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Abstract - Considering today's hardware performance, in order to 
obtain best results,  a proper programming strategy for optimum 
mapping of all processes to existing resources is necessary. The 
presence of multiple cores in a single chip requires applications 
with a higher level of parallelism. The use of suited mapping 
algorithms can lead to a great performance improvement 
considering computing time at a smaller energy consumption. 
We've realized a comparison between the parallel computing with 
an efficient mapping algorithm of threads to specific cores and 
parallel computing with threads mapping maintained by Linux 
kernel process scheduler. We observed that a good strategy 
regarding thread mapping on different processing units, 
balancing all available cores and allocating a specific amount of 
work, can lead to improved computational time. In our simulation 
we used Kubuntu Linux operating system, a system with Intel 
Core 2 Duo processor and another system with an Intel Quad 
Core.  
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multiprocessor, linux 

 

I. INTRODUCTION 
Multicore processors were recently available on home and 

server markets, but they have a rich history considering the 
embedded computing and strict requirements considering real 
time processing. MPSoC (Multiprocessor SoC ) have been 
developed as an answer to a quicker processing need in 
multimedia applications which are more complex every day. 
General use embedded systems with a single processor are not 
capable anymore to satisfy the increasing requirement of the 
complex software applications. Even if the multiprocessor 
architecture was developed long time ago, the approach was 
focused especially on multi-chip accomplishments. Considering 
the architecture, MPSoC combines the features of the 
distributed systems and also of the systems on chip (SoC). 
Motivated by the technology admitted by billions of transistors, 
MPSOC becomes more and more the preferred target of the 
embedded systems implementations. Despite their significant 
potentials, a main impediment in their design remains the 
development of programming paradigms and designed tools in 
order to reduce their complexity. Some progress was made in 
the architecture area with customizable multiprocessors and also 
in design methodology in order to reduce the designing time. 
The designers are still forced to manually map the application 
tasks on different processors and, in the same time, to customize 
each processor, so that the performance requirements are 
generally accomplished. 

We observed tha,t when we developed a parallel algorithm 
on a multicore platform, mapping threads on available cores 
implied directly by the programmer is much more efficient than 
kernel  scheduler. 

 The results obtained by such a method are significantly 
better than those obtained by classical method when the kernel 
governs tasks allocation. Although the kernel has mechanisms 
and advanced techniques for control and management of 
threads, in some cases, such as problems with a fine granularity 
in terms of parallelism, the method we suggest is more  efficient 
because it uses a balanced load of tasks on each processor in 
hand. For better performance in parallel computing, we should 
maximize granularity and minimize synchronization and 
communication. [1] 

One of the main advantages of the proposed algorithm is 
that it is independent of the hardware platform which runs: 
automatically identify every available core and split the 
application in a number of tasks proportional to the core’s 
number,  in order to have a balanced load of the operations on 
each core. 

To support this third-party theory we chose as a starting 
point for simulation a simple operation of multiplying two large 
matrices with real number elements. There are three obvious 
reasons of why we chose this third-party approach: 

 1.Matrix multiplication is a fundamental parallel 
algorithm with a high degree of parallelization 
(calculating each element is an independent task) 

 2. Practical applicability is obvious, since multiplication 
of matrices is an operation widely used in image 
processing applications, in digital signal processing 
applications or multimedia applications. 

 3. Multiplying matrices is a good example of an 
algorithm that seems simple on the surface, but that can 
go quite wrong if you're not careful. 

II. CHALLENGES 
The election of the processing algorithm must be made 

considering the application and must be platform specific, 
knowing  all the advantages and limitations in order to obtain 
best results. The explosive growth of digital content it may be 
seen in all devices used daily and also on the Internet. Due to 
strong computational of media algorithms, the processing is 
suitable to parallel processing. New challenges appeared 
considering compression, analysis and synthesis of media 
content in real time. The semiconductor industry has shifted 
from increasing clock speed to increasing core counts. 
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Multicore (dual, quad) processors are now present in many 
home based systems. This chance presents a massive challenge 
to application developers who must design a sufficient and 
suited parallelism onto each parallel algorithm. Mapping a set of 
algorithms onto a multi core platform requires using a parallel 
programming model, which describes and controls the 
communication, concurrences, and synchronization of all 
components involved. The correct use synchronization and 
locking mechanisms is complex and it has proven to be a 
challenging implementation. 

III. PARALLEL PROGRAMMING 
Like any time-sharing system, Linux achieves the effect of an 

apparent simultaneous execution of multiple processes by 
switching from one process to another in a very short time- 
frame. The scheduling algorithm of traditional Unix operating 
systems must fulfill several conflicting objectives: fast process 
response time, good throughput for background jobs, avoidance 
of process starvation, reconciliation of the needs of  low- and 
high-priority processes, and so on. The set of rules used to 
determine when and how selecting a new process to run is 
called scheduling policy.[2] 

Linux scheduling is based on the time-sharing technique: 
several processes are allowed to run "concurrently," which 
means that the CPU time is roughly divided into "slices," one 
for each runnable process a single processor can run only one 
process at any given instant. If a currently running process is not 
terminated when its time slice or quantum expires, a process 
switch may take place. Time-sharing relies on timer interrupts 
and is thus transparent to processes. No additional code needs to 
be inserted in the programs in order to ensure CPU time-
sharing. 

The scheduling policy is also based on ranking processes 
according to their priority. Complicated algorithms are 
sometimes used to derive the current priority of a process, but 
the end result is the same: each process is associated with a 
value that denotes how appropriate it is to be assigned to the 
CPU. In Linux, process priority is dynamic. The scheduler 
keeps track of what processes are doing and adjusts their 
priorities periodically; in this way, processes that have been 
denied the use of the CPU for a long time interval are boosted 
by dynamically increasing their priority. Correspondingly, 
processes running for a long time are penalized by decreasing 
their priority.[2] 

The Linux scheduler must be slightly modified in order to 
support the symmetric multiprocessor (SMP) architecture. 
Actually, each processor runs the  schedule function on its own, 
but processors must exchange information in order to boost 
system performance. When the scheduler computes the 
goodness of a runnable process, it should consider whether that 
process was previously running on the same CPU or on another 
one. A process that was running on the same CPU is always 
preferred, since the hardware cache of the CPU could still 
include useful data. This rule helps in reducing the number of 
cache misses. In order to achieve good system performance, 
Linux/SMP adopts an empirical rule to solve the dilemma. The 
adopted choice is always a compromise, and the trade-off 

mainly depends on the size of the hardware caches integrated 
into each CPU: the larger the CPU cache is, the more 
convenient it is to keep a process bound on that CPU.  

The POSIX thread libraries are a standards based thread API 
for C/C++. It allows one to spawn a new concurrent process 
flow. It is most effective on multi-processor or multi-core 
systems where the process flow can be scheduled to run on 
another processor thus gaining speed through parallel or 
distributed processing. Threads require less overhead than 
"forking" or spawning a new process because the system does 
not initialize a new system virtual memory space and 
environment for the process. Parallel programming technologies 
such as MPI and PVM are used in a distributed computing 
environment while threads are limited to a single computer 
system. All threads within a process share the same address 
space. A thread is spawned by defining a function and its 
arguments which will be processed in the thread. Thread 
operations include thread creation, termination, synchronization 
(joins, blocking), scheduling, data management and process 
interaction. [3] 

Processor affinity is a modification of the native central 
queue scheduling algorithm. Each task (be it process or  thread) 
in the queue has a tag indicating its preferred / kin processor. At 
allocation time, each task is allocated to its kin processor in 
preference to others. Processor affinity takes advantage of the 
fact that some remnants of a process may remain in one 
processor's state (in particular, in its cache) from the last time 
the process ran, and so scheduling it to run on the same 
processor the next time could result in the process running more 
efficiently than if it were to run on another processor. Actual 
scheduling algorithm implementations vary in how strongly 
they will adhere to processor affinity.  Processor affinity can 
effectively reduce cache problems but it does not curb the 
persistent load-balancing problem. [4] 

 
 
 
 
 
 
 
 
 
 

Figure 1. Threads mapping made by Kernel process scheduler 
 
 
 
 
 
 
 
 
 

 
Figure 2. Manual thread mapping using CPU affinity 
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Processor affinity becomes more complicated in systems with 
non-uniform architectures. As an example, a system with two 
dual-core hyper-threaded CPUs presents a challenge to a 
scheduling algorithm. There is complete affinity between two 
virtual CPUs implemented on the same core via hyper-
threading; partial affinity between two cores on the same 
physical chip (as the cores share some, but not all, cache), and 
no affinity between separate physical chips. Processor affinity 
alone cannot be used as the basis for dispatching processes to 
specific CPUs, however, as other resources are also shared. For 
instance, if a process has recently run on one virtual hyper-
threaded CPU in a given core, and that virtual CPU is currently 
busy but its partner is not, cache affinity would suggest that the 
process should be dispatched to the idle partner. However, since 
the two virtual CPUs compete for essentially all computing, 
cache, and memory resources, it would typically be more 
efficient to dispatch the process to a different core or CPU if 
one is available; while this would likely incur a penalty in that 
the process would have to repopulate the cache, overall 
performance would likely be higher as the process would not 
have to compete for resources such as functional units within 
the CPU. [4] 

Improving memory effectiveness is an important technique to 
achieve high program performance. While there exist tools and 
runtime systems to schedule threads efficiently, little is known 
about what would be an optimal affinity thread schedule to 
maximize the memory effectiveness and why it is optimal.[5] 

Recent studies advocate explicit thread affinity management 
using the sched setaffinity system call and better system load 
balancing mechanisms.[6][7][8][9] 

An affinity mask is a bit mask indicating what processor(s) a 
thread or process should be run on by the scheduler of an 
operating system. Setting the affinity mask for certain processes 
running under Linux kernel can be useful. This  might lead to 
better application performance. 

The Linux kernel contains a mechanism that allows 
developers to programmatically enforce hard CPU affinity. This 
means your applications can explicitly specify which processor 
(or set of processors) a given process may run on. In the Linux 
kernel, all processes have a data structure associated with them 
called the task_struct. This structure is important for a number 
of reasons, most pertinent being the cpus_allowed bitmask. This 
bitmask consists of a series of n bits, one for each of n logical 
processors in the system. A system with four physical CPUs 
would have four bits. If those CPUs were hyperthread-enabled, 
they would have an eight-bit bitmask. If a given bit is set for a 
given process, that process may run on the associated CPU. [10]  

The Linux kernel API includes some methods to allow users 
to alter the bitmask or view the current bitmask: 

- sched_set_affinity() (for altering the bitmask),  
- sched_get_affinity()  (for viewing the current bitmask).[10] 
 
 
 
 

IV. SIMULATION 
 
Parallel programming models are provided as extensions of 

existing languages, added to C/C++, rather than an entirely new 
parallel programming language. Some models have the property 
that concurrent entities are separated by different memory 
address spaces. Such models as MPI (Message Passing 
Interface) and UPC (Unified Parallel C) are useful for large 
scale distributed systems with separate address spaces. On 
general interest hardware these are usually not found. On 
smaller systems where are the cores that have access to a 
common address space, programmers develop applications 
using the threading support of the underlying operating systems. 
These include POSIX threads and the windows thread interface. 
All threads can access each other's data, an for that threading 
libraries provide complex synchronization and 

locking mechanisms. 
In order to develop applications on multiprocessor systems 

on chip, three factors must be taken into consideration: 
application parallelism degree , available hardware resources, 
and real time constraints. For a program to run on a parallel 
processors system it must be split in a series of tasks which can 
depend one to another or can be interdependent. The split 
implies partitioning and mapping. Mapping is the task 
distribution to each processor and can be static or dynamic. 

We have used C language and POSIX threads for paralleling 
of multiplication of 2 big size matrix with random generated 
real elements. The program was developed to automatically 
detect the number of cores and to compare 2 parallel 
computation times : the time with manual dynamic thread 
mapping on each core by setting the affinity versus the time 
when Linux scheduler maps all started threads.  

The number of threads for the multiplication is variable to 
determine in tests the good balancing between computation and 
started tasks. Each thread deals with the same computational 
charge. Processors used in simulations were Intel Core 2 Duo 
T5879 2 GHz and Intel Quad Core Q6600 2.4GHz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Program block scheme 
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TABLE I. SIMULATION RESULTS

 
Cores 

Mat. 
Dim 

No. 
threads 

Manual 
mapping 
time (s) 

Kern
mapping
(s) 

2 500 100 0.92 1

2 500 250 0.91 1

2 500 500 0.87 1

2 1000 500 9.88 10

2 1000 1000 9.68 1

4 500 100 0.51 0

4 500 250 0.6 1

4 500 500 0.75 1

4 1000 500 3.86 5

4 1000 1000 4.45 8

 
 

 
 

Figure 4. Time comparison of 2 cores matrix m
 
 

 
 

Figure 5. Time comparison of  4 cores matrix
 

V. CONCLUSIONS 
Our simulations reported a gain up to 

computing time with dynamic allocation o
over computing time with kernel scheduler m
highly necessary to balance the work load on
have a massive queue of pending threads.
payload (matrix dimensions extremely large
the cache size (quad core: 4 MB/Core, dual c
exceeded and both algorithms have the same 
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g time 
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1.08 17% 

1.11 22% 

1.12 29% 

0.63 8% 

11.9 23% 

0.75 47% 

1.79 198% 

1.85 147% 

5.21 35% 

8.92 100% 
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200% of parallel 
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performance.  

Besides that, in simulations, e
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of a large number of different pr
this fact must be handled proper
synchronization between threa
efficient algorithm with a high
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