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Abstract. We present a technique for specifying coverage criteria and
a method for generating test suites for systems whose behaviours can be
described as extended finite state machines (EFSM). To specify coverage
criteria we use observer automata with parameters, which monitor and
accept traces that cover a given test criterion of an EFSM. The flexibility
of the technique is demonstrated by specifying a number of well-known
coverage criteria based on control- and data-flow information using ob-
server automata with parameters. We also develop a method for generat-
ing test cases from coverage criteria specified as observers. It is based on
transforming a given observer automata into a bitvector analysis prob-
lem that can be efficiently implemented as an extension to an existing
state-space exploration such as, e.g. SPIN or Uppaal.

1 Introduction

Model based test case generation has in recent years been developed as a promi-
nent technique in testing of reactive software systems. A model serves both the
purpose of specifying how the system should respond to inputs from its envi-
ronment, and of guiding the selection of test cases, e.g., using suitable coverage
criteria. Typical notations for such models are state machines in some form,
often extended with data variables. Test cases can be selected as individual “ex-
ecutions” of the model, checking that the outputs from the system under test
(SUT) conform to those specified by the model.

There is a large literature and several tools (e.g., [4, 17, 24, 18, 3]) for gen-
eration of test cases from extended state machine models (EFSMs). In typical
approaches, the selection of test cases follows some particular coverage criterion,
such as coverage of control states, edges, etc., or using an explicitly given set of
test purposes [5, 23]. When the model contains data variables, constraint solving
techniques can be used to find actual values of input parameters that drive the
execution in a desired direction [17, 21, 19].

Since different coverage criteria are suitable in different situations, and satisfy
different constraints on fault detection capability, cost, information about where
potential faults may be located, etc., it is highly desirable that a test generation
tool is able to generate test suites in a flexible manner, for a wide variety of
different coverage criteria. In other words, a test generation tool should accept



a simple specification of a coverage criterion, given in a language that can eas-
ily specify a large set of coverage criteria, and be able to generate test suites
accordingly.

In this paper, we present a technique for specifying coverage criteria in a
simple and flexible manner, and a method for generating test cases according
to such coverage criteria. The technique fits well as an extension of a state-
space exploration tool, such as, e.g., SPIN [11] or Uppaal [16], which performs
enumerative or symbolic state-space exploration. It can also be used to generate
monitors that measure the coverage of a specific test suite by monitoring the
test execution.

In our technique, a coverage criterion is given as a set of coverage items, each
of which represents an interesting structural property of the EFSM which should
be examined by a test suite. A coverage item can state that a particular state,
edge, or similar, should be visited, it can be an explicit test purpose, etc. Each
coverage item is specified by an observer, which observes the execution of a test
case, and reports acceptance when the test case has covered the coverage item
that it specifies. For instance, a coverage item stating that a control state l of
an EFSM model should be visited simply observes how the EFSM executes and
reports acceptance when it enters l.

A typical coverage criterion is given as a (often rather large) set of cover-
age items. An important mechanism to facilitate specification of many coverage
criteria is to allow parameterization of observers. In this way, one can specify
a set of coverage items parameterized over, e.g., control states, data variables,
edges, etc. of the EFSM model. Using this simple and general mechanism, we
can specify most of the coverage criteria that have been used in the literature,
and also tailor coverage to specific features of a particular SUT. For instance,
if a particular interface is very error prone, we can specify a coverage criterion
which requires all possible interleavings of interactions on that interface to be
exhibited in a test suite.

A specification of a coverage criterion can be used for test suite generation
using a state-space exploration tool. First, we superpose the coverage observers
onto the EFSM, then we search for a test sequence or set of test sequences
in which as many observers as possible report acceptance. For parameterized
observers, we can record the achieved coverage by a (typically small) set of
bitvectors, indexed by parameter values, which concisely represent the states
of a large set of parameterized observers, in analogy with bitvector analysis in
data-flow analysis, e.g., [20]. The same machinery can also be used to monitor
the achieved coverage of a certain test suite.

The remainder of the paper is structured as follows. We present EFSMs in
the next section, and observers in Section 3. In Section 4, we show how our
definitions of coverage can be used for test case generation, and report on a
partial implementation of the technique. Section 5 concludes the paper.

Related Work. Most related work on test case generation from models of reactive
systems employ some rather specific selection of coverage criteria. Explicitly
given test purposes have been considered, both enumerative [5] and symbolic [23].



Test purposes in these works can in some sense be regarded as coverage observers,
but are not used to specify more generic coverage criteria and do not make us of
parameterization, as in our work. For finite-state machines and EFSMs, several
approaches focus on particular coverage criteria, e.g., Bouquet and Legeard [1]
synthesize test cases corresponding to combinations of choices of control flow
and boundary values of state variables, Nielsen and Skou [21] generate test cases
that cover reachable symbolic states. These coverage criteria can be specified as
observers in our framework.

Some approaches present more flexible techniques for specifying a variety of
coverage criteria. Hong et al [13, 12] describe how flow-based coverage criteria
can be expressed in temporal logic. A particular coverage item is expressed in
CTL, and a model checker generates a trace which covers the coverage item. In
our approach, we use observers instead of temporal logic, which avoids some of
the limitations of temporal logic [26]. Friedman et al [6] specifies coverage by
giving a set of projections of the state space (e.g., on individual state variables,
components of control flow) that should be covered, possibly under some restric-
tions. Our approach generalizes this one, by allowing to define observers. Also,
we can let one pass of a state-space exploration tool generate a test suite that
covers a large set of coverage items, whereas the above approaches invoke a run
of a model checker for each coverage item.

Constraint Logic Programming for model based test case generation has been
used, e.g., by Marre and Arnould [18], by Meudec [19], by Pretschner et al. [22].
These approaches typically compile the specification into a constraint logic pro-
gramming language, in which test cases can be extracted using symbolic execu-
tion.

2 Extended Finite State Machines

We assume that the specification of a module to be tested is given as an extended
finite state machine in some syntax. In this section, we present a generic way to
describe EFSMs, but our work can be adapted to more specific EFSM notations
such as, e.g., UML Statecharts [7] or SDL [14].

We assume that a System Under Test (SUT) interacts with its environment
through events. Whenever the SUT receives an input event, it responds by per-
forming some local computation and emitting an output event. To a given SUT,
we associate a set A of event types, each with a fixed arity. An event is a term
of form a(d1, . . . , dk) where a is an event type of arity k and d1, . . . , dk are the
parameters of the event. The set A of event types is partitioned into input event
types and output event types. A trace is a finite sequence

a1(d1)/b1(d
′
1) a2(d2)/b2(d

′
2) · · · an(dn)/bn(d

′
n)

of input/output event pairs. Intuitively, the trace represents a behavior where
the SUT, starting from its initial state, receives the input event, a1(d1) and
responds with the output event b1(d

′
1). Thereafter, it receives the input event

a2(d2) and so on. An input sequence is a finite sequence of input events.



Assume a set AI of input event types, and a set AO of output event types.
An Extended Finite State Machine (EFSM) over (AI , AO) is a tuple 〈L, l0, v, E〉
where

– L is a finite set of locations (aka control states).
– l0 ∈ L is the initial location.
– v is a finite set of state variables.
– E is a finite set of edges, each of which is of form

e : l l′-a(w), g → u := expr/b(expr ′)

where
• e is the name of the edge,
• l is the source location, and l′ is the target location,
• a ∈ AI is an input event type, and w is a tuple of formal parameters of

a,
• g is a guard,
• u := expr is an assignment of new values to a subset u ⊆ v of the state

variables, and
• b(expr ′) is an expression which evaluates to an output event.

g, expr, and expr′ may depend on the formal parameters w of the input
event and the state variables v.

Intuitively, an edge of the above form denotes that whenever the EFSM is in
location l and receives an event of form a(w), then, provided that the guard
g is satisfied, it can perform a computation step in which it updates its state
variables by u := expr, emits the output event b(expr ′) and moves to location l′.
We require the EFSM to be deterministic, i.e., that for any two edges with the
same source location l and parameterized input event a(w), the corresponding
guards are inconsistent.

A system state is a tuple 〈l, σ〉 where l is a location, and σ is a mapping from
v to values. We can extend σ to a partial mapping from expressions over v in
the standard way. The initial system state is the tuple 〈l0, σ0〉 where l0 is the
initial location, and σ0 gives a default value to each state variable. A computation

step is of the form 〈l, σ〉 a(d)/b(d
′
)−→ 〈l′, σ′〉 consisting of system states 〈l, σ〉 and

〈l′, σ′〉, an input event a(d), and an output event b(d
′
), such that there is an

edge of the (above) form l
a(w),g→u:=expr/b(expr ′)- l′, for which σ(g[d/w]) is true,

σ′ = σ[u 7→ σ(expr[d/w])], and d
′
= σ(expr′[d/w]). A run of the EFSM over a

trace a1(d1)/b1(d
′
1) · · · an(dn)/bn(d

′
n) is a sequence of computation steps

〈l0, σ0〉 a1(d1)/b1(d
′
1)−→ 〈l1, σ1〉 a2(d2)/b2(d

′
2)−→ · · · an(dn)/bn(d

′
n)−→ 〈ln, σn〉

labelled by the input-output event pairs of the trace.
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(ii)

coffee()

display()

make()

done()

insert(x)

show(m)

BrewerController

(i)

e5:display()→show(m)

e3:done()→

BUSYIDLE

e4:display()→show(m)

e2:coffee(),m>0→make(),
m := m− 1

e1:insert(x), x+m≤5 → m := m + x

Fig. 1. An EFSM specifying the controller of a simple coffee machine.

Example 1. In Fig. 1 an EFSM (from [13]) specifying the behavior of the con-
troller of a simple coffee machine which interacts with a user and a brewer unit
is shown. The controller has L = {IDLE ,BUSY }, l0 = IDLE , v = {m}, AI =
{insert , coffee, display , done}, AO = {show ,make}, and E = {e1, e2, e3, e4, e5}.
The parameter x and the variable m take values that are integers in the range
[0 . . . 5].

An EFSM can be used to check that a trace of a SUT conforms to its speci-
fication, by checking that each output event produced by the SUT conforms to
the corresponding output event prescribed in the EFSM. For test generation,
the output events will not be significant, and we will therefore omit them in the

rest of the paper, thus writing an edge of an EFSM as l
a(w),g→u:=expr- l′. We can

also consider specifications that are parallel compositions of EFSMs, but omit
such a treatment in this version of the paper.

3 Observers

In this section, we present how to use observers to specify coverage criteria
for test generation or test monitoring. A coverage criterion typically consists of
a (long) list of items that should be “covered” or “visited”. For instance, the
criterion of “full location coverage” stipulates that a test suite should visit all
locations of a given EFSM. We will use the term coverage item for an item
that should be “covered” or “visited”. Letting a test sequence be represented
as a trace, we can use standard techniques from model-checking and run-time
verification [25, 8] to represent a coverage item by an observer, which monitors a
trace and “accepts” whenever the coverage item has been covered. An observer
observes how an EFSM executes a run over a trace, and “remembers” some
chosen aspects of the EFSM execution. The observer can observe the events of
the trace, as well as syntactical components of edges that the EFSM traverses in
response to observed events, but should not interfere with the execution of the
system.

Typical coverage criteria consist not only of a single coverage item, but of
a large set of coverage items. We therefore extend the notion of observers by a



parameterization mechanism so that they can specify a set of coverage items.
Parameterized observers are simply observers, in which locations and edges may
be parameterized by parameters that range over given domains. Each choice of
parameter values gives a certain observer location or edge. For each specified
coverage item, the observer has an accepting (possibly parameterized) location
which (for convenience) we give the name of the corresponding coverage item.
When the accepting location is entered, the trace has covered the corresponding
coverage item.

As a very simple example, the coverage item “visit location l of the EFSM”
can be represented by an observer with one initial state, and one accepting
location, named loc(l), which is entered when the EFSM enters location l. The
coverage criterion “visit all locations of the EFSM” can be represented by a
parameterized observer with one initial state, and one parameterized accepting
location, named loc(L), where L is a parameter that ranges over locations in the
EFSM. For each value l of L, the location loc(l) is entered when the EFSM enters
location l.

Formally, an observer is a tuple (Q, q0, Qf , B) where

– Q is a finite set of observer locations
– q0 is the initial observer location.
– Qf ⊆ Q is a set of accepting observer locations, whose names are the corre-

sponding coverage items.
– B is a set of edges, each of form

q q′-b

where b is a predicate that can depend on the input event received by the
SUT, the mapping from state variables of EFSM to their values after per-
forming the current computation step, and the edge in the EFSM that is
executed in response to the current input event.

Intuitively, at any specific instant during test execution the observer is in one
of its locations, q say. At each occurrence of an event, the observer traverses
an outgoing edge from q, whose predicate is satisfied for this event, and the
corresponding transition performed by the EFSM. Note that, in contrast to
EFSMs, observers may be non-deterministic, since a coverage item in general
can be covered in several ways.

In many cases, the initial location q0 has an edge to itself with the predicate
true. We use the symbol • to represent q0 together with such a self-loop. Simi-
larly, we assume that each qf ∈ Qf has an edge to itself with the predicate true.
We use the symbol } to represent accepting locations. In section 3.2, we discuss
the effect of these self-loops in more detail. Intuitively, the one in q0 is often used
to allow the observer to non-deterministically start monitoring at any point of
an EFSM run. The loop in each qf is used to allow an observer to stay in an
accepting location.



In order for observers to specify coverage criteria consisting of several cover-
age items, we allow locations and edges to be parameterized. Each parameter has
a finite domain, which could be the set of EFSM locations, edges, state variables,
or similar. We use uppercase letters in typewriter font for parameters. A param-
eterized location represents the collection of locations obtained by instantiating
its parameters, and similarly for edges.

3.1 Observer Predicates

In the following we introduce a more specific syntax for the predicates b occurring
on observer edges. The predicates will use a set of predefined match variables
that are given values at the occurrence of

– an event a(d),

– an edge e : l
a(w),g→u:=expr- l′ of the EFSM, traversed in response to a(d),

– the computation step 〈l, σ〉 a(d)−→ 〈l′, σ′〉 generated in response to a(d).

For a traversed EFSM edge we use the following match variables (with associated
meaning):

event type is the event type a of the occurring event
event-pars is the list d of parameters of the event
edge is the name e
target loc is the target location l′

guard is the guard expression g
assignments is the set u := expr of assignments
target val is the function from EFSM state variables to values, s.t. val(u)

is the value σ′(u) of variable u just after the computation step.

Similarly, we also define source loc for the source location and source val for the
value σ(u) of variable u just before the computation step. To be able to express
more interesting properties we also introduce a set of operations that can be
used together with the match variables:

– lhs is a function to get the left hand side expression of an assignment. A left
hand side expressions is always assumed to be a variable.

– rhs is a function to get the right hand side expressions of an assignment.
The right hand side expression, expr, uses the vocabulary defined for the
EFSM specification.

– vars is a function such that vars(Exp) returns a set with all variables found
in Exp. Exp is a set that contains the result of applying rhs to each assign-
ment in assignments, or a guard expression.

– affect is a function such that affect(A, V ar1, V ar2) returns the assignment
it is being applied to, A, if V ar1 ∈ vars(rhs(A))∧ V ar2 = lhs(A) otherwise
the empty set is returned.

– map is a function such that map(Fun, Set) applies the function, Fun on
each element in the set Set and returns the set of the results.



(i) (ii) (iii)

l0

l1

l2

c(),x=tt ∧ y=tt →

a()→ x:=tt
e0:

e2:

e1:
b(),y=ff → y:=tt

def(Z) ∧ edge = E

¬ def(Z)

use(Z) ∧ edge = E′

du(Z, E, E′)

q0

q1(Z, E)¬ def(x)

q0

q1(x , e1 )

du(x , e1 , e2 )

def(x) ∧ edge = e1

use(x) ∧ edge = e2

Fig. 2. Examples of (i) observer monitoring definition (on edge e1) and use (on edge
e2) of variable x, (ii) a parameterized observer, and (iii) a simple EFSM.

With the match variables and operations above we define new functions that
can be used as tests in the observer. In this paper, we shall make use of:

– def (v), which is true iff the variable v is defined by the transition in the
EFSM. This can be expressed as:

v ∈ map(lhs, assignments)

– use(v), which is true iff the variable v is used (in a guard or assignment) by
the transition in the EFSM. This can be expressed as:

v ∈ vars(map(rhs, assignments)) ∨ v ∈ vars(guard)

– da(v1, v2), which is true iff the variable v1 is on the right hand side and
variable v2 is on the left hand side of the same assignment in the EFSM
specification. The function can intuitively be understood to be true if v1

directly affects v2. This can be expressed as:

map(affect(v1, v2), assignments) 6= ∅

Example 2. The (non-parameterized) observer in Fig. 2(i) specifies definition-
use pair coverage for a specific variable m, and specific edges e1 and e2 . Fig. 2(ii)
shows a corresponding (parameterized) observer that specifies definition-use pair
coverage for any EFSM variable Z, and EFSM edges E and E′. This is done by
parameterizing the location q1 with any variable and any edge, and the accepting
location du with any variable and any two edges. The edges are parameterized
in a similar way. For example, there is one observer edge from location q1(z, e)
to location du(z, e, e′) for each EFSM variable z, and each pair e, e′ of EFSM
edges.



3.2 How Observers Monitor Coverage Criteria

In test case generation or when monitoring test execution of a SUT, an observer
observes the events of the SUT, and the computation steps of the EFSM. Reached
accepting locations correspond to covered coverage items. We formally define the
execution of an observer in terms of a composition between an EFSM and an
observer, which has the form of a superposition of the observer onto the EFSM.
Each state of this superposition consists of a state of the EFSM, together with
a set of currently occupied observer locations.

Say that a predicate b on an observer edge is satisfied by a computation

step 〈l, σ〉 a(d)−→ 〈l′, σ′〉 of an EFSM, denoted 〈l, σ〉 a(d)−→ 〈l′, σ′〉 |= b if b holds

for the event a(d), the computation step 〈l, σ〉 a(d)−→ 〈l′, σ′〉, and the edge e :

l
a(w),g→u:=expr- l′ from which the computation step is derived.

Formally, the superposition of an observer (Q, q0, Qf , B) onto an EFSM
〈L, l0, v, E〉 is defined as follows.

– States are of the form 〈〈l, σ〉 ‖ Q〉, where 〈l, σ〉 is a state of the EFSM, and
Q is a set of locations of the observer.

– The initial state is the tuple 〈〈l0, σ0〉 ‖ {q0}〉, where 〈l0, σ0〉 is the initial
state of the EFSM, and q0 is the initial location of the observer.

– A computation step is a triple 〈〈l, σ〉 ‖ Q〉 a(d)Ã 〈〈l′, σ′〉 ‖ Q′〉 such that

〈l, σ〉 a(d)−→ 〈l′, σ′〉 and

Q′ =
{

q′ | q
b−→ q′ and q ∈ Q and 〈l, σ〉 a(d)−→ 〈l′, σ′〉 |= b

}

– A state 〈〈l, σ〉 ‖ Q〉 of the superposition covers the coverage item represented
by the location qf ∈ Qf if qf ∈ Q.

Note that the way the set Q is updated essentially results in an (on-the-fly)
subset construction of the parameterised observer. Initially, Q contains only the
initial observer location q0. In the subsequent computation steps, Q contains the
set of all occupied observer locations, representing already covered and partially
covered coverage items. In each computation step, the set of occupied observer
locations Q′ is obtained by generating all possible successors to the locations in
Q, i.e. all q′ such that there exists a q ∈ Q and an edge q

b−→ q′ ∈ B with b
satisfied by the computation step of the EFSM.

Recall that both the initial and all accepting observer locations have implicit
self-loops with predicate true. This means that in the superposition of the ob-
server onto an EFSM, the initial observer location q0 is always occupied and all
reached accepting observer locations (representing covered coverage items) are
guaranteed to remain in Q. The fact that q0 is always occupied can be intuitively
understood as allowing for the observer to non-deterministically start monitor-
ing an EFSM (or a SUT) at any computation step of an run (or at any point
during test execution).



target loc=L

(iv)

(i)

loc(L)

q0

q1(X, E)

def (X) ∧ edge=E

¬def (X)

use(X)

all def (E)

(ii)

du(X, E, E′)

affect pair(X, E, Z, E′)

q0

edge cov(E)

edge=E

q1(X, E)

use(X) ∧ edge=E′

q0

¬def (X)

(iii)

def (X) ∧ edge=E

(v)

q0

q1(X, Y, E)

da(X, Y) ∧ edge=E

da(Y, Z) ∧ edge=E′

q0

q0

(vii)

¬def (Y)

q0

loc var(L, V)

(vi)

event var(V)

target loc=L∧ event=insert(V)
target val(m)=V

Fig. 3. Seven examples of coverage criteria expressed as observers.

Example 3. If the observer in Fig. 2(ii) is superposed onto the EFSM in Fig. 2(iii),

the following computation steps can be taken 〈〈l0, {x = ff, y = ff}〉 ‖ {q0}〉 a()Ã
〈〈l1, {x=tt, y=ff}〉 ‖ {q0, q1(x , e0 )}〉 b()Ã 〈〈l0, {x=tt, y=tt}〉 ‖ {q0, q1(x , e0 ), q1(y , e1 )}〉
a()Ã 〈〈l1, {x = tt, y = tt}〉 ‖ {q0, q1(x , e0 ), q1(y , e1 )}〉 c()Ã 〈〈l2, {x = tt, y = tt}〉 ‖
{q0, q1(x , e0 ), q1(y , e1 ), du(x , e0 , e2 ), du(y , e1 , e2 )}〉. Thus, the two possible def-
inition-use pairs are covered.

3.3 Examples of Observers

Fig. 3 shows observers specifying a number of coverage criteria described in the
literature [2].

The all-locations coverage criteria is specified by the observer shown in Fig. 3(i),
where the parameter L is any location in an EFSM. If the observer is superposed
onto the EFSM of Fig. 1, we have that L = {IDLE ,BUSY } and the edge of the



parameterized observer represents two edges, one guarded by target loc = IDLE
with target location loc(IDLE ) target loc(BUSY ), and the other guarded by
target loc = BUSY with target location loc(BUSY ). The set of possible cover-
age items is thus {loc(IDLE ), loc(BUSY )}.

The all-edges coverage observer in Fig. 3(ii) is similar to the all-location
coverage observer. The edges of the EFSM in Fig. 1 is E={e1 , . . . , e5}, and thus
the set of possible coverage items when the observer is superposed onto the
EFSM is {edge cov(ei) | ei ∈ E }.

The all-definition use-pairs (all-uses [2]) coverage observer in Fig. 3(iii) has
an accepting location du(X, E, E′), where X is a variable name, E is an edge on
which X is defined, and E′ an edge on which X is used. Variable X may not
be redefined in the trace between E and E′. If the observer is superposed onto
the EFSM the complete set of coverage items is {du(m, e1 , e1 ), du(m, e1 , e2 ),
du(m, e1 , e4 ), du(m, e2 , e1 ), du(m, e2 , e2 ), du(m, e2 , e4 ), du(m, e2 , e5 )}. The
definition-use pair du(m, e1 , e5 ) can not be covered since m is always redefined
on edge e2 in between e1 and e5 .

The all-definitions coverage observer of Fig. 3(iv) is similar to the all-definition
use-pairs coverage except that only the defining edges are required to be covered.
When the observer is superposed with the EFSM in Fig. 1 the set of accepting
locations is {all def (e1 ), all def (e2 )}.

The all affect-pairs (Nafos’ required k-Tuples [2]) coverage observer shown in
Fig. 3(v) accepts whenever a variable x affects a variable z via another variable
y . In this case we require that x directly affects y which, without redefinition,
directly affects z . No such affect pairs are possible in the EFSM of Fig. 1.

The context coverage criteria observer in Fig. 3(vi) covers all values of a given
variable m. We use target val(m), to denote the value of m at the target EFSM-
state. The observer has an accepting location loc var(L, V), where V is the value
domain of variable m. E.g. loc var(IDLE , 0) and loc var(BUSY , 1) are accepting
locations. The observer in Fig. 3(vii) is similar, but covers the possible values
the event parameter at transitions labelled with the event insert(x ).

4 Test Case Generation

4.1 Algorithms

At test case generation, we use the superposition of an observer onto an EFSM,
and views the test case generation problem as a search exploration problem. To
cover a coverage item qf is then the problem of finding a trace

tr = 〈〈l0, σ0〉 ‖ {q0}〉 a(d)Ã . . .
a′(d′)Ã 〈〈l, σ〉 ‖ Q〉 such that qf ∈ Q

We will use ω(tr) = a(d) . . . a′(d
′
) to denote the word of the trace tr, or just ω

whenever tr is clear from the context. In general, a single trace tr may cover
several accepting locations of the observer. We say that the trace tr covers n
accepting observer states if there are n accepting states in Q, and we use |Qf∩Q|
to denote the number of accepting states in Q.



Pass:= ∅, Max := 0, ωmax := ω0

Wait:= {〈〈s0 ‖ {q0}〉, ω0〉}
while Wait6= ∅ do

select 〈〈s ‖ Q〉, ω〉 from Wait
if |Qf ∩Q| > Max then

ωmax := ω, Max := |Qf ∩Q|
if for all 〈s ‖ Q′〉 in Pass: Q 6⊆ Q′ then

add 〈s ‖ Q〉 to Pass
for all 〈s′′ ‖ Q′′〉

such that 〈s ‖ Q〉 aÃ 〈s′′ ‖ Q′′〉:
add 〈〈s′′ ‖ Q′′〉, ωa 〉 to Wait

return ωmax and Max

Fig. 4. An abstract breadth-first search ex-
ploration algorithm for test case generation.

We are now ready to present
the test case generation algo-
rithm. We shall limit the pre-
sentation to an algorithm gener-
ating a single trace. The same
technique can be used to produce
sets of traces to cover many cov-
erage items. Alternatively, the
EFSM model can be annotated
with edges that reset the EFSM
to its initial state. A generated
trace can then be interpreted as
a set of test cases separated by
the reset edges [9].

An abstract algorithm to
compute test case is shown in
Fig. 4. To improve the presenta-
tion, we use s to denote a system of the form 〈l, σ〉, s0 to denote the initial system
state 〈l0, σ0〉, and a to denote an input action a(d). The algorithm computes the
maximum number of coverage items that can be visited (Max), and returns a
trace with maximum coverage (ωmax). The two main data structures Wait and
Pass are used to keep track of the states waiting to be explored, and the states
already explored, respectively.

Initially, the set of already explored states is empty and the only state waiting
to be explored is the extended state 〈〈s0 ‖ {q0}〉, ω0〉, where ω0 is the empty
trace. The algorithm then repeatedly examines extended states from Wait. If
a state 〈s ‖ Q〉 found in Wait is included in a state 〈s ‖ Q′〉 in Pass, then
obviously 〈s ‖ Q〉 does not need to be further examined. If not, all successor
states reachable from 〈s ‖ Q〉 in one computation step are put on Wait, with
their traces extended with the input action of the computation step from which
they are generated. The state 〈s ‖ Q〉 is saved in Pass. The algorithm terminates
when Wait is empty

The variables ωmax and Max are initially set to the empty trace and 0,
respectively. They are updated whenever an extended state is found in Wait
which covers a higher number of coverage items than the current value of Max.
Throughout the execution of the algorithm, the value of Max is the maximum
number of coverage items that have been covered by a single trace, and ωmax is
one such trace. When the algorithm terminates, the two values Max and ωmax

are returned.

4.2 Bitvector Implementation

In order to efficiently represent and manipulate the set Q of observer locations
we shall use bitvector analysis [15]. Let the set Q be represented by a bitvector
where each bit represents an observer location q′. Then each bit is updated by



the following function
fq′(q′) =

∨

〈b,q〉∈ in(q′)

q ∧ b

where in(q′) = { 〈b, q〉 | q
b−→ q′ ∈ B } is the set of pairs of predicates b and

source locations q of the edges ingoing to the location q′. That is, given a state

of the superposition 〈〈l, σ〉 ‖ Q〉 and an EFSM-transition 〈l, σ〉 a(d)−→ 〈l′, σ′〉 the
bit representing q′ is set to 1 if there is an observer edge q

b−→ q′ ∈ B, such

that q ∈ Q and 〈l, σ〉 a(d)−→ 〈l′, σ′〉 |= b. Otherwise the bit representing q′ is set
to 0. It should be obvious that this corresponds precisely to the semantics of an
observer superposed onto an EFSM, described in Section 3.2.

Example 4. When the observer in Fig. 2(ii) is superposed onto the EFSM in
Fig. 2(iii), we have E = E′ = E = {e0 , e1 , e2} and Z = v = {x , y}. Thus, we
have that

Q =
{

q0

} ∪ {
q1(z, ea) | z∈ v ∧ ea∈E

} ∪ {
du(z, ea, eb) | z∈ v ∧ ea, eb ∈ E

}

Any enumeration of the set can be used as index in the bitvector. As the observer
has three locations with parameters we get three types of bitvector functions:

fq0(q0) = q0 ∧ tt (1)
fq1(vi ,ej )(q1(vi , ej )) = ( q0 ∧ def (vi) ∧ (edge = ej ) ) ∨

( q1(vi , ej ) ∧ ¬def (vi) ) (2)
fdu(vi ,ej ,ek )(du(vi , ej , ek )) = ( q1(vi , ej ) ∧ use(vi) ∧ (edge = ek ) ) ∨

( du(vi , ej , ek ) ∧ tt ) (3)

There is one function of type (1), six of type (2), and 18 of type (3). Note that
(1) is always true and that (3) will remain true once it becomes true, due to
implicit self-loops in these locations.

4.3 Implementation Efforts

Some of the techniques presented in this paper have been implemented in a pro-
totype version of the model-checking tool Uppaal [16], extended for test case
generation [10]. The current implementation uses the bitvector implementation
described above, but is limited to a number of predefined coverage criteria. For
a given coverage criteria (a set of) test cases can be generated from system spec-
ifications described as DIEOU-timed automata [9]. We are currently in progress
with a larger case-study in collaboration with Ericsson where this tool will be
applied.

We are also developing a tool operating on a subset of the functional language
Erlang, also using the techniques presented in this paper. The tool will be applied
in a case-study in collaboration with Mobile Arts.



5 Conclusions

We have presented a technique for specifying coverage criteria in a simple and
flexible manner using observer automata with parameters. Observers have shown
to be a flexible tool in model checking and run-time monitoring, and by this pa-
per we have shown that they are a versatile tool for specifying coverage criteria
for test case generation and test monitoring. In particular the parameteriza-
tion mechanism, as used in this paper, allows a succinct specification of sev-
eral standard generic coverage criteria. In this way, test case generation can be
transformed into a reachability problem, which can be attacked by a standard
state-space reachability tool.

In previous works, we have implemented special cases of this test case gen-
eration technique, using Uppaal, indicating that the approach is practical. We
are currently working on a general implementation of the observer concept, and
plan to apply it in a larger case study.
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