

Efficient threads mapping on multicore
architecture

Iulian Nita, Adrian Rapan, Vasile Lazarescu
Faculty of Electronics, Telecomm. and IT
“Polytechnics” University of Bucharest

Bucharest, Romania
Iulian.nita@upb.ro

Tiberiu Seceleanu
ABB Corporate Research and

Mälardalen University
Västerås, Sweden

Abstract - Considering today's hardware performance, in order to
obtain best results, a proper programming strategy for optimum
mapping of all processes to existing resources is necessary. The
presence of multiple cores in a single chip requires applications
with a higher level of parallelism. The use of suited mapping
algorithms can lead to a great performance improvement
considering computing time at a smaller energy consumption.
We've realized a comparison between the parallel computing with
an efficient mapping algorithm of threads to specific cores and
parallel computing with threads mapping maintained by Linux
kernel process scheduler. We observed that a good strategy
regarding thread mapping on different processing units,
balancing all available cores and allocating a specific amount of
work, can lead to improved computational time. In our simulation
we used Kubuntu Linux operating system, a system with Intel
Core 2 Duo processor and another system with an Intel Quad
Core.

Keywords: multicore, affinity, mapping, threads, mpsoc,
multiprocessor, linux

I. INTRODUCTION
Multicore processors were recently available on home and

server markets, but they have a rich history considering the
embedded computing and strict requirements considering real
time processing. MPSoC (Multiprocessor SoC) have been
developed as an answer to a quicker processing need in
multimedia applications which are more complex every day.
General use embedded systems with a single processor are not
capable anymore to satisfy the increasing requirement of the
complex software applications. Even if the multiprocessor
architecture was developed long time ago, the approach was
focused especially on multi-chip accomplishments. Considering
the architecture, MPSoC combines the features of the
distributed systems and also of the systems on chip (SoC).
Motivated by the technology admitted by billions of transistors,
MPSOC becomes more and more the preferred target of the
embedded systems implementations. Despite their significant
potentials, a main impediment in their design remains the
development of programming paradigms and designed tools in
order to reduce their complexity. Some progress was made in
the architecture area with customizable multiprocessors and also
in design methodology in order to reduce the designing time.
The designers are still forced to manually map the application
tasks on different processors and, in the same time, to customize
each processor, so that the performance requirements are
generally accomplished.

We observed tha,t when we developed a parallel algorithm
on a multicore platform, mapping threads on available cores
implied directly by the programmer is much more efficient than
kernel scheduler.

 The results obtained by such a method are significantly
better than those obtained by classical method when the kernel
governs tasks allocation. Although the kernel has mechanisms
and advanced techniques for control and management of
threads, in some cases, such as problems with a fine granularity
in terms of parallelism, the method we suggest is more efficient
because it uses a balanced load of tasks on each processor in
hand. For better performance in parallel computing, we should
maximize granularity and minimize synchronization and
communication. [1]

One of the main advantages of the proposed algorithm is
that it is independent of the hardware platform which runs:
automatically identify every available core and split the
application in a number of tasks proportional to the core’s
number, in order to have a balanced load of the operations on
each core.

To support this third-party theory we chose as a starting
point for simulation a simple operation of multiplying two large
matrices with real number elements. There are three obvious
reasons of why we chose this third-party approach:

 1.Matrix multiplication is a fundamental parallel
algorithm with a high degree of parallelization
(calculating each element is an independent task)

 2. Practical applicability is obvious, since multiplication
of matrices is an operation widely used in image
processing applications, in digital signal processing
applications or multimedia applications.

 3. Multiplying matrices is a good example of an
algorithm that seems simple on the surface, but that can
go quite wrong if you're not careful.

II. CHALLENGES
The election of the processing algorithm must be made

considering the application and must be platform specific,
knowing all the advantages and limitations in order to obtain
best results. The explosive growth of digital content it may be
seen in all devices used daily and also on the Internet. Due to
strong computational of media algorithms, the processing is
suitable to parallel processing. New challenges appeared
considering compression, analysis and synthesis of media
content in real time. The semiconductor industry has shifted
from increasing clock speed to increasing core counts.

978-1-4244-6363-3/10/$26.00 c©2010 IEEE 53

SETISEC
Text Box
Nita, I.; Rapan, A.; Lazarescu, V.; Seceleanu, T.;
8th International Conference on Communications (COMM),
Digital Object Identifier: 10.1109/ICCOMM.2010.5508993, Publication Year: 2010 , Page(s): 53 - 56

Multicore (dual, quad) processors are now present in many
home based systems. This chance presents a massive challenge
to application developers who must design a sufficient and
suited parallelism onto each parallel algorithm. Mapping a set of
algorithms onto a multi core platform requires using a parallel
programming model, which describes and controls the
communication, concurrences, and synchronization of all
components involved. The correct use synchronization and
locking mechanisms is complex and it has proven to be a
challenging implementation.

III. PARALLEL PROGRAMMING
Like any time-sharing system, Linux achieves the effect of an

apparent simultaneous execution of multiple processes by
switching from one process to another in a very short time-
frame. The scheduling algorithm of traditional Unix operating
systems must fulfill several conflicting objectives: fast process
response time, good throughput for background jobs, avoidance
of process starvation, reconciliation of the needs of low- and
high-priority processes, and so on. The set of rules used to
determine when and how selecting a new process to run is
called scheduling policy.[2]

Linux scheduling is based on the time-sharing technique:
several processes are allowed to run "concurrently," which
means that the CPU time is roughly divided into "slices," one
for each runnable process a single processor can run only one
process at any given instant. If a currently running process is not
terminated when its time slice or quantum expires, a process
switch may take place. Time-sharing relies on timer interrupts
and is thus transparent to processes. No additional code needs to
be inserted in the programs in order to ensure CPU time-
sharing.

The scheduling policy is also based on ranking processes
according to their priority. Complicated algorithms are
sometimes used to derive the current priority of a process, but
the end result is the same: each process is associated with a
value that denotes how appropriate it is to be assigned to the
CPU. In Linux, process priority is dynamic. The scheduler
keeps track of what processes are doing and adjusts their
priorities periodically; in this way, processes that have been
denied the use of the CPU for a long time interval are boosted
by dynamically increasing their priority. Correspondingly,
processes running for a long time are penalized by decreasing
their priority.[2]

The Linux scheduler must be slightly modified in order to
support the symmetric multiprocessor (SMP) architecture.
Actually, each processor runs the schedule function on its own,
but processors must exchange information in order to boost
system performance. When the scheduler computes the
goodness of a runnable process, it should consider whether that
process was previously running on the same CPU or on another
one. A process that was running on the same CPU is always
preferred, since the hardware cache of the CPU could still
include useful data. This rule helps in reducing the number of
cache misses. In order to achieve good system performance,
Linux/SMP adopts an empirical rule to solve the dilemma. The
adopted choice is always a compromise, and the trade-off

mainly depends on the size of the hardware caches integrated
into each CPU: the larger the CPU cache is, the more
convenient it is to keep a process bound on that CPU.

The POSIX thread libraries are a standards based thread API
for C/C++. It allows one to spawn a new concurrent process
flow. It is most effective on multi-processor or multi-core
systems where the process flow can be scheduled to run on
another processor thus gaining speed through parallel or
distributed processing. Threads require less overhead than
"forking" or spawning a new process because the system does
not initialize a new system virtual memory space and
environment for the process. Parallel programming technologies
such as MPI and PVM are used in a distributed computing
environment while threads are limited to a single computer
system. All threads within a process share the same address
space. A thread is spawned by defining a function and its
arguments which will be processed in the thread. Thread
operations include thread creation, termination, synchronization
(joins, blocking), scheduling, data management and process
interaction. [3]

Processor affinity is a modification of the native central
queue scheduling algorithm. Each task (be it process or thread)
in the queue has a tag indicating its preferred / kin processor. At
allocation time, each task is allocated to its kin processor in
preference to others. Processor affinity takes advantage of the
fact that some remnants of a process may remain in one
processor's state (in particular, in its cache) from the last time
the process ran, and so scheduling it to run on the same
processor the next time could result in the process running more
efficiently than if it were to run on another processor. Actual
scheduling algorithm implementations vary in how strongly
they will adhere to processor affinity. Processor affinity can
effectively reduce cache problems but it does not curb the
persistent load-balancing problem. [4]

Figure 1. Threads mapping made by Kernel process scheduler

Figure 2. Manual thread mapping using CPU affinity

Core 1 Core 2 Core 3 Core 4

Kernel OS

Task 1 Task 2 Task 3 Task ..

Task... Task... Task... Task n

Core 1 Core 2 Core 3 Core 4

 Kernel OS

Task 1 Task 2 Task 3 Task ..

Task... Task... Task... Task n

54

Processor affinity becomes more complicated in systems with
non-uniform architectures. As an example, a system with two
dual-core hyper-threaded CPUs presents a challenge to a
scheduling algorithm. There is complete affinity between two
virtual CPUs implemented on the same core via hyper-
threading; partial affinity between two cores on the same
physical chip (as the cores share some, but not all, cache), and
no affinity between separate physical chips. Processor affinity
alone cannot be used as the basis for dispatching processes to
specific CPUs, however, as other resources are also shared. For
instance, if a process has recently run on one virtual hyper-
threaded CPU in a given core, and that virtual CPU is currently
busy but its partner is not, cache affinity would suggest that the
process should be dispatched to the idle partner. However, since
the two virtual CPUs compete for essentially all computing,
cache, and memory resources, it would typically be more
efficient to dispatch the process to a different core or CPU if
one is available; while this would likely incur a penalty in that
the process would have to repopulate the cache, overall
performance would likely be higher as the process would not
have to compete for resources such as functional units within
the CPU. [4]

Improving memory effectiveness is an important technique to
achieve high program performance. While there exist tools and
runtime systems to schedule threads efficiently, little is known
about what would be an optimal affinity thread schedule to
maximize the memory effectiveness and why it is optimal.[5]

Recent studies advocate explicit thread affinity management
using the sched setaffinity system call and better system load
balancing mechanisms.[6][7][8][9]

An affinity mask is a bit mask indicating what processor(s) a
thread or process should be run on by the scheduler of an
operating system. Setting the affinity mask for certain processes
running under Linux kernel can be useful. This might lead to
better application performance.

The Linux kernel contains a mechanism that allows
developers to programmatically enforce hard CPU affinity. This
means your applications can explicitly specify which processor
(or set of processors) a given process may run on. In the Linux
kernel, all processes have a data structure associated with them
called the task_struct. This structure is important for a number
of reasons, most pertinent being the cpus_allowed bitmask. This
bitmask consists of a series of n bits, one for each of n logical
processors in the system. A system with four physical CPUs
would have four bits. If those CPUs were hyperthread-enabled,
they would have an eight-bit bitmask. If a given bit is set for a
given process, that process may run on the associated CPU. [10]

The Linux kernel API includes some methods to allow users
to alter the bitmask or view the current bitmask:

- sched_set_affinity() (for altering the bitmask),
- sched_get_affinity() (for viewing the current bitmask).[10]

IV. SIMULATION

Parallel programming models are provided as extensions of

existing languages, added to C/C++, rather than an entirely new
parallel programming language. Some models have the property
that concurrent entities are separated by different memory
address spaces. Such models as MPI (Message Passing
Interface) and UPC (Unified Parallel C) are useful for large
scale distributed systems with separate address spaces. On
general interest hardware these are usually not found. On
smaller systems where are the cores that have access to a
common address space, programmers develop applications
using the threading support of the underlying operating systems.
These include POSIX threads and the windows thread interface.
All threads can access each other's data, an for that threading
libraries provide complex synchronization and

locking mechanisms.
In order to develop applications on multiprocessor systems

on chip, three factors must be taken into consideration:
application parallelism degree , available hardware resources,
and real time constraints. For a program to run on a parallel
processors system it must be split in a series of tasks which can
depend one to another or can be interdependent. The split
implies partitioning and mapping. Mapping is the task
distribution to each processor and can be static or dynamic.

We have used C language and POSIX threads for paralleling
of multiplication of 2 big size matrix with random generated
real elements. The program was developed to automatically
detect the number of cores and to compare 2 parallel
computation times : the time with manual dynamic thread
mapping on each core by setting the affinity versus the time
when Linux scheduler maps all started threads.

The number of threads for the multiplication is variable to
determine in tests the good balancing between computation and
started tasks. Each thread deals with the same computational
charge. Processors used in simulations were Intel Core 2 Duo
T5879 2 GHz and Intel Quad Core Q6600 2.4GHz.

Figure 3. Program block scheme

55

TABLE I. SIMULATION RESULTS

Cores

Mat.
Dim

No.
threads

Manual
mapping
time (s)

Kern
mapping
(s)

2 500 100 0.92 1

2 500 250 0.91 1

2 500 500 0.87 1

2 1000 500 9.88 10

2 1000 1000 9.68 1

4 500 100 0.51 0

4 500 250 0.6 1

4 500 500 0.75 1

4 1000 500 3.86 5

4 1000 1000 4.45 8

Figure 4. Time comparison of 2 cores matrix m

Figure 5. Time comparison of 4 cores matrix

V. CONCLUSIONS
Our simulations reported a gain up to

computing time with dynamic allocation o
over computing time with kernel scheduler m
highly necessary to balance the work load on
have a massive queue of pending threads.
payload (matrix dimensions extremely large
the cache size (quad core: 4 MB/Core, dual c
exceeded and both algorithms have the same

S

nel
g time

Manual
mapping

gain

1.08 17%

1.11 22%

1.12 29%

0.63 8%

11.9 23%

0.75 47%

1.79 198%

1.85 147%

5.21 35%

8.92 100%

multiplication

x multiplication

200% of parallel
of processing units
mapping. Also it is
n each core and not
. For some bigger

e, ex. 8000 x 8000)
core: 2 MB/Core) is
performance.

Besides that, in simulations, e
manual mapping, it is superior t
hardware offers great solutions
of a large number of different pr
this fact must be handled proper
synchronization between threa
efficient algorithm with a high
some intelligent algorithms for t
some situations, improved perfo
lower energy consumption.

REFER
[1] F. Song, S. Moore, and J.

affinitybased thread scheduling on
Tennessee, Computer Science Tech. Rep

[2] Daniel P. Bovet, Marco Cesati. ”
Edition, O'Reilly, 2002, pp 378-379.

[3] Greg Ippolito.”YoLinux Tutoria
Internet:www.yolinux.com/TUTORIAL
Jan 2007 [Jan. 10, 2010].

[4] TMurgent Technologies, White
www.tmurgent.com/WhitePapers\Proce
2010].

[5] Fengguang Song, Shirley Moore,
and Optimization for Affinity Base
Systems”, EECS Department, Univ
CLUSTER, New Orleans, Louisiana, Se

[6] Costin Iancu, Steven Hofme
Oversubscription on Multicore Proc
Laboratory.

[7] S. Hofmeyr, C. Iancu, and F. Bla
appear in Proceedings of Principles a
(PPoPP’10), 2010.

[8] T. Li, D. Baumberger, D. A. Kou
System Scheduling for Performance-As
SC ’07: Proceedings of the 2007 ACM
2007.

[9] A. Mandal, A. Porterfield, R. J.
Consistency on Multi-Socket AMD Opt
07, RENCI, 2008.

[10] Eli Dow. “Take charge
http://www.ibm.com/developerworks/lin
2005 [Jan. 7, 2010].

[11] Felicia Ionescu, "Principiile
Bucuresti, 1999, ISBN: 973-31-1331-X

[12] Michela Becchi, Patrick Crow
Heterogeneous Multiprocessor Arch
Instruction-Level Parallelism 10 (200
6/08, 2008.

[13] Geoffrey Blake, Ronald G. Dr
Multicore Processors”, IEEE Signal Pro
6 November 2009 : Multicore Platforms

[14] Wayne Wolf, “Multiprocessor
Signal Processing Magazine (Volum
Multicore Platforms in the signal proces

[15] Philip Mucci – ”Linux M
Optimization in a Nutshell”, NOTUR 20

even if it is not the most efficient
to kernel scheduling. Even if the
for parallelism, as the presence

rocessing cores on a single chip,
rly: partitioning, communication,
ads are key features for an
er degree of parallelism. Using
task mapping may determine, in

ormances and in the same time a

RENCES
Dongarra, “Analytical modeling for
multicore platforms,” University of

p. UT-CS-08-626, 2008.
” Understanding the Linux Kernel”, 2nd

al: POSIX thread (pthread) libraries”.
LS/LinuxTutorialPosixThreads.html ,
e Paper: ”Processor Affinity”. Internet:
ssorAffinity.pdf Nov. 3, 2003 [Jan. 5

, Jack Dongarra – ”Analytical Modeling
ed Thread Scheduling on Multicore
ersity of Tennessee – USA, IEEE
ep. 3, 2009.
eyr, Filip Blagojevi´c, Yili Zheng -
cessors, Lawrence Berkeley National

agojevic. Load Balancing on Speed. To
and Practice of Parallel Programming

ufaty, and S. Hahn. Efficient Operating
symmetric Multi-Core Architectures. In

M/IEEE conference on Supercomputing,

. Fowler, and M. Y. Lim. Performance
teron Systems. Technical Report TR-08-

of processor affinity”. Internet
nux/library/l-affinity.html, Sep. 29,

Calculului Paralel", Editura Tehnica,

wley, “Dynamic Thread Assignment on
hitectures”, Conference Journal of
08) 1-26, Submitted 10/06; published

reslinski, Trevor Mudge, “A Survey of
ocessing Magazine (Volume 26 Number
s in the signal processing world, Part 1)
r System-On-Chip Technology”, IEEE

me 26 Number 6 November 2009 :
ssing world, Part 1)

Multicore Perforrmance Analysis and
009,Trondheim, Norway

56

