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Abstract: Controlling the preemption behavior in real-time systems can have beneficial impacts in
multiple contexts as it can decrease the processor utilization, reduce the energy consumption or even
enable the schedulability of the system. In this paper we study the preemption behavior of sporadic
task systems scheduled using the Fixed Priority Scheduling (FPS) policy, and evaluate the feasibility of
preemption control using CPU frequency scaling. We show that offline preemption control using CPU
frequency scaling is difficult for sporadic task systems, and we propose an online heuristic algorithm,
of linear complexity, to control the number of preemptions in a sporadic task system. Evaluation results
show that online CPU frequency scaling is an attractive approach for preemption control in sporadic task
systems.
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1. INTRODUCTION

Preemptive and non-preemptive fixed priority real-time schedul-
ing have been widely studied during the past decades. While
preemptive FPS, is generally considered to achieve higher pro-
cessor utilization while guaranteeing the tasks’ schedulability,
it suffers from a number of preemption-related costs, e.g., un-
desired processor utilization, high energy consumption and, in
some cases, even infeasibility. Preemption costs may also lead
to unpredictable variations in task execution times. Though
the task execution times can be safely determined using static
timing analysis, e.g., Byhlin et al. (2005), at runtime, the pre-
emption overheads (e.g., cache related preemption delays) can
lead to variations in the Worst Case Execution Times (WCET)
(Ramaprasad and Mueller (2008)). Hence, the unpredictable
variations may have detrimental impacts in terms of schedula-
bility, which is not acceptable in most of the real-time systems
today. Preemptive FPS also requires the use of resource access
protocols to achieve mutual exclusion, in cases where tasks
communicate through shared resources. These resource access
protocols, though predictable, introduce schedulability over-
heads to the system, as well as lead to pessimistic assumptions
in the schedulability tests. Reducing the number of preemptions
can also be beneficial from an energy point of view in systems
with stringent requirements on low power consumption. When
a task is preempted, there is a great probability that its contents
in the cache will be lost. When the execution of the task is again
resumed, it will cause a lot of energy consuming accesses to off-
chip memory. An access to off-chip memory is typically 10-100
times more expensive than an on-chip cache access in terms
of energy consumption. Reducing the number of preemptions
will reduce these additional expensive memory accesses due to
reduced cache pollution.
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A non-preemptive scheduling scheme on the other hand does
not allow the full utilization of the available processor time, as a
low priority task cannot be interrupted by a more urgent higher
priority task, which will result in a lower utilization bound in
order to guarantee the schedulability of the tasks. Thus, one
of the costs of using a non-preemptive scheduler is the loss of
utilization which comes from the blocking of higher priority
tasks by the lower priority tasks (Baruah (2005)). However,
it should be noted that non-preemptive scheduling can be in-
feasible even for arbitrarily low utilizations. The advantage,
however, of using a non-preemptive scheduling algorithm in
real-time systems is its low runtime overhead. Also, the WCET
assumptions based on the static analysis on task executions do
not change, as the tasks are allowed to complete their execu-
tions once they start executing, without, e.g., context-switch or
cache-related variations.

Modern processors support Dynamic Voltage and Frequency
Scaling (DVS) which can be used to increase or decrease tasks’
execution times by manipulating the CPU frequency at which
they are executed. DVS techniques have been traditionally used
for energy conservation by reducing the supplied voltage and,
thus, lowering the CPU frequency. This, however, increases the
task execution times, which, in its turn, potentially increases
the number of preemptions in the schedule. The ability to scale
up/down the CPU frequency provides us with the possibility of
manipulating task execution times to achieve various goals.

Sporadic task model proposed by Mok (1983) and Baruah et al.
(1990) is a widely studied task model. In this task model, each
task is characterized by a minimum inter-arrival time between
any two consecutive occurrences. The sporadic task model is
adopted in many common real-time systems, e.g., in systems
where the events occurring in the system are separated by a
known minimum inter-arrival time. The periodic task model
(Liu and Layland (1973)) is a special case of a sporadic task
model where every occurrences of the task is separated by
exactly the minimum inter-arrival time. Thus, the sporadic task



model is a more general model that is useful in the analysis of
many real-time systems.

We explore the use of CPU frequency scaling for preemption
control in sporadic task systems. We show that offline preemp-
tions control using frequency scaling in a sporadic task system
is difficult as it requires information which is not available
until runtime. Consequently, we present an online algorithm, of
linear complexity, for preemption control in sporadic task sys-
tems, and evaluate its performance through simulations using
synthetic tasksets. The evaluation results show that online CPU
frequency scaling is an attractive as well as affordable approach
towards controlling the preemption behavior of sporadic tasks
in FPS.

The paper is organized as follows. In section 2 we discuss
the related work. Section 3 details the system model and the
various notations used throughout this paper. In section 4, we
discuss the possibility of preemption control in sporadic task
systems using CPU frequency scaling, where we present an
online algorithm to control the preemption behavior, followed
by an example in section 5. We conclude our paper in section 7
after presenting our evaluations in section 6.

2. RELATED WORK

The need for preemption elimination is widely recognized in
the literature and has been discussed in many works (Bui et al.
(2008), Burns et al. (1995), Katcher et al. (1993), Ramaprasad
and Mueller (2008)). The preemption cost includes the direct
costs to perform the context switches (Katcher et al. (1993))
and to manipulate the task queues (Burns et al. (1995), Katcher
et al. (1993)), as well as the indirect cost of cache-related
preemption delays (Lee et al. (1998), Schneider (2000)). Bui
et al. (2008) observed that, in an extreme case, cache related
preemption delays can lead to as large as 33% increment in task
execution time on a PowerPC MPC7410 with a 2 MB two way
associative L2 cache. Ramaprasad and Mueller (2006) analyzed
the effects of cache related preemption delays and provided
an accurate analysis of the data cache behavior. They showed
that the critical instant does not necessarily occur when all the
tasks are released simultaneously when considering preemption
delays.

Preemptive Fixed Priority Scheduling (FPS) has been exten-
sively analyzed since the work of Liu and Layland (1973), and
is used in a large number of applications, mostly due to its
flexibility and simple run-time overhead. In practice, however,
preemptive FPS may imply large preemption related overheads
and the need for preemption control is well recognized in liter-
ature (Burns et al. (1995), Ramamritham and Stankovic (1994),
Ramaprasad and Mueller (2006)). Buttazzo (2003) showed that
the rate monotonic algorithm (RM) introduces a higher number
of preemptions than earliest deadline first algorithm (EDF).
He noted that this increase in the number of preemptions can
significantly increase the overheads in the system reducing the
benefits of its simple runtime implementation.

Several methods have been proposed in the past to reduce the
number of preemptions in real-time scheduling. Preemption
Threshold Scheduling (PTS) for FPS was first introduced in the
ThreadX operating system (Lamie (1997)), which was later for-
malized by Wang and Saksena (1999), showing that this method
improves schedulability and reduces the number of preemp-
tions and the number of threads in the system. Wang and Sak-

sena (1999) describe an optimal algorithm to assign preemp-
tion threshold by iterating over the solution and attempting to
assign the largest feasible preemption threshold values to tasks
such that the task set remains schedulable. The results show
that large threshold values reduce the probability of preemp-
tions and therefore should result in less preemptions. However,
this approach results in a dual priority system which may not
be directly suitable for, e.g., legacy systems, where scheduler
modifications may not be possible. The integration of real-time
synchronization schemes into PTS was proposed by Kim et al.
(2002), where the authors integrate priority inheritance protocol
and priority ceiling protocol into PTS. The results show that the
integrated schemes can minimize worst-case context switches
and are appropriate for the implementation of real-time object-
oriented design models.

Gai et al. (2001) extend this scheduling model to EDF pri-
ority assignment and showed that it can reduce the memory
requirements of the system. Jejurikar and Gupta (2004) pre-
sented an approach to combine PTS with DVS to enable energy
efficient scheduling. Traditionally, Dynamic Voltage and Fre-
quency Scaling (DVS) techniques have been used for reducing
energy consumption by slowing down tasks’ executions (Aydin
et al. (2004), Bini et al. (2009), Marinoni and Buttazzo (2007),
Pillai and Shin (2001)). This is effective in reducing the energy
consumption according to the relation P = CV 2F , where P is
the power consumed by the processor, V is the applied voltage,
C is the effective capacitance and F is the operating frequency.
This means that the power dissipation increases/decreases lin-
early with frequency and quadratically with the applied voltage.
However, since there is an increase in task execution times, the
number of preemptions increase significantly.

Baruah (2005) proposed an algorithm to calculate the length
of the longest possible non-preemptive execution of a task in
a sporadic task system, scheduled by EDF. Earlier, Baruah
et al. (1990) studied the feasibility of preemptively schedul-
ing sporadic task systems on a uniprocessor and proposed an
algorithm that runs in pseudo-polynomial time for most task
sets. Yao et al. (2010), evaluated the various limited preemp-
tion methods. Earlier Yao et al. (2009) presented a method to
find an upper bound on the length of the largest possible non-
preemptive execution of a task in fixed priority schedules and
presented extensive simulation results. Bertogna et al. (2010)
presented an optimal method to place preemption points under
a fixed preemption overhead. The evaluations demonstrated the
advantage of limited preemption models over non-preemptive
systems and fully preemptive systems with preemption costs,
in feasibly scheduling task sets. However, the schedulable task
set ratio decreases with increase in utilization, indicating that
deferred preemption models and limited preemption models
could be ineffective at high utilizations levels.

In an earlier work by Dobrin and Fohler (2004), a method
has been proposed to analyze offline a set of periodic tasks
scheduled by FPS, and to identify the maximum number of
preemptions that can occur at run time. It then reassigns task
attributes, such as the task priority, period and offsets, without
affecting the schedulability of the task set, while attaining a
significantly lower number of preemptions. This is achieved
at the cost of increased number of tasks and/or reduced task
execution flexibility. We (Thekkilakattil et al. (2010)) later
proposed an offline method to control preemption behavior in
FPS using CPU frequency scaling. This was done by finding



the minimum sufficient frequency at which a task instance must
execute such that its non-preemptive execution is guaranteed.

In this paper, we extend our previous work (Thekkilakattil
et al. (2010)) to sporadic task systems (Mok (1983), Baruah
et al. (1990)) and study the feasibility of controlling preemption
behavior in sporadic task systems, scheduled by a fixed priority
scheduling scheme, using CPU frequency scaling. We provide
an overview on the effectiveness of using the possibility of
changing task execution frequencies to achieve preemption
control. We show that pure offline preemption control using
frequency scaling is not suitable for the sporadic task model,
and we propose an, online algorithm of linear complexity,
that takes advantage of the frequency scaling abilities provided
by modern processors for preemption control in sporadic task
systems scheduled by FPS.

3. SYSTEM MODEL

3.1 Task model

In this paper we build on the sporadic task model introduced
by Mok (1983) and Baruah et al. (1990). We consider a set of
tasks Γ= {τ1, τ2, ...τn}, where each τi has a minimum inter-
arrival time Ti, a worst case execution requirement denoted
by Ci, a priority Pi and a deadline Di, relative to the start of
its period. It should be noted that Ti is also referred to as the
period of τi. Moreover, we assume that Ci, which we define as
the worst case number of clock cycles required for each task, is
independent of the clock frequency and is a constant (Melhem
et al. (2004)). Note that when we consider a task instance τi,j ,
Ci,j represent the time required to execute the Ci clock cycles
at a given processor frequency. We assume that the task set is
schedulable under a work conserving Fixed Priority Scheduling
(FPS) algorithm and the tasks are ordered such that Pi < Pi+1.
A work conserving algorithm never idles the processor when
there are outstanding computations to be executed. We denote
the highest priority task τi by the lowest Pi value. Each task is
assumed to be mapped to a unique priority. LCM represents the
Least Common Multiple of the time periods of all tasks in the
task set.

The release time of a sporadic task instance τj,k can be repre-
sented by the following equation:

relj,k ≥ sj + (k − 1)Tj

We remove the inequality by accounting for the offsets in the
release time of all k − 1 instances of τj ,

relj,k = sj + (k − 1)Tj +

k∑
a=2

φj,a

where φj,a is the offset in the release time of τj,a. The offset
in the release time of τj,k arises from two variables: sj and∑k
a=2 φj,a. We add the initial offset sj to

∑k
a=2 φj,a and thus

obtain:

relj,k = (k − 1)Tj +

k∑
a=1

φj,a (1)

Let startj,k and finishj,k represent the start time and finish
time of τj,k respectively.

3.2 Energy Model

We consider a processor model which supports a set of discrete
operating modes M = {m1,m2,m3, ...mp}, where each mq

is characterized by mq = (Fq,Wq). Here, Fq is the processor
frequency associated to mode mq , and Wq is the set Wq =
{w1

q , w
2
q , .., w

r
q}, representing the power consumed per clock

cycle by r resources used by the tasks in mode mq . Let the
maximum frequency supported by the processor be Fmax. We
assume a known upper-bound on the frequency-switch over-
head, which may occur only in conjunction with a scheduling
decision.

The total energy consumption due to task executions over the
period of time until time t can be represented as:

Et =

n∑
i=1

k∑
l=1

ei,l (2)

where k is given by the smallest integer satisfying:

(k + 1)Ti +

k∑
d=1

φi,d ≥ t

and,

ei,l =

Ci∑
b=1

{
r∑
a=1

waq

}

Here, mq is the execution mode of the processor during the bth
clock cycle of τi,l. In other words, ei,l is the sum of the actual
power consumption of all the clock cycles, which gives the
total energy used for the execution of the task instance τi,l. The
task instances are initially assumed to execute at the minimum
frequency supported by the hardware.

3.3 Execution Time Model

A linear relationship between frequency and execution time
of a task instance is considered. The execution time of a task
instance τi,j , denoted by Ci,j , is inversely proportional to the
frequency at which the processor executes τi,j . If X is the
processor frequency when τi,j executes, then its execution time
Ci,j is given by:

Ci,j =
Cmaxi,j

X
× Fmax

where Cmaxi,j is the execution time obtained at Fmax. This
implies that,

X =
Cmaxi,j

Ci,j
× Fmax (3)

Similarly, let, τi,j execute for a time of C ′
i,j when it execute at

a frequency, X ′:

X ′ =
Cmaxi,j

C ′
i,j

× Fmax (4)

Dividing the equation 3 by 4, we get:

X

X ′ =
C ′
i,j

Ci,j



which gives,

X ′ =
Ci,j
C ′
i,j

×X (5)

This equation gives the frequency required for scaling Ci,j
to C ′

i,j . We have used this equation to derive the maximum
frequency necessary to ensure a required worst case execution
time for a particular task instance. This model is derived from
the model presented by Marinoni and Buttazzo (2007). The
speed of the processor when it executes at the default frequency
is assumed to be 1. Thus, if Ci,j is the default execution time of
τi,j ,

Ci,j

C′
i,j

gives the speed at which the processor must execute

to complete τi,j in C ′
i,j time units.

4. METHODOLOGY

In this section, we examine the possibility of using CPU fre-
quency scaling to control the preemption behavior in sporadic
task systems scheduled by FPS. We first show that an offline
approach to control the preemption by using CPU frequency
scaling cannot provide non-preemption guarantees in a sporadic
task system. Then, we propose an online algorithm of linear
complexity that reduces the number of preemptions as well
as provides for tradeoffs between the number of preemptions
and the overall energy consumption. Throughout this section,
we define clairvoyance as the full knowledge about the release
times of the sporadic task instances.

4.1 Offline preemption reduction

In this section, we prove that offline preemption control by
using CPU frequency scaling cannot provide non-preemption
guarantees in a sporadic task system.
Proposition 4.1. Clairvoyance is unachievable in a sporadic
real-time task system

Similar to the traditional schedulabiltity tests, like for example
discussed by Baruah et al. (1990), it is impossible to have a
temporal window that can simulate the preemption behavior
that will effectively reflect the preemption behavior of the entire
sporadic task set. It is impractical from an implementation point
of view to calculate the release behavior of the sporadic task
instances. There are two main reasons for this: 1) the release
times, typically, depend on several runtime events and 2) even
if it was possible to predict the run time events and map them
to task release times, the temporal and spatial computational
complexity would render it impossible to store and process the
information, for an infinite number of task instances.
Lemma 4.1. There exist no non-clairvoyant offline scheme that
can determine the frequency at which a sporadic task instance
must execute such that its run-time non-preemptiveness is guar-
anteed.

Proof. Assume that there exist a non-clairvoyant offline scheme
S that determine a frequency X , at which the processor must
execute τj,k to avoid a preemption.

It is known that:

Cj,k ∝
1

X

The finish time of τj,k is given by,
finishj,k = startj,k + Cj,k

Consider any τi ∈ hp(j). The release time of any task instance
l of τi is given by

reli,l = (l − 1)Ti +

l∑
a=1

φi,a

where
∑l
a=1 φi,a is the offset in the release of τi,l. Now l and∑l

a=1 φi,a can take a value at runtime such that,

startj,k < (l − 1)Ti +

l∑
a=1

φi,a < finishj,k

Then, τi,l preempts τj,k contradicting our assumption. Thus
there exist no non-clairvoyant offline scheme that can determine
the frequency at which a task instance must execute such that
its run-time non-preemptiveness is guaranteed.
Lemma 4.2. There exist no offline derived frequency for a
sporadic task instance that guarantees its non-preemptive run-
time execution.

Proof. Assume that there exist an offline derived frequency,
X , at which the processor must execute τj,k such that its non-
preemptive execution is guaranteed. It is known that:

Cj,k ∝
1

X

Thus as,

X → δ

⇒ Cj,k → ε

where δ is a very large value and ε is a very small value. The
finish time of τj,k, if it executes without being preempted, is
given by,

finishj,k = startj,k + Cj,k

It is always possible that there exist a τi,l such that,

startj,k < (l − 1)Ti +

l∑
a=1

φi,a < finishj,k

If τj,k is executed at an infinite frequency,

X → α

the execution time,

Cj,k → 0

That is, the preemption can be avoided if the task instance is
executed by the processor at an infinite frequency. This however
is impossible as X → α is not feasible.
Theorem 4.1. There exists no offline method that guarantees
the run-time non-preemptiveness of a given sporadic task in-
stance.

Proof. From the proposition 4.1, we rule out the possibility of
clairvoyance for an offline analysis in sporadic task systems.

According to lemma 4.1, there exist no non-clairvoyant of-
fline scheme that can determine the frequency at which a spo-
radic task instances must execute such that its run-time non-
preemptiveness is guaranteed.



It is clear from lemma 4.2 that there exist no offline derived
frequency for a sporadic task instance that guarantees its non-
preemptive run-time execution.

Thus there exists no offline frequency scaling method that
guarantees the run-time non-preemptiveness of a given sporadic
task instance.

4.2 Online preemption reduction

A key characteristic of the release time behavior in a sporadic
task system is that, at any given time, it is only possible to
know the minimum amount of time during which the next
instance of a particular task will not be released. It is impossible
to know the time at which an instance of the task will be
actually released. Consequently, it is only possible to find the
maximum time, if any, for which a task instance is guaranteed
to execute non-preemptively considering the minimum time
interval required for the release of the next instance among
the higher priority tasks. Thus, we aim to find the maximum
time for which a task instance is guaranteed to execute non-
preemptively, whenever it starts its execution. This time is
obtained from the earliest time in the future at which one of the
higher priority tasks will be released. This is formally presented
as algorithm 1.

Algorithm 1 Find the minimum frequency at which τj,k must
execute, at a time startj,k = t, to avoid it being preempted by
the next higher priority task instance released.
minT ← 9999999(a large value)
i← 1
while i < j do

if minT > next reli then
minT ← next reli

end if
i← i+ 1

end while
C ′
j,k ← minT − t

if C ′
j,k > 0 then
X ′ ← Cj,k

C′
j,k
×X

if X ′ > Fmax then
X ′ ← Fmax

end if
else
X ′ ← Fmax

end if

This algorithm is executed at the start time of all the task
instances. Consider the kth instance of a task τj starting its
execution at a time instant t i.e., startj,k = t. The maximum
amount of time for which τj,k is guaranteed to execute non-
preemptively is the difference between the earliest among the
next release times of the higher priority task instances and the
current time t. If minT is the earliest time in the future at
which one of the higher priority task instances of τj,k can be
released, the maximum time, C ′

j,k for which τj,k can execute
non-preemptively is given by,

C ′
j,k = minT − t

This information is used to calculate the frequency at which
the processor must execute τj,k to ensure its non-preemptive
execution (i.e., the frequency required to obtain an execution

time of C ′
j,k). C ′

j,k takes a negative value when the earliest
release time of a high priority task instance has already passed
implying that the current task can be preempted at any time
instant in the future. If no available frequency can guarantee
its non-preemptive execution, τj,k is executed at the maximum
frequency until the release time of the higher priority task.
This is because, the probability that a sporadic task instance is
released increases over time. Thus, earlier the low priority task
instance completes its execution, the less probable that it will
be preempted by a higher priority task.

Let next reli represent the end of the period of the latest
instance of τi that has finished execution at time t, τi ∈ hp(j).
This is obtained by adding Ti to the release time of its latest
instance that has finished execution at time t. Thus next reli
is the time instant at which the next release of τi can occur,
i.e., no instance of τi can occur before next reli at time t. We
can easily see that minT represents the minimum among the
next reli for all τi ∈ hp(j) i.e.,

minT = min
∀τi∈hp(j)

(next reli)

After finding minT , the earliest possible release time in the
future among all the higher priority task instances at time t, it
is possible to find the frequency at which the processor must
execute τj,k, to avoid a possible preemption at minT .

If X is the default frequency at which the processor executes
τj,k, the frequency (X ′) at which the processor must execute
τj,k to avoid a preemption is given by,

X ′ =
Cj,k
C ′
j,k

×X

If the calculated frequency (X ′) is much more than the maxi-
mum frequency, Fmax, supported by the hardware or if there is
a possibility that a higher priority task instance will be released
at t or earlier, the processor executes at full speed (i.e., at the
maximum frequency Fmax) until the release time of the higher
priority task instance. This is because, as mentioned earlier,
the probability of sporadic task releases increases over time.
Thus, if the lower priority task instance τj,k finishes its execu-
tion as early as possible, the probability of it being preempted
by higher priority tasks is reduced. Running the processor at
maximum frequency will consume a lot of energy. This is
undesirable for embedded systems with a scarce power supply,
and hence, the energy-preemption trade-offs could prolong the
lifetime of the system. Our method, as opposed to running the
processor at maximum frequency, provides for various trade-
offs. One such trade-off, for example, is to control preemptions
under a hard energy constraint. This can be easily achieved
by selectively eliminating preemptions at runtime. Thus, our
method can be used to effectively control the preemption be-
havior while keeping energy consumption under a desired level.

Algorithm 1 gives the minimum frequency at which the a
task instance must be executed to avoid a preemption by the
next higher priority task instance that will be released in the
schedule. The above algorithm has a linear complexity as it
involves only a search for the earliest of the release times among
the higher priority task instances.

5. EXAMPLE

We demonstrate our method using a simple example. Consider
a set of sporadic tasks with a computation requirement Ci



Task Ci Ti

A 1 3
B 4 10

Table 1. Example task set

A

B

3 6 9 12 15

10

A

B

3 6 9 12 15

10

(i)

(ii)

Fig. 1. (i) Schedule before preemption elimination (ii) Schedule
after preemption elimination

and a minimum inter-arrival time Ti, as given in table 1. Let
the default execution frequency of the processor be 1. Let the
execution time of all the instances of τi be Ci time units corre-
sponding to a frequency of 1. One possible runtime scenario is
shown by (i) in figure 1 where there are 2 preemptions on task
B when the tasks are scheduled using FPS, with the priorities
assigned according to the rate monotonic priority ordering. In
our method, whenever task B starts to execute, we calculate
the end of the period of task A since its last release time. This
time is the earliest possible release time of the next instance of
A. Thus, this time gives the earliest possible preemption point
of task B. If task B completes its execution before this time,
we can avoid a preemption on task B by task A. We find the
total time that is available between the current time and the
end of the period of the latest instance of A that has completed
its execution. This gives the maximum time for which B1 can
execute non-preemptively. Using this information, we calculate
the speed at which the processor has to execute B such that its
non-preemption is guaranteed.

Let the ith instance of task A be represented by Ai and that of
B be represented by Bi. When B1 starts its execution at time
t1 = 1, it calculates the end of the period of the lastest instance
of A (i.e.,A1), which is t2 = 0+3 = 3. If the preemption onB1

due to a possible release of A2 at time 3 has to be avoided, B1

has to finish its execution by time 3. The total computations that
has to be executed non-preemptively, which is the computation
requirement of B1, is 4. The available computation time, if B1

has to execute non-preemptively, is t2 − t1 = 2. Thus, B1 has
to be speeded up 4

2 = 2 times to guarantee its non-preemptive
execution. This is repeated at the start time of all the instances
of all the tasks. Thus, task B can finish before the next possible
release of task A avoiding a preemption as shown by (ii) in
figure 1.
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Fig. 2. Average number of preemptions eliminated using our
method

6. PERFORMANCE EVALUATION

We conducted a number of experiments using synthetic tasks
to evaluate our algorithm. We generated 1400 tasksets, each
having 3 - 15 tasks, using the UUniFast (Bini and Buttazzo
(2005)) algorithm. The LCM of the task sets generated were
kept under 2000. For each task τi in Γ, we generated LCM

Ti

number of instances which were used in the simulations. Each
task instance was released after a time t, generated randomly
between 0 and 5 , since the end of the period of its previous
instance to reflect the sporadic nature of the taskset. We used
rate monotonic priority ordering to simulate the schedule. We
assumed a processor model as shown in table 2. The speed indi-
cate the rate of execution of the tasks. The processor, by default,
is assumed to run at speed 1 and when its speed is changed
to ’s’, the processor executes a task ’s’ times faster relative to
the execution of the same task at speed 1. In the simulations,
we assumed that the processor is the only source of power
consumption and the tasks do not use any other devices. The
power consumption per clock cycle of the processor for each of
the speeds is used to calculate the average power consumption
per unit simulation cycle. This is done by the summation of
the power consumptions per clock cycle corresponding to the
respective speed at which the processor runs for each task exe-
cutions and dividing it by the total simulation time. We assume
that when there are no tasks executing currently, the processor
does not spend any energy and falls into a zero energy state.

As seen from figure 2, our method shows a very good perfor-
mance in eliminating preemptions. The graph in figure 2 de-
creases at high utilizations (0.8−0.9) because the task sets hav-
ing utilization between 0.8 − 0.9 were found to contain lesser
number of tasks per taskset. The increase in power consumption
can be seen from figure 3. The power consumption increases
for task sets with higher utilization. This can be attributed to
the fact that processor spends more time in executing tasks due
to the heavy load. In other words, the processor idle time is very
low. Consequently, while eliminating preemptions on tasks with
large computation requirements, the processor executes longer
at higher energy states. This increases the processor power
consumption while eliminating the preemptions.



Mode 0 1 2 3 4 5
Speed 0 1 1-2 2-3 3-4 4-5

Power consumption
per clock cycle (mW) 0 20 50 50 200 500

Table 2. Processor Model

0

20

40

60

80

100

120

140

0.2-0.3 0.3-0.4 0.4-0.5A
v
g

. 
p

o
w

e
r 

c
o

n
s

u
m

p
ti

o
n

p
e

r 
s

im
u

la
ti

o
n

 c
y
c

le
(m

W
)

Before

0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9

Load

After

Fig. 3. Increase in power consumption
7. CONCLUSIONS

In this paper, we study the preemption behavior of sporadic
task systems scheduled using FPS and the possibility of its
control using CPU frequency scaling. We show that offline pre-
emption control using CPU frequency scaling cannot provide
non-preemption guarantees in a sporadic task system. We then
present a linear complexity algorithm to control the preemp-
tions online. This algorithm makes use of the minimum inter-
arrival time that is required between two consecutive instances
of higher priority tasks to find the largest time interval available
to execute the outstanding computations of a lower priority
task instance non-preemptively. Using this information, we find
the frequency at which the processor has to run such that the
outstanding computations are executed before the next possible
release of a higher priority task instance. We also present ex-
tensive evaluations of our algorithm which indicates that CPU
frequency scaling is an attractive approach for controlling the
preemption behavior in sporadic task systems.

Future work will focus on using resource augmentation to
evaluate the method, evaluating the possibility of using more
complex algorithms to achieve preemption control and compar-
ison of the proposed approach with other methods like Baruah
(2005) and Yao et al. (2009) in feasibly scheduling tasksets with
preemption overheads.
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