
PRIDE – an Environment for Component-based
Development of Distributed Real-time Embedded Systems∗

Etienne Borde, Jan Carlson, Juraj Feljan, Luka Lednicki, Thomas Lévêque,
Josip Maras, Ana Petričić and Séverine Sentilles

Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden
firstname.lastname@mdh.se

ABSTRACT
Settling down the software architecture for embedded sys-
tem is a complex and time consuming task. Specific concerns
that are generally issued from implementation details must
be captured in the software architecture and assessed to en-
sure system correctness. The matter is further complicated
by the inherent complexity and heterogeneity of the targeted
systems, platforms and concerns. In addition, tools capable
of conjointly catering for the complete design-verification-
deployment cycle, extra-functional properties and reuse are
currently lacking. To address this, we have developed Pride,
an integrated development environment for component-based
development of embedded systems. Pride is based on an ar-
chitecture relying on components with well-defined seman-
tics that serve as the central development entity, and as
means to support and aggregate various analysis and verifi-
cation techniques throughout the development — from early
specification to synthesis and deployment. Pride also pro-
vides generic support for integrating extra-functional prop-
erties into architectural definitions.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environ-
ments — Integrated environments

Keywords
Component-based development, extra-functional properties,
integrated development environment, embedded systems.

1. INTRODUCTION
Embedded systems have changed radically, integrating more

and more software functionality while still having to comply
with severe resource constraints (e.g., memory, energy or

∗This work was supported by the Swedish Foundation for
Strategic Research via the Progress research centre, and by
the Unity Through Knowledge Fund via the Dices project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICSA ’11 Boulder, Colorado, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

computation speed) and dependability and real-time con-
cerns. As a result, their development should simultaneously
handle and ensure various aspects such as extra-functional
properties (EFPs), distribution, reuse, and hardware and
software dependencies. All these aspects must be accord-
ingly reflected in the software architecture to allow proper
evaluation of the system correctness. This makes embedded
system development a very complex and time-consuming
task. Especially since there is currently no tool that sup-
ports the complete set of needs for embedded system devel-
opment, catering for the complete functional development
cycle with consideration for EFPs and reuse. In particular,
EFPs are often disregarded in industrial tools (e.g., [?]).

Taking this into account, we have built the ProCom In-
tegrated Development Environment (Pride) that addresses
the particularities of embedded system development. Pride
has been developed to support a new component-based ap-
proach together with its underlying component model called
ProCom [?] where reusability is a key concern. Other key
benefits of Pride include its ability to i) partially capture
and track design decisions related to EFPs and system con-
straints, such as resources usage or timing characteristics,
at early stages; ii) consider distribution aspects; iii) enable
reuse of not only the code from the components, but also
their EFPs and other development artifacts such as mod-
els; and iv) enable mixing already existing components with
components that are still not implemented.

Section 2 describes the basic underlying approach guiding
the development of Pride, followed by a presentation of
the tool and some of its key parts in Section 3. Section 4
concludes the paper by presenting ongoing and future works.

2. OVERALL APPROACH
The Pride approach aims to cover the whole develop-

ment process, supporting the considerations of predictabil-
ity and safety throughout the development starting from
a vague specification of a system based on early require-
ments up to its final and precise specification and imple-
mentation ready to be deployed. This section describes how
the tool suite addresses the particularities of embedded sys-
tems development, focusing on three important development
aspects: software architecture, analysis and synthesis.

Software Architecture.
To address the increasing complexity of embedded systems

and to accommodate demands of shorter time-to-market,
we base our approach on the component-based software en-
gineering (CBSE) paradigm. CBSE promotes building sys-

tems not from scratch, but from pre-developed software com-
ponents. Management of complex systems should be facil-
itated by dividing them into smaller components that can
be developed independently and reused in different contexts.
Reusability is one of the key concepts in Pride, aiming to
significantly shorten development time. The tool introduces
the distinction between component type and component in-
stance. Each usage (or reusage) of a component type creates
a component instance of the given type, and by editing the
component all its instances are affected. To foster reusabil-
ity, components can be stored in (and imported from) a
shared repository, making them available for reuse in differ-
ent projects.
Our component-based approach is built around a two-

layered component model called ProCom [?]. Owing to the
embedded systems domain, we consider that the software
architecture must be able to provide both a high-level view
of loosely coupled subsystems and a low-level view of control
functionality associated with a particular piece of hardware.
The upper layer of ProCom models a system as a collec-

tion of active, concurrent subsystems that communicate by
asynchronous message passing, and are typically distributed.
A subsystem can internally be realized as a hierarchical com-
position of other subsystems or built out of entities from the
lower layer of ProCom.
The lower layer models the detailed structure of individ-

ual subsystems. Here, components are passive and repre-
sent smaller and simpler units of functionality with clearly
defined interface to the environment. Internally, component
functionality can be realised either by C code or as a com-
position of subcomponents. In this layer, ProCom provides
an explicit separation of control and data flow. This sep-
aration concept together with different types of connectors
and the simple structure of components makes it possible
to explicitly specify, and then analyse, control flow, timing
properties and system performance.
To benefit from the component-based approach through-

out the whole development process, ProCom adopts a par-
ticular component notion. Components are rich design en-
tities encapsulating a collection of development artifacts,
including requirements, various models (e.g. architectural,
behavioural and timing), extra-functional properties (pre-
dicted or experimentally measured values), documentation,
tests and source code, thus making a component a unify-
ing concept throughout the development process. The tool
suite supports this view of a component as a collection of de-
velopment artifacts, and allows components of different ma-
turity, from early specifications to fully implemented com-
ponents with more detailed information, to co-exist within
the same model and to be manipulated in a uniform way.
Additionally, assuming a one to one mapping between com-
ponent specification and its implementation, Pride provides
an ability to leave component realization undecided and thus
postponing component realization decision for later.
What particularly distinguishes Pride from other mod-

elling tools is the support for managing extra-functional
properties through the attribute framework [?]. Every com-
ponent can include a collection of structured attributes defin-
ing simple or complex types of properties such as behavioural
and resource models, certain dependability measures, differ-
ent timing attributes and documentation. These attributes
can be associated with any element of the software architec-
ture such as a specific port, service or the component as a

whole. New user-defined attribute types can also be added
to the model.

Analysis.
Many embedded systems are found in applications with

high dependability requirements, and they are often sub-
ject to real-time constraints. Consequently, the develop-
ment activities should be complemented by different analysis
techniques to derive extra-functional properties of individ-
ual components and the system as a whole, to ensure the
correctness of the system.

Traditionally, these analyses do not consider the software
architecture and are performed in late stages of the develop-
ment, when all detailed information is available. However,
finding design flaws in late stages of development can re-
sult in need for costly changes or even complete change of
the software architecture. Pride supports designing sys-
tems out of software components of different maturity, from
components with existing deployable code to components
with no realization defined at all. This allows us to perform
different analyses in early stages of development on the soft-
ware architecture and provide early estimates on system be-
haviour and properties. In this way we can detect possible
problems before the system is implemented and avoid late
changes.

As a result of the rich design-time component concept
of ProCom, component reuse also implies reuse of compo-
nent properties and previous analysis results. In those cases
where analysis of a component depends also on factors out-
side the component, special care must be taken to identify
to what extent the reused information is still applicable in
the new environment.

Synthesis.
Embedded systems typically have resource limitations, for

example in terms of memory and processing power. In some
cases, this is due to the fact that they are produced in large
quantities, and thus have to be cheap to produce. In other
cases, resource limitations are the result of limits in physical
size or battery lifetime.

Contrasting component models for desktop applications,
these limitations imply that a component model targeting
the embedded systems domain should not come with a high
run-time overhead. To satisfy this requirement, our ap-
proach does not provide full-scale component support at
run-time. Instead, the development process includes a syn-
thesis phase, where the component-based design is trans-
formed into a system realization based on tasks executed by
standard real-time operating system. During the synthesis,
various optimizations can be applied to adjust the code of a
component to its context in this particular system [?].

3. AN OVERVIEW OF PRIDE
Based around ProCom and the described overall approach,

we have developed several tools, tightly integrated into Pride.
Pride is built as an Eclipse RCP application that can be
easily extended with addition of new plugins. As shown
in Figure ??, the core part currently consists of a compo-
nent explorer, component editors, attribute- and analysis
frameworks, and a synthesis tool. PRIDE can be extended
by adding new extra-functional properties (attribute defi-
nitions) together with their corresponding analysis support

PRIDE

Component

Explorer

Component
Editors

Synthesis

Analysis Tools

Attribute Definitions

Fault-

Propagation

Parametric

WCET

REMES
Mem.
Usage WCET

EFP

Assurance

REMES
Simulator

REMES
Editor

creates

and

adds

Analysis

Expert

uses

Analyst

Component

Repository

Core Concepts

CBSE
ProCom

Rich Components

System

Developer

import/

export

synthetise

Binary

Files

Support

for EFPs

Runtime

Efficiency

...

...

Figure 1: Architecture of PRIDE.

when needed. Figure ?? shows a screenshot from Pride,
with some of these parts highlighted.

Component Explorer.
The component explorer enables browsing the list of com-

ponents available in the current development project. In
it, a component owns a predefined and extensible informa-
tion structure that corresponds to the aforementioned rich
component concept. The component explorer also supports
component versioning and importing and exporting of com-
ponents from a project to a component repository, making
them available for reuse in other projects.

Component Editors.
The component editors are used for developing an archi-

tectural model of components and a system as a whole. They
are built around the ProCom component model and repre-
sent one of the central parts of Pride. Components from
both ProCom layers are treated in a uniform way. The com-
ponent editor provides two independent views on a compo-
nent, external and internal view, thus alowing the separation
of concerns. The external view handles the component speci-
fication, including information such as the component name,
its interfaces and EFPs. The internal view focus on compo-
nent internal structure implementing its functionality and it
depends on the component realization type. For composite
components, the internal view corresponds to a collection of
interconnected subcomponent instances, and a graphical ed-
itor is available allowing modifications to this inner structure
(e.g., addition/deletion of component instances, connectors
and connections). For primitive components, the internal
view is linked to the component implementation in form of
source code. Editing the component code is facilitated by
features such as syntax highlighting and auto-completion,
provided through the integration of the Eclipse C/C++ De-
velopment Tooling (CDT) plugins.

Attribute Framework.
The Attribute Framework provides a uniform and user-

friendly structure to seamlessly define and manage EFPs in
a systematic way, and to support the packaging of the de-
velopment artifacts in the components [?]. The attribute
framework enables attachment of EFPs to any architectural
element of the component model. Attributes are defined by
an attribute type, and include attribute values with meta-
data and the specification of the conditions under which the

attribute value is valid. One key feature is that the attribute
framework allows an attribute to be given additional values
during the development without replacing old values. This
allows us to define early estimates for EFPs even before ac-
tual architectual element is implemented. Such values can
be used for analysis in early stages of system development.
Later, when the element is more mature, we can add more
refined values for EFPs allowing us to conduct more accu-
rate analysis.

Analysis Framework.
The Analysis Framework provides a common platform for

integrating in a consistent way various analysis techniques,
ranging from simple constraint checking and attribute deriva-
tion (e.g., propagating port type information over connec-
tions) to complex external analysis tools. Analysis results
can either be presented to the user directly, or stored as
component attributes. They are also added to a common
analysis result log, allowing the user easy access to earlier
analysis results.

Through the use of extension points in the analysis and
attribute frameworks, Pride provides support to easily in-
tegrate new analysis techniques together with their associ-
ated extra-functional properties. The analysis techniques
already integrated in Pride include parametric component-
level worst-case execution time analysis [?], model checking
of behavioural models [?], and fault-propagation. Analysis
providers would benefit of the EFP evolution management
functionalities [?].

Synthesis.
The synthesis part of Pride automates the generation of

interfaces for primitive components in the lower layer, and
generation of code for composite components in both layers.
It also produces build configurations (in debug and release
mode) for each level of composition.

Based on models of the physical platform and the allo-
cation of components to physical nodes, the synthesis also
produces the binary executable files of each node in the sys-
tem [?]. The synthesised code relies on a middleware that
has been ported to different platforms, including POSIX-
compliant operating systems, FreeRTOS and JSP.

4. RELATED WORKS
While one objective of Pride is to improve reuse which

could be better managed by a Service Oriented Architecture,
ProCom aims to manage EFP such as timing constraints. It
implies to have less flexibility in the architecture. Contrast-
ing many existing approaches for embedded system develop-
ment [?, ?, ?], reusability is a key concern in Pride, covering
not only code reuse but also reuse of parts of software archi-
tecture (models, EFPs and analysis artifacts together with
the relations between them). Pride and TOP-CASED aim
to be generic tools where many analysis can be integrated
but TOP-CASED using SysML focuses on model checking
while Pride integrates different kind of analysis including
timing ones. BridgePoint[?] is a commercial tool based on
xtUML which focuses on full code generation and strong
optimization but lacks support of extra functional proper-
ties. Comparing to Pride, the Ocarina tool suite [?] using
AADL integrates schedulability analysis. However Pride
tries to support different aspects such as fault tolerant and

Figure 2: A screenshot of PRIDE showing a) the component explorer; b) a component editor; c) a code editor;
d) the repository browser; and e) the attribute framework.

consistency instead of focusing only on timing properties.
While Ocarina is a tool chain, Pride is an integrated de-
velopment environment which allow easy integration of new
analysis. Although tools for East-ADL [?] include fault-
propagation analysis and timing analysis, they are not in-
tegrated in a specific development environment. Focusing
on the automotive domain only, Artop (the AUTOSAR tool
platform) [?] is intended to provide a unique framework to
encompasses the heterogeneity of engineering needs. To do
so, Artop provides code skeletons and testing tools without
integration and management of extra-functional properties.

5. CONCLUSIONS
We have presented Pride, a tool suite for developing

embedded systems providing support for design, analysis
and synthesis. A demonstration video is available from the
Pride website (www.idt.mdh.se/pride), from where the tool
suite and related publications can also be downloaded.
Our ongoing work on Pride includes improving the sup-

port for deployment- and allocation modeling. We also plan
to provide additional analysis techniques, including refactor-
ing impact analysis, value domain propagation and response
time analysis.

6. REFERENCES
[1] ArcCore. Arctic Studio. http://arccore.com.
[2] S. Benz, M. Rudorfer, and C. Knuechel. Interoperable

AUTOSAR tooling with Artop. First workshop on
hands-on platforms and tools for model-based engineering
of embedded systems, June 2010.

[3] E. Borde and J. Carlson. Towards verified synthesis of
ProCom, a component model for real-time embedded
systems. In 14th Int. ACM SIGSOFT Symposium on
Component Based Software Engineering. ACM, June 2011.

[4] A. Cicchetti, F. Ciccozzi, T. Leveque, and S. Sentilles.
Evolution management of extra-functional properties in

component-based embedded systems. In The 14th
International ACM SIGSOFT Symposium on Component
Based Software Engineering, June 2011.

[5] P. Cuenot, D. J. Chen, S. Gérard, H. Lönn, M.-O. Reiser,
D. Servat, C.-J. Sjöstedt, R. Kolagari, M. Törngren, and
M. Weber. Managing complexity of automotive electronics
using the EAST-ADL. In 12th IEEE Int. Conference on
Engineering Complex Computer Systems, 2007.

[6] ESTEREL Technologies. SCADE Suite. http://www.
esterel-technologies.com/products/scade-suite/.

[7] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the
prototype to the final embedded system using the Ocarina
AADL tool suite. ACM Trans. on Embedded Computing
Systems, 7:42:1–42:25, August 2008.

[8] D. Ivanov, M. Orlic, C. Seceleanu, and A. Vulgarakis.
REMES tool-chain – A set of integrated tools for
behavioral modeling and analysis of embedded systems. In
25th IEEE/ACM International Conference on Automated
Software Engineering, 2010.

[9] T. Leveque, E. Borde, A. Marref, and J. Carlson.
Hierarchical composition of parametric WCET in a
component based approach. In 14th IEEE Int. Symposium
on Object/Component/Service-oriented Real-time
Distributed Computing, 2011.

[10] MathWorks. Simulink, MatLab and Real-Time Workshop.
http://www.mathworks.com.

[11] Mentor Graphics. BridgePoint. http://www.mentor.com/
products/sm/model_development/bridgepoint/.

[12] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković.
Integration of extra-functional properties in component
models. In 12th Int. Symposium on Component-Based
Software Engineering. Springer, 2009.

[13] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković. A component model for control-intensive
distributed embedded systems. In 11th International
Symposium on Component Based Software Engineering.
Springer Berlin, October 2008.

