
Design-Time Verification of Component-Based Embedded
Systems With Respect to Extra-Functional Properties

Juraj Feljan
Mälardalen Real-Time Research Centre

Mälardalen University
Sweden

juraj.feljan@mdh.se

ABSTRACT
When developing embedded systems, certain constraints re-
garding extra-functional properties have to be guaranteed.
It is desirable to be able to perform early design-time ver-
ification of embedded systems with respect to their extra-
functional properties, because the earlier potential design
flaws are caught, the easier and cheaper it is to correct
them. Employing component-based software engineering
and model-driven development for the development of em-
bedded systems can facilitate this early verification. In this
paper we present our planned research on early analysis of
component-based embedded systems, which enables avoid-
ing designs infeasible with respect to constraints on timing
and resource consumption.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
Design, Verification

Keywords
embedded systems, extra-functional properties, design-time
verification, component-based software engineering, model-
driven development

1. INTRODUCTION
Computers have become highly intertwined with our daily

routine, as they are used in industry, business, communica-
tion, traffic, health, research, education, entertainment, etc.
Computer systems are continuously growing in complexity
and size, increasing the cost of developing and maintaining
them. Most computers systems today are embedded sys-
tems — microprocessor based systems with a single dedi-
cated function. A significant part of the functionality of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WCOP’11, June 20–24, 2011, Boulder, Colorado, USA.
Copyright 2011 ACM 978-1-4503-0726-0/11/06 ...$10.00.

embedded systems is realized in software. Parallel with the
growth of software complexity, there is an increasing demand
on it to be robust, reliable, flexible, adoptable, etc. Thus,
a systematic approach to steering the whole software life
cycle is necessary. The discipline addressing this is software
engineering. IEEE defines software engineering as the appli-
cation of a systematic, disciplined, quantifiable approach to
the development, operation and maintenance of software [1].
Two new promising approaches gained a lot of attention
recently, namely component-based software engineering and
model-driven development. These can be considered as sub-
disciplines of software engineering. The former promotes
building systems not from scratch, but from pre-developed
software components, thus lowering time-to-market. The
latter advocates shifting the focus of software development
from code to models, which should enable the developers to
focus more on the application logic than on the implemen-
tation details.

Embedded systems have particularities not present in“tra-
ditional” desktop- and Web applications, in the sense that
the correctness of embedded systems does not only depend
on correct logical functioning, but also on extra-functional
properties, such as timing and resource usage. When devel-
oping such systems, certain constraints on extra-functional
properties have to be guaranteed. It is desirable to be able
to check, as early as possible in the development process,
whether these constraints will hold, in order to avoid time
and money loss caused by doing redesign after the imple-
mentation had been done. This is the focus of our research,
and it can be facilitated by using component-based software
engineering and model-driven development.

In this article we give an overview of our planned research,
and it is organized as follows. Section 2 presents the back-
ground, while Section 3 details the research. Related work is
surveyed in Section 4. The paper is concluded by Section 5.

2. BACKGROUND
In the background section we present the particularities of

embedded systems, and then the basic ideas of component-
based software engineering and model-driven development,
respectively.

2.1 Embedded Systems
Today most computer systems are embedded systems. To

illustrate, more than 98% of all processors manufactured in
2005 were used in embedded systems [14]. The term em-
bedded system is not strictly defined, but usually refers to
a microprocessor based system with a single dedicated func-

tion (or few dedicated functions), as opposed to a general
purpose desktop computer. An embedded system is usually
a part of a larger system or product. Embedded systems
span from small devices such as MP3 players to large sys-
tems such as factory controllers. Their complexity follows
accordingly, from a single microcontroller chip, to multiple
nodes connected via a network.

Embedded systems usually have limited resources in terms
of processing power, memory size or battery power. This is
because they are often limited in physical size, due to the
fact that they have to blend in with the environment they
operate in. Another reason is that some embedded systems
are produced in large quantities, and thus have to be cheap
to produce.

Moreover, embedded systems are often safety-critical and
real-time systems. The former means that their failure can
result in disaster, either loss of human life, or expensive
damage to equipment. The latter means that their correct
behavior depends not only on logical computations, but also
on the time at which the results are produced.

Due to these requirements, limited resources on one hand
and reliability on the other, for embedded systems extra-
functional properties (EFPs) have significant importance,
and thus have to be explicitly addressed during the devel-
opment process. EFPs (or quality attributes) encompass
timing properties (e.g. latency, worst-case execution time),
resource-wise properties (e.g. memory consumption, power
consumption), dependability, reliability, security etc.

In order for an embedded system to function properly,
it is not enough for it to exhibit correct logical behavior.
Additionally, it must satisfy certain constraints on EFPs.
An example of such a constraint can be the following —
an embedded system controlling the airbags in a car must
have a response time of maximum 10ms, and cannot have a
memory footprint larger than 10kb. Due to its safety-critical
role, it is not enough if the system only deploys the airbag,
it is also crucial when the deployment takes place. Such
constraints have to be guaranteed during the development
process. This is usually done by employing formal methods,
which allows various analysis to be performed on embedded
systems (for instance schedulability analysis which checks
that component execution is scheduled in such a way that all
components meet their timing deadlines). Formal analysis
techniques are usually combined with stringent testing.

Having in mind all the listed particularities, it is clear
that developing embedded systems differs from developing
“traditional” desktop- and Web applications.

2.2 Component-Based Software Engineering
Component-based development is a concept well known

in building hardware. For example, a radio can be built
by connecting integrated circuits. Further, a personal com-
puter can be built by picking and assembling pre-existing
components such as CPU, memory, hard disk, etc. To be
able to connect hardware components, their interfaces have
to “match”, i.e. they have to follow a certain standard.

Component-based software engineering (CBSE) is the soft-
ware equivalent of the above. The central idea behind CBSE
is that software systems are not built from scratch, but from
pre-developed software components. Ideally a system can
be built by browsing a repository of available components,
selecting the right components, and finally connecting them
together. This way, the development of systems is separated

from the development of components. In practice some glue
code (i.e. code that enables communication between orig-
inally incompatible components) will have to be written,
and particular components (those that are not found in the
repository) will have to be implemented in parallel with the
system development.

One of the biggest benefits CBSE promotes is reusability
— it should be possible to reuse a component across different
systems. Thus, employing CBSE should:

• shorten time to market — systems are built by con-
necting existing components;

• facilitate management of complex systems — by divid-
ing them into smaller, less complex components;

• increase the quality of the software — since a com-
ponent is intended for reuse in multiple systems, it is
repeatedly tested in various contexts;

• simplify maintenance — improving existing or adding
new functionality to a system is done by replacing ex-
isting or adding new components.

A paramount concept in CBSE is the component model. A
component model provides methods and rules for (i) com-
ponent specification and (ii) component composition, and
therefore corresponds to the aforementioned standard. To
be able to easily connect software components together, they
have to follow the same standard, i.e. they have to conform
to the same component model.

Although a promising approach, CBSE still has many
open questions and is the subject of ongoing research, espe-
cially in the embedded systems domain. Some of the main
challenges CBSE is facing are [7]:

• component specification — still no consensus has been
made about what a component is and how it should
be specified;

• component models — the currently available compo-
nent models have many ambiguous characteristics, they
are incomplete and use inconsistent terminology (for a
more detailed discussion on this issue see [8]);

• component-based software life cycle — how to define
precise component requirements since it is not known
beforehand in what systems the component is going to
be used, how to find a particular component that fits
a system that is being built, what if a component only
partially fits;

• extra-functional properties — how to express quality
attributes of a component, such as performance, re-
quired resources, reliability, latency, security, etc.;

• composition predictability — it is not clear how extra-
functional properties of a particular component affect
the corresponding extra-functional properties of a com-
position of components (this issue is particulary im-
portant for embedded systems with rigorous safety re-
quirements).

2.3 Model-Driven Development
Model-driven development (MDD) aims at shifting the fo-

cus of software development from code to models. In other
words, MDD promotes tackling software complexity by rais-
ing the abstraction level of software systems to a higher level
than code, closer to concepts from the application domain
than to algorithmic concepts. This enables the developer to
focus on the application logic, without worrying about im-
plementation details. The raise of abstraction level from
code to models is equivalent to switching from assembly
code to procedural languages, or from procedural to object-
oriented languages.

In “traditional” software development, models usually aid
in understanding the system being built. In MDD, models
do not serve only as documentation, but become a formal
specification of the system. In the MDD context models are
the main artefact — the requirements, the system architec-
ture, verification and validation, etc. are all models. The
basic idea is that from the model(s) of a system, through the
process of model transformation, implementation code can
automatically be generated. However, models should not
only be used for code generation, but also for generation of
non-implementation artifacts such as documentation, tests,
deployment scripts or other models. MDD should provide
the following benefits:

• shorter time-to-market;

• early verification of a system design — the earlier po-
tential design flaws are caught, the easier and cheaper
it is to correct them;

• coherent system design and implementation — a change
done on a model at one level of abstraction should be
automatically promoted to all other levels, keeping all
models coherent;

• application logic independent of technological changes
— if the application logic is specified by a model that
contains no information specific to the implementation
platform, then implementations for different platforms
can be automatically generated.

Similarly to CBSE, MDD is a relatively new approach
with open questions that are the subject of ongoing re-
search. For instance, how to ensure coherence between dif-
ferent models of a system, how to handle model evolution,
how to capture extra-functional properties in models, how to
separate application logic specifications from platform spe-
cific information, etc.

3. PROPOSED RESEARCH
In this section we first present the motivation for doing

design-time verification with respect to EFPs, and formulate
the general research question. Then we describe the context
and the assumptions of the research. Finally, by outlining a
research plan and listing the expected results, we give more
details of what the planned research encompasses.

3.1 Motivation and Research Question
In order for safety-critical, real-time embedded systems to

function correctly, in addition to performing correct logical
computations, certain constraints on their EFPs have to be
satisfied. It is extremely desirable to be able to verify sys-
tems with respect to EFPs early at design-time. The earlier

in the development lifecycle design flaws are discovered, the
easier and cheaper it is to correct them. Design-time veri-
fication with respect to EFPs can therefore prevent severe
loss in time and money, caused by discovering design flaws
after the implementation had been done.

Different implementation platforms imply different EFPs,
and in our research we investigate how EFPs change with
different implementations. The final goal of the research is a
methodology for early design-time verification of component-
based embedded systems with respect to EFPs, more specif-
ically timing and resource consumption. Having this in
mind, our research tackles the following general research
question: How can early analysis help avoiding infeasible
component-based designs of embedded systems, with respect
to constraints on timing and resource consumption?

CBSE and MDD are two approaches that aid us with an-
swering the research question. Conceptually, MDD is mainly
a top-down approach, as it promotes incrementally trans-
forming models of a system to code, while CBSE focuses
on run-time composition of components’ executable code,
making it a bottom-up approach. However, looking only at
design-time, which is in the focus of our research, CBSE
and MDD overlap, and the border between the two is fuzzy.
Here the two approaches share the notion of models. Cur-
rently the trend in CBSE is to develop models of components
and their interactions to support various types of model-
checking and analysis, and therefore facilitate the aforemen-
tioned run-time composition of components. In our research
we address both CBSE and MDD, while trying to leverage
their respective advantages, encapsulation facilitating reuse
from the former, and early analysis from the latter.

3.2 Research Context
Design-time verification of component-based embedded sys-

tems with respect to EFPs answers the question whether
a particular deployment of software components to hard-
ware nodes of the implementation platform satisfies the con-
straints that were set on EFPs. In order to be able to per-
form this verification, we assume a model-driven approach
in the design phase that includes:

• an architectural model specifying the system under de-
velopment as a composition of software components;

• a platform model specifying available hardware nodes
the components will run on, and the connections be-
tween the nodes;

• a mapping model specifying the mapping between the
architectural model and the platform model, i.e. the
mapping of software components onto hardware nodes.

Additionally, the components in the architectural model
have to specify their EFP requirements, while the hardware
nodes in the platform model must specify what they offer in
terms of resources. Then we can perform the aforementioned
verification, by applying a suitable analysis method. For
example, if we want to verify if a particular design is correct
with respect to static memory usage, each component in the
architectural model must state how much static memory it
requires, while each hardware node must specify a budget in
terms of how much memory it provides. Using these values
and the three aforementioned models as input, an analysis of
static memory usage will output an answer showing whether
the design is feasible. Static memory usage is an EFP where

composition is straightforward (summation). However, this
is not the case with all EFPs, which is one of the challenges
of the research.

The above implies that a mapping model is given. This
mapping is then verified. However, to be more general than
only answering if a particular mapping is correct, it is desir-
able to be able to automatically derive a mapping in which
timing constraints are met and resources are used efficiently,
according to certain trade-off constraints. For example, one
mapping might imply a bigger memory footprint on one
hardware node, but it will however guarantee lower worst-
case execution time values, which enables a more flexible
scheduling policy. This may mean that one mapping is “bet-
ter” than the other, depending on what the developer values
more in this case, less memory usage or flexible scheduling.
When a desired mapping is found, it serves as input to the
synthesis process, i.e. generating the implementation code.

Our research is performed in the context of ProCom [5,
17], a component model for real-time distributed embedded
systems in the vehicular- and automation domains. ProCom
aims at giving a holistic solution, by providing support for
design, analysis and synthesis of embedded systems. Here
we describe what support ProCom provides regarding the
aforementioned. The architectural model in ProCom has
two layers. The upper layer, called ProSys, models a system
as a collection of active, concurrent subsystems that commu-
nicate by asynchronous message passing, and are typically
distributed. The lower layer, ProSave, models the detailed
structure of individual ProSys subsystems. ProSave compo-
nents are passive, and represent smaller and simpler units
of functionality. ProCom’s platform model also has two lay-
ers, the virtual platform and the physical platform [6]. This
approach allows more detailed analysis to be performed on
the virtual platform without full knowledge of other parts
that will share the same physical (hardware) node in the
final system. The mapping model in ProCom is defined by
allocating ProSys subsystems to virtual nodes, and by allo-
cating virtual nodes to physical nodes. Specifying EFPs in
ProCom is done through the support of the attribute frame-
work [16].

ProCom is supported by an integrated development en-
vironment called Pride [12]. The architectural model and
the attribute framework are fully implemented in Pride,
while the platform- and mapping models are partially im-
plemented. Pride has a flexible analysis framework, which
allows plugging external analysis tools. Through the analy-
sis framework various analysis techniques, that represent the
backbone of design-time verification with respect to EFPs,
will be included. The fact that ProCom is supported by an
integrated development environment provides good founda-
tion for validation of our research results, as the environment
can be used to perform case-studies.

3.3 Research Plan and Expected Results
We have started the research by studying how EFPs are

handled in existing component models. As the next step we
will identify exactly which timing and resource-wise EFPs
to focus on. Having in mind the intended domain — safety-
critical, real-time embedded systems — these will mainly
be worst-case values, rather than average ones. They will
include worst-case execution time (WCET), which is cru-
cial information in guaranteeing that a real-time system
meets all of its deadlines; static-memory consumption and

CPU utilization, which are important attributes in resource-
constrained systems.

For all the selected EFPs respectively, we will identify
(develop new, or find and tailor existing) a suitable analysis
method which answers whether a particular system design
is feasible, i.e. satisfies the constraints set on that particular
EFP. We will extend the application-, platform- and map-
ping models in order to support the aforementioned analysis
methods.

In order exploit the full potential of CBSE, we will de-
velop a special analysis framework (not to be mistaken with
the existing analysis framework from Pride, i.e., a tool-
ing concept which enables plugging new analysis tools into
Pride). Our assumed CBSE process is not a one way pro-
cess going sequentially from design, through analysis to syn-
thesis. Rather, it is a fully incremental process where infor-
mation from a later stage might be propagated back to an
earlier stage, in order to tailor a particular aspect of the
system. Furthermore, due to reusability being one of the
key concepts in CBSE, when developing a system we envi-
sion having a mix of fully implemented, analyzed and tested
components with early components having only an interface.
Having this in mind, one of the key challenges that our ap-
proach tackles is supporting early analysis that can leverage
information coming from a later stage. For example, let
us imagine a simple system with only two components, one
reused and one new. The reused component comes bun-
dled with a value for WCET coming from code analysis,
while the new one has an expert estimation as its WCET
value. We can perform schedulability analysis based on the
two WCET values. Later in the development process the
new component will get an implementation, which enables
getting a more accurate WCET value based on code anal-
ysis. Now we can repeat the schedulability analysis with
the new WCET value. Therefore we will have two analy-
sis results based on the different WCET values for the new
component. In a real-life application both the number of
components and the number of different sources for a single
EFP value will be significantly higher, raising the question
how to value the different results coming from the same type
of analysis when using different EFP inputs. What if we get
conflicting analysis results, depending on where the inputs
come from? Another challenge is determining the validity of
an EFP value bundled with a pre-existing component, since
some EFPs are platform-dependent. We will develop an
analysis framework that will support our incremental CBSE
process, i.e., that will (i) handle the validity of different EFP
values in a particular context, (ii) handle the validity of (pos-
sibly conflicting) analysis results when using different EFP
inputs, and (iii) bundle the analysis results and their validity
context together with their respective components.

When being able to analyze a particular mapping, and
leverage an iterative analysis process, we plan to develop a
method for automatically finding a ”good enough”mapping,
based on a trade-off between different criteria. As a partic-
ularly interesting relation in resource-constrained and real-
time embedded systems, we will focus on trade-off between
resource consumption and timing. A possible option for per-
forming the trade-off analysis is Pareto optimality. Given
a mapping of software components to hardware nodes, a
Pareto improvement is a change to a different mapping that
will improve a certain EFP, without making any other EFP

worse. A mapping is Pareto optimal when no more Pareto
improvements are possible.

Having the aforementioned research plan in mind, as the
main contributions of this research we expect:

• for each EFP selected, a new or tailored analysis method
for verifying if a particular component-based embed-
ded system design satisfies the constraints on that EFP;

• an analysis framework leveraging an incremental CBSE
process, i.e., backtracking late analysis results to early
analysis; and

• a method for automatically deriving a ”good enough”
mapping (deployment) of software components to the
hardware nodes of a system, according to certain trade-
off criteria.

4. RELATED WORK
We present related work by overviewing how particular

component-based- and model-driven technologies for embed-
ded systems provide support for EFPs.

BlueArX [11] is a component model developed and used
by Bosch for real-time embedded automotive applications,
for example in engine control systems or chassis systems.
EFPs in BlueArX are handled through Analytic Interfaces.
An Analytic Interface is used to store a component’s EFPs.
EFP values are specified in XML. Since EFP values have
dependencies on the hardware platform, compiler, software
context etc., the context has to be specified. Analytic In-
terfaces in BlueArX systems are connected to Reasoning
Frameworks, which are used for various EFP consistency
checks.

DeepCompass [4] is an analysis framework for predict-
ing performance related properties of component-based real-
time systems. It combines models of individual software
components and hardware blocks to produce an executable
model of the system. By simulating this model, performance
predictions are obtained. DeepCompas also supports trade-
off between several architecture alternatives. What differ-
entiates our planned research from DeepCompas is the fact
that we focus on leveraging backtracked information from
later stages of development in early analysis, and intend to
support automatic derivation of ”good enough” mappings
according to certain trade-off criteria.

MARTE (Modeling and Analysis of Real Time and Em-
bedded systems) [15] is a UML profile defined by OMG, that
enables the use of UML for model-based development of em-
bedded systems, covering the specification, design, and ver-
ification/validation stages. It provides facilities to annotate
models with information required to perform various anal-
yses. It focuses on performance- and schedulability analy-
sis, but enables any kind of quantitative analysis. MARTE
provides a common way to model both the hardware and
software aspects of systems.

ROBOCOP [13] is a component model for high volume
consumer electronics developed at the Eindhoven Univer-
sity of Technology. EFPs of a ROBOCOP component can
be given by models that the component consists of. These
EFP models can include timeliness, reliability, safety, se-
curity and resource consumption. ROBOCOP implements
resource management through the Resource management
framework. The aim of this framework is to prevent resource

overloads on embedded devices that support dynamic up-
dates or upgrades. It introduces a notion of resource-aware
consumers, which are application entities that have infor-
mation about resources needed for their operation. A spe-
cial type of such entities are the quality-aware consumers,
which consume different amounts of resources depending
on the level of quality they are provided in a given mo-
ment. The consumers can register their resource needs to the
framework, which can then guarantee them the requested
resources or deny their request. The framework can also
optimize the system quality depending on the available re-
sources.

Rubus [10] is a component model developed by Arcticus
Systems in cooperation with Mälardalen University. It is in-
tended for development of distributed, resource-constrained,
embedded control systems, with a mix of hard-, soft- and
non real-time requirements. Timing properties of SWCs
(software circuits, i.e Rubus components) and real-time re-
quirements on the execution can be specified. Regarding the
former, to enable timing analysis at design time, each SWC
is associated with a run-time profile describing its run-time
properties on different platforms. The latter are specified
within the context of an assembly/composite as bounds on
time from the generation of a trigger signal to the generation
of another trigger signal.

SaveCCM [2] is a component model intended for em-
bedded control applications in vehicular systems, developed
at Mälardalen University. It is a simple component model
that limits the flexibility of modeling to enable analyzability
with respect to timing. Regarding EFPs, SaveCCM focuses
on timing properties. It supports specification and analysis
of timing properties. They can be analyzed at design time
using the UPPAAL Port model checker [9]. There is also
support for generic specification of EFPs. An EFP is rep-
resented as a triple 〈Attribute, Value, Credibility〉 where At-
tribute is the property name, Value holds the property data,
and Credibility gives the confidence measure that Value rep-
resents the actual value.

Palladio [3] is not a component model for embedded sys-
tems, but for business information systems. It is described
here since it is designed to enable early performance pre-
dictions for component-based software architectures of busi-
ness information systems, and early EFP predictions are in
the focus of our research. The development of the model
started in 2003 at the University of Oldenburg and is since
2006 continued at the University of Karlsruhe. The key fea-
ture of Palladio is the parameterized component quality-of-
service (QoS) specification. It is a special QoS specification
for software components, parameterized over environmen-
tal influences that are unknown to component developers
during component design and implementation. This speci-
fication is called resource demanding service effect specifica-
tions (RDSEFF). RDSEFFs abstractly model the externally
observable behavior of a component. They specify: how a
provided service calls the required services of a component,
resource usage, transition probabilities, loop iteration num-
bers and parameter dependencies, all this to allow accurate
performance predictions. RDSEFFs can be considered as
a domain-specific modeling language which the component
developer uses to specify performance related information
for components. They represent the gray-box view of com-
ponents.

5. CONCLUSION
This article has presented our planned research on han-

dling extra-functional properties of embedded systems, or
to be more specific, design-time verification of component-
based embedded systems with respect to timing and resource
consumption. We have described the background, motiva-
tion and the context of the research, and discussed our re-
search plan and expected results.

The research is motivated by the fact that EFPs have
significant importance in safety-critical, real-time embed-
ded systems, and have to be explicitly addressed during
the development process. In order to save money and time
by avoiding redesign after the implementation had already
been done, it is desirable to be able to discard designs in-
feasible with respect to constraints on EFPs prior to the
implementation. Early verification with respect to EFPs
carries several challenges. For example, composition of some
extra-functional properties is not straightforward; EFPs can
depend both on software and hardware; how to leverage in
early analysis information backtracked from later stages of
development; how to perform trade-off analysis between dif-
ferent EFPs, etc.

6. REFERENCES
[1] IEEE Standard Glossary of Software Engineering

Terminology. IEEE Std 610.12-1990, 1990.

[2] M. Åkerholm, J. Carlson, J. H̊akansson, H. Hansson,
M. Nolin, T. Nolte, and P. Pettersson. The SaveCCM
Language Reference Manual. Technical Report,
Mälardalen University, 2007.

[3] S. Becker, H. Koziolek, and R. Reussner. Model-Based
Performance Prediction with the Palladio Component
Model. In Proceedings of the 6th International
Workshop on Software and Performance, 2007.

[4] E. Bondarev. Design-time performance analysis of
component-based real-time systems. PhD thesis,
Eindhoven Universty of Technology, 2009.

[5] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and
A. Vulgarakis. ProCom – the Progress Component
Model Reference Manual, version 1.0. Technical
Report, Mälardalen University, 2008.

[6] J. Carlson, J. Feljan, J. Mäki-Turja, and M. Sjödin.
Deployment Modelling and Synthesis in a Component
Model for Distributed Embedded Systems. In 36th
Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2010.

[7] I. Crnković and M. Larsson. Building Reliable
Component-Based Software Systems. Artech House,
2002.

[8] I. Crnković, S. Sentilles, A. Vulgarakis, and M. R.
Chaudron. A Classification Framework for Software
Component Models. IEEE Transactions on Software
Engineering, 2010.

[9] J. H̊akansson, J. Carlson, A. Monot, and
P. Pettersson. Component-Based Design and Analysis
of Embedded Systems with UPPAAL PORT. In 6th
International Symposium on Automated Technology
for Verification and Analysis, 2008.

[10] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg,
J. Lundbäck, and K.-L. Lundbäck. The Rubus
Component Model for Resource Constrained
Real-Time Systems. In 3rd Int. Symposium on
Industrial Embedded Systems, 2008.

[11] J. E. Kim, R. Kapoor, M. Herrmann, J. Haerdtlein,
F. Grzeschniok, and P. Lutz. Software Behavior
Description of Real-Time Embedded Systems in
Component Based Software Development. In
Proceedings of the 2008 11th IEEE Symposium on
Object Oriented Real-Time Distributed Computing,
2008.

[12] Mälardalen University. PRIDE.
http://www.idt.mdh.se/pride/.

[13] J. Muskens, M. V. Chaudron, and J. Lukkien. A
Component Framework for Consumer Electronics
Middleware. In Lecture Notes in Computer Science,
2005.

[14] Netrino. Embedded Systems Glossary. http:
//www.netrino.com/Embedded-Systems/Glossary.

[15] OMG. MARTE. http://www.omgmarte.org/.

[16] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković.
Integration of Extra-Functional Properties in
Component Models. In 12th International Symposium
on Component Based Software Engineering (CBSE),
2009.

[17] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković. A Component Model for
Control-Intensive Distributed Embedded Systems. In
11th International Symposium on Component Based
Software Engineering, 2008.

