
A Performance Estimation Technique for the SegBus Distributed Architecture

Moazzam Fareed Niazi
Turku Centre for Computer Science TUCS

Department of Information Technology
University of Turku, Finland

moazzam.niazi@utu.fi

Tiberiu Seceleanu
ABB Corporate Research and

Mälardalen University
Västerås, Sweden

tiberiu.seceleanu@se.abb.com

Hannu Tenhunen
Turku Centre for Computer Science TUCS

Department of Information Technology
University of Turku, Finland

hannu.tenhunen@utu.fi

Abstract—We propose a performance estimation technique
for a multi-core segmented bus platform, SegBus. The tech-
nique enables us to assess the performance aspects of any
specific application on a particular platform configuration,
modeled in Unified Modeling Language (UML). We present
methods to transform Packet Synchronous Data Flow (PSDF)
and Platform Specific Model (PSM) models of the applica-
tion into Extensible Markup Language (XML) schemes using
modeling tool and how the generated XML schemes can be
utilized by the emulator program to get the execution results.
The technique facilitates us to estimate performance aspects
of application mapped on a number of different platform
configurations during the early stages of the design process.

I. INTRODUCTION

In recent years, the complexity of the digital systems
has increased tremendously, along with the decreased tech-
nological figures. The time to market is also shrinking,
imposing challenges for the designers to adopt new design
methods. The designers must do a better job of supporting
platform-based design, which is becoming the most popular
approach to developing complex systems. The platform-
based approach may refer to either single chip or multi-chip
solution. We address here issues related to the former case.

The use of a hardware emulator for platform-based design
can increase the efficiency of the development team and
improve both design verification and embedded-software
development at early stages of the design process. Design
decisions taken place at early stages of the development
process, impact heavily on the quality of the eventual system
implementation. Therefore, the application running on such
platforms can take full benefits from all the features exposed
by the platform, if it is configured optimally. The specific
platform we consider in this study is the SegBus platform
[15].

The Unified Modeling Language (UML) [1] has been
utilized in novel design methods proposing a solution for the
challenge. We continue here the work towards establishing
a full functional unitary framework for platform modeling,
application mapping and system (platform+application) em-
ulation, such that performance aspects are targeted, esti-
mated and adjusted to optimal levels in a correct and fast
manner. While the main aspects of the platform modeling

and application mapping has already been introduced in the
form of a Domain Specific Language (DSL) in [11], we
address here issues related to system emulation. Model-to-
text (M2T) transformation [2] plays a key role in Model-
Driven Architecture (MDA) based development [6]. The
outcome produced by M2T usually are textual artifacts
from the provided models. These textual artifacts could be
XML schema or source code of any high-level programming
language like C++, Java, etc. The XML Schema provides
means for defining the content, structure and semantics of
XML documents.

The technique we deliver in this paper is based on the
activities for building an emulator program targeting the
SegBus platform. An emulator is a program that imitates
the behavior of a device/hardware (the SegBus platform in
our case) or a program, while a simulator is a software that
duplicates some real process and environment in almost all
possible ways e.g. flight simulator - simulates the function-
alities of an aircraft, etc. The SegBus emulator enables us
to evaluate the performance aspects of any given application
running on a specific platform configuration, defined during
modeling.

In addition, the emulator will support the analysis of
various SegBus instances that may answer, better or worse,
to specific application requirements. It helps to decide at
early stages of design process which platform configuration
will be most suitable for any particular application before
moving towards lower abstraction levels. The code gener-
ation engine, supplied by the MagicDraw UML [5] tool
transforms PSDF and PSM models of the system into XML
schemes. The generated XML schemes are then employed
by the emulator application to estimate the utilization of
platform elements with respect to data transfers and total
execution time. After the analysis of the returned results,
the designer is able to make decision at this stage whether
emulated configuration will be best/optimal or not for the
target application, and can change the platform configuration
before moving towards lower levels of the design process.
Related work. The primary objective while designing em-
ulator applications is to get as much as possible accuracy in
estimating the execution results that we can expect from the
real platform. Several research studies have been presented

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.24

94

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.24

89

SETISEC
Text Box
M. F. Niazi, T. Seceleanu, H. Tenhunen.
A Performance Estimation Technique for the SegBus Distributed Architecture.
39th International Conference on Parallel Processing / International Symposium on Embedded Multicore Systems-on-chip, 2010. Sept. 13-16, San-Diego CA, USA.
pp. 89-98, DOI 10.1109/ICPPW.2010.24

in recent years where the target was to achieve an emulation
program for different hardware platforms, specially for the
Network-on-Chip (NoC) [8], but there exists a number of
emulation tools for other areas as well.

Schelle et al. [13] introduced an emulation tool - NoCem,
for NoC exploration. The tool provides capability to emulate
memory architectures, asymmetric processor configuration,
special purpose offload, etc. The tool is able to deliver path
latencies used for any particular transfer between processor
cores and provides a true picture of the communication
bottlenecks within the NoC platform. The tool is written in
VHDL with extensive use of generics throughout the code,
but the tool deals with designs at lower levels of abstraction
and hence less flexible to use, unlike our approach which is
easy to use and deals with designs at much higher levels of
abstraction.

Liu et al. [10] presented NoCOP - an emulation and
verification framework for exploring the on-chip intercon-
nection architecture. An instruction-set simulator and uni-
versal serial bus communicator has also been introduced to
set the parameters for the emulation environment. Through
the experimental results using both software and hardware,
the authors proved that the proposed emulation/verification
framework can speed up the simulation, preserve the cycle
accuracy and decrease the usage of the resources of the
Field Programmable Gate Array (FPGA). The design under
emulation needs to be programmed onto a FPGA device and
a separate host computer is responsible for initializing and
managing emulation of the programmed design in the FPGA
which makes it less flexible compared to our approach which
is more flexible and doesn’t require any FPGA device and
consideration about deeper lavels of abstraction.

Genko et al. [7] presented a NoC emulation platform
implemented on FPGA. The NoC hardware platform has
been implemented on a Virtex-II FPGA, which consists
of network injection, reception and controller components.
The processor core PowerPC has been integrated into the
hardware platform and functions as a controller. Instead of
merely being the platform where the circuit is prototyped,
the method can speed up functional validation and add
flexibility to the NoC configuration exploration. The major
drawback in their approach is the use of processor core in
the hardware to control and monitor the network at the cost
of FPGA resources, already limited.

II. BACKGROUND

A. Segmented Bus Architecture

A segmented bus is a “collection” of individual buses
(segments), interconnected with the use of FIFO like struc-
tures. Each segment acts as a normal bus between mod-
ules that are connected to it and operates in parallel with
other segments. Neighboring segments can be dynamically
connected to each other to establish a connection between

modules located in different segments. Due to the segmen-
tation of the bus lines, and their relative isolation, parallel
transactions can take place, thus increasing the performance.
A high level block diagram of the segmented bus system
which we consider in the following sections is illustrated in
Figure 1.

Figure 1. Segmented bus structure.

The SegBus communication platform is built of compo-
nents that provide the necessary separation of segments -
Border units (BU), arbitration units - the Central Arbiter
(CA) and local, Segment Arbiters (SA). The application then
is realized with the support of (library available) Functional
Units (FU).

The SegBus platform has a single CA unit and several SAs,
one for each segment. The SA of each bus segment decides
which device (FU), within the segment, will get access to
the bus in the following transfer burst.
Platform communication. Within a segment, data transfers
follow a “traditional” package based bus protocol, with
SAs arbitrating the access to local resources. The inter-
segment communication, is also a package based, circuit
switched approach, with the CA having the central role. The
interface components between adjacent segments, the BUs,
are basically FIFO elements with some additional logic,
controlled by the CA and the neighboring SAs. A brief
description of the communication is given as follows.

Figure 2. Inter-segment package transfer.

Whenever one SA recognizes that a request for data trans-
fer targets a module outside its own segment, it forwards
the request to the CA. The later identifies the target segment
address and decides which segments need to be dynamically

9590

connected in order to establish a link between the initiating
and targeted devices. When this connection is ready, the
initiating device is granted the bus access, and it starts filling
the buffer of the appropriate bridge with the package data.
Following a signaling protocol, the data is taken into account
by the corresponding next segment SA, which forwards it
further, towards the destination. At this point, the SA of the
targeted segment routes the package to the own segment
lines, from where it is collected by the targeted device.

A transfer from the initiating segment k to the target
segment n is represented in Figure 2. The segments from k
to n are released for possible other inter-segment operations
in a cascaded manner, from the source k to the destination,
n.

The arbitration at CA level implements the application
data flow, with respect to these transfers. Hence, one has
to implement accurate control procedures for inter-segment
transfers, as possible conflicting requests must be appropri-
ately satisfied, in order to reach performance requirements
and to correctly implement applications.

B. DSL for the SegBus Platform

The Domain Specific Language (DSL) for the SegBus
platform is the specification language that is used to model
the SegBus platform at higher-level of abstraction, based on
stereotypes stored in the SegBus UML profile [11]. The
DSL provides ability to model application and platform
elements in the form of high-level graphical constructs and
provide methods to map partitioned application components
on particular segment in a fast and correct manner.

The DSL comprises a number of structural constraints re-
lated to the platform, written in Object Constraint Language
(OCL) [3], to implement the correct component approach
to platform design. These constraints are used to validate
our models. Upon breach of any constraint requirement
during the design process, the tool provides appropriate error
message, so that the designer can take proper action to make
the model correct according to platform requirements.

Before the current work, the DSL was only capable of
modeling application at Platform Specific Model (PSM)
level. Here, we add capabilities to model application at
the Packet SDF (PSDF - section III-A) level, too. We
introduce three new stereotypes, that is, InitialNode, Pro-
cessNode and FinalNode, in the UML profile of DSL.
The profile defines the main structural elements of the
platform. The new stereotyped classes related to PSDF
are generalization of the metaclass UML Standard Pro-
file::UML2MetaModel::Classes::Kernel::Class. We also in-
troduced their related customization classes and set tags with
suitable values. We skip here further details about tag values
intentionally because of the space limitation.

Once we model the application components as PSDF,
model the platform and map the application components
on to the platform correctly, we apply validation process to

get the correct PSM of the application. If there exists some
errors in the model, we get error message(s) and associated
model element become highlighted.

Finally, the PSDF and PSM model can be transformed into
XML schemes for further analysis of the desired platform
configuration. We employ the generated XML schemes for
emulating the performance aspects of the configured system,
as described in the next section.

III. THE SEGBUS EMULATOR

Generally, emulation is necessary while designing appli-
cations targeting hardware devices and platforms. The huge
design and manufacturing costs of such hardware platforms
motivate designers to develop emulators and verify the exe-
cution results. An emulator provides the same functionality
as the original hardware platform or computer program.
Designing an emulator requires a thorough understanding
of the target device or platform. We have developed the
SegBus emulator to test platform configuration and estimate
performance aspects before moving towards the final imple-
mentation.

A. The Packet SDF

The specification of the application itself starts with a
Packet SDF (PSDF) model. PSDF is a customized version
of Synchronous Data Flow diagrams [14]. The approach is
intended to facilitate the mapping of the application to the
architecture due to the similarity between the operational
semantics of the PSDF and that of the SegBus architecture,
thus allowing us to cope in a more detailed manner with the
communication characteristics of our platform.

A PSDF comprises mainly two elements: processes and
data flows; data is, however, organized in data items, which
are later transformed into packets according to package size
during execution. Processes transform input data packets
into output ones, whereas packet flows carry data from one
process to another. A transaction represents the sending of
one data packet by one source process to another, target
process, or towards the system output. A packet flow is
a tuple of four values, Pt, D, T and C. The Pt value
represents the target process for the given transactions; the
D value represents the number of data items emitted by the
same source, towards the same destination; the T value is
a relative ordering number among the (package) flows in
one given system; and the C value represents the number
of clock ticks a process consumed before sending one
package. Thus, a flow is understood as the number of data
items (later transformed into packets) issued by the same
process, targeting the same destination, having the same
ordering number and same clock ticks require to process
one individual package.

If s is the package size (number of data items in a
package) in the platform configuration, then the Packet
SDF (PSDF) of a certain system is a sequence of packet

9691

flows, < (Ptx ,
D1

s , T1, C1), . . . , (Ptx ,
Dn

s , Tn, Cn) >, where
∀i, j, x ∈ {1, . . . , n} · Di

s �= Dj

s and T1 ≤ T2 ≤ . . . ≤ Tn.
The non-strictness of the relation between T values of the

above definition models the possibility of several flows to
coexist at moments in the execution of the system. In the
case of the SegBus platform, this most often will describe
local flows, that is flows where the source and the destination
are situated in the same segment. However, considering
a segment number larger than 3, global flows, where the
source and the destination are in different segments, are also
possible to be characterized by the same ordering number.
In this case, it means that the CA, if possible, allows a
simultaneous execution of transactions from all the “same
number” global flows.

B. Design Methodology

Figure 3 illustrates a general overview of the SegBus
design process employing DSL and emulation. At the top
level, the transformation of the platform concepts into the
high-level graphical constructs has already been done in
[11] to form a DSL, specific for the SegBus platform. The
DSL provides a graphical environment where a designer
can model PSDF and PSM of the application quickly and
assign pre-existing components from the SegBus Component
Library during the modeling. The application should be
already partitioned before modeling it in the PSDF form
and mapping it on to the platform according to available
library components. The model can be validated for possible
mistakes to get the correct PSDF and PSM. Later on, we
transform both PSDF and PSM of the application into XML
schemes using M2T transformation supplied by the tool. The
XML schemes contain information about platform elements,
application components and their relative placement on
different segments.

Figure 3. Design process of the SegBus platform using DSL and emulation.

Before the execution, the emulator application reads the
XML schemes of the PSDF and PSM models, package

size and considers the structure (segment organization and
resource allocation) from the XML schema of the PSM.
Upon completion, the tool returns results of the transactions
from each platform element, performed during execution.
Figure 4 shows the operating flow of the emulation in the
step-by-step manner. An overview of the operating principles
of the emulator is given in the following sections.

C. Basic Concepts

The following considerations apply in the approach to
build the emulator as a close match to the SegBus archi-
tecture and to the application execution.
• The schedule of the application is extracted from the PSDF
and implemented within the arbiters, providing the correct
sequencing among processing and transfers.
• As at the moment we are not interested in the actual oper-
ational results, the FUs are modeled as counters, performing
for an established duration. The ranges of the counters will
stand as a “processing” time associated with each FU.
• The performance measurements (execution times) are
established with respect to the starting moment of the
emulation process. While for individual processes this might
provide errors in measurement (as certain modules have to
wait until data is present in order to start operating), this
does not affect the overall application time performance -
which is our main target in this study.
• The emulator will be equipped with an array of flags -
“Process Status Flags”, each element here corresponding to
one process of the application. When a process finishes the
activities and related transfers, the appropriate flag is raised.
• During the execution of the application on the emulated
platform, monitoring activities are executed to measure the
execution times (clock ticks) of the FUs, SAs and of the
CA.
• The operation is considered finished when all the flags
described above are high, and there is no activity to execute
within any of the platform’s SAs or CA.

D. Model Transformation

The first phase for performing emulation on any SegBus
configuration in DSL is to transform the models into XML
schemes so that the configuration can be used by the
emulator program for further analysis.

The emulator application is written in Java language [4]
due to its rich collection of classes for handling XML
schemes and classes for implementing multi-threaded ap-
plication (discussed in section III-F). The code generation
engine of the tool does provide capability to transform
model(s) into XML schema as per M2T specification [2].

A code engineering set needs to be introduced in the
tool for each model where we specify required type of
transformation i.e. Model-to-Model, Model-to-Text (as in
our case), etc. The code engineering set consists of a
set of model elements whose XML content we want to

9792

Figure 4. Operating flow of the emulator.

generate during transformation. We make two separate code
engineering sets (one for PSDF and other for PSM) con-
sisting of platform elements (SAs, CA, BUs, etc.) and all
application components in the form of processes (P0, P1,
etc.). A directory is also specified where the generated XML
schemes to be saved. After applying transformation on our
PSDF and PSM models, we get the required XML schemes
in the mentioned directory.

Figure 5. Hierarchical structure of the SegBus elements.

The generated XML consists of a schema element and a
number of sub-elements, in the form of complexType and
element types.

Each complex type represents a platform element (CA,
SA, etc.) or application component (P0, P1, etc.). The name
attribute of each complex type shows the name of the
element. Furthermore, each complex type may contain sub-
elements. Figure 5 shows the hierarchical structure of the
platform elements. At the top level is the SegBusPlatform
itself composed of Segment(s) and exactly one CA. Every
segment is composed of at least one FU, and exactly one SA.
Each segment is connected with other neighboring segment
through BU. One FU contains at least one Master or one
Slave. Following, we show an XML snippet of the PSDF
model after transformation, consisting of process P0, P1 and
their relative transfers to other processes.

<xs:complexType name="P0">
<xs:sequence>

<xs:element name="P1_576_1_250" type="P1"/>

<xs:element name="P8_576_1_250" type="P8"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="P1">
<xs:sequence>

<xs:element name="P2_540_2_250" type="P2"/>
<xs:element name="P3_36_3_250" type="P3"/>

</xs:sequence>
</xs:complexType>

Below is the piece of XML snippet of PSM model after
transformation, representing the SegBus platform instance
(SBP with three segments as child-elements) and “Segment
1” element with its child-elements.

<xs:complexType name="SBP">
<xs:all>

<xs:element name="segment0" type="Segment0"/>
<xs:element name="segment1" type="Segment1"/>
<xs:element name="segment2" type="Segment2"/>
<xs:element name="ca" type="CA"/>
<xs:element name="bu12" type="BU12"/>
<xs:element name="bu23" type="BU23"/>

</xs:all>
</xs:complexType>

<xs:complexType name="Segment1">
<xs:all>

<xs:element name="buRight" type="BU23"/>
<xs:element name="buLeft" type="BU12"/>
<xs:element name="p5" type="P5"/>
<xs:element name="p6" type="P6"/>
<xs:element name="p7" type="P7"/>
<xs:element name="p11" type="P11"/>
<xs:element name="p12" type="P12"/>
<xs:element name="p13" type="P13"/>
<xs:element name="p14" type="P14"/>
<xs:element name="arbiter" type="SA1"/>

</xs:all>
</xs:complexType>

E. Setup for emulation

The next phase of the design methodology is to parse the
generated XMLs and build required structure of platform and
allocation of resources on it within the emulator application.
The DocumentBuilderFactory and DocumentBuilder classes
from the javax.xml.parsers package has been utilized in
order to create XML document for further parsing. The
parse method of the DocumentBuilder class returns XML
Document, when we supply generated XML files.

The communication matrix is the specification of device-
to-device transactions between application components.
Each entity in the communication matrix describe how many
data items need to be transfered from one device to any
other device. The emulator program builds the matrix by
extracting transactions between processes in PSDF model.
Based on the matrix, the PlaceTool application [16] finds
the optimal device allocation solution, given the platform
specifics (the number of segments).

The emulation process is based on both PSDF and PSM.
The PSDF model provides information about interaction
between application processes with required data items and
other useful parameters, while the PSM model represents the
placement of each application process on different segments
of the platform. Hence, the emulator program parses XML

9893

of both models to be later used for emulation. During the
parsing process, the emulator extracts following information
from the PSDF model:

• Number of application processes.
• Data transfers from each process.
• Ordering of transfers.
• Clock ticks to be consumed by each process while

processing one package.

The emulator stores above information in temporary vari-
ables and arrays inside the program. Figure 7 show the PSDF
model of the example application (discussed in section IV).
For instance, the name attribute from one of the element
from P0, that is, “P1 576 1 250” represents a transfer
from process P0. The “ ” character serves as the separator
between the entities. The first entity “P1” represents the
target process of this transfer; the second entity “576” is
the number of data items to be transferred; the third entity
“1” is the sequencing order and the last entity “250” is the
number of clock ticks a process needs to consumed before
sending each package.

Furthermore, the emulator extracts following information
from the PSM model and stores in a number of variables
and arrays inside the emulator, too:

• Number of segments in the platform.
• Number of border units based on platform geometry.
• Placement of application processes on different seg-

ments.
• ..

When the parsing process is finished for the XML of
PSDF model, the emulator iterates in the previously pop-
ulated arrays, instantiates the required FUs and pass them
necessary information. This necessary information contains
number of data items to be transferred, destination processes,
relative ordering, clock ticks a process needs to be consumed
before sending a package and placement in the specific
segment. The contructor method of the FU class analyzes
the passed information to it and instantiates the required
number of objects of masters and slaves, which later run as
threads during emulation.

The emulator has been programmed in a way to exhibit
the behavior of an actual platform instance. The function-
ality and behavior of each platform element (SA, CA, BU,
etc) are programmed and stored in individual Java source
files. A number of monitoring statements are introduced in
different section of SA, CA and BU codes. These monitoring
statements count clock ticks involved in any transfer, either
intra-segment or inter-segment. The arbitrate method in
CA and SA source code performs arbitration and called
by the emulator application several times during execution.
The method also counts how many clock ticks have been
consumed for any particular transfer at different stages of
the operation.

At the SA level, we put statements in arbitrate method

to count requests coming from the application processes.
Separate counters are also put to count both kinds of requests
(intra and inter-segment). These statements help us later to
analyze the configured system and provides means to take
optimal decision according to needs. In case of inter-segment
transfers, there exist separate counters to count how many
packages transfered to left and right side BU.

At the CA level, monitoring statements in arbitrate
method count the number of clock ticks CA consumed while
setting and resetting related grant signal in response to inter-
segment requests. The monitoring statements at BU level
counts how many packages received from, and transfered
to, left and right-side segment. It also counts total number
of clock ticks during all transfers.

During the parsing process of XML for the PSM model,
the emulator application first looks for the SegBus platform
instance in the XML document, analyzes its structure by
counting how many segments and BU it contains as child
nodes. It instantiates an object of platform instance, CA,
required number of BUs and saves the references (discussed
below). Later on, it looks for the elements in XML doc-
ument, which represent segments. It analyzes the structure
of each segment, instantiates one SA and required number
of FUs associated with any particular segment and pass the
reference of segment to left/right BU(s).

The emulator application maintains a number of lists each
for different communication (CA, SA, BU, etc.) and appli-
cation (FU) components. Whenever it encounters specific
element in the XML document, it instantiates an object of the
relevant class and adds it to corresponding list. For instance,
if the emulator program finds an element representing a BU
in the XML document, it instantiates an object of class BU
by calling the constructor and passing the necessary values
and adds the object to a list that holds only BU objects.

F. Implementation approach

The microprocessor in a personal computer (PC) has
the characteristics to run computer program instructions in
sequential order. On the other hand, the hardware devices
have the characteristics to run in parallel with other devices.
The main challenge in emulator development for us is to
transform the parallel behavior of hardware elements associ-
ated with platform into some special form that can be run on
the microprocessor and exhibit the correct characteristics of
the hardware devices. Multi-threading is not a new idea and
is exists since many years. Generally, every running program
in a PC is called a process. Multi-threading is the task of
creating a new thread of execution within an existing process
rather than starting a new process to begin function. All
the threads in a process share the same allocated memory.
The parallel execution of threads within the same process is
often considered as a more efficient use of the resources of
the PC. Multi-threading employs time-division multiplexing
to executes threads in parallel. Threads are obtained from

9994

the pool of available ready-to-run threads and run on the
available microprocessor(s).

We employ Java’s multi-threading feature in our emulator
application. All classes related with emulator application
(emulator engine and source files related to platform) run
as threads during execution. Each class implements the
Runnable interface from java.lang package by introducing a
specific run() method. The method executes when emulation
starts and performs dedicated functionality.
Class descriptions. In Figure 6, we illustrate the (simpli-
fied) class diagram of the emulator program with the most
important classes and their relationships. We simplify the
diagram by omitting class attributes and methods, for the
purpose of clarity and to save the space.

Figure 6. Class diagram of the emulator application.

Apart for the platform modeling classes, the most im-
portant ones are the SegBusEmulatorView and the Monitor-
Class, which both control the execution of the application.

The SegBusEmulatorView class performs the core func-
tions of the emulator program. It contains methods to read
the communication matrix and PSM model, and to set-up
the emulation process. The class also contains a number of
methods for parsing the XML schema.

The AddToThreadPool() method from SegBusEmula-
torView class creates a thread pool using an instance of
ExecutorService class from the java.util.concurrent package.
The size of the thread pool depends on the number of items
in all lists that has been populated during parsing phase. We
add objects (in the form of items) from all lists into the
thread pool before emulation.

An MonitorClass object acts as a thread during execution.
This class is responsible for analyzing the status flags for
all FUs and monitors the activity within other platform
elements. When the object of this class detects no commu-
nication activity within the platform, it sets particular flag to
inform the emulator application about the end of emulation.

During the execution of the emulator, all the threads exe-
cute in parallel to depict intrinsic characteristics of hardware.
Emulation and estimation. The final step of the design
methodology is to emulate the platform configuration after
setup. In general, application processes communicates with

each other at different time instant after performing specific
computation on the supplied data. The emulator extracts
execution sequence from the PSDF and forward them to
relevant application processes. During emulator develop-
ment, we skip some timing factors that are less important in
estimating performance. For instance, we did’t include the
time necessary to synchronize between two adjacent clock
domains, converging at the BUs. This time is parameterized,
but a value of two clock ticks is usually considered, at
the translation of any signal across two clock domains. We
also did not compute the time necessary for the SAs to set
the grant signal for a particular request and corresponding
master responds, due to a similarly low value, which is also
overlapping in time with the on-going activities within the
segments.

After we supply the XML schemes to the emulator, the
tool parses the models, build the communication matrix,
instantiates the threads corresponding to platform elements,
supply particular value from communication matrix to each
FU and starts the emulation process. Upon completion, the
emulator returns results from platform elements’ execution.
Some of the results are listed below:

• Total clock ticks consumed for the operation of the CA
and each of the SAs.

• Total inter-segment requests received by CA and by
each of the SAs.

• Total clock ticks consumed by each of the BUs.
• etc.
The clock tick’s counter is incremented in SA and CA at

various moments. Each SA has its own counter for counting
clock ticks and the execution time for each device is com-
puted separately (discussed in next section). For instance, the
SA increments the clock tick’s counter while checking the
incoming requests from FUs in the segment. It increments
the counter when it receive intra or inter-segment transfer
request from one of the FU in the segment. If the request
is for inter-segment transfer, it forwards the request to CA
and increment the counter. While setting and resetting grant
signal in response to any request, it also updates the clock
tick’s counter.

During the time limit for any transfer, the SA always
increment the clock tick’s counter continuously till the time
limit ends. The CA increments the clock tick’s counter every
time when it checks for any incoming inter-segment transfer
request from a SA. It increments the counter while setting
and resetting grant signal for any inter-segment transfer
request. Furthermore, when one of the segment finishes its
job in an inter-segment transfer, the CA resets the necessary
signal associated with particular segment and increments the
clock tick’s counter.

IV. EXAMPLE USING THE EMULATOR PROGRAM

We demonstrate our approach with an example of mod-
eling a simplified stereo MP3 decoder [12] on the SegBus

10095

Figure 7. PSDF model of the MP3 decoder.

Figure 8. The communication matrix for the example.

platform and associated emulation results. The modeling is
done using DSL [11], and the application has already been
partitioned up to a right granularity level [17].

Here, we model the example application as PSDF, and
for PSM, we map application processes in three different
platform configurations, using one, two and three segments,
with linear topology in all configurations. The package size
is set to 36 data items in each package. Figure 9 illustrates
the allocation of application processes on each platform con-
figuration, where segment borders are marked as ‘||’. Figure
7 shows the PSDF model of the example application. In
brief, process P0 represents frame decoding, P1/P8 - scaling
on the left/right channel, P2/P9 - dequantizing left/right
channel, etc. The communication matrix is generated from
the PSDF model (see Figure 7) and is exposed in Figure 8.
For instance, the transaction between P0 and P1 consists of
576 data items, packed into 16 packages.

We emulate each configuration on the SegBus emulator to
analyze the performance aspects. We intentionally skip here
the emulation results of one and two segments configuration.
The emulation results of 3 segments platform configuration
are given below, where: ‘CA’ represents the central arbiter

Figure 9. Allocation of processes on different platform configuration.

of the platform; ‘Segment x’ represents the segment and
x denotes the ID (1,2,3,..); ‘SAn’ represents the segment
arbiter associated with segment n; ‘BUxy’ represent the
border unit between segment x and segment y. We set clock
frequency of segment 1, 2, 3 and central arbiter as 91MHz,
98MHz, 89MHz and 111MHz respectively.
Three Segments configuration. In this configuration, pro-
cesses (and the respective devices) are organized as shown in
Figure 9. Following an execution of the emulator application,
we reach the following results (“TCT” = total clock ticks).

P0, Start Time = 10989ps, End Time = 75307617ps
P8, Start Time = 75098826ps, End Time = 137758104ps
...
P7, Start Time = 401435564ps, End Time = 459394284ps
P14 received last package at 460435092ps

CA TCT = 54367
Execution time = 489792303ps @ 111.00MHz

BU12:
Total input packages = 32,
Total output packages = 32

Package Received from Segment 1 = 32,
Package Transfered to Segment 1 = 0

Package Received from Segment 2 = 0,
Package Transfered to Segment 2 = 32

TCT = 2336

BU23:
Total input packages = 2,
Total output packages = 2

Package Received from Segment 2 = 1,
Package Transfered to Segment 2 = 1

Package Received from Segment 3 = 1,
Package Transfered to Segment 3 = 1

TCT = 146

Segment 1:
Packets transfered to Left = 0,

10196

Packets transfered to Right = 32

Segment 2:
Packets transfered to Left = 0,
Packets transfered to Right = 0

Segment 3:
Packets transfered to Left = 1,
Packets transfered to Right = 0

SA1: TCT = 34764,
Total intra-segment requests = 124,
Total inter-segment requests = 32
Execution Time = 382021596ps @ 91.00MHz

SA2: TCT = 46031,
Total intra-segment requests = 137,
Total inter-segment requests = 0
Execution Time = 469700324ps @ 98.00MHz

SA3: TCT = 35884,
Total intra-segment requests = 0,
Total inter-segment requests = 1
Execution Time = 403156740ps @ 89.01MHz

Calculation of the execution time. The total execution time
is calculated when all FUs finish their jobs (setting the re-
spective “Process Status Flag”), all packages are transmitted
to its relevant destination and grant signal of all arbiters are
clear. All these events are somehow identified with either
activities of the platform’s SAs or pf the CA.

Consider the total time consumed by SAx (in this case,
x ∈ {1, 2, 3}) to finish all associated jobs as tSAx . tSAx is
calculated by multiplying total clock ticks with the associ-
ated segment’s clock period.

Then, the total execution time of the application can be
calculated by taking the maximum of time consumed by
central arbiter and all segment arbiters that is max (tSA1 ,
tSA2 , ..., tCA).
Emulation results. Figure 10 shows the progress of each FU
on time line using 3 segments, linear topology with package
size of 36 data items. The figure shows the time instant on
which any specific process finished its dedicated job. For
instance, the process P0 finishes the package transfers to
process P1 and P8 at 75.30µs.

Computed as defined above, in the given configuration,
the estimated total execution time for the application is
489.79µs. After running the same partitioned-application on
the real platform instance, we get the actual execution time
as 515.2µs. So, the estimated results that we obtain from
the emulator are 95% accurate.

Next, we keep the same platform configuration, but we
change the package size to 18 data items. The result shows
an estimated execution time of 560.16µs. The actual figure
is 600.02µs, giving us a precision of around 93%.

Further, we change the platform configuration by shifting
process P9 from segment 1 to segment 3. We keep the rest of
the configuration stable, and the package size with 36 data
items. The emulation estimated execution time of updated
configuration is 540.4µs, while the actual execution time is
570.12µs, giving a precision of just below 95%.
Discussion. Based on our experiments, the accuracy of the

emulator seems to be settled at around 95%. The errors
are caused, mostly, by the not so accurate modeling of the
timing figures of the BU to SA control communication,
the synchronization between clock domains, the granting
activity of the SAs, etc.

However, firstly, these figures are very low (2 to 3 clock
ticks), compared to the used size of a package (36 data
units). Secondly, most of these operations do overlap with
each other, or with the data transfers. A clear identification
of such events is not possible, hence we should accept the
resulting errors. It becomes though clear that, the higher
the data package, the less impact of these figures should
be observed in the estimation results of the emulator. This
is due to the lower number of transfers, and hence, of
synchronization, granting, etc. actions of the SAs.

Due to one of the considerations described in section
III-C, the timing information illustrated in figure 10 are not
exact. This is due to the (variable) leading period of time
during which each process awaits for data to be present at
the input. However, as already mentioned, this does not have
an impact on the overall application performance estimation,
which, of course, includes such periods of time.

The tool helps us observe the communication bottlenecks
expressed here as the time one package has to wait in one
of the BUs until it can be delivered to the next segment.
The useful period (UP) of any given BU is expressed as the
time (in clock ticks) required to load and then unload the
data package, and it amounts to twice the size of a package.
However, once a package is loaded, before unloading, the
BU has to wait for a grant signal coming from the next
segment - the waiting period (WP). As discussed and
formalized in [15], WP is a non-deterministic value which
may reach, at a maximum, the package size. An average
value for WP (WP) over the number of transfers executed
by a certain BU can easily be computed given the data
offered by the emulator (corresponding TCTs).

Considering the example at hand, for BU12 and BU23, we
have the following values (clock ticks), respectively: UP12 =
2304, TCT12 = 2336, and WP12 = 1; UP23 = 144, TCT23
= 146, WP23 = 1.

Further, the Figure 11 illustrates the activity graph of 3
segment, linear topology configuration with different pack-
age sizes (18 and 36 data items).

V. CONCLUSIONS

The paper presented methods for specifying, model-
ing and implementing multi-core embedded systems using
UML-based methodology. We introduced emulation tech-
nique for estimating performance aspects of desired SegBus
configuration. We described how the XML schema can be
generated from the models, specified in DSL, and introduced
mechanism to emulate the modeled configuration in early
stages of the development process.

10297

Figure 10. Progress on time of each application process in 3 segment,
linear topology with package size of 36 data items configuration.

Figure 11. Activity graph of different platform elements in 3 Segment
and linear topology configuration for 18 and 36 bit package sizes.

The emulation-based solution enables us to analyze any
platform configuration with respect to performance figures.
Based on emulation results, it’s the job of the designer to
decide which configuration would be best suited for the final
implementation. Such decisions in the early stages of design
process not only improve the quality of eventual system in
terms of performance, but also improves power consumption
up to some extent [9]. The granularity level of application
components can also be balanced in order to eliminate the
traffic congestion located at certain BUs, that will further
improve the overall performance. Thus, the methodology
allows a designer to adjust the high-level design in a way to
take full benefits from the features exposed by the platform.

Future work will necessarily address more application
models to be tested on the emulator platform. In addition,
extended support is expected to come in the form of arbiter
code generation, for the implementation of the application
schedules.

ACKNOWLEDGMENTS

The present work is supported by the DOMES project
funded by the Academy of Finland, project number
123518/2008.

REFERENCES

[1] Unified Modeling Language (UML) Superstructure Specifica-
tion, version 2.0. http://www.omg.org

[2] Eclipse Modeling - Model-to-Text Transformation. .
http://www.eclipse.org/modeling/m2t/

[3] OMG. Object Constraint Language (OCL) 2.0 Revised Submis-
sion, version 1.6. Jan. 2003.

[4] Java Programming Language. http://java.sun.com

[5] MagicDraw UML. http://www.magicdraw.com

[6] Model-Driven Architecture. http://www.omg.org/mda/

[7] N. Genko, D. Atienza, G. D. Micheli, L. Benini. Feature-NOC
emulation: a tool and design flow for MPSoC. IEEE Circuits
and Systems Magazine, vol. 7, 2007, pp. 42-51.

[8] A. Jantsch, H. Tenhunen. Networks on Chip. Kluwer Academic
Publishers, 2003.

[9] K. Latif, M. Niazi, T. Seceleanu, H. Tenhunen, S. Sezer
Application Development Flow for On-Chip Distributed Archi-
tectures. In Proceedings of the 21st IEEE International System-
on-Chip Conference (SOCC), 2008, pp. 163 - 168.

[10] P. Liu et. al. A NoC Emulation/Verification Framework. In
Proceedings of 6th International Conference on Information
Technology: New Generations, 2009, pp. 859-864.

[11] M. F. Niazi, K. Latif, T. Seceleanu, H. Tenhunen. A DSL
for the SegBus Platform. In Proceedings of the 22nd IEEE
International System-on-Chip Conference (SOCC), 2009, pp.
393-398.

[12] C. Park, J. Jang and S. Ha. Extended Synchronous Dataflow
for Efficient DSP System Prototyping. Journal Design Automa-
tion for Embedded Systems, Springer Netherlands, vol. 6, no.
3, 2002, pp. 295-322.

[13] G. Schelle, D. Grunwald. Onchip Interconnect Exploration
for Multicore Processors utilizing FPGAs. 2nd Workshop on
Architecture Research using FPGA Platforms, 2006.

[14] E. A. Lee and D. G. Messerschmitt. Extended Synchronous
Dataflow. IEEE proceedings, September 1987.

[15] T. Seceleanu. The SegBus Platform - Architecture and Com-
munication Mechanisms. Journal of Systems Architecture
(2006), doi:10.1016/j.sysarc.2006.07.002

[16] T. Seceleanu, V. Leppänen, O. Nevalainen. Improving the
Performance of Bus Platforms by Means of Segmentation and
Optimized Resource Allocation. The EURASIP Journal on
Embedded Systems, Volume 2009 (2009), Article ID 867362,
doi:10.1155/2009/867362.

[17] D. Truscan, T. Seceleanu, J. Lilius, H. Tenhunen. A Model-
based Design Process for the SegBus Distributed Architecture.
In Proceedings of the 15th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems
(ECBS), 2008, pp. 307-316.

10398

