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Abstract—In this work, we propose an integrated task allocation and
scheduling mechanism to minimize the resource contention and the
processing latency for application running on the SegBus platform. The
transactions are classified as local and cross border SPLIT transactions.
The hybrid scheduling approach implemented by hierarchal arbiter
code structure shows significant improvement in system performance.
The interrupt scheduling has been implemented to further enhance
system performance. A H.264 video encoder application has been used to
verify the proposed technique, showing a large improvement in system
throughput.

I. INTRODUCTION

Modern embedded systems consist of heterogenous components
like processing elements(PEs), ASICs, programmable microproces-
sors, memory and FPGAs. Off-chip communication among these
components is very slow, requires extra design effort and not efficient
regarding power and area. Continuous technology scaling has made
it possible to integrate billions of transistors on a single chip [3].
Thus, an entire processing system can be integrated on a single chip,
known as Multiprocessor System-on-Chip (MPSoC). After resolving
the integration issue, the next problem is to provide an efficient com-
munication platform for communication among the PEs. Traditional
data bus may provide enough bandwidth for communication among
3-10 elements but does not scale to higher numbers [5].

Various on-chip communication platforms, like Networks-on-Chip
(NoC) [4] and Segmented bus (SegBus) [8], have been proposed to
deal with scalability issues. NoC resolves the scalability issue well
till hundreds of processors at the expense of power consumption and
resource overhead. On other hand, SegBus scales well in range of
tens with relative complexity, power consumption and area lower
than NoCs. The SegBus architecture and communication mechanism
has been explained in [9], [8].

For better performance and proper utilization of communication
resources in any MPSoC system, a suitable task allocation and
scheduling mechanism is needed, according to the platform architec-
ture and application requirements. In this paper, we address the task
allocation and scheduling issues for the SegBus platform, to minimize
the resource contention and the processing latency for application
running on it.
Related Work. The problem of task graph scheduling is NP-
Complete [11]. A number of task allocation and scheduling tech-
niques for communication and resource management of MPSoC
systems with homogenous and heterogenous PEs have been proposed.

Wang et al. [12] approach the issue by removing inter-core
communication overhead by jointly optimizing computation and
communication task scheduling. The approach is limited to streaming
applications, and it has been analyzed for single bus, with only four
processing cores.

Malani et al. [7] presents an application specific scheduling ap-
proach for MPEG decoder application, which completely eliminates

the interprocess communication. The approach shows significant im-
provement in performance regarding latency with resource contention
avoidance.

Suhendra et al. [11] address the optimization issue of scratchpad
memory (SPM) in context of embedded MPSoC. A flexible partition-
ing of the SPM budget among the processor is used, showing signifi-
cant performance improvement. Then, the memory optimization was
combined with task scheduling for further performance enhancement.
Our approach is similar, based on two phases - allocation and
scheduling, but less coupled.

Anderson et al. [2] proposed a scheduling approach at thread level
for synchronization and to avoid the L2 cache miss. The approach
shows significant improvement but the communication platform used
to justify the approach is very simple - only 4 cores used. The
complexity may rise with number of cores.

II. PLATFORM COMMUNICATION MECHANISM

The SegBus platform is a grouping of single bus sub-systems: the
segments, connected via border units (BUs): FIFO structures with
logic.

The SegBus communication can be divided into two categories:
local and cross-border. The cross-border communication deals further
with: local-external, external-external and external-local communica-
tions [8]. Segment arbiters (SAs), and a central arbiter (CA) control
the local or external aspects of the communication, respectively.

In single bus scenarios, during a transaction, it is possible that the
receiving (slave) device is not able to receive the data, or can not
respond immediately. In this situation, the initiator (master) device
will hold the bus and other masters can not utilize it.

A SPLIT transfer improves the overall bus utilization by splitting
the master part of the communication from the slave part [1]. Thus
by using the SPLIT transfers the possible idle bus cycles can be used
for other transactions. The basic criteria to have SPLIT transaction
service depends on bandwidth requirements of application and the
packet size.

A. Local SPLIT Transactions

We consider here that both the master and the slave are placed
in same bus segment. The master requests the bus ownership by
raising the req signal to the local SA. In two situations, the SA does
not grant the master the access to the bus: (i) if another transaction
is under completion on the bus; (ii) if the target slave is busy and
cannot respond the request. If the bus is busy, the SA assigns the
bus ownership to the requesting master later at some time according
to the arbitration scheme. If the target slave is not able to serve the
request, the SA grants the bus to another requesting master. A similar
approach has been proposed by [1].
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B. Cross border SPLIT transactions

A SPLIT transaction for cross-border communication builds on
the existing SPLIT mechanism. Consider the situation that a master
module from segment0 requests to send a data packet to a slave in
segment2. The segment1 will be used as well because it is on the
way of transaction. It is not efficient to allocate all the bus segments
required by this transaction for the time span of generating the packet
at source and delivering it to the destination. To enhance the bus
utilization in this scenario, we split the transaction into the number
of steps equal to the number of segments including the source and
destination segment on its way. Neighboring BUs are considered as
local modules by the respective SAs. A local SPLIT mechanism will
be followed for each segment traversal.

The bus request comes along with target slave address. SA checks,
if the request can be served in current segment or not. If the request
targets a slave in other segment, the request is forwarded to the CA
with target address. In the meanwhile, no other external request are
served by the SA- only local ones may be serviced.

Master_req_Local

OP

SA_grant

RFR / RFL

GFR / GFL

OPF

Fig. 1. Inter segment transfer control.

Whenever the CA is able to serve the request, it informs the SAs,
from the initiator to the target segment, of the imminent transfer
(signal OP - operate). When the current operation finishes in the
initiator segment, that SA grants the requesting master to access the
necessary BU.

Upon filling up the FIFO, the BU informs further the next segment
that data is waiting to be transferred, via certain signals (RFR or
RFL)- Fig.1. The corresponding SA allows for the current operation
to end, after which it will grant the transfer from one segment
border to the other (by setting the granting lines (GFL or GFR).
Hence, the package waits in the BU the time required for the
current local transfer in the next segment to end. When this operation
completed, the CA receives the OPF (operation finished) signal from
the corresponding SA, and answers by lowering the respective OP
line. When OPF is also reset, the segment is ready for a new inter-
segment transfer.

In a cascaded manner, the above scenario repeats all the way to
the target segment, providing significant transfer delay.

III. TASK ALLOCATION AND SCHEDULING

Scheduling is the basic and mandatory service to use the inter-
connection platform. Scheduling can be divided into two steps: task
allocation and arbitration as shown in Fig. 2. Communication features
of the running application are needed for the proper placement of IPs.
Here, we are interested in the transaction frequency between PEs,
their relative sequencing and scheduling. System performance will
depend on the utilization of throughput and the balanced traffic load.
With all these considerations, the PlaceTool [10] has been developed,
to deliver the allocation cost for various scenarios.

The PlaceTool works as the task allocator. A communication matrix
is extracted from the Packet based Synchronous Data Flow (PSDF)

[6] diagram and fed to the PlaceTool to generate the task allocation or
placement of PEs. After having the placement of tasks and processes,
the next step is scheduling, controlled by arbitration (Fig. 2).

Fig. 2. Segbus scheduler structure.

We elaborate further based on an arbitrary task graph as shown in
Fig.3. The PlaceTool allocates the tasks A, F, G, H, I on segment ’0’
and the tasks B, C, D, E on segment ’1’. The scheduling on a single
bus and also for the segmented bus with two segments is presented in
Fig. 4. The context switching time in scheduling is considered zero.
The detailed description of PlaceTool and arbitration mechanism is
presented in detail in sections III-A and III-B respectively and a
H.264 video encoder is used as a running example.
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Fig. 3. Task graph.

Fig. 4. Bus scheduling.

A. Task Allocation

The communication frequency for the H.264 video encoder is
obtained from running a Simulink Model of the application shown
in Fig. 5 - the PSDF representation.

In this case, a two segment platform delivers the best performance;
however, we decide to select a three segment platform, in order to
analyze a more complex structure as explained in [6]. The resulting
segmented application model is also visible in Fig. 5.
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Fig. 5. PSDF application specification

B. Scheduling

The SAs and the CA are VHDL defined modules, with a similar
structure. The code runs with multiple parameters as required by the
platform specification. We see the application as a set of correlated
transactions that must be ordered in their execution by the arbiters.
Using clock-driven approach, the specification of the schedule -
as supplied by the PSDF representation, is provided by a snippet
introduced in the SA or the CA codes, representing the projection of
the application flow at the respective level and location [13].

The arbiter structure is depicted in fig. 2. The “Module SetUP”
and the “Arbitration & Supervision” blocks are concerned with
application-independent procedures, such as reading the input signals,
selecting the granted master, counting the number of transactions
performed in a granted activity, etc. The middle block, “Arbitration
specification”, brings in the application specific requirements for
scheduling grant decisions. Thus at “Arbitration specification” level,
scheduling approach can be decided like round-robin or priority-
driven according to the requirements.

The application snippet is part of the actual arbiter VHDL code,
and, as such, will be executed. The addressed variables will be read
or written by the other arbitration code blocks.
SA level arbitration. The segment level arbitration is similar to any
single segment bus situation. Activities in the segment are sequential,
the SA deciding which device can access the bus lines. Any attached
BU behaves like a local master, but the respective requests will have
the highest priority. A master willing to transfer data on the bus raises
the request line, while it also specifies the segment to which it wants
to communicate. The SA identifies the target and, if it is outside the
own segment, it forwards the request to the CA. If the request target
is within the own segment, it proceeds to granting it.

These activities are collected in the application control code (ACC)
which will drive the SegBus communication strategy at runtime [13].
The ACC is basically a binary matrix where each line controls the
granting algorithm such that the “right” master obtains the access
to the bus. The code is parsed at every arbitration execution, and it
contains nrLines lines of code - a parameter of the arbiter module.
One line of code, assimilated to a program line (an array) has the
following field structure (see also Fig. 6), Where the destination (dest)
field has more than one values for multicast purpose.
• PC. This is the Programme Counter, providing reference to the
lines of instructions possible to be accessed from other instructions.
It ranges from 0 to nrLines-1.
• source. Identifies the requesting master’s ID.
• dest. Identifies the target slaves. The number of maximum targets
for one transmission is a parameter of the arbiter module (max dest).
If one of the dest sub-fields equals the ID of the source, the content
is ignored.
• dest seg. Identifies the target slave’s segments. The number of
maximum targets for one transmission is a parameter of the arbiter

module (max segs). This in compliance with the allocation results
and dest field content. The sub-fields ignored for dest specification
will also be ignored here.
• count. Identifies the number of packets, master has to send to
the specified targets. It corresponds to the first number in PSDF
description.
• guard. When guard = 0, the respective line is enabled, that is,
the arbiter may consider it for selection. When guard > 0, the line
is disabled, that is, it cannot be considered in the arbitration. The
arbiter marks a line as executed whenever the respective count value
reaches 0, by establishing guard = nrLines.
• enables. Whenever a line is marked executed, the SA will enable
the line specified by this field, by subtracting 1 from it’s current
guard value. In order to become enabled, a line with an initial
guard > 1 will require that several previous operations (execution
lines) to have finished. If, for a given line, enables = nrLines,
then the arbiter does not try to enable any other line, when the
current one is marked executed. One line may enable multiple
downstream lines. The number of maximum enable targets for one
line is a parameter of the arbiter module (max enable). If one of the
sub-fields equals the current line number, the information is ignored
by the arbiter. The VHDL code corresponding to the table in Fig 6 is:

-- SA segment 0 snippet
program(0) <= (guard => 0, source => 0, dest1 => 1,

dest2 => 0, dest3 => 0, dest_seg => 0,
count => 16, enables1 => 1, enables2 => 0,
enables3 => 0);

program(1) <= (guard => 1, source => 0, dest1 => 2,
dest2 => 3, dest3 => 4, dest_seg => 0,
count => 16, enables1 => 3, enables2 => 4,
enables3 => 5);

...

Guard Source Destination Dest_Seg toGrant count enables

1 0 2 1 280

Example:

PC

1 3 4 0 3 4 5

1 4 4 4205 10 5 X 1 7 11 X

--- --- --- --- ------ --- ---

--- --- --- --- ------ --- ---

0 0 1 0 5600 X X 0 2 X X

Fig. 6. Program line example, with parameters: max dest=3, max segs=3,
max enable=4.

The application execution ends when all the lines are marked
executed. That is, we have PC = nrLines − 1 and, for all lines,
guard = nrLines. This triggers the arbiter to restore the initial
values of the ACC content. A similar approach is taken at the level
of the CA for request-grant activities (containing only info about
segment requests).

C. Interrupt Scheduling

As mentioned in section II-B, a packet may have to wait in BU
for number of clock cycles for the cross border transactions. By
using interrupt service, delay in BU can be significantly reduced
[14]. An inter-segment transfer, when reaching one of the BUs on
it way, must preempt local activities of the next segment to be
crossed. The local SA is the controller that supervises any activity
within the segment. The moment of interruption, with respect to the
completion of the running local transfer, while the data package is
waiting in the intermediate BU FIFO, is of prime importance with
highest criticality value. Hence, the decision to interrupt, or continue
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the current local activity will fall into the attributions of the SA.
The interrupt transaction will be non-preemptive from start to the
completion of execution.

For real hardware, in every clock cycle during the execution of a
local activity, the corresponding SA monitors if an external request for
inter-segment data transfer is raised. When such request is detected,
the local grant is put down in the subsequent clock cycles. The whole
process from detection of interrupt to the resetting of local grant takes
four clock cycles. The ID of the master that has just been interrupted
is saved by the SA and it will be granted again access, immediately
when the inter-segment transaction completes. The respective master
then continues to send the information remaining from the interrupted
operation.

A→B

A

A→F F→G F→H G→I

F G H I

0      10            30            50                75            95           115           135

A→B B→C B→D

B C E

0      10            30                55            75            95                   125
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. . .
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interrupt
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F→H
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Fig. 7. Interrupt scheduling.

To illustrate the interrupt mechanism, consider the task graph
shown in Fig.3. Suppose that this is the graph of streaming application
like audio/video codec and all the tasks execute repeatedly. As shown
in Fig.7, after completing the local transaction G→I on segment 0,
next transaction will be again cross the border (A→B). After filling
the BU, an interrupt will be generated by border control unit to the
SA of segment 1, which will preempt the current transaction and will
read the buffered data from BU for transaction A→B. The context
switching time is supposed to be zero to make the explanation simple.
After reading the complete data packet from BU, the interrupted
transaction (E→D) will be resumed. Now consider the situation that
there is no interrupt service available. In that situation, not only the
transaction A→B will be delayed but rest of the processing and
transactions on segment 1 will be delayed as well. This delay will
go on increasing because of previous delay. After few application
cycles, segment 1 will be lagging too much behind segment 1. Thus,
interrupt communication enables the pipelining of tasks on SegBus.

The selection criteria of interrupt service to use for final im-
plementation is data dependency and urgency. It depends on the
application the how urgent, the data packet stored in BU is needed by
the destination node. Another issue is data dependency. How many
nodes will have to wait directly or indirectly due to the delay of the
packet in BU. In Fig. 7, data packet for transaction A→B will not
delay only the processing on node B but for all of the processing
elements on segment1. Thus, improvement in communication cost
will be the parameter to favor interrupt service to be used for final
implementation.

IV. EXPERIMENTAL RESULTS

The communication frequency extracted from PSDF model of
H.264 video encoder with static task allocation shown in Fig. 5 is
fed into the PlaceTool. The results of this exercise in the form of
task allocation with different number of segments and corresponding
communication cost are shown in Fig. 8. Allocation with three
segments was used for final implementation on Stratix III device

with linear SegBus topology and 66 words package size. With the
same parameters, the single bus system was simulated as well.

4 143100 9 || 8 || 4 5 6 7 10 11 12 || 0 1 2 3 -39%

2 132000 4 5 6 7 8 9 10 11 12 || 0 1 2 3 -43%
3 137400  0 1 2 3 || 4 5 6 7 8 10 11 12 || 9                    -41%

Nr. Segs Cost Allocation Improvement
1 233000 0 1 2 3 4 5 6 7 8 9 10 11 12 100%

Fig. 8. The allocation and associated cost results.

Using the Clock-driven scheduling approach, scheduling decisions
were made before execution according to the interprocess communi-
cation requirements. The scheduling decisions for local transactions
within the segment were stored on corresponding SA while the cross
border transaction scheduling was stored on CA. The single bus
allocation was simulated at a clock frequency of 100MHz, while the
SegBus solution with three segments utilizes four clock domains(one
for each segment - 100MHz, 60MHz, 50MHz and one for the CA
- 30 MHz). The throughput results of segmented application came
close to the value of 40% as delivered by place tool. Which means
the reduction of power with same proportion. The main contribution
in reduction of power come from multiple clock domains. The core
dynamic power favors the single bus solution because of the switching
power of BUs, while the total power supports the SegBus platform
implementation.
Conclusions: The systematic and integrated approach for task allo-
cation and scheduling for SegBus platform proved to offer a suitable
framework for resource management and throughput enhancement.
Arbiter code structure provides the flexibility to use the hybrid ap-
proach for task scheduling. The approach showed significant improve-
ment in platform throughput and reduction in power consumption.
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