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Abstract

We propose the addition of special purpose component
types to a commercially existing component model, the
Rubus Component Model (RCM). The purpose of the
new component types is to encapsulate and abstract
the communications protocol and configuration in a
component based and model based software engineer-
ing setting. With the addition of these new component
types, RCM will be able to support state-of-the-practice
development processes of distributed embedded systems
where communication rules are defined early in the
development process. We also show how an end-to-
end timing model can be extracted from a distributed
embedded system, modeled with RCM, to perform end-
to-end timing analysis.

Keywords Model-Based Software Engineering;
Component-Based Software Engineering; Distributed
embedded systems.

I. Introduction

With the recent advancement in technology, embedded
systems have become more and more complex. In order
to deal with this complexity, lower development cost,
reduce time-to-market and time-to-test, allow reusability
and support modeling at higher level of abstraction, etc.,
the research community proposed the employment of
Model-Based Engineering (MBE) and Component-Based
Software Engineering (CBSE) for the development of
embedded systems [1] [2].

Software development of distributed embedded sys-
tems is more complex as compared to single processor
embedded systems. When MBE and CBD are used for
the development of resource constrained and hard real-
time distributed embedded systems, modeling of commu-
nication infrastructure arises as another challenge. The
component model for the development of such systems
should not only be resource efficient but it should also
abstract the application software from the communication

infrastructure. Moreover, it should also be able to model
the legacy (previously developed) communications and
legacy systems.

In this paper we propose the extension of a commer-
cially existing component model, the Rubus Component
Model (RCM) [3], by adding special purpose component
types to it. RCM is a component model used for the
development of resource constraint real-time embedded
systems. It supports glue-code generation, end-to-end
delay analysis, and resource requirements estimations.
The purpose of the new component types, introduced in
RCM, is to encapsulate and abstract the communications
protocol and configuration in a component based and
model based software engineering setting.

Our main goals in introducing these components are:

1) Allow model-based and component-based develop-
ment of new nodes that are deployed in legacy
systems that use predefined communications rules.

2) Support state-of-the-practice development pro-
cesses where communications rules are defined
early in the development process.

3) Enable adaptation of a node when communications
rule change (e.g. due to re-deployment in a new
system or due to upgrades in the communication
system) without affecting the internal component
design.

These goals are to be realized in RCM. The scope
of this paper is PSMs (Platform Specific Models) for
distributed embedded systems. With PSM we mean that
the software component has been allocated to nodes
and any adaptation to specific node characteristics (e.g.
device drivers and memory layouts) has been added to
the model.

Using our new components, nodes can be developed
without explicit knowledge about the communication
configuration.

Paper Layout

The rest of the paper is organized as follows. Section
II presents the Rubus concept, the component model and
its development environment. In section III, we present
the related research and compare different modeling



approaches with ours. In section IV, we describe the
new modeling objects to support modeling of legacy
communication. Section V illustrates the extraction of
timing model, from distributed embedded systems mod-
eled with RCM, for end-to-end timing analysis. Section
VI concludes the paper and section VII presents the
future work.

II. Background — The Rubus Concept

The Rubus concept is based around the Rubus Compo-
nent Model (RCM) [3] and its development environment
Rubus-ICE (Integrated Component Environment) [4],
which includes modeling tools, code generators, analysis
tools and run-time infrastructure. The overall goal of
Rubus is to be aggressively resource efficient and to
provide means for developing predictable and analyzable
control functions in resource constrained embedded sys-
tems.

A. The Rubus Component Model (RCM)

The purpose of the component model is to express the
infrastructure for software functions i.e. the interaction
between the software functions in terms of data and
control flow. One important principle is to separate code
and infrastructure, i.e., explicit synchronization or data
access should all be visible at the modeling level. In
RCM, the basic component is called Software Circuit
(SWC). By separating code and infrastructure RCM
facilitates analysis and reuse of components in different
contexts (an SWC has no knowledge how it connects to
other components).

The execution semantics of software components
(functions) is simply:

1) Upon triggering, read data on data in-ports.

2) Execute the function.

3) Write data on data out-ports.

4) Activate the output trigger.

An example system in RCM is shown in figurel. In
this figure one can see how components interact with
external events and actuators with regard to both data and
triggering. Triggering events can consist of interrupts,
internal periodic clocks, and internal and external events.
Furthermore, the component model has the possibility to
encapsulate SWCs into software assemblies enabling the
designer to construct the system at different levels of
abstraction.

B. The Rubus Code Generator and Run-Time System

From the resulting architecture of connected SWCs,
functions are mapped to run-time entities; tasks. Each
external event trigger defines a task and SWCs connected
through the chain of triggered SWCs (triggering chain)
are allocated to the corresponding task. All clock trig-
gered “chains” are allocated to an automatically gen-
erated static schedule that fulfills the precedence order
and temporal requirements. Within trigger-chains, inter
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Fig. 1. An example system in RCM

SWC communication is aggressively optimized to use
the most efficient means of communication possible for
each communication link (e.g. no use of semaphores
in point-to-point communications within a chain, and
sharing of memory-buffers between ports when there are
no overlapping activation periods.)

Allocation of SWCs to tasks and construction of
schedule can be submitted to different optimization cri-
terion to minimize e.g. response times for different types
of tasks, or memory usage. The run-time system executes
all tasks on a shared stack, thus eliminating the need for
static allocation of stack memory to each individual task.

C. The Rubus Analysis Framework

The model also allows expressing real-time require-
ments and properties on the architectural level. For
example, it is possible to declare real-time requirements
from a generated event and an arbitrary output trigger
along the trigger chain. For this purpose, the designer
has to express real-time properties on SWCs, such as
worst-case execution times and stack usage. The con-
structed schedule will take these real-time constraints
into consideration when producing a schedule. For event-
triggered tasks, response-time calculations are performed
and compared to requirements.

III. Related Research

There exist many component models for the develop-
ment of distributed systems e.g. Distributed Component
Object Model (DCOM) [5], Common Object Request
Broker Architecture (CORBA) [6], Enterprise JavaBeans
(EJB) [7] etc. These component models in their original
form are not suitable for the development of resource
constrained distributed embedded systems with hard real-
time requirements because they require excessive amount



of computing resources, have large memory foot print
and have inadequate support for modeling of real-time
communication. There are very few commercially exist-
ing component models for the development of distributed
embedded and real-time systems especially in automotive
domain. In the last decade, automotive research commu-
nity and industry has focused more on the component
based development of automotive embedded systems
which led to the development of various solutions, ap-
proaches, methodologies, and models.

AUTOSAR (AUTomotive Open System ARchitec-
ture) [8] is a standardized software architecture for
the development of software in automotive domain. It
can be viewed as a standardized distributed component
model [9]. In AUTOSAR, the application software is
defined in terms of Software Components (SWCs). The
distribution of SWCs, their virtual integration and com-
munication at design time is handled by Virtual Function
Bus (VFB). Run-Time representation of VFB for each
Electronic Control Unit (ECU) is defined by Run-Time
Environment (RTE). The communication services are
provided by the Basic Software (BSW) via RTE to the
AUTOSAR SWCs.

When AUTOSAR was being developed, the main
objective was to build a standardized infrastructure for
automotive software development while handling of tim-
ing related information during the development was not
considered. Furthermore, no focus was laid on speci-
fying and handling of timing properties and real-time
requirements during the process of system development.
On the other hand, such requirements and capabilities
were strictly taken into account right from the beginning
during the development of RCM. AUTOSAR describes
embedded software development at relatively higher level
of abstraction as compared to RCM. A Software Circuit
in RCM resembles more to a runnable entity which is
the schedulable part of AUTOSAR SWC. As compared
to AUTOSAR, RCM clearly distinguishes between the
control flow and the data flow among SWCs in a node.
AUTOSAR hides the modeling of execution environment
whereas RCM explicitly highlights it.

In RCM, special interface objects (NOI and NII),
which we will introduce in the next section, are used
if SWCs require inter-ECU communication otherwise
SWCs communicate via data and trigger ports. On
the other hand, AUTOSAR does not differentiate be-
tween intra-node and inter-node communication at mod-
eling level. Unlike RCM, there are no special com-
ponents in AUTOSAR for inter-node communication.
AUTOSAR SWCs use interfaces for all types of commu-
nications which can be of two types, i.e. Sender-Receiver
and Client-Server. The Sender-Receiver communication
mechanism in AUTOSAR is very similar to the pipe-and-
filter communication mechanism used in RCM.

TIMMO (TIMing MOdel) [10] describes a predictable
methodology and a language, TADL (Timing Augmented
Description Language) [11], to express timing require-
ments and timing constraints during all design phases

in the development of automotive embedded systems.
TIMMO development methodology makes use of struc-
tural modeling provided by EAST-ADL [12] which is
a standard architecture description language to model a
system at various levels of abstraction. The model struc-
ture of TIMMO abstracts the modeling of communication
at implementation level (defined by EAST-ADL) where
the methodology proposes to use AUTOSAR. Both
TIMMO methodology and TADL have been evaluated on
prototype validators. To the best of our knowledge there
is no concrete industrial implementation of TIMMO. In
TIMMO-2-USE project [13], the results of TIMMO will
be further validated and brought to the industry.

Object Management Group (OMG) defined middle-
ware technology such as Real-Time CORBA, minimum
CORBA and CORBA lightweight services for the devel-
opment of real-time and distributed embedded systems
[14]. Real-Time CORBA has been used to develop dis-
tributed embedded systems [15] [16]. Because of higher
resource requirements, these models may not be suitable
for the development of resource constrained distributed
embedded systems with hard real-time requirements.

COMDES-II (COMponent-based design of soft-
ware for Distributed Embedded Systems) provides a
component-based framework for the development of dis-
tributed embedded control systems [17]. It uses labeled
(named) messages for the network communication. The
scheduling policy used by OS in COMDES-II is fixed
priority timed multitasking scheduling. On the other
hand, Rubus Operating system implements hybrid, static
and dynamic, scheduling without using timed multitask-
ing [18].

IV. Support for Legacy Communication

In an ideal scenario, it should be possible to auto-
matically generate the communication for each applica-
tion from the design model. However, this is often not
the practice in the industry because there exist legacy
communications and legacy systems. These systems have
their own predefined rules of communication. Our goal
is to introduce the support for modeling of legacy com-
munications in RCM.

To support abstraction of the implementation of com-
munications in a node, we propose the introduction of
two special purpose modeling elements: the Network
Input Interface (NII) and the Network Output Interface
(NOI). In order to represent the model of communication
in a physical bus, we propose another modeling object
called Network Specification (NS). In this section we
describe these three new modeling objects in detail.

A. Network Specification (NS)

It is the model representation of a physical bus.
There are two parts of NS. One is protocol indepen-
dent and the other is protocol dependent. The protocol
independent part defines a message and its properties
such as ID, sender node ID, list of receiver nodes IDs,



list of RCM signals etc. The protocol dependent part
is specific to each protocol i.e. it will be different for
HCAN, CANopen, Flexray etc. There is one NS per bus.
The network dependent part of NS contains complete
information of all the frames which are sent on the bus.
It also describes the properties of frames.

In RCM, a frame is a collection of RCM signals.
A signal has a name, data type, resolution, real-time
properties etc. The frame properties described by NS
include identifier, priority, transmission type, sender node
ID, list of receiver node IDs, whether a frame is an
IN frame or an OUT frame, real-time requirements etc.
Transmission type of a frame can be periodic, event or
mixed (transmitted periodically as well as on arrival of
an event).

The components inside a single node communicate
with each other using data and control signals separately.
However, if a component on one node intends to commu-
nicate with a component on another node via a network
(bus) then the signals are packed into frames. These
frames are then transmitted over the network. Here, some
questions arise regarding the network communication.
How the signals are packed into frames? How the signals
are encoded into the frames at the sender node? How
the signals are decoded from the frames and sent to the
respective SWCs at the receiver node? All the rules that
are concerned with the answers to these questions are
specified in the Signal Mapping. Apart from defining the
frame properties, NS also defines the Signal Mapping.

B. Network Input Interface (NII) Component

It is the model representation of incoming signals
from the network. Thus, NII component describes all
signals that can be received by a node from a network.
There is one NII component per network that the node
is connected to. Associated to each signal is a data-port
and a trigger-port. When a frame arrives at the node, the
physical bus driver and protocol specific implementation
of the NII extract the signals (zero or more signals per
frame) and encode their data in the RCM data-type.
When the signal(s) is delivered, the data is placed on the
corresponding data-port and the trigger-port is triggered.
If the trigger is not used then it can be connected
to the ground. Figure 2 graphically illustrates the NII
component.
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Fig. 2. Graphical illustration of NIl

C. Network Output Interface (NOI) Component

The NOI is a component that describes all signals
which can be sent from a node on a network. Hence, it
is the model representation of the outgoing signals on the
network. There is one NOI per network that the node is
connected to. The major difference from the NII is that
the NOI does not have any trigger ports. Conceptually,
the NOI has an implicit trigger port for each data port—
however, to lessen the burden for the modeler these
ports are omitted from the model. The NII uses protocol
specific rules on how to map signals to frames and
encode data in the frames. The NII also uses protocol
specific rules to decide when to send each frame. Thus,
the SWCs that use the NII are kept unaware about details
such as signal-to-frame mapping, data-type encoding, and
transmission patterns (common transmission patterns are:
periodic, on-change, on-change with minimum distance
between messages, etc.). Figure 3 graphically illustrates
the NOI component.
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Fig. 3. Graphical illustration of NOI

Both NII and NOI components can be automatically
generated from NS by a Network Configuration Tool.
This tool also carries out mapping between NS and net-
work interface components and vice versa. The network
interface components are translated into a set of SWCs
to execute the protocol at run-time. Figure 4 graphically
illustrates the model of network communication with new
modeling components in RCM.
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Fig. 4. Model of NOI and NIl in a node

Analyzability was one important aspect that was kept
in mind while introducing the new component types in



RCM. The objective was to enable RCM to not only
model the legacy communication but also to analyze the
end-to-end timing behavior of the modeled system. In
the next section we will discuss how the required timing
information is extracted from a distributed embedded sys-
tem, modeled with RCM, to perform end-to-end timing
analysis.

V. Extraction of Timing Model for End-to-
End Timing Analysis

In real-time systems, the time at which the result is
available is as important as the correct result. With newly
introduced modeling elements in RCM, we can model
a complete distributed real-time embedded system. In
order to ensure that all timing requirements are met,
the modeled system should render itself to end-to-end
timing analysis. To perform the timing analysis, end-
to-end timing model of the modeled system should be
available. The computation model for timing analysis
considered in this paper consists of a task model with
offsets [19] [20] [21] and a communication model [22].
The task model is used for response-time analysis of
tasks in a node whereas, the communication model is
used for response time analysis of messages in the
network. We illustrate how we can extract end-to-end
timing models for distributed transactions modeled with
the new modeling elements in RCM. From the extracted
model, we will analyze the end-to-end timing for delays
and network utilization.

In order to understand which timing information
needs to be extracted for end-to-end timing analysis,
we consider an example. Figure 5 shows a block
diagram of an example distributed embedded system
modeled with RCM using the new modeling objects.
There are two nodes in the system with three SWCs
per node. SWCs communicate with each other using
both inter-node and intra-node communication. The inter-
node communication takes place via Controller Area
Network (CAN) to which the two nodes are connected.
An event chain (distributed transaction) that consists
of four Software Circuits i.e. SWCI, SWC2, SWC4
and SWCS is identified with bold lines in figure 5. In
this transaction, an event triggers SWC1 which in turn
triggers SWC2. SWC?2 then sends a signal to NOI which
in turn maps it to a CAN frame. This frame is transmitted
over CAN bus and it is received by the NII of the receiver
node. The NII decodes the signal and places the data
on the corresponding data port and it also triggers the
corresponding trigger port. The elapsed time between the
arrival of the triggering event at the input of SWCI1 and
the instant when SWCS5 gives response is referred to as
end-to-end delay of the distributed transaction and it is
shown in Figure 5.

The end-to-end timing model should contain timing
related information of all transactions in the system. At
node level, the timing information includes the total num-
ber of tasks in the system, Worst-Case Execution Time

r—End-to-end delay——————#
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Fig. 5. Example distributed system modeled
with extended RCM

(WCET) of each task, trigger Period (periodic activation)
or inter-arrival time (event activation) between successive
events triggering a chain, Jitter etc. At network level the
timing information is specified in NS . It includes bus
speed, number of frames, frame transmission time, frame
period (periodic frame) or inter-arrival time (event frame)
or both (mixed-type frame), frame jitter etc.

Rubus-ICE

End-to-end Timing Model

'

End-to-End Timing Analysis

7 T
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Fig. 6. Extraction of end-to-end timing
model for timing analysis in Rubus-ICE

In Rubus-ICE, when the designed model is completed
it is compiled to Intermediate Compiled Component
Model (ICCM) file [23]. All the timing information
required by the end-to-end timing model is extracted
from ICCM file. From this timing model, Rubus analysis
framework performs response-time analysis of individual
tasks [21], response-time analysis of messages on the net-
work [22] [24] and end-to-end timing analysis [25]. The
analysis framework provides the results i.e. response-
time of individual tasks, response time of frames, end-



to-end delay, network utilization etc. back to Rubus-ICE.
This whole process is depicted in Figure 6.

VI. Conclusion

We introduced new modeling elements in a commer-
cially existing component model for the development of
distributed embedded systems. The purpose of the new
component types, Network Input Interface and Network
Output Interface, is to abstract the implementation and
configuration of communications in distributed embed-
ded systems. The components make the communications
capabilities of a node very explicit, but efficiently hide
the implementation or protocol details. We also demon-
strated the extraction of end-to-end timing model from a
distributed embedded system modeled with RCM.

VII. Future Work

In future work, the implementation of NII and NOI
will be automatically generated from protocol configu-
ration files, like CANopen, DCFs (Device Configuration
Files) or for subsets of J1939.
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