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Abstract

This is a survey paper investigating approaches to static program anal-
ysis on executable code. Analysis on executable code is important because
in some cases the source code does not describe what happens during exe-
cution well enough. In other cases, only the executable may be available.
Several difficulties are involved in analysing executables though, includ-
ing incomplete information about the program flow, missing information
about program variables, bit manipulation etc. This article surveys dif-
ferent suggested approaches to overcome some of these problems.

1 Introduction to Static Analysis

Static Analysis is a term used to denote a process for automatically extracting
information about a computer program without executing it. Often this infor-
mation is about a program’s run-time behaviour. Such information is important
for debugging purposes, compiler optimisations, formal verification of programs
and other areas such as timing analysis. Thus, static analysis is a broad topic
and it has many applications.

1.1 Data-Flow Analysis

In this paper, we will restrict static analysis to mean data-flow analysis, which
is the most common area of static analysis. In data-flow analysis, a program is
viewed as a graph representing the structure of a program. A data-flow analysis
then analyses how information is propagated though this graph representation
of the program.

However, while it would be desirable to extract all possible information
about programs behaviour at run-time, this is in general not possible. Static
analysis is performed by a computer program, which does not have more expres-
sive power than the programs it analyses. Therefore, exact information about an
analysed program is in general not possible to obtain. Therefore, any data-flow
analysis obtains some sort of approximation of the program’s behaviour. This
approximation is typically desired to be conservative, that is, the information
must be correct (or, sound as we will call it from now on), but not necessary
complete.
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In a nutshell, a data-flow analysis has to specify which properties should be
extracted from a program. An example would be “does this program have com-
putations resulting in an overflow?” 1. Again, the answer to this question can
not in general be answered exactly, however, an analysis should be able to give
a correct answer by saying either “no, this program has no such computations”
or “yes, this program might have such computations”. The “might have” part
is the approximation in this case.

When the property of interest has been specified, the analysis is usually
formulated as a set of transfer functions which for each type of statement (where
one or more statements are typically associated with a node in the program
graph) describes how this property is affected by the statement. The graph
together with these transfer functions then give rise to a set of equations or
constraints. This system of equations (or constraints) can then be solved by
various algorithms to find the most precise solution to this system. A good
source of information about program analysis in general can be found in [27].

1.2 An Example

So, what kind of information is propagated through the program graph men-
tioned above? This depends of course on the analysis in question, but a common
property of interest is to obtain information about the values of program vari-
ables. One common analysis derives upper and lower bounds of each variable
at each point in the program. Consider the following program:

1: n:=5

2: i:=0

3: while i < n

4: i:= i + 1

5: end while

A data-flow analysis could for example discover that, after any execution of
line 4, i will have a lower bound of 1 and an upper bound of 5. This particular
analysis is known as interval analysis (see Section 4). To discover these bounds,
the analysis has to approximate the results of all computations made in a pro-
gram without actually performing all the computations that would occur during
execution. Note that the derived bounds are correct in the sense that a variable
is guaranteed to stay within those bounds, however, due to approximations, the
bounds may be unecessarily loose.

A typical data-flow analysis derives analysis results for all places in a program
graph, not only one statement. Since analysis may be performed over different
kind of program graphs (control flow graphs, flow charts, flow graphs etc) and
different parts of statements may be referred to as a point in a program (a
graph node, a graph edge, a statement, a row number etc), we shall from here
on refer to a program’s flow representation as a program graph, and any point
of a program as a program point.

1While this is a yes/no question, data-flow analysis is not restricted to this kind of infor-
mation
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2 What You See Is Not What You Execute

As mentioned, static analysis in general has a large number of concrete applica-
tions, and a substantial amount of research related to static analysis has been
done over the years. Most of these analyses are specified on the source code
level, meaning that the information propagates according to the structure of
the source code, and the information is usually specified in terms of source code
constructions such as variables, arrays, pointers etc. This is of course conve-
nient, since the source code is the interface between the programmer and the
computer, and any information from a static analysis should be understood from
the source code point of view.

However, according to the recently popularised term WYSINWYX (What
You See Is Not What You eXecute) [5], there are many fallacies involved in
trusting a source code level analysis. The term is referring to the fact that
what is actually being executed on a machine, the machine code, may behave
significantly different from the source code due to compiler optimisations or tar-
get platform properties. Thus, especially in safety critical software, an analysis
made on the source code may be misleading. Optimisations such as removal of
dead code, loop unrolling or parallelisation also affects the flow of the program.

Moreover, the executable may contain information which simply is not present
in source code form. This includes which values reside in registers, and infor-
mation about contents of the cache or pipeline. This kind of information is very
important in analyses which extract timing behaviour from programs [34].

On source level, a program may also lack full semantic meaning. For ex-
ample, a computation leading to an overflow have an undefined behaviour at
the (target independent) source level. On the other hand, executable code al-
ways have exact semantics for every instruction. Thus, code where undefined
behaviour is not present allows a more precise analysis.

To summarise, recently there have been an increasing interest in analysing
executables rather than source code. However, as revealed in the next section,
this involves a lot of difficulties.

3 Static Analysis on Executables

As hinted in the previous section, many applications benefit from performing
analysis on executable code rather than source code. Though this seems simple
enough at first sight, data-flow analysis in general relies on many assumptions
which are valid only on the source level.

This survey investigates the challenges associated with static analysis on
executable code. We will focus on some of the distinct issues that are not a
problem on the source level, but which become problematic when analysis is on
executable code where many assumptions commonly used in static analysis are
no longer valid. We conclude this section by briefly summarising the content of
the survey.
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Control Flow Most static analyses rely on a graph representation of the pro-
gram flow. In other words, the control flow is assumed to be (mostly)
statically known. However, in executable code, the program flow typically
cannot be extracted precisely. This is due to dynamic control flow such as
indirect jumps. In Section 5 we will look at various techniques to perform
analysis where dynamic control flow is present.

Memory Model The example analysis derived lower and upper bounds on
program variables. However, in executable code, values may reside in reg-
isters, or be loaded from various memory locations. Moreover, addresses
might be computed using arithmetic, and the concept of “a variable” is
in general vague or not present. This is a problem, especially for anal-
yses which tries to maintain relations between variables. Section 6 will
investigate different methodologies for how to model program variables in
low-level code.

Integer Representation It is often convenient to formulate data-flow analy-
ses mathematically and assume that integer-valued variables assume val-
ues from the set of mathematical (unbounded) integers. However, in prac-
tice, at least on executable code, integers are stored as binary strings of a
fixed length. Because of this, integers are bounded and effects like wrap-
arounds are prevalent. Moreover, binary strings can often be interpreted
as signed or unsigned. This is often ignored or assumed not to be a prob-
lem in source level analysis. However, many studies have indicated the
importance of accurate modelling of integers. This will be covered in Sec-
tion 7.

Bit-Precise Modelling Subtle bugs even on source level can be due to what
happens on the bit-level in compiled code. For verification, it has lately
been more common to apply SAT/SMT solvers to verify bit-level proposi-
tions. In Section 8 we will see how these tools can be used as applications
in static analysis.

The rest of the paper is outlined as follows. Section 4 gives the techincal
background needed to understand the paper. Section 5-8 surveys each of the
problem areas stated above and Section 9 concludes the paper by a discussion.

4 Abstract Interpretation and Background

Most analyses referred to in this survey are based on abstract interpretation
[9], which is a general framework for abstracting program semantics. One of
the benefits with abstract interpretation is that it provides a systematic way of
specifying data-flow analyses. The idea is that any analysis is specified as an ab-
straction of a programs collecting semantics. The collecting semantics contains
a program’s reachable semantic states. Thus, the collecting semantics theoret-
ically contains exact information about which states a program can possibly
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reach in any execution. This unfortunately means that the collecting semantics
is in general not computable, but it is possible to soundly approximate it via
abstract states.

An abstract state is used as a sound approximation of a set of concrete
states. It is a compact representation of a set of concrete states. The repre-
sentation is not expressive enough to express all possible sets of states, forcing
the representation to approximate a set of states by a superset of states. Such
a representation model is called an abstract domain, and the abstract domain
restricts the actual set of states that can be represented. Table 1 summarises
the most commonly used abstract domains used in literature. In fact, most of
the surveyed analyses in this paper uses at least one of these domains.

Abstract domains can be divided into two classes. On one hand are the
independent domains, which abstracts each program variable independently of
one another. On the other hand there are the relational domains which abstract
the whole set of states into one compact representation, preserving relations
between the variables. Relational domains are naturally more precise (but also
more costly) than independent ones. Below, we briefly explain each of the
domains in Table 1.

E: The Constant Domain The least precise (of the mentioned domains), and
also cheapest domain is the constant domain. The analysis derives for each
program point and each variable if it is a constant, and if it is, which one.
If a variable may not be a constant at a program point, the value ⊤,
meaning “no information” is derived for it.

D: The Interval Domain The interval domain generalises the constant do-
main by inferring lower and upper bounds on each variable. This is per-
haps the most used abstract domain.

F: The Congruence Domain The congruence domain also generalises the
constant domain, but orthogonally to the interval domain. The domain
cannot model lower and upper bounds, but instead it models the smallest
congruence (w.r.t. inclusion) class containing all values a variable might
have at a program point.

B: The Affine Relations Domain The relational version of the constant do-
main. This domain detects all affine relations between variables.

A: The Polyhedral Domain A generalisation of the affine relations domain
and the relational version of the interval domain, which contains all pos-
sible program states at each program point within the smallest possible
convex polyhedron surrounding them.

C: The Affine Congruences Domain Also a generalisation of the affine re-
lations domain, and the relational version of the congruence domain.

Another nice, and commonly used property of abstract interpretation is the
concept of product domains. Since abstract domains are specified using the
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Invariant type Inequalities Equalities Congruences
Relational A:

∑
i aixi ≤ c B:

∑
i aixi = c C:

∑
i aixi ≡ c mod n

Independent D: a ≤ x ≤ b E: x = a F: x ≡ a mod n

Table 1: Common abstract domains. They are called: A: The polyhedral
domain[10], B: The affine relation domain [21], C: The affine congruence do-
main [17], D: The interval domain [9], E: The constant propagation domain
(classic) and F: the artihmetical congruence domain [16]

same methodology, they are easy to combine to obtain more detailed domains.
The simplest version is to simply run the analysis using different domains and
interpret the result as the intersection of the abstract values derived by the
different analyses. This is known as the direct product of the domains. If the
information obtained from the different analyses are used optimally to benefit
from each other during analysis, this is known as the reduced product of the
domains. A commonly used reduced product is that of intervals and congruences
[14, 3, 30].

5 Control Flow

Static analysis relies on the graph representation of a program to be able to
propagate analysis results through the program. On source level, the control
flow can often be trivially extracted from the code structure2. On executable
level, on the other hand, the control flow is less obvious. Jumping targets might
be calculated dynamically. A very common and typical case is switch cases
where a jump table is usually created and the actual jump is calculated from
the switch-index.

Thus, it may not be possible to extract the exact program flow directly from
the code. This section lists some approaches to analyse code in the absence of
exact control flow information. For reference, a lists of problems and challenges
associated with finding the program flow can be found in Section 2.1 of [33].

The most common approach to control flow is to re-build the control flow
graph from scratch. This is usually done bottom-up by reading and decoding
one instruction at a time and building edges where jumps are found, as in
[33, 19, 22]. This is straightforward and works as long as the jumps are absolute
or relative absolute. However, if the target address needs to be computed, i.e.,
if it is a switch-statement or a function pointer or other dynamic control flow,
this is a problem that needs resolving. In general there are two approaches.
The first approach is to attempt to compute the target address, which usually
involves some sort of pattern matching. The second approach is to mark the
jump as unknown for later processing. It is common to combine approaches as
well, and in the following, some publications will appear in several sections.

2However, there might still be some issues like function pointers or dynamic dispatch
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5.1 Pattern Matching Approaches

If the compiler and/or the architecture is known, then known patterns in the
code layout can be exploited to resolve dynamic jumps. Holsti [19] uses partial
evaluation to find target addresses in switch tables, thus the structure of switch-
tables is exploited to resolve jumps. Theiling [33] relies on a decoder for each
architecture which is assumed to be able to extract branch targets from switch-
tables etc.

The problem with pattern matching is that it only works for specific compil-
ers or platforms. However, for a precise analysis on executable level, it is hard
to develop generic strategies which generalise to any architecture and compiler.

5.2 Top-Down Approaches

In a top-down approach, first all basic blocks and procedures are detected, and
then edges between the basic blocks are established. If the instructions are
known, this can be done by simply traversing the executable and mark jumping
instructions as end of basic blocks and (known) targets as starts of basic blocks
[1].

De Sutter et. al. [32] were the first to use a special node representing
unknown targets. This node is made such that any unresolved branch links to
this node. Similarly, this node then links to each possible target. Thus, this is
a conservative and safe over-estimation of the program flow. When the graph
has been fully built (including this special node), pruning techniques based on
constant propagation are used to (safely) remove as many incoming and outgoing
edges from this special node as possible, to make the control flow more precise.
This can be seen as a top-down approach in the sense that a conservative flow
is first obtained, and then later refined by subsequent analyses.

Top-Down approaches are associated with the difficulty of first finding the
set of instructions belonging to the program. This can be a challenge, especially
when instruction sizes are not fixed.

5.3 Bottom-Up Approaches

In a top-down approach, a conservative program flow is first built and later
refined. In a bottom-up approach the graph is built by traversing instruction
by instruction, building blocks and edges as they become available.

Theiling [33] propose a bottom-up approach by analysing instruction by in-
struction in a procedure, while recording calls and recording possible target
addresses. The recording of target addresses relies on a platform specific de-
coder which may also be aware of compiler structures such as branch tables (see
Section 5.1 about pattern matching).

Holsti [19], uses a method where a flow graph is built bottom up. The
flow graph can be seen as a context sensitive program graph, on which partial
evaluation is performed to obtain target addresses.
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A method entirely based on abstract interpretation is suggested by Kinder
[22]. In the method, abstract interpretation (over an arbitrary abstract do-
main) is performed, but instead of being performed over the program graph,
the propagation of values is resolved at analysis time. In other words, values
that corresponds to addresses are also modelled by the abstract interpretation,
and the analysis proceeds to addresses described by the abstract values. The
key idea is here to model the possible target adresses in the used abstract do-
main. This leads to a over-estimation of addresses, but is shown to be as precise
as the abstract domain is. To summarise the approach, the program graph is
built during the actual analysis. A similar approach is used in [15].

5.4 Other Approaches

In [3], indirect jumps are added as edges in their graph representation of the
program in two cases: if all targets can be read from program memory, or if the
address can be determined by a tight value from their value set analysis (See
Section 6.2). If not, the node does not add extra edges and marks the jump as
an “unsafe instruction” and reports this problem to the user.

A slicing technique is used to find addresses in jumping tables in [8].

6 Memory Model

In high level languages, the memory is modelled as an environment: a map
from variable names to values. In executable code, however, this modelling is
not feasible. Typically the memory has to be modelled more specifically. First
of all, it is no longer obvious what a program variable is. A program variable,
from the high level point of view, may be a register, a memory location or an
offset to the stack pointer. While this information can sometimes be obtained
by debugging information from the compiler, it is not always available. This
section surveys different approaches to model memory for executables in absence
of debugging information.

6.1 Direct Memory Modelling

In [6], the ATMEL ATmega16 microcontroller is the platform for the analysis.
This microcontroller has 1120 bytes of addressable memory, and thus, the au-
thors simply models the memory as a mapping from a concrete address to an
abstract value. The benefits of this is that since memory is directly modelled,
it is easy to detect when memory areas are overwritten as well as keep track
of pointers. However, such an approach is only feasible when the amount of
addressable memory is small. A similar approach is used in [31] 3.

3However, a second layer mapping variables to memory addresses is used, so program
variables still has to be identified
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6.2 Value and Alias Analysis

Debray et. al. [12, 13] introduces an abstract interpretation on executables
based on the congruence domain to derive possible aliasing issues. The anal-
ysis analyses the contents of the registers at each program point to discover a
congruence class. Two registers are assumed to possibly alias if the congruence
classes are not disjoint.

Balakrishnan and Reps introduced an analysis called value set analysis (VSA)
in [3], later enhanced in [4, 29]. Here, memory is modelled as a set of memory
regions, which are assumed to be non-overlapping address spaces. In particu-
lar, each procedure is associated with its own memory region containing local
variables and parameters. Moreover, global variables reside in their own mem-
ory region and each dynamically allocated object gets its own memory region.
One of the reasons for dividing each procedure into distinct memory regions is
that the same area of the memory might be used for different things at different
points in the execution (e.g., the same memory space might be used for different
procedure calls).

Concrete memory locations are referred to as offsets within a memory region.
Before analysis, a disassembly toolkit called IDAPro [20] is used to find all
statically known addresses of the program to be analysed. Each statically known
address is then associated with an abstract location, called an a-loc by the
authors.

Abstract stores are then used to represent the analysis values. An abstract
store maps each a-loc to a mapping from memory regions to an abstract value,
or more formally:

a-store : a-loc → (memreg → absval)

where absval is an abstract value from the reduced product of the integer and
the congruence domain. These abstract values represents a set of possible offsets
in the memory region. In this way, each a-loc can compactly be associated with
a set of possible addresses.

In addition to the analysis with the product domain to find possible ad-
dresses, a relational analysis among the registers is performed. As the analysis
is specified for x86 architectures, the analysis captures the relation among eight
registers. Since eight is a low and constant number, this is with a constant
complexity. For the relational analysis, the algorithm in [25] is used.

To summarise, the result of the analysis is that each statically known address
and register (that is, each a-loc) is associated with a set of possible addresses
to which it can refer.

6.3 Discovering Program Variables

In [3], IDAPro is used to identify program variables. It uses the fact that IDAPro
can find all statically known addresses and uses them to identify variables (or
a-locs). Global variables are identified as absolute addresses and local variables
are identified as an offset from the stack pointer. So a local variable x of function
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foo would be identified by the offset [foo − 16] for instance. In this way, local
and global variables are discovered. However, this method has problems with
dynamically allocated space and aggregates such as arrays and structs.

Balakrishnan and Reps enhance their work to handle aggregates better in [4].
The problems of the previous approach was that it typically would not recognise
individual elements in structs or individual array elements. Here, VSA analysis
and Aggregate Structure Identification (ASI) [28] is used to discover variables.

ASI analyses how memory is accessed from a description of data access from
the program, and gives as outputs directed acyclic graphs (DAGs) describing
how memory is accessed. The DAGs has two types of nodes, struct nodes and
array nodes, with sub-DAGs describing their structure. For instance, ASI can
detect that a sequence of bytes is used as “An array of four elements, where
each element is a struct with two fields containing four bytes each”.

Using aggregate information, the a-locs used in the VSA analysis can be
refined. Thus, a new set of a-locs which is more representative of how variables
are used is obtained from the ASI. Of course, using this new set of variables can
give more precise results in the VSA analysis, and consequently, a subsequent
VSA analysis is performed. However, this new VSA analysis can then give more
detailed flow information, which when fed to ASI analysis can give more detailed
memory access information. Thus, a fixed point analysis is performed when the
output of VSA is given as input to ASI and vice versa until a stable answer is
obtained.

7 Integer Representation

As mentioned in the introduction, integers are in real machines usually repre-
sented by a fixed sized binary string, while most analyses assumes that values
are unbounded, resulting in possibly unsound results. This problem is mostly
prevalent in abstract interpretation with the purpose of identifying possible val-
ues for variables at a program point. Most commonly used abstract domains
such as [9, 16, 17, 21, 10] where originally presented with the assumption that
integers are unbounded.

When a calculation results in a result which cannot be represented by a
binary string of the preferred size, an overflow occurs. Note that different
platforms may have different semantics for overflows. The most common way
to handle it is to truncate the result to the desired number of bits, leading to a
wrap-around effect. Since this is the most common semantics, we assume from
now on that the semantics of an overflow is wrap-around.

Another problem is that the bit-strings representing integers can be inter-
preted as signed or unsigned. On the source level, casts between these two
representations can be made. While such a cast does not affect the bit-string,
it can largely affect the values an analysis has derived. For example, during a
cast from signed to unsigned, a value might turn from a small negative number
to a large positive one.

This section will survey various methods to adapt numeric abstract domains
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to make them sound when seen as integers represented by bit-strings. There
seems to be two main approaches to the problem: to model the abstract domain
in modular arithmetic, or splitting abstract values into several for processing.

7.1 Modular Arithmetic

One mathematically convenient approach to solve both the problem of finite
sized integers and the signed/unsigned problem, is to use modular arithmetic.
That is, instead of considering integer valued variables to assume values in Z,
variables assume values from the set of congruence classes modulo n: Zn =
{c0, c1, ..., cn−1}. That is to say, the element ck ∈ Zn represents the class {k +
in|i ∈ Z}. The class ck is an equivalence class, and we say the elements of ck
are congruent modulo n, or equivalently, let x0, x1 ∈ ck, then x0 ≡ x1 mod n.
The class Zn forms a ring of integers and thus have well defined addition and
multiplication operators.

If integers are represented internally by binary strings of length N , then
consider the set of congruence classes modulo 2N , or Z2N . This class contains
exactly the 2N elements representable by N bits. Moreover, modulo addition
and multiplication now works exactly as they would do for binary strings, in-
cluding wrap-around effects4.

Similarly, this approach can be used to handle the signed/unsigned problems
by observing that the signed and unsigned representation of any bit-string B of
length N will always be congruent modulo N . However, this observation alone
does not solve all the issues concerning signed and unsigned integers.

7.1.1 Affine Relations

Müller-Olm and Seidl presented an analysis of affine relations in [26]. The
analysis derives all present affine equality relations among variables at each
program point (if conditionals are ignored). Their approach to variables is that
they assume values in the ring Z2N , in order to make the analysis sound for
values modelled as N -bit strings. They develop their method mathematically,
and it can be seen as a variant of Granger’s affine congruence domain, but with
a fixed modulus 2N . The paper includes algorithms for interprocedural analysis
using this domain.

7.2 Splitting Abstract Environments

Another way to deal with over-flows caused by finite representation of integers
or the problem with signed or unsigned integers is to, at some point, divide
the abstract values of the domain. For the overflow problem, an abstract value
can be divided into two parts; one part for the non-over flowing result and one

4If the case of an overflow, extra bits would be needed to represent a larger number, but
these are simply ignored, with possibly a status flag is set. This causes the wrap-around as
simulated by the modular arithmetic.
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for the wrapped result. These two can then be manipulated independently and
finally merged together for a safe result.

To solve the signed/unsigned problem a similar approach can be used; having
one representation for the signed result and one for the unsigned. However,
these results should not be merged, but rather they should be seen as safe
approximations of the different interpretations. This section surveys some work
when these approaches have been used.

7.2.1 Non-relational domains

In [30], a modification of the reduced product of the interval and the congruence
domain was presented. The domain is specially designed for being able to handle
overflows in arithmetic. The approach is to use the domain as normal, but verify
for each operation if an overflow occurs. This is done by double the amount of
needed bits in each operation, that is, if n bits are used to represent integers,
2n bits are used in the operation. They then check if n bits are enough to store
the result and if not, the abstract value (i.e., the invariant) is separated into
two disjoint sets, one which contains the overflow only (represented only by the
lower n bits), and the rest is the non-overflowing part. The union of the two is
then used as final result.

In this method, it is also possible to give invariants on the form where the
lower bound is higher than the upper bound. This happens when the boundaries
of a variable are close to a wrap around 5. The authors again handle this case
by separating the abstract values into two disjoint set, perform the operations
point-wise, and merge the result.

Finally, the authors incorporates an affine analysis to detect linear relation-
ships between variables to further enhance the final results.

In [18], the interval domain is used. To handle the problem of signed and
unsigned integers, a product domain of signed and unsigned intervals is used.
In addition, to handle overflows, an interval can be split into two intervals, one
with the least value as lower bound and one with the greatest value as upper
bound. Due to this dual representation, wrap-arounds can be handled.

7.2.2 Relational Domains

Simon and King have attempted to solve the problem of wraparounds and inter-
pretation of signed and unsigned integers for the polyhedral domain [31]. Their
approach does not change the polyhedral domain or the analysis it self, however,
it changes the interpretation of the abstract values. First, the interpretation of
the values inside a polyhedron is restricted to the values possible to represent
by a bit string. Moreover, all values that can possibly be interpreted by the
bit-strings are reported. In this sense, wrap-arounds are implicitly modelled by
the polyhedron; any value in the polyhedron which is smaller or larger than can

5Concretely, if 8 bits are used, an abstraction on the form 254 ≤ x ≤ 2 would mean that
x would lie either in the interval 254− 255 or in the interval 0− 2.
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be represented by n bits, is simply truncated to n bits, just as it is done in the
concrete execution.

However, this re-interpretation of values in a polyhedron has a consequence:
guards can no longer be modelled as they used to. An affine guard (or con-
ditional) is usually handled by taking the intersection of the polyhedron with
the half-space representing the guard. However, since the concrete values rep-
resented by a polyhedron might be “wrapped” values (i.e., smaller or larger
than the ones present in the polyhedron), the guard might affect values not
normally affected by the polyhedron. This is where the splitting of the abstract
environment comes in.

Let Zm
2n denote the subspace of Zm where each point can be represented by

m binary strings of length n. If the polyhedron has points outside this subspace,
the other parts are partitioned into spaces the same size as Zm

2n , and then
translated into the same base as Zm

2n . This has the same effect as truncating the
values to n bits. The guard is then applied to each of the translated subspaces,
and finally the results are merged together into one polyhedron.

8 Bit-Precise Modelling

Since executable code typically involves bit-manipulation, it can often be ben-
eficial for a program analysis to verify conditions on bit-level using SAT or
SMT-solvers.

An SAT-solver (SATisfiability) is an automatic procedure for checking the
satisfiability of arbitrary Boolean formulae. That is, given a Boolean formula
and a set of input variables, the SAT-solver checks whether there is a satisfying
assignment of the input variables such that the formula is true.

An SMT-solver (Satisfiability Modulo Theories) is a generalisation of a SAT
solver in that it allows for binary-valued functions. These functions may have
non-binary arguments (like integers), and may be left uninterpreted. However,
theories might be used to interpret the binary-valued functions. Examples are
real arithmetic, binary arithmetic, list arithmetics. The core of an SMT-solver
is usually a SAT-solver, but with aid for other types of procedures solving the
theories.

8.1 Bit-Level Abstract Domains

In [23], a domain able to find congruence relations between individual bits is
presented. They describe how Boolean functions can be abstracted as systems of
congruence constraints. Any Boolean function can be abstracted in this way by
their algorithm, which involves repeated calls to a SAT-solver to incrementally
build the abstraction.

The abstract domain used is exactly that of Granger [17] (see Figure 1),
however, instead of modelling program variables, the individual bits of program
variables are modelled. So if x, y are unsigned, byte sized program variables and
x = x7x6...x0, y = y7y6...y0 are their respective bit representations, then their
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analysis derives invariants of the form

7∑
i=0

2i(aixi + biyi) ≡ c mod n

where ai, bi ∈ Z. This enables detailed relation between individual bits to be
modelled.

Brauer et. al. also uses a bit-level domain in [6], where the abstract val-
ues are strings of generalised bits. A generalised bit is a value from the set
{⊥, 0, 1,⊤} 6. The reduced product of this domain and the interval domain is
then used to obtain analysis values which take bit-strings into account.

8.2 General Static Analysis

In [24], a method to find software bugs, focusing on detection of over-flows is
presented. The main contribution here is that they combine a static analysis
tool called prefix [7] with an SMT-solver Z3[11], to be able to detect errors
caused by overflows. While doing this, care is taken not to report every over-
flow, since overflows might be fully intentional, but the one resulting in possible
erroneous behaviour of the program. prefix is based on symbolic execution, that
is, execution over abstract states. Z3 is then used to check, in each computation
that may result in an overflow, the satisfiability of a formula expressing the
possibility of an overflow. The authors describe these formulae for all common
arithmetic operators and casting operators.

9 Discussion

Static analysis and data-flow analysis in particular have been around for a long
time, and many different analyses for many different purposes have been devel-
oped. However, most of these analyses have been developed in the comfortable
assumptions that the program flow is known, that memory can be modelled
as mappings from variables to values and that program variables take values
from infinite mathematical sets. These assumptions however, are generally not
feasible to use when analysing executables, and as such, analysis of executables
is almost a different topic.

While analysis on source code level can be useful, the WYSINWYX phe-
nomena states that in safety critical systems, it might not be the ideal way to
go. However, to fully take account for the problems arising in executable code
is difficult. Many problems severely hamper the usefulness of some proposed
analyses. The problems of wrap-arounds is a difficult one, making almost all
proposed numeric domains unsound. This is specially difficult for relational do-
mains, and not too many attempts have been made solve it (with the notable
exceptions of [26] and [31]).

6Another notation is used by the authors
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What would be interesting to see is a full complete framework for analysis
on executables addressing all the problems outlined in this paper: the memory
model, control flow, finite sized integers and bit-preciseness. The most serious
attempts to develop such a framework would be the works of Balakrishnan
and Reps (see Section 6.2) and the tool Codesurfer/x86 [2], where a model for
program flow, the memory model, including modelling of “program variables”
is taken into consideration. Another, more general attempt to adapt abstract
interpretation in general to executables is the work in [22] (Section 5.3), which
includes a theoretical adaptation of the abstract interpretation in the absence
of known program flow.

We believe that, since much of the work in this field is quite recent, an
increased effort in adapting static analysis to executable code is happening,
especially since a lot of issues still remains. None of the challenges of analysis
of executables can yet be regarded as solved.
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