
Automatic Synthesis and Integration of Gray-box Components for
Critical Embedded Systems — Reuse vs. Optimizations

Etienne Borde
Institut TELECOM, TELECOM ParisTech, LTCI

Paris, F-75634 CEDEX 13, France
Email: etienne.borde@telecom-paristech.fr

Jan Carlson
Mälardalen Real-Time Research Centre,

Mälardalen University, P.O. Box 883,
SE-721 23, Västerås, Sweden
Email: jan.carlson@mdh.se

Abstract—Component-based development of embedded sys-
tems has been suggested as a means to increase development
efficiency by, for example, facilitating reuse. However, the
specifics of the embedded systems domain also raise some par-
ticular difficulties when applying this approach. For example,
the integration of software components requires development
of code controlling their interactions. When this code is
automatically produced from an architectural specification, a
systematic approach where fully reusable code is generated
for all entities in the system, leads to an overhead that is
unaffordable in most embedded systems, as a consequence of
temporal constraints and resource limitations. If, on the other
hand, highly optimized code is produced by taking advantage
of the specific context in which each component is used, then
the generated code is not reusable in other contexts, and the
potential benefits of component-based development are not
fully exploited.

In this paper, we present a component-based framework
that facilitates a more detailed trade-off between optimization
and reusability, by automating the integration of components
for which the software designer can specify the desired reuse
potential. Depending on this specification, the integration code
is either reused and adapted, or completely optimized. As a
consequence, the developer can implement and evaluate more
easily different options of reuse/optimization.

Keywords-integration; code generation; component-based
software engineering; reuse; optimizations;

I. INTRODUCTION

More and more products in our everyday life take advan-
tage of the miniaturization of electronics to provide function-
alities that are controlled by a software embedded system. In
order to cope with an increasingly competitive market, these
functionalities are more and more sophisticated, and thus
increasingly complex. For the same reason, the design of
such embedded systems must cope with even shorter time-
to-market. Besides, developing computer systems that are
embedded in cars, air planes, military systems etc., called
critical embedded systems because a failure of such a system
may have catastrophic consequences, brings another dimen-
sion of complexity by requiring dependability concerns to
be considered as well.

In order to accelerate the design of such systems,
component-based software engineering (CBSE) proposes to
build them by assembling well identified subsets of the

software functionalities, called software components. One
of the benefits of such an approach is the possibility to
reuse and integrate existing components, possibly developed
externally. In this context, software components are most
of the time of gray-box nature: even if their behaviour can
be captured by the component model semantics or some
external specifications, their internal implementation is not
exhaustively modelled.

When integrating software components, wrapper code
must be added to cope with this lack of knowledge and
enable the components interactions, either with other com-
ponents or with the underlying execution platform.

In a model driven development approach, integration code
can be automatically produced by a synthesis process con-
sisting of a set of model transformations and code generation
steps that aim at producing binary images from a model.
Considering this definition, the synthesis process answers to
needs that emerge lately in the development process. Indeed,
synthesizing the code aims at

1) testing the basic functionalities of an application (unit
test and test of functional chains);

2) evaluating the non-functional properties of parts of the
application (or the application itself); and

3) optimising the produced code in order to ensure the
respect of non-functional properties.

Besides, synthesizing those binary codes requires to possess
the implementation of the corresponding functional blocks,
or a precise enough description of those functionalities from
which the corresponding code can also be generated.

Although gray-box component models have been success-
fully used in general purpose software engineering, their
adoption in Distributed Real Time and Embedded Systems
(DRTES) still raises important challenges [1].

In particular, DRTES often have heterogeneous non-
functional constraints, which makes the reuse of existing
code in different usage contexts difficult. Indeed, generating
code to produce a fully reusable entity requires considering
that this entity might be reused in any usage context, thus
leading to a systematic code generation process producing an
unaffordable overhead. On the other hand, synthesizing code
for one particular usage context leads to produce optimized



entities although loosing the potential benefits of a CBSE
approach: the components reusability.

Answering the trades-off between those two opposite
objectives is a difficult task since it requires the domain
expertise to decide of the level of reusability or optimisation
suitable for a given component.

In this paper, we present a component-based framework
that automates the integration of reusable gray-box com-
ponents. This frameworks helps in realizing the trade-off
between reusability and optimization by proposing i) an
architecture of generated code that separates clearly three
different levels of reusability/optimisations, ii) a general
purpose implementation of the generated code that aims
reusability of the produced entity, and iii) optimization
algorithms that proceed to the fusion of hierarchically nested
components.

The remainder of this paper is organized as follows:
Section II gives an overview of the contribution of this
paper. In Section III we present ProCom, the component
model our approach is based on. Sections IV, V, and VI
present respectively the architecture of the generated code,
the principles of its implementation in a reusability objective,
and the optimization steps that lead to adapt this implemen-
tation to a particular usage context. Section VII describes
how the proposed approach has been implemented in the
ProCom development environment. Finally, we compare
our contribution to related works in Section VIII, before
Section IX concludes the paper and presents the perspectives
of the contribution.

II. OVERVIEW OF THE CONTRIBUTION

An important aspect of synthesis in a CBSE context is that
it must facilitate reuse of existing functionalities while at the
same time offering optimisation capabilities that enable to
ensure that the final implementation respects the system’s
non-functional requirements. In the domain of real-time and
embedded systems, optimization deals with reducing the
memory footprint, the energy consumption of the whole
system, improving the end-to-end performances and so on.
On the other hand, reuse focuses on the integration, without
any modification, of already designed and/or implemented
entities.

To some extent, reuse and optimization are conflicting ob-
jectives, since the production of reusable units implies con-
sidering them independently of a particular usage context,
while optimisation needs to take advantage of specific usage
context information in order to improve the characteristics
of the produced code. The approach presented in this paper
provides the developer with an increased flexibility when
addressing the trade-off between the two objectives.

We first address the synthesis of units that on one hand
support reuse of unchanged implementation, and on the other
hand allow for some degree of adaptation when reused. We
propose an architecture where each synthesised unit can be

viewed as a gray-box component consisting of three parts;
an interface definition part that defines the data structure
of a given component, an interface implementation part
controlling how data and control are transferred in and out
of the component, and an internal implementation part that
provides the actual functionality. The interface definition can
be reused unmodified in any context. When only the internal
implementation needs to be reuse, which also allows for
reuse of for example analysis and unit test results associated
with this implementation, the interfaces implementation can
be tuned for each particular usage context in order to provide
an optimised access to the functionality of the inner part.

We also consider the synthesis of complex components,
or entire systems, composed from such reusable gray-box
components (possibly in several levels of hierarchical nest-
ing). In the general case, the developed system consists of a
mix of newly developed components, and components that
are reused in-house or provided by third-party developers.
Thus, some of the constituent subcomponents exist only in
the form of already synthesised code, some exist only as
an architectural specification with code for the individual
elements, and others exist in both of these forms. The
proposed approach allows the developer to specify for each
entity in the design if it should be i) reused and adapted; or
ii) completely (re-)synthesised for this particular context.

Components for which the developer selects the first
alternative are said to be marked as reusable. When applied
to a component for which code exists, this means that
the internal implementation of the component is reused
unmodified. When applied to a newly developed component
for which code does not yet exist, that component is first
synthesised separately, resulting in a gray-box component
which will be included in the current system, but also
possibly reused in other systems in the future. In both
cases, the interface implementation part of the component is
adjusted to increase the performance in this particular usage
context.

The second alternative is only possible for components
that include the architectural specification, e.g., newly devel-
oped components or components reused in-house. No part
of that component is reused unmodified, which allows for
optimisations spanning several component boundaries.

The search for an appropriate trade-off between reuse and
optimisation for different parts of the system will be guided
by the non-functional requirements of the system. However,
the decision of synthesising a component for reuse or for
optimal efficiency cannot be automated, since it requires
the domain expertise of the software designer to identify
its reuse potential. What can be automated is the detection
of when additional optimisations are needed in order to
meet the non-functional requirements of the system under
construction.

Figure 1 illustrates these different options and their impact
on the generated code. When a component is indepen-



dently synthesized, no information about its usage context
is available. It is thus synthesized according to a general
purpose synthesis that aims at enforcing the respect of the
semantic in any usage context (see (1) in the figure). When
this component is used in a specific context, the synthesis
process can take advantage of available information to
optimize the produced code. In case the subcomponent
internal implementation needs to be reused, – or in case of a
primitive component – only the interfaces implementation is
replaced (see (2.i) in the figure). Otherwise, the component
is completely re-synthesized to maximize the benefits of the
optimization (see (2.ii) in the figure).

Components 

interfaces

Reuse

General

Context

Specific

Context

Optimization(s)

(2.i) Reuse and

adapt

(2.ii) complete

(re-)synthesis

Multi-layered components(1) General 

purpose synthesis

Components 

interfaces

Components 

interfacesinterfaces

Interfaces 

implementation

Internal

implementation

interfaces

Interfaces 

implementation

Internal

implementation

Interfaces 

implementation

interfaces

Interfaces 

implementation

Internal

implementation

Figure 1. Synthesis process overview

We present in this paper a set of contributions that helps
in automating this approach: we define the architecture
for the generated code, we describe the principles of its
general purpose implementation, and we propose a set of
optimization steps. We also present in this paper a first
prototype implementing these contribution. As a first evalu-
ation of this prototype, we have used it to develop a simple
application from the automotive domain. The first results we
obtained are also given in this paper. Before to present those
contributions in more details, we describe in next section the
component model our framework relies on.

III. PROCOM, THE COMPONENT MODEL

The flexible synthesis approach has been investigated in
the context of ProCom [2], a component model specifically
targeting the domain of distributed real-time systems. In this
section, we present those aspects of the component model
that have a significant impact on the synthesis process.

A. General presentation

To address the different concerns that exist on different
levels of the design of such systems, ProCom consists of
two distinct, but related, layers. At the upper layer (namely
ProSys), the system is modelled as a number of active and
concurrent subsystems, communicating by message passing.
Our synthesis approach, however, is mainly concerned with

the lower level, called ProSave, which addresses the internal
design of a subsystem down to primitive functional compo-
nents implemented by code.

ProSave is based on a notion of passive components, and
the communication between them follows a pipes-and-filters
architectural style with an explicit separation between data
and control flow. The former is captured by data ports where
data of a given type can be written or read, and the latter
by trigger ports that control the activation of components.

In order to implement complex functionalities, compo-
nents can be connected by simple connections that transfer
data or control, or connectors providing more elaborate
manipulation of the data and control flow.

ProSave is hierarchical, meaning that components can be
internally constructed by a set of interconnected subcom-
ponents, possibly in several levels of nesting. Contrasting
such composite components, the primitive components at the
bottom of the hierarchy are implemented as C functions.
At the highest level of nesting in ProSave, connectors
representing periodic and aperiodic activation are used to
turn a collection of passive ProSave components into an
active entity that can be further modelled at the upper layer.

Figure 2 shows the model of a composite ProSave com-
ponent. Trigger and data ports are denoted by triangles and
rectangles, respectively, and the filled circle is a compact
representation of data fork and control fork connectors.

ACC Controller

TriggerOut_ADistance 

Controller

TriggerOut_A

d_out_A

Speed 

Controller

§

d_out_A

§

Figure 2. Composite ProSave component

B. Specificities of ProCom

A main characteristic of the component model is that the
control flow is very explicitly captured in the architectural
model. This is partly due to the separation of data- and
trigger ports, which allows the control flow to be modelled
by trigger port connections, but more importantly it is
a consequence of the severe restrictions imposed on the
component behavior by the component model.



In ProSave, ports are structured into groups consisting of
one trigger port and a number of data ports, indicating that
those data are always produced or consumed together, in an
atomic and conceptually instantaneous action. The trigger
port of a group is used to control when the action occurs.

Moreover, the functionality of a ProSave component is
captured by a set of services, each consisting of one input
port group and a number of output groups. The services
of a component are triggered individually and can execute
concurrently, while sharing only internal state data. The data
at the input port group is accessed at the very start of each
invocation, as a result of its trigger port (and thus the service)
being activated. Any subsequent writing of data to the input
ports will not made available to the component until the
next invocation. Similarly, data written to the output ports
during the internal computation performed by the service,
will not become available to the rest of the system until the
corresponding group is triggered. Before the service returns
to idle, each of the associated output port groups must have
been activated exactly once.

These restrictions serve for tight read-execute-write be-
havior of a service, but they also mean that the control flow
can be determined without knowledge of the component’s
internals.

Another restriction, stating that an activation of a service
that is already active is simply ignored, avoids the problem
of multiple concurrent, and possibly overlapping, activations
of a service.

As can be seen in Figure 2, port groups are denoted by
dashed boxes framing data and trigger ports, and the services
are separated by dashed lines.

C. Deployment of ProCom components

Modelling the deployment of ProCom components just
consists of representing the allocation of ProSys components
onto virtual nodes that are latter on mapped onto the
concrete hardware platform. This information is then used
to realize the deployment of components. Since ProCom
is dedicated to the design of critical distributed real-time
and embedded systems, components are deployed statically:
the definition and initialization of data structures corre-
sponding to components, tasks and interactions, is made at
compile time (or during the very beginning of the system
initialization if necessary). As a consequence of this choice,
the definition of these data structures, as well as their
initialization, is synthesised into the code of the system
implementation.

This synthesis process mainly consists of the components-
to-resource allocation. In the scope of distributed and real-
time embedded systems, this allocation consists of mapping:

• interactions of ProSave components to shared variables
and operation call sequences;

• ProSave components activation (clocks and communi-
cation channels) to real-time tasks;

• interactions of ProSys components to the physical com-
munication media.

In this paper, we focus on issues related to the im-
plementation of interactions between ProSave components.
In order to implement the trade-off between reusability
and optimizations, we propose a dedicated architecture for
the generated code. This architecture is described in next
section.

IV. ARCHITECTURE OF THE GENERATED CODE

The architecture of the generated code aims at maximiz-
ing the reuse of already generated code. To achieve this
objective, we have identified the possible variations in the
implementation of the ProCom semantic. These possible
variations, as well as the corresponding impacts on the
components wrappers implementation will be presented in
Sections V and VI.

We present in this section how the architecture of the
generated code has been designed in order to deal with
this variability while reusing as much as possible the code
that has already been generated, and possibly validated. The
basic principle of this architecture is to externalize every
variable part in a service handler implementation, while
the interfaces definition and the internal implementation
represent the stable view of the service implementation.

Figure 3 represents the data structure generated for a
component. This architecture is divided in three main parts.
The first one represents the component interfaces, a data
structure that can be reused in any usage context of the
component (enclosing part of the component representation
in Figure 1). The second part represents the implementation
of those interfaces, that can be adapted to a specific context
in case only the interfaces and internal implementation of
the component have to be reused (step 2.i in Figure 1).
Finally, the third layer represents the internal implementation
of a component. This last layer can be adapted when the
usage context of this component is refined and only if the
corresponding component can be completely re-synthesized
(step 2.ii in Figure 1).

The interface definition is actually the data structure
interfaced with the user code (code implementing the basic
functionalities of the system). This architectural layer con-
sists of two data structures, that reference each other: the
Component data structure represents a component instance,
as defined in the ProCom model provided by the software
designer; the Service data structure corresponds to a service
of this component. It is thus natural that a component
reference several services while a service references only
one component. Besides this mutual references, those data
structures contain additional information:

• the Component data structure defines a reference to the
internal state of the component, a data structure that
can be used by the functional code to define, initialize,
and use some internal state;



• the Service data structure also defines some reference
to its input and output ports.

In Figure 3, the interface implementation corresponds to
the variable part of the generated code. The Service handler
data structure is the main constituent of this layer. This entity
implements the context independent aspects of the service
interfaces, and will be replaced when the usage context is
known. It references the handled service and the executed
sub-services handlers in order to implement the interaction
between components.

Finally, the Subservice handler data structure corresponds
to the internal implementation of a composite component.
For a primitive component, the internal implementation is
directly given by the user code. For a composite com-
ponent, this entity gathers the definition of subservices,
either in their adapted or reusable definition or in their
re-sunthesized definition (depending on the possibility to
adapt the corresponding subcomponents). In case only the
interface definition of a component has to be reused, this
internal implementation will be re-synthesized when refining
the usage context of this component.

Component Service

Service_handler

Subservice_handler

services

1..*

component

1

handledService 1

executedSubservices

1..*

handledService

1

Interfaces 

implementation

Interfaces

Internal

implementation

Subservice_handler

Figure 3. Generated Code Architecture

This architecture enables to identify the variable and
stable parts of the generated code. We present in next section
the principle that led the implementation of this architecture
in a general purpose synthesis.

V. GENERAL PURPOSE SYNTHESIS

The first objective of a synthesis process (see Section I)
is to test the basic functionalities of an application. Those
basic functionalities are identified in ProCom as software
components. When independently synthesized, the synthesis
tool does not have any information about the context in
which these components will be used. As a consequence,
the production of a reusable unit requires implementing
the component interfaces in the most general case, while
ensuring the respect of the component semantics.

Some aspects of this semantics were summarized in Sec-
tion III, and we extract from this specification the following
properties that have to be ensured in the generated code:

1) Service locks: if an input trigger port is activated while
the corresponding service is active, the new activation
is ignored.

2) The data ports of an input port group are all read
together in an atomic action, performed when the
trigger port of the group is activated. This data must
not be modified until the end of the service execution.

3) When an input trigger port is activated, the component
execution must trigger each of the output port groups
of the corresponding service once and only once. In
case of multiple output port groups, this trigger out
action does not have to be performed at once for all
of them.

4) Data corresponding to output data ports in the same
group are all transferred to the connected components
in an atomic action, performed when the trigger port
of the port group is activated.

5) Connections involving connectors represent multiple
interactions, each of them enforcing the same seman-
tics of a unique direct connection.

A. A Three Phases Behaviour

Figure 4 represents the data interaction implementation
between two components in the general case. Both a general
case specification, and a schematic realization of its three
phases implementation, are illustrated on this figure.

General Case Specification: The specification of a
general case is illustrated on the top of Figure 4. In this
specification, two components (A and B) are triggered by
two clocks with different frequencies (75 and 100 Hz). The
control flows of those two components are independent,
while their data flow share a simple connection.

Three Steps Implementation: Considering such a speci-
fication, the ProCom semantic requires implementing a three
steps behaviour, illustrated at the bottom of Figure 4:

1) When the input trigger port of a service is triggered
(TriggerIn A in the figure), this service switches from
an idle state to an active state in which it ignores any
input triggers, thus enforcing property 1. Then for each
input data port (d in A), the service implementation
transfers the data received on this data port connection
(cnx d in A) into an internal instance of this data
(d in A at the bottom of the figure), stable until the
end of the service execution (partially enforces prop-
erty 2, atomicity issues will be treated independently
in the remainder of this section);

2) In the second phase of the service behaviour, the
reusable functionality (for which we do not know the
exact behaviour) computes the output (d out A at the
bottom of the figure) of the service thanks to the
received inputs (d in A at the bottom of the figure).
The service wrapper checks if all the output port
groups have been triggered, and resume the component
in case of pending computations (see property 3); the



wrapper also checks if at least one of the output has
been triggered (see property 3). Note that writing the
values of the data during this phase does not mean
that the corresponding data is actually transferred.

3) Finally, when the output trigger port (TriggerOut A)
of the service is triggered, the service implementation
produces the output data to be read by the connected
input data ports (property 4); and transfers the control
to the connected trigger ports.

The way interactions are implemented in case of multiple
connections is treated latter in this section.

TriggerIn_A
Component A

TriggerOut_A

d_out_A

Component B

TriggerIn_B

d_in_B

d_in_A

TriggerIn_A TriggerOut_A TriggerIn_B

Grey-box 

75 Hz 100 Hz

Component A:

Phase 1

Component A: 

Phase 2

Component A: 

Phase 3

Component B: 

Phase 1

cnx_d_in_A d_in_A d_out_A cnx_d_in_B d_in_B
Grey-box 

Computation

Figure 4. A Three Step Interaction Mechanism

As can be seen in Figure 4, the general case requires deal-
ing with shared data accesses. Indeed, in the figure, one can
easily see that the data representing the interaction between
A and B (cnx d in B) might be accessed concurrently by
the corresponding services. In next section, we explain how
we protect this shared data access to preserve the ProCom
semantics and more precisely the atomicity of component
interactions.

B. The Double Buffer Interaction

In this section, we tackle the issue of atomicity in data
flow interactions (property 2 and 4).

The main hypothesis of data transfer between ProSave
components is atomicity. Of course, this hypothesis cannot
be ensured in a multi-threaded implementation since it re-
quires data copying and locking. However, the implementa-
tion must ensure that the data transfer pattern (emission and
reception) is the same as the one that has been considered for
analysis [3]. To ensure this, we propose to rely on a double
buffer implementation for data interactions: the output port
of a component is deployed as a set of two buffers, one that
can be updated during the execution of the component, and
one that contains the last up-to-date value. The overhead of
this solution is a pointer that references the last up-to-date
value (thus switching from one buffer to the other one when
the data is transferred out of the writer component).

In order to ensure data consistency, the first and third steps
of an interaction (respectively transferring the data inside the
reader and outside the writer) must never be simultaneously
accessed. To ensure this, the double buffer solution has
been preferred to a single buffer implementation since it
reduces time spent in the critical section (only a pointer
switch on the writer side), thus getting closer to the atomic
hypothesis. Besides, it is similar to the solution used in the
scope of synchronous programming, for which a semantic
conformance proof has been provided [4]. However, we did
not yet prove that this implementation conforms to the hy-
pothesis of the ProCom model analysis [3]. As one can easily
understand, the conformance between this implementation
and the analysis semantic is very difficult to ensure.

C. Multiple Interactions

One of the main advantage of the ProCom component
model is to model explicitly the control and data flow of
components. However, the semantic of ProCom components
only enables to define a partial control and data flow. Indeed,
if a ProCom component has several output port groups, the
semantic states that for each activation of a service, each of
the output port group:

• will be triggered once and only once;
• can be triggered at different points in time.

As a consequence, the order in which ports are triggered is
not known at design time (reason why ProCom components
are qualified of “gray-box” components in this paper).
Thus, the generated code must enable the orchestration of
components in functions of the trigger information received
at runtime. To deal with this property, the upper level
component stores the activated input ports in a list and
schedules the corresponding subcomponents according to
a predefined orchestration policy. In case of adaptation of
this orchestration to a particular context, only this part of
the component implementation (belonging to the interfaces
implementation layer in Figure 3) would be impacted.

Another important aspect of the ProCom component
model is the existence of connectors. Such entities lead to
consider multiple interactions in which an output trigger port
activates several input ports. In such a situation, property 5
states that the atomicity of interactions must stand for
each interaction. As a consequence, the generated code first
transfers the trigger and data to all the connected ports (in
one atomic step), and then executes the inner implementation
of the activated sub-services. Those sub-services are ordered
according to a predefined policy.

This orchestration specification might be refined functions
of non-functional requirements such as timing properties and
memory constraints. Without such specification, the context
independent synthesis chooses an execution arbitrarily.

Besides the ordering of the components execution, dif-
ferent parts of the implementation presented in this section



might take advantage of a better knowledge of the com-
ponent’s usage context. Following this idea, we present in
next section the optimizations steps we propose to reuse and
adapt synthesized units.

VI. REUSE AND ADAPTATION

The general purpose synthesis produces an implementa-
tion which is guaranteed to satisfy the semantics of the
component model independently of the enclosing system.
This general implementation provides a means to work with
the component in isolation, for example to perform unit
testing or measure properties of interest. However, whenever
the component is used (or reused) within a larger system,
the external part of the component implementation can be
adjusted based on information about that particular context,
to reduce the overhead.

The components usage context is refined all along the
design process. Generally speaking, it consists of all entities
in the unit that is being synthesised, and attributes associated
with them or with the system as such, including for example
temporal requirements and the mapping of components onto
the execution platform. It also includes attributes associated
specifically with this instance of the reused component. The
detailed adaptation algorithm proposed here is mainly based
on architectural information, and extending it to pay more
attention to non-functional requirements will be addressed
as future work.

The main objective of our approach is to take advantage
of the usage context information in order to reduce the
overhead in the general purpose service handlers and the
generated glue code. To accomplish this, we propose a set
of model transformation steps in order to achieve an optimal
fusion of components and subcomponents in that particular
context. The main requirement of this fusion process is to
preserve the integrity of the components semantic.

Given a component to synthesise – and it should be noted
that this could be an entity at any level of hierarchical
nesting, for example a component that was marked reusable
in the synthesis of some component even further up in
the hierarchy – the role of our synthesis process is to
produce an optimized reusable binary code library for that
component, based on the architecture defined in Section IV.
In summary, the different steps of the synthesis algorithm
are the following:

1) Flatten (down to primitive components, or compo-
nents marked as reusable) to a single non-hierarchical
model.

2) Extract the control and data-flow of the different
services.

3) Refine, based on the existing non-functional require-
ments, the order of service execution.

4) Determine where service locking must be enforced to
avoid re-entrance.

5) Remove port groups that are not needed for correct
synchronization.

6) Decide for each data producing port whether full
locking and buffering is needed.

In the remainder of this section we present in more details
these different generation steps.

A. Model Flattening

The model flattening is completely safe with regards to the
preservation of the components semantic. This step consists
of representing the whole tree of nested subcomponents
as a single collection of connected primitive and reusable
components. The composite components that are not marked
reusable are removed, and their internal subcomponent
structure is added to the enclosing level, together with the
input- and output port groups of the removed composites.
These orphan groups are needed, in the general case, to
ensure correct synchronization in the flattened model, but in
many cases they also will be removed (in step 5).

Figure 5 illustrates this model transformation on a simple
example. The composite component B is removed, resulting
in two orphan port groups, but component C remains since
it is marked as reusable.

A

B C

Reusable

B

D

Primitive

E

Primitive

Model of Component A

Model of Component B

A

C

Reusable
D

Primitive

E

Primitive

Result of the model transformation of component A

Figure 5. Illustration of the first model transformation step.

B. Control and Data Flow Extraction

From the result of step 1, we build graphs corresponding
to the control- and data flow of the synthesised entity.
The target meta-model of this transformation is given in
Figure 6. The root entity of this meta-model is a Composite
component consisting of a number of composite services
(CompositeService). Each composite service defines a set
of sub-services that will be executed in the scope of the
synthesized entity. In addition, a composite service defines
an entry point (EntryPoint), representing the main function
of the synthesized entity. This entry function references a



set of progress steps (ProgressStep with its self reference),
that represent the different advancement points in terms
of control flow. Depending on the type of progress step
(ProgressStep is an abstract class), the associated action
in the generated code will be different. For instance, an
EndPoint entity represents one of the trigger output port of
the synthesized entity.

C. Control Flow Refinement
The control flow defined in the component model can

contain fork- and join connectors, which means that the
branches after the fork can be executed in any order, possibly
interleaved, but that the path after the join must wait until
all fork paths have been fully executed. In this step, such
non-determinism is transformed into a fixed orchestration
by selecting one of the permissible execution orderings.
The component model also allows dynamic selection of
execution paths, but since this cannot be resolved during
synthesis, the possible outcomes are all represented in the
graph.

Another source of non-determinism in the model is sub-
component services with multiple output ports, meaning that
they can produce output data at different points in time.
Since the internals of the subcomponent is off-limit for the
synthesis, all possible orders in which the groups can be
activated have to be represented as a dynamic selection.
Moreover, a decision must be made regarding at what point
in the orchestration the subcomponent should be resumed,
allowing it to produce the data of the remaining output
groups.

Without any requirements on the synthesised component,
it is not possible to make wise choices about the opti-
mal ordering. In our future work, we plan to integrate
non-functional requirements such as timing and memory
footprint requirements to lead this decision. For now, the
synthesis tool implements the straightforward choice to
execute forked paths in sequence, and to finish the control
path leading out of one port group before returning to resume
the subcomponent.

D. Removal of Service Locking
The removal of a service lock is possible if it can

be determined that the corresponding port can never be
triggered when the service is already active. In fact, the only
situations in which a service lock must be kept are when i)
the service can be reached from more than one service in
the synthesised component; or ii) the component is found
at the top level of ProSave and can be activated in several
tasks that cannot be merged using the techniques presented
in [5] (which also assumes that the task model forbids tasks
re-entrance).

E. Orphan Port Group Removal
An orphan port group G can be removed if the following

criteria hold in the refined control- and data flow model:

i) all incoming data connections to G come from ports in
groups that are never activated after G; and

ii) all outgoing data connections from G lead to ports in
groups that are never activated before G.

It should be noted that “never activated before/after” requires
that the two groups belong to the control flow of the same
composite service. If this is not the case, the relative ordering
of them is unknown.

When an orphan port group is removed, each incoming
connection to a port in the group and the corresponding
connection leading out of the port are replaced by a single
connection.

F. Removal of Data Locks and Double Buffers

The removal of data locks is a bit more complex. The
purpose of data locks is to avoid concurrent reading and
writing of data, since this could lead to partially written data
being read, which would be a violation of property 2 and
property 4 stating that data transfer and writing are atomic
actions. However, if all writing and reading of a particular
data are performed in the execution of the same parent
service, or in a unique task (assuming that the task model
forbids tasks re-entrance), then there can be no concurrent
accesses, and the lock is thus not needed. Once more,
merging tasks thanks to techniques such as [5] are of great
interest in this case .

The role of the double buffers is to ensure another aspect
of property 2 and property 4, namely that data is forwarded
only when the trigger port of the group is activated. The
condition under which this can be ensured without an
additional buffer for the transfer of data from a port in group
Gp to a port in Gc can be defined as follows:

i) Gp and Gc belong to subcomponents, not to the syn-
thesised entity.

ii) Gp is either always triggered before Gc, or always
triggered after the full execution of the sub-service that
Gc belongs to.

Removing the double buffering means that the reader and
writer can communicate by a single shared variable, without
breaking the strong limitations in the component model
restricting communication to occur only when components
are triggered and when output ports groups are triggered.

VII. FROM SPECIFICATION TO BINARY CODE
PRODUCTION

In order to evaluate the approach presented in this paper,
we have implemented a synthesis framework that automates
the static deployment of ProCom components. This frame-
work implements most of the optimization steps presented
in Section VI, and produces C code according to the
architecture presented in Section IV. We present in this
section the architecture of this framework, as well as the
code generation work-flow. This work-flow is summarized



Figure 6. Control and Data Flow Meta-Model

ProCom 

Meta-model

Control and 

Data Flow 

Meta-model

(1) QVTo model 

transformation

(2) Services fusion;

QVTo model transformation

(3) ACCELEO code 

Deployment 

Meta-model

Component 

Instances 

Meta-model

(5) QVTo model 

transformation

references

Flattened 

Services 

Meta-model

references

Components data 

structures 

initialization (C)

(3) ACCELEO code 

generation

(6) ACCELEO code 

generation

Reusable object 

library

(4) Eclipse CDT 

project

Services and 

subservices 

implementation (C)

(7) Eclipse CDT 

project

Executable 

binary code

Figure 7. Components Generation Work-flow

in Figure 7, which illustrates both the components synthesis
and integration (through the deployment part) work-flow.

The architecture of the synthesis tool is made of a set of
Eclipse plug-ins that make an intensive use of the facilities
of this platform in terms of model-to-model transformation
(QVTo1), code generation (ACCELEO2), and C code edition
and makefile generation (Eclipse CDT3).

1http://www.eclipse.org/m2m/
2http://www.eclipse.org/acceleo/
3http://www.eclipse.org/cdt/

A. From Components Implementation to Reusable Objects
Libraries

The components implementation and build work-flow
consists of 4 steps (1 to 4 in Figure 7):

Step 1 consists of flattening the hierarchical component
model down to primitive components or components marked
as reusable. This is implemented as a QVT transformation
from the ProCom meta-model to an intermediate representa-
tion defined as an EMF meta-model as well. During this step,
the elements of the source meta-model are simply copied
in the target meta-model. Thus, the difference between the
source and target models is that the source meta-model only
contains one layer of composition at a time by referenc-
ing the definition of the subcomponents, while the target
meta-model contains the final representation of components
instances. This transformation step implements the flattening
of ProCom model presented earlier (see Section VI-A and
Figure 5).

Step 2 also consists of a QVT model-to-model transforma-
tion. The source model is the result of the first step while the
target model is a representation of the (possibly incomplete)
control and data flow specification. From this result, the
source model is also modified to represent the service fusion
presented in Section VI (removing service and data locks
where possible).

During step 3, the control and data flow meta-model is
used as an entry point of a code generator (using AC-
CELEO). From this meta-model, the complete control and
data flow of the synthesized service are generated: this
includes the realization of connectors, and the orchestration
of components, as well as the implementation of the data
transfers.

Finally, step 4 is made of a customized CDT plug-in
that generates the makefile and builds a static library of the
synthesized entity.



B. From Virtual Nodes to Components initialization

The virtual node implementation and build work-flow is
made of 3 steps (5 to 7 in Figure 7).

The entry point of the first step is the deployment model
that associates a set of ProSys subsystems to an execu-
tion platform. From this deployment model, the tree of
component instances deployed on this execution resource
are gathered in an intermediate model (instances model
on the figure) that references the flattened services models
of the entities to be deployed. This reference enables to
retrieve information regarding the optimizations that had
been performed in earlier phases of the generation work
flow.

VIII. RELATED WORK

The contribution presented in this paper is a component
framework that automates the synthesis and integration
of reusable components designed as sub-functionalities of
embedded systems. In order to respect the system’s non-
functional requirements, the implementation of those com-
ponents have to be optimized according to their usage
context. The framework we presented in this paper helps in
answering the trade-off between reusability and optimization
by proposing a generated code architecture that identifies and
isolate the reusable code from the adaptable code.

Considering the scope of this contribution, the related
works are mainly twofold:

1) frameworks for reusable components in embedded
systems;

2) model-driven or architecture-based optimizations for
embedded systems.

A. Frameworks for Reusable Components in Embedded Sys-
tems

Many component frameworks already exist both in in-
dustry and in academic research. Among those, we have
selected those that we thought were more closely related to
the contribution presented in this paper. This comparison is
not exhaustive, but gives an overview of the originality of
the contribution presented in this paper.

To begin with, we have selected only component frame-
works for which components are grey-boxes: their internal
behaviour is not exhaustively known. This selection ex-
cluded the BIP [6] component framework and frameworks
based on synchronous languages. Besides, we have focused
on component models and frameworks that aim the syn-
thesis and integration of reusable components in embedded
systems.

CAmkES [7] is a component model dedicated to the
design of real-time operating system focusing on secu-
rity properties. The interaction semantic of this component
model is based on three paradigms: interface based, event
based, and data based. The two firsts are commonly used in
most component models, while the last is more specific to

this particular component model. Data interactions are meant
for representing shared memory space between two software
components. As a consequence, this component framework
requires identifying, during the design, the existence of
shared memory accesses.

PECT [8] is a component framework that focuses on the
usage of analytical theory to enforce predictability of non-
functional properties by construction. As a consequence, this
component framework does not focuses on the integration
and synthesis of component. In this framework, the inter-
action semantics are i) event-based with message queues or
ii) synchronous with the possibility to define the necessity
for a protected critical section. Thus, the usage of locks is
decided at design time.

THINK [9] is a component framework that specifically
targets the development embedded telecommunication sys-
tems. The components interaction paradigm is mainly inter-
face based.

CIAO [10] and MyCCM-HI [11] is a component frame-
work dedicated to the adaptation of the Lw-CCM4 standard
to the domain of real-time and embedded systems. The scope
of the work presented in [10] is very close to the scope of the
contribution presented in this paper insofar as it aims at au-
tomating the fusion of components in order to meet the strict
non-functional requirements of embedded systems. To that
respect, the component-based architecture presented in this
paper defines a specific structure (namely context) that has to
deal with modifications of the component’s usage context.
However, this approach relies on a semantic, initialization
process and underlying middleware that limits its usability
in very constrained (in terms of memory, performances, and
predictability) embedded systems. Indeed, the architecture
focuses on flexibility of the design and thus relies on
dynamic initialization and configuration of the components’
data structure. In [11], the authors use a static deployment
and configuration approach on the top of a middleware
dedicated to embedded systems. However, this work focuses
on adaptive systems, not on the reuse/optimization trade-off.

Contrasting with our approach, the component models
used in these frameworks does not impose any restriction on
the component’s behaviour: once a component is activated,
its output interfaces may (not must) be activated. As a conse-
quence, our framework automates the decision of the usage
of shared memory by i) using a more abstract specification
of the interactions and ii) taking advantage of the semantic
restriction imposing that when a component is activated, its
output interfaces must be triggered once and only once.

B. Model Driven Optimizations for Embedded Systems

In the scope of model driven optimizations for embedded
systems, two works have particularly caught our attention.

4Standard from the Object Management Group: Light Weight CORBA
Component Model Revised Submission; Document realtime/03-05-05 edn.



Both use AADL5, a component-based language in which
the modelling artefacts represent concrete entities of the
software and hardware architecture (processes, threads, data,
subprograms, processors, physical memory, etc.). Besides,
AADL defines a precise execution semantic for each of the
software components that enables the formal analysis of the
whole system.

In the scope of the development of the Ocarina tool
suite, that aims at synthesizing AADL model into different
programming languages [5], proposes an approach to fusion
the different activities (or thread) of a real-time embedded
system. As we already stated earlier (see Section VI), this
work is a complement to the contribution presented here.
Indeed, this fusion of activities can be an interesting result
to be used as an input of our optimizations.

In ArcheOpterix [12], authors propose some heuristics
to automate the decision of the software-to-hardware al-
location, thus improving different quality attributes of the
architecture. The results presented in this work are also
complements of our contribution.

Besides complementary, our contribution pursues a dif-
ferent objective: reusability of functional blocks. In [5]
and [12], the focus is on optimizations at a different level
of abstraction, closer to the final realization of the overall
system.

IX. CONCLUSION AND FUTURE WORKS

The integration of software components is a difficult
task, especially when addressed in the domain of embedded
systems. Indeed, it requires implementing the interactions
between those components not only in order to provide
the desired functionalities but also to ensure the respect of
non-functional properties. Considering the effort required to
reach this objective, a satisfactory result should be reused
in future evolutions of the system, or even in other systems
requiring the same functionality.

In general, component-based software engineering has
been a fruitful solution for both integration and reuse of
existing software. However, its adoption in the scope of
embedded systems still raises important challenges. In par-
ticular, we have shown in this paper that the usage of CBSE
in embedded systems implies a trade-off between reusability
and optimization of the corresponding component. To tackle
this issue, the component framework presented in this paper
automates the production of the code implementing the
components integration. This implementation relies on an
architecture specification that enables to identify clearly its
reusable and adaptable parts. Besides this framework and
the architecture of the generated code, we also provide a
description of the components integration code that targets
the respect, in the general case, of a formally defined

5Standard from the Society of Automotive Industry : Architecture Anal-
ysis and Design Language

semantic. Last but not least, we propose in this paper a set
of optimization steps that aim at reducing the overhead (in
terms of memory footprint and execution time) due to the
presence of glue code. As a first experimental result, the
usage of these optimizations led, on a simple example, to a
reduction of 30% of the size of the produced binary code.

These promising results led us to consider different
perspectives to this work. Firstly, a more extensive ex-
periment would enable to evaluate deeper our framework
and particularly our optimization algorithms. Secondly, an
interesting question is to evaluate if optimizing the generated
code from the component-based specification could lead to
optimizations that the compiler could not do later on because
of complex dependencies between the control and the data
flow. Finally, we need to extend our approach by taking
into account more information about the usage context of a
component, like non-functional properties for instance. This
could help the software designer in deciding the level of
optimization/reuse of a component. The treatment of non-
functional properties to decide on the ordering of compo-
nents is also part of our future work.

ACKNOWLEDGMENT

This work was partially supported by the Swedish Foun-
dation for Strategic Research via the strategic research centre
PROGRESS.

REFERENCES

[1] I. Crnković, “Component-based approach for embedded sys-
tems,” in 9th International Workshop on Component-Oriented
Programming (WCOP), June 2004.

[2] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković, “A Component Model for Control-Intensive
Distributed Embedded Systems,” in 11th International Sym-
posium on Component Based Software Engineering. Springer
Berlin, October 2008, pp. 310–317.

[3] A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu,
and P. Pettersson, “Formal semantics of the ProCom real-
time component model,” in 35th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
August 2009.

[4] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis, “Semantics-
preserving multitask implementation of synchronous pro-
grams,” ACM Transactions on Embedded Computing Systems,
vol. 7, pp. 15:1–15:40, January 2008.

[5] O. Gilles and J. Hugues, “Towards model-based optimisations
of real-time systems, an application with the AADL,” in
15th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). IEEE
Computer Society, 2009, pp. 129–134.

[6] A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous
Real-time Components in BIP,” in Proc. of the 4th IEEE In-
ternational Conference on Software Engineering and Formal
Methods. IEEE, 2006, pp. 3–12.



[7] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “CAmkES: A
component model for secure microkernel-based embedded
systems,” Journal of Systems and Software, vol. 80, no. 5,
pp. 687–699, 2007, special Edition on Component-Based
Software Engineering of Trustworthy Embedded Systems.

[8] K. C. Wallnau, “Volume III: A Technology for Predictable
Assembly from Certifiable Components (PACC),” Carnegie
Mellon, Tech. Rep. CMU/SEI-2003-TR-009, 2003.

[9] O. Lobry, J. Navas, and J.-P. Babau, “Optimizing component-
based embedded software,” in 2nd IEEE International Work-
shop on Component-Based Design of Resource-Constrained
Systems (CORCS), Jul. 2009.

[10] K. Balasubramanian and D. C. Schmidt, “Physical assembly
mapper: A model-driven optimization tool for QoS-enabled
component middleware,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE
Computer Society, 2008, pp. 123–134.

[11] E. Borde, L. Pautet, and G. Haı̈k, “A new design approach for
adaptative embedded systems,” in 2nd Workshop on Adaptive
and Reconfigurable Embedded Systems (APRES), 2009.

[12] A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya,
“Archeopterix: An extendable tool for architecture opti-
mization of aadl models,” in ICSE Workshop on Model-
Based Methodologies for Pervasive and Embedded Software
(MOPES). IEEE Computer Society, 2009, pp. 61–71.


