost and ease
of implementation. We propose a method which allows the
system designer to specify task-level reliability requirements
and provides a priori probabilistic scheduling guarantees for
real-time tasks with mixed-criticality levels in the context of
preemptive fixed-priority scheduling. We illustrate the method
on a running example.

Keywords-Fault tolerance; Time redundancy; Schedulability
analysis; Real-time systems.

I. INTRODUCTION

Embedded systems are deployed ubiquitously in appli-
cations that interact and control our lives including in
safety critical real-time applications. These applications,
typically have to satisfy complex requirements, mapped to
task attributes and further used by the underlying sched-
uler in the scheduling decision. Additionally, these systems
are often characterized by high dependability requirements,
where fault tolerance techniques play a crucial role towards
achieving them. Traditionally, such systems found in, e.g.,
aerospace, avionics or nuclear domains, typically employed
the preemptive fixed priority scheduling (FPS) paradigm
and were built with high replication and redundancy, with
the objective to maintain the properties of correctness and
timeliness even under error occurrences. However, in major-
ity of modern embedded applications, due to space, weight
and cost considerations, it may not be feasible to provide
space redundancy. Such systems often have to exploit time

redundancy techniques.
In order to provide real-time guarantees for fault tolerant

systems, it is necessary to take into account the fault
hypothesis, as no system can cope with an arbitrary number
of faults over a bounded time interval [1]. Previous works
assumed a worst case error distribution, e.g., in [2], single
faults with a minimum inter-arrival time of largest period
in the task set can be recovered if the processor utilization
is less than or equal to 0.5 under rate monotonic (RM)
scheduling, or schedulability-centric approaches based on
fault assumptions modeled as stochastic events [1].

Modern dependable embedded systems typically consist
of a mix of hard and soft tasks with varying criticality
levels as well as associated FT requirements, hence usage
of time redundancy should be prioritized according to the
criticality levels of tasks to ensure efficient resource usage.
One way of handling multiple criticality levels is by direct
assignment to resources per task based on a pre-defined max-
imum number of feasible recovery attempts [3], that would
deterministically ensure schedulability. However, from the
designers’ perspective, the most natural way to specify the
task criticalities is by expressing reliability requirements
at task level, preferably without having to deal with low
level decisions, such as specifying the maximum number of
feasible recovery attempts.

In this paper, we introduce a designer-centric approach to
enable efficient fault tolerance in preemptive fixed priority
scheduling. We build on the approach introduced in [1]
and provide probabilistic guarantees for individual tasks to
meet the designers’ reliability requirements. We propose a
scheduling technique to enable selective fault-tolerance for
tasks with various FT requirements, assuming a probabilistic
error distribution. We provide a schedulability analysis that
takes these FT requirements as input and performs the
schedulability test using the proposed scheduling technique.

The remainder of the paper is organized as follows. In
the next section, we present the related work. In Section III,
we describe the system characteristics, real-time task model
and error model assumed in this paper, and FT strategy
used in our analysis. Section IV describes our proposed
methodology, illustrated by an example. We conclude the
paper in Section V.



II. RELATED WORK

Redundancy in the physical, temporal, information and
analytical domains is the key for achieving fault tolerance
and due to the wealth of research in this domain, a rich set
of techniques has been successfully used in many critical
applications. Similarly, due to the inherent criticality of
real-time systems, several researchers have been trying to
incorporate fault tolerance into various real-time scheduling
paradigms. In [4] and [5], different approaches were pre-
sented to schedule primary and alternate versions of tasks to
provide fault tolerance. Krishna and Shin [6] used a dynamic
programming algorithm to embed backup schedules into the
primary schedule. Ramos-Thuel and Strosnider [7] used the
Transient Server approach to handle transient errors and in-
vestigated the spare capacity to be given to the server at each
priority level. They also studied the effect of task shedding
to the maximum server capacity where task criticality is
used for deciding which task to shed. In [8], [9], the authors
presented a method for guaranteeing that the real-time tasks
will meet the deadlines under transient faults, by resorting to
reserving sufficient slack in queue-based schedules. Pandya
and Malek [2] showed that single faults with a minimum
inter-arrival time of largest period in the task set can be
recovered if the processor utilization is less than or equal
to 0.5 under rate monotonic (RM) scheduling. Burns et.
al. [10], [11], [1] provided exact schedulability tests for
fault tolerant task sets under specified failure hypothesis.
These analysis are applicable for FPS schemes, and, being
exact analysis, can guarantee task sets with even higher
utilization than guaranteed by Pandya and Malek’s test [2].
Lima and Burns [12], [13] extended this analysis in case
of multiple faults, as well as for the case of increasing the
priority of a critical task’s alternate upon fault occurrences,
and in [14] an upper bound for fault-tolerance in real-
time systems based on slack redistribution is presented.
We have proposed a work to maximize the fault tolerant
capability of Fixed Priority Schedules [15], assuming each
task instance is hit by an error and subsequently adapted this
approach to Controller Area Network (CAN) in [3]. While
the above works have advanced the field of fault tolerant
scheduling within specified contexts, each one has some of
the shortcomings such as lacking to provide probabilistic
scheduling guarantees, restrictive task and fault models,
non-consideration of multiple task criticality levels, high
computational requirements of complex on-line mechanisms,
and scheduler modifications which may be unacceptable
from an industrial perspective.

III. SYSTEM AND DEPENDABILITY MODEL

A. Real-time task model

We assume a periodic (or a sproadic) task set, Γ =
{τ1, τ2, .., τn}, scheduled by any preemptive fixed-priority
scheduling paradigm where each task represents a real-time

thread of execution. Each task τi has a period (or a minimum
inter-arrival time) Ti, a known worst-case execution time
(WCET) Ci, a deadline Di and a priority Pi. We assume a
single processor platform and that the tasks have deadlines
equal to or less than their periods.

A task set Γ consists of critical and non-critical tasks
where the criticality of a task indicates the severity of the
consequences caused by its failure and corresponds to the
amount of resources allocated for error recovery in terms
of guaranteed re-transmissions. Each critical task τi has an
alternate task with a worst case execution time Fi and a
deadline equal to the original deadline Di. This alternate
can typically be a re-execution of the same task, a recovery
block, an exception handler or an alternate with imprecise
computations. We denote the subset of critical tasks by Γc
and the subset of non-critical tasks by Γnc , so that Γ =
Γc ∪ Γnc.

B. Error model

Safety-critical embedded systems typically work in harsh
environments where they can experience frequent transient
errors due to several causes such as power supply jitter,
network noise and radiation. As per the published statistics,
the ratio between the frequencies of transient and perma-
nent faults is found to vary from 4 to 1000 [16]. We
follow Laprie’s dependability concepts [17], [18] and assume
that systems are exposed to these faults with probabilities
depending on the characteristics of the systems and the
environments that they are operating in.

The probability of error occurrence can be calculated by
using the Poisson probability distribution as described by
Burns et al. [1]. Poisson distribution is a discrete probability
distribution used for finding the probability of a number of
events occurred in a fixed time period, assuming that the
events occur at a constant rate and their occurrences are inde-
pendent. In our case, the events are error occurrences, hence
the error occurrence rate for transient errors is assumed to
be constant. This rate depends on the type of environment
(together with the processor characteristics/circuitry) which
gives the λ value for that environment, that is the expected
number of events in a unit time. The common values for λ
range from 102 errors per hour in aggressive environments
to 10−2 errors per hour in lab conditions as presented by
Ferreira et al. [19] and Rufino et al. [20].

The probability of n events during a time period of t is
calculated as shown below.

Prn(t) =
e−λt(λt)n

n!
If we assume that the event is an error, then the probability

of no error during the lifetime or mission time (L) of the
system is given by

Prno error(t) = e−λL



Thus, the probability of at least one error during L is

Prat least one error(t) = 1− e−λL

Lifetime or a mission time of a system can vary largely
depending on the domain, typically ranging from 1 hour for
a plane to take a short trip to 15 years for a satellite to
complete its lifetime.

In this paper, we are interested in the probabilities of
the tasks meeting their deadlines for different error rate
assumptions that define their criticality levels as described
in the next subsection.

C. Dependability requirements specification

We assume that the system designers define the criticality
levels for each task in terms of failure probability (or
reliability) per hour. These reliability figures will then be
used to derive the error inter-arrival time thresholds, TEi

,
for each task τi. These thresholds determine the maximum
number of permitted error recovery actions. If the actual
error inter-arrival times are greater than or equal to these
thresholds then the specified reliability requirements are
guaranteed to be satisfied, i.e. deadlines will be met even
under error occurrences.

In [1], a single TE value is valid for the whole task set
(based on a single level of criticality), which means that
the reliability requirement is specified for the whole system.
They assumed that if the actual shortest interval between two
errors in a mission time W is less than TE , then the task
set is unschedulable and then showed that the probability
of unschedulability Pr(U) is equal to Pr(W < TE).
In the next section, we show how we use the specified
reliability requirements in providing probabilistic guarantees
for mixed-criticality task sets.

D. FT strategy

Our primary concern is providing probabilistic schedula-
bility guarantees to all critical tasks where we employ time
redundancy for error recovery. The error coverage achieved
by this approach is shown in Figure 1. The basic assumption
here is that the effects of a large variety of transient and
intermittent hardware faults can effectively be tolerated by
a simple re-execution of the affected task whilst the effects
of software design faults could be tolerated by executing
an alternate action such as recovery blocks or exception
handlers. Both of these situations could be considered as
execution of another task (either the primary itself or an
alternate) with a specified computation time requirement.

We assume that each task failure is detected before the
completion of the failed task instance. Although somewhat
pessimistic, this assumption is realistic since in many imple-
mentations, errors are detected by acceptance tests which are
executed at the end of task execution or by watchdog timers
that interrupt the task once it has exhausted its budgeted
worst case execution time. In case of tasks communicating

via shared resources, we assume that an acceptance test is
executed before passing an output value to another task to
avoid error propagations and subsequent domino effects.

Domain

Persistence 

Time

Value

Transient
Intermittent
Permanent 

Early

Omission

Late

Coarse

SubtleERRORS

Figure 1. Coverage of error types achieved by time redundancy

In order to provide schedulability guarantees for tasks
with different reliability requirements (with different TEi

values), we assume that the scheduler prevents re-execution
of task τi in case two errors occur with a separation shorter
than the error inter-arrival time threshold TEi

for that task.
One way to prevent these erroneous re-executions would be
to maintain a timer for each task that measures the time
between the last two errors affecting that specific task. Such
a timer could be used to prevent re-execution when that time
is too short. Obviously, for non-critical tasks, no recovery is
performed in case of failures of any task instances.

IV. METHODOLOGY

A. Overview

Our ultimate goal is to provide a schedulability analysis
for the mentioned selective FT scheduling technique for
scheduling the tasks with mixed reliability requirements,
ranging from non-critical task, failure of which does not
adversely affect the systems’ correct and dependable func-
tioning, to highly critical task, where one or more times
of recovery actions might be necessary to perform in order
to ensure dependability. The methodology consists of two
steps:

1) The first step is to determine the minimum error inter-
arrival time TEi

for each task τi ∈ Γc using the
reliability figures given by the system designers.

2) The final step is the schedulability test using the task
attributes together with the TEi values.

B. Proposed approach

We use a simple example throughout the description
of our approach. Let our task set consists of 4 tasks, as
shown in Table I where columns P, T,C,D, F represent the
priority, period, worst case execution time, deadline and the
worst case recovery time respectively and the time unit is



milliseconds. Priorities are ordered from 1 to 4 where 4 is
the lowest priority. Note that Task B is a non-critical task,
and hence it does not have a worst case recovery time.

Task P T C D F
A 1 100 10 100 10
B 2 175 20 117 -
C 3 200 15 200 15
D 4 300 20 300 20

Table I
EXAMPLE TASK SET

1) Derivation of TEi values: By using the Poisson prob-
ability distribution, in [1], Burns et al. show the upper and
lower bounds for Pr(W < TE) by the following theorems:

Theorem 1: If L/(2TE) is a positive integer then

Pr(W < TE) < 1 + [e−λTE (1 + λTE)]
L

TE
+1

−2[e−2λTE (1 + 2λTE)]
L

2TE

Theorem 2: If L/(2TE) is a positive integer then

Pr(W < TE) > 1− [e−λTE (1 + λTE)]
L

TE

Burns et al. [1] also derived the following two useful
approximations for the upper and lower bounds:

Corollary 1: An approximation for the upper bound on
Pr(W < TE) is given by Theorem 1 is 3

2λ
2LTE provided

that λTE , λ2LTE are small and L >> TE .
Corollary 2: An approximation for the lower bound on

Pr(W < TE) is given by Theorem 2 is 1
2λ

2LTE provided
that λTE , λ2LTE are small.

In this paper, we are going to use the approximation for
the upper bound to calculate the TEi

values for each task
τi ∈ Γc from the reliability requirements.

Let us assume that the λ value for our environment is
10−2 and the lifetime L of our system is 1 hour. The
probability of any fault happening during L is calculated
as approximately 10−2 by using the Poisson probability
distribution. This would mean that the parts of the system
where no fault-tolerance is implemented would fail with a
probability of 10−2, i.e., any non-critical task will have a
reliability of approximately 0.99. Let us assume that we have
the reliability requirements shown in Table II for the critical
tasks in our task set (the numbers shown in the table are
selected for presentation purposes only).

Then we can use the Corollary 1 and specify 1 − R(i)
as the upper bound for the error probability of each task
to calculate the TEi values, where R(i) is the reliability
requirement of task τi. The calculated values are shown in
Table III (in milliseconds).

Task Reliability requirement
A 1 - 1 x 10−8

C 1 - 1.25 x 10−9

D 1 - 5.85 x 10−9

Table II
RELIABILITY REQUIREMENTS FOR THE CRITICAL TASKS

Task TE

A 240
C 30
D 140

Table III
COMPUTED MINIMUM ERROR INTER-ARRIVAL TIMES FOR CRITICAL

TASKS

2) Schedulability test: The worst-case response time Ri
for each task τi is computed by using the following equation
assuming that there are no task failures and no recovery
attempts [21]:

Ri = Ci +Bi +
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj (1)

where hp(τi) is the set of higher priority tasks than task τi,
Bi is the maximum blocking time caused by the concurrency
protocols used for accessing the shared resources.

The following recurrence relation is used for solving
Equation 1:

rn+1
i = Ci +Bi +

∑
j∈hp(τi)

⌈
rni
Tj

⌉
Cj (2)

where r0i is given the initial value of Ci + Bi. rn is
a monotonically non-decreasing function of n and when
rn+1
i becomes equal to rni then this value is the worst-

case response time Ri for task τi. If the worst-case response
time Ri becomes greater than the deadline Di, then the task
cannot be guaranteed to meet its deadline, and the task set
is therefore unschedulable.

Table IV shows the worst case response times that are
calculated by Equation 1. For the sake of simplicity, blocking
times are assumed to be zero. As all the worst-case response
times are less than the corresponding deadlines, this task set
is schedulable under no-error scenarios.

If we assume an FT scheduler where the failed tasks are
re-executed, then the execution of task τi will be affected
by errors in task τi or any higher priority task. Based on
this assumption, the worst-case response times are computed



Task P T C D B R
A 1 100 10 100 0 10
B 2 175 20 175 0 30
C 3 200 15 200 0 45
D 4 300 20 300 0 65

Table IV
RESPONSE TIMES - NO ERROR SCENARIO

[10] by using the following equation:

Ri = Ci +Bi +
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj +

⌈
Ri
TE

⌉
max

k∈hep(τi)
(Fk)

(3)
where Fk is the extra computation time needed by task τk,
TE is a known minimum inter-arrival time for errors and
hep(τi) is the set of tasks with priority equal to or higher
than the priority of task τi (hep(τi) = hp(τi)+τi). The last
term calculates the worst-case interference arising from the
recovery attempts.

This equation can again be solved by a recurrence relation
as in the previous case. If all Ri values are less than or
equal to the corresponding Di values, then the task set is
guaranteed to be scheduled under the condition that no two
errors occur closer than the TE value.

Table V shows the response times that are calculated
by Equation 3 assuming a minimum interarrival of errors
TE = 75ms. The task set is schedulable under this error
rate assumption, as all the worst-case response times are
less than the corresponding deadlines.

Task P T C D F R (TE = 75)

A 1 100 10 100 10 20
B 2 175 20 175 20 50
C 3 200 15 200 15 65
D 4 300 20 300 20 115

Table V
RESPONSE TIMES - SINGLE CRITICALITY LEVEL

In this paper, we extend the fault-tolerant scheduling
paradigm presented [1] by allowing multiple task criticality
levels as well as propose a new schedulability test adapted
to our extension. In this test, the worst-case response times
are computed by using the following equation (which can
similarly be solved by forming a recurrence relation):

Ri = Ci +Bi +
∑

j∈hp(τi)

⌈
Ri
Tj

⌉
Cj + I(τi, Ri) (4)

In this equation, the term I(τi, Ri) is a function that com-
putes the worst-case interference, arising from the recovery

Algorithm 1: I(τi, Ri)
input : τi, Ri, ∀k ∈ hepc(τi) TEk , Fk
output: worst case interference for task τi in response time

Ri
begin1

output← 0;2

n←
⌈

Ri
min(TEk

)|k∈hepc(τi)

⌉
;3

foreach k ∈ hepc(τi) do4
put k in Array A;5

end6
j, k, l← 0;7
sort A by decreasing F ;8
while j < n do9

output← output+ Fk[A];10
j ← j + 1;11
l← l + 1;12

if l ≥
⌈

Ri
TEA[k]

⌉
then

13
k ← k + 1;14
l← 0;15

end16
end17
return output;18

end19

attempts, during the execution of task τi for Ri. Algorithm
1 shows the details of this function. Inputs to the algorithm
are task τi, the response-time Ri in the current iteration of
the recurrence relation, and TEk

and Fk values for each
k ∈ hepc(τi), where hepc(τi) is the set of critical tasks
with priority equal to or higher than the priority of task
τi. The algorithm first calculates the worst case number of
interferences from the following equation:

n =
⌈

Ri
min(TEk

)|k ∈ hepc(τi)

⌉
(5)

Unlike in Equation 3, multiplying the worst case number
of interferences with the largest Fk value would generate an
unnecessary pessimism, since task τk that has the largest Fk
may have a larger TEk

than the TE value used in Equation 5.
In that case, the worst case number of interferences n in Ri
can be greater than the worst case number of interferences
by task τk in Ri which is calculated by

⌈
Ri

TEk

⌉
. Therefore,

after
⌈
Ri

TEk

⌉
additions of Fk, the interferences by task τl

that has the next largest worst-case recovery time should be
added either for

⌈
Ri

TEl

⌉
times or n−

⌈
Ri

TEk

⌉
times, whichever

is smaller. This procedure is continued until n interference
values are added, and finally, the algorithm outputs the
accumulated worst case interference for task τi in response
time Ri.

In our example, the resulting response times are shown in
Table VI. We can see that all worst-case response times are
less than the corresponding deadlines, and conclude that the
task set is schedulable.



Task P T TE C D F R
A 1 100 240 10 100 10 20
B 2 175 - 20 175 - 40
C 3 200 30 15 200 15 90
D 4 300 140 20 300 20 175

Table VI
RESPONSE TIMES - MULTIPLE CRITICALITY LEVELS

In figures 2 to 5, we show the worst-case interference
for the individual tasks and describe how they have been
derived. In the worst case, Task A has one interference in a
computational window of RA = 20, and it is the interference
by Task A itself, since n in Equation 5 is 1 (

⌈
20
240

⌉
) and

Task A is the only task in hepc(TaskA). Figure 2 shows
the worst-case interference scenario for Task A.

0

Task A

10 20

Figure 2. Worst-case interference for Task A

Task B has also one interference in a computational
window of RB = 40 in the worst case, and it is also the
interference by Task A, since n in Equation 5 is 1 (

⌈
40
240

⌉
)

and Task A is again the only task in hepc(TaskB). Figure
3 shows the worst-case interference scenario for Task B.

0

Task A

Task B

10 30 40

Figure 3. Worst-case interference for Task B

Task C can be interfered for maximum three times in
a computational window of RC = 90 (

⌈
90
30

⌉
). As the

maximum of the F values for the tasks in hepc(C) is Task
C’s worst case recovery time FC = 15, the algorithm returns
three times this value (I(C, 90) = 45). Figure 4 shows the
worst-case interference scenario for Task C.

Task D has a worst case of 6 interferences in a compu-
tational window of RD = 175 (

⌈
175
30

⌉
). The maximum of

the F values for the tasks in hepc(D) is Task D’s worst

0

Task A

Task B

Task C

10 30 45 60 9075

Figure 4. Worst-case interference for Task C

case recovery time FD = 20, however, the recovery of Task
D can interfere Task D’s execution maximum 2 times, as
TED

= 140 and
⌈

175
140

⌉
= 2. The other 4 interferences can

come from Task C which has the next largest F value.
The algorithm returns I(D, 175) = 100. Figure 5 shows
the worst-case interference scenario for Task D.

0 175

Task A

Task B

Task C

Task D
10 30 45 50 65 80 100 115 135 155

Figure 5. Worst-case interference for Task D

V. CONCLUSIONS

In this paper, we have presented a method to allow system
designers to specify task-level reliability requirements and
provide a priori probabilistic scheduling guarantees for real-
time tasks with mixed-criticality levels in preemptive fixed-
priority scheduling. We have focused on redundancy in the
temporal domain for achieving FT as it is the often pre-
ferred method in many dependable embedded applications



to recover from the most common transient and intermittent
errors. The details of the method includes the translation
of the designer specifications into low level decisions such
as how many recovery attempts can feasibly be performed
for each task in the task set, and the schedulability test to
provide guarantees in meeting the specified requirements.
We have illustrated the method on a running example.

Our ongoing research includes extending this approach to
deal with burst error models, as well as simulation studies
to evaluate the effectiveness of the proposed methodology.

ACKNOWLEDGMENT

This work was partially supported by the Swedish Foun-
dation for Strategic Research via the strategic research
centre PROGRESS. The authors would like to thank An-
tonio Bondavalli for fruitful discussions on ”dependability
requirements specification” that formed the basis of this
work.

REFERENCES

[1] A. Burns, S. Punnekkat, L. Strigini, and D. Wright, “Prob-
abilistic scheduling guarantees for fault-tolerant real-time
systems,” Dependable Computing for Critical Applications
7, 1999, pp. 361–378, Nov 1999.

[2] M. Pandya and M. Malek, “Minimum achievable utilization
for fault-tolerant processing of periodic tasks,” IEEE Trans-
actions on Computers, vol. 47, no. 10, 1998.

[3] H. Aysan, R. Dobrin, and S. Punnekkat, “Fault tolerant
scheduling on control area network (can),” IEEE International
Workshop on Object/component/service-oriented Real-time
Networked Ultra-dependable Systems, 2010.

[4] A. L. Liestman and R. H. Campbell, “A Fault-Tolerant
Scheduling Problem,” IEEE Transactions on Software Engi-
neering, vol. 12, no. 11, pp. 1089–95, November 1986.

[5] C.-C. Han, K. G. Shin, and J. Wu, “A fault-tolerant scheduling
algorithm for real-time periodic tasks with possible software
faults.” IEEE Trans. Computers, vol. 52, no. 3, pp. 362–372,
2003.

[6] C. Krishna and K. Shin, “On scheduling tasks with a quick
recovery from failure,” IEEE Transactions on Computers,
vol. 35, no. 5, pp. 448–455, May 1986.

[7] S. Ramos-Thuel and J. Strosnider, “The transient server
approach to scheduling time-critical recovery operations,” in
IEEE Real-Time Systems Symposium, December 4-6 1991, pp.
286–295.

[8] S. Ghosh, R. Melhem, and D. Mosse, “Enhancing real-
time schedules to tolerate transient faults,” IEEE Real-Time
Systems Symposium, 1995.

[9] F. Liberato, R. G. Melhem, and D. Mosse, “Tolerance to
multiple transient faults for aperiodic tasks in hard real-time
systems,” IEEE Transactions on Computers, vol. 49, no. 9,
pp. 906–914, 2000.

[10] A. Burns, R. I. Davis, and S. Punnekkat, “Feasibility analysis
of fault-tolerant real-time task sets,” Euromicro Real-Time
Systems Workshop, 1996.

[11] S. Punnekkat, A. Burns, and R. I. Davis, “Analysis of check-
pointing for real-time systems.” Real-Time Systems, vol. 20,
no. 1, pp. 83–102, 2001.

[12] G. Lima and A. Burns, “An optimal fixed-priority assign-
ment algorithm for supporting fault-tolerant hard real-time
systems,” IEEE Transactions on Computers, vol. 52, no. 10,
pp. 1332–1346, October 2003.

[13] G. Lima and A.Burns, “Scheduling fixed-priority hard real-
time tasks in the presence of faults,” Lecture Notes in Com-
puter Science, pp. 154–173, 2005.

[14] R. M. Santos, J. Santos, and J. D. Orozco, “A least upper
bound on the fault tolerance of real-time systems,” J. Syst.
Softw., vol. 78, no. 1, pp. 47–55, 2005.

[15] R. Dobrin, H. Aysan, and S. Punnekkat, “Maximizing the fault
tolerance capability of fixed priority schedules,” IEEE Inter-
national Conference on Embedded and Real-Time Computing
Systems and Applications, 2008.

[16] M. Pizza, L. Strigini, A. Bondavalli, and F. D. Gian-
domenico, “Optimal discrimination between transient and
permanent faults,” 3rd IEEE International Symposium on
High-Assurance Systems Engineering, pp. 214–223, 1998.

[17] J.-C. Laprie, “Dependable computing and fault-tolerance:
Concepts and terminology,” International Symposium on
Fault-Tolerant Computing, ’ Highlights from Twenty-Five
Years’., 1995.

[18] A. Avizienis, J. Laprie, and B. Randell, “Fundamental con-
cepts of dependability,” Research Report N01145, LAAS-
CNRS, 2001.

[19] J. Ferreira, “An experiment to assess bit error rate in can,”
3rd International Workshop of Real-Time Networks, pp. 15–
18, 2004.

[20] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Ro-
drigues, “Fault-tolerant broadcasts in can,” Twenty-Eighth An-
nual International Symposium on Fault-Tolerant Computing,
1998. Digest of Papers., pp. 150–159, 1998.

[21] M. Joseph and P. Pandya, “Finding response times in a real-
time system,” The Computer Journal - British Computer
Society, vol. 29, no. 5, pp. 390–395, October 1986.


