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Abstract—Construction of a Real-Time System (RTS) out of because RTS resources are limited and need to be maximised
a number of pre-fabricated pieces of software, otherwise kown  accordingly. The epitome OVCET analysis is to therefore

as components, is a pervasive area of interest. Typically,nty compute a WCET estimate that is the actual WCET.
relocatable object code of the component is shipped to the

customer, so that it can later be linked into the overall appication. TeChr.‘iques to perform WCET analysis can broadly be
Source code is therefore withheld, and disassembling of trebject  categorised as follows [1]:
code is normally disallowed to protect intellectual propety. Both

of these restrictions complicate, or even prevent, statefdhe-art 1) End-to-End: Under quite extensive and demanding test

Worst-Case Execution Time (WCET) analysis of the RTS since conditions, theHigh Water-Mark Time (HWMT) is
most techniques are grounded on their availability in order to obtained, which is the longesbserved end-to-end ex-
generate a complete program model. The alternative solutio— ecution time. The underlying premise is that the testing

widespread in industrial circles — is to record the largest ed-
to-end execution time of the RTS under functional testing, bt
this underestimates the actual WCET, in the general case.

regime is representative of real system operation and
that, with enough testing, the HWMT lies in close

This paper shows how to obtain a safer WCET estimate of proximity to the actual WCET. However, acknowledging
a RTS composed of components using time-stamped traces of that there could be some underestimation, the HWMT
program execution. In effect, the data needed in the WCET is subsequently augmented using engineering wisdom

computation (program model, execution times, execution bmds) from previous projects: this augmented value is then
are derived exclusively from parsing of the traces. Experirents

indicate that, once simple coverage metrics have been obtaid, considered to be the WCET estimate.
the calculated WCET estimate bounds the actual WCET. More-  2) Static Analysis (SA): Rather than run the software on

over, where instrumentation (which produces the time-starped target, SA constructs two different modelspegram
traces) is placed with respect to program structure has a model, which represents small segments of the software;
significant bearing on the accuracy of the computed WCET

and aprocessor modelwhich synthesises the functional
and temporal behaviour of the hardware. Execution
. INTRODUCTION times of the program segments are gleaned from the
processor model and, together with flow information
bounding loops and constraining the set of feasible
execution paths, finally combined by a calculation en-
gine [2]-[4] operating on the program model, resulting
in a WCET estimate.
3) Hybrid Measurement-Based Analysis (HMBA): The
steps are similar to those of SA, except it collects
the execution times of program segments inatru-
mentation points (ipoints) as the software runs on
target. Processor modelling is therefore bypassed, but
the program model is retained as the measured data still
needs to be combined in the calculation stage.

estimate.

A Real-Time System(RTS) is an embedded system for
which precise operation also depends on timing constraints
Depending on the type of application, failure of a RTS has
a wide range of possible consequences, from a jittery video
streaming application to the delayed release of an airtiag. |
is therefore critical — sometimes even safety critical —ttha
some analytical process has been undertaken to verify the
temporal properties of a RTS before its eventual dispatth in
the real world.

The design of a RTS revolves heavily around a model known
as a task schedule, which allots the CPU resource to exe-
cuting tasks, assuming access to Werst-Case Execution
Time (WCET) of each task. However, determining thetual Both SA and HMBA rely on access to the source code
WCET is not trivial because software and hardware properties the ability to disassemble the binary in order to construc
both cause variation in execution times. On the one hartde program model. However, both of these assumptions are
software typically has an exponential number of paths, and ohallenged when a RTS is composed of a number of pre-
the other hand, the time taken for each instruction dependsfabricated pieces of software called components, which is a
the features present in the hardware architecture, e.fpecacontinuously increasing trend in the embedded domain [5].
For these reason$®/CET estimates are sought in which a Only the relocatable object code of a component is shipped
common requirement is to bound the actual WCET so thit the client so that it can later be linked into the over-
the task schedule is not compromised. Yet, simply providiradl application. Since the source code of the component is
a safe upper bound is tempered by the desire for accuramavailable, and because disassembling of its object code



is typically disallowed to protected intellectual propgerthe significant bearing on the precision of the WCET estimate
complete program model cannot be built. As a result, exgstin =~ and also on the overheads associated with tracing.
SA and HMBA techniques to WCET analysis are neutralisede We demonstrate that, for the programs under analysis,
and, according to the above taxonomy, the only alternative t our WCET estimate bounds the actual WCET once
obtain a WCET estimate is through end-to-end measurements. basic block coverage has been satisfied. In contrast, the
However, the end-to-end approach has a number of short- HWMT obtained by using &enetic Algorithm (GA)
comings. First, the HWMT could severly underestimate the ac ~ as the test driver does not manage to bound the actual
tual WCET. This is because, to date, no coverage metrics have WCET

been proposed which stress execution time variability @us The rest of the paper is organised as follows. Section II
by loop iterations, context-dependent execution, or haréw discusses mechanisms available to extract timing traaes, d
effects; that is, alde factotest-vector generation mechanismscribes existing options to instrument a program, and resli
stop once functional coverage metrics (e.g. MC/DC [6]) hawgur assumptions. Next, Section IIl provides more detaitsuab
been satisfied. Second, the safety margin added to the HWMiE IPG and the IPET, including a thorough examination
is clearly ad hoc there is no guarantee that the actual WCE®f the limitations. The evaluation framework and results ar
is bounded, but there could also be severe underutilisatigiesented in Section IV. A comparison with previous work
of system resources if, in fact, the HWMT equals the actuabpears in Section V, before conclusions are drawn in Sec-
WCET but the safety margin is too excessive. tion VI.

The crux of the problem is that the end-to-end approach
simply treats the system as a black box, whereas SA and Il. TRACING AND INSTRUMENTATION
HMBA need more information about system internals and areQur HMBA relies on the ability to generate a sequence

theref_ore white box by nature. In t_his paper, we presentod tuples (i,t) — called a timing trace — wheré is the
technique to perform WCET analysis on a component-bas@gntifier of an ipoint and its time of observation. The set
RTS that is effectively a grey-box HMBA. Rather than rely of timing traces are collated into t@ace file. How a timing

the disassembly or the source code, our approach builds theee is generated and stored depends on the type of tracing
program model on the fly from a set tilming traces which mechanism available:

have been generated by an instrumehtpdogram during
the test phase. Given that no algorithmic properties of the
system under analysis are exposed during this constryction
any restrictions on reverse engineering of the object code
are implicitly observed. Moreover, another advantage of ou
approach is that it is immediately applicable &my code
construct, whereas some tools and techniques cannot handle
particular structures, e.g. recursion or function pomitsince

the program model istatically constructed. Following are the
concrete contributions:

« On-target: A tailored ipoint routine is inserted into the
source/object code at particular locations. Upon exenutio
an ipoint causes the target to produce a timestamp; the
timing trace is stored in a memory buffer to be down-
loaded on program completion. The advantage of this
approach is that porting to new architectures is relatively
straightforward. However, because ipoints are compiled
into the executable, thprobe effect manifests: normal
(i.e. without instrumentation) register and cache usages
are displaced, a timing penalty is incurred, and overall
« We show how to deliver a safer WCET estimate than code size increases.
end-to-end approaches without the disassembly or source External capture device: An ipoint still exists in the
code. This is done by constructing thestrumentation executable but it writes its identifier to an 1/0O port. The
Point Graph (IPG) [7] on the fly from a set of timing port is monitored by an external capture device, e.g. a
traces and at the same time collecting information needed logic analyser, which timestamps ipoints off target as they
in the WCET calculation, e.g. execution times of its  appear and also serves to store the timing trace. Penalties
atomic units of computation; these data are subsequently associated with the probe effect are minimised because
combined through themplicit Path Enumeration Tech- the ipoint routine can be reduced to a few instructions.
nique (IPET) [3] to produce a WCET estimate. Fur- However, the target must have available and accessible
thermore, how the code is instrumented is completely pins to emit the data, which is not always practical with
orthogonal to the presented approach. more advanced CPUs. It may also be necessary to disable
« Our evaluation compares the impact of different instru-  the cache so that the data written by the ipoint routine is
mentation policies (see Section Il) on the WCET esti- observed on the bus.
mates of a collection benchmarks [8] — to the authors’ « Debug interface: Nexus [9] and Embedded Trace Macro-
best knowledge, no such comparison has previously been cell [10] technologies trace program flow discontinuities,
disseminated. Results indicate that the locations of in- i.e. conditional and unconditional jumps, in a transparent
strumentation with respect to program structure can have fashion. Thatis, the probe effect is completely eliminated
Timestamps are generated on target and the trace data are

lWe emphasise that the term “instrumented” umbrellas saréwand
hardware probes; the exact means by which timing traces eaextracted 2Basic blocks consist of consecutive instructions in whidwfbf control
are explored in detail in Section II. enters at the beginning and leaves at the end.



either written to an on-chip trace buffer for subsequent
download, or exported directly in real time through an
external port. However, bandwidth remains the major

technical obstacle because the port or debugger musR)

keep pace with the rate at which trace data are produced;
otherwise, blackouts arise in which parts of a timing trace
are overwritten and essentially lost.

Simulation: Cycle-accurate simulators, such as Sim-

pleScalar [11], allow individual instructions to serve as 3)

ipoints whereby the simulator provides the timestamp.
The timing trace is written to a file on the host, which

is a distinct advantage given the storage capabilities
of desktop computers. Furthermore, the probe effect
is eliminated and there are no issues with blackouts.

an iprofile, or the client has access to a debug interface;
the latter is preferred due to elimination of the probe
effect.

Identifiers of ipoints are unique. When an ipoint iden-
tifier corresponds to an address, the assumption clearly
holds. Alternatively, it can easily be enforced by a tool,
e.g.Rapi Ti ne [15], which automatically inserts ipoints
into the program.

There are two identified ipoints which delimit the start
and end of a new program run. These delimiters allow
our analysis to deduce where each new run begins in the
trace file (otherwise it will consider the entire trace file
as a single execution) and also enable the HWMT to be
extracted.

The downside is that creating a cycle-accurate simulator|t js also important to stress thttis work does not attempt

reduces to constructing a precise SA processor modglquantify the impact of the probe effect on WCET estimates.
which can be difficult, or even impossible, particularly for

advanced CPUs. (This is due to unpredictable hardware
accelerators and imprecise manuals.) The problem addressed in this paper is how to compute
The tracing mechanism only serves to gather a timirly WCET estimate for a program comprised of a number of
trace: it is the job of arinstrumentation profile (iprofile) Ccomponents, assuming that neither the source code nor the
to determinewhere the ipoints should reside. Here we revievdisassembly of these components are available. As detfailed
three common iprofiles applicable to tBentrol Flow Graph ~ the previous section, we assume that a tracing mechanism is

(CFG) of a program, which are later used in Section IV tavailable to extract a trace file from the instrumented paogr
evaluate our HMBA: This section describes how our HMBA calculates a WCET

1) In many techniques proposed by SA and HMBA thgstimate from the trace file. Section IlI-A first shows how the
basic block is the atomic unit of computation bec'aug G is built on the fly, before Section III-B presents how to

the CFG is the program model derived from the di _eriv_e _anln_teger Li_near Program .(”‘P) from the IPG and
assembly. Thevasic block iprofile therefore considers the timing information, thus resulting in a WCET estimate.

the first instruction in a basic block as an ipoint: ifA, |nstrumentation Point Graph

has previously been used in the evaluation of anOtherThe IPG is a program model representing the transitions
HMBA technique [12]. It is the most coarse-grained prog P 9

iprofile (besides tracing every instruction) and is easi@mong ipoints at the intermediate code level. Its vertiaes a

supported by simulation therefore ipoints and each edge contains the functiona¢ cod

P y : . %xecuted when a particular transition is followed. In castr
As noted above, hardware debug interfaces trace condi- . . .
. - . . : .~ 10 a CFG, thereforethe edges of an IPG are its atomic unit
tional and unconditional jumps. To mimic this tracm%f computation rather than its vertices

solution, thebranch iprofile uses each branch target as ; . .

an ipoint. This iprofile is primarily of interest due to the . Previous work [7] has shown_ how to bu'ld the _IBt_aucaI_Iy
elimination of the probe effect given the CFG an_d the relative Iocat|0_n_s of ipoints in the
The bre-dominator tree of é CEG models the reQFG' But clearly this presupposes the ability to disasserobl
dominpance relation between basic blocks: a basic brioglgrive the CFG during compilation from the source code. Here
u pre-dominates a basic bloakif all pathé from the W& instead explore how to construct the IPG from a trace file;

entry of the CFG tov pass through [13]. The pre- to this end, we use an illustrative example as the mechanism

. S ) itself is straightforward.
dominator iprofile [14] instruments the leaves of the Consider the example CFG shown in Fig. 1(a), which has
pre-dominator tree. It hails from the coverage doma'}g ' '

where the aim is to reduce trace file size whilst stf?€e" instrumented with the pre-dominator iprofile. Althbug

enabling coverage metrics to be measured; hence, itﬂi1se pre-dominator tree is not displayed, note that f are its

! . . nly leaves since they do not pre-dominate any other basic
typically sparser than either of the basic block or branco ozks — these basi():/ blocks FF:ave been instrgmented with
iprofiles.

ipoints 2, 3, 4, respectively. Further observe thathas been
A. Assumptions mstrumented with ipoini and thaft ipoin4 appears after the
_ _ ~ execution off rather than before it, both of which ensure the
Our HMBA assumes the following with respect to tracinghstrumentation is compliant with the third assumptioradet
and instrumentation: in Section II-A.
1) The component can generate a timing trace. Either theTwo different timing traces through the CFG are given in
supplier inserts ipoints into the source/object code usirdg. 1(b), which also shows how the IPG is constructed on the

Il. SYSTEM MODEL

2)

3)



Run 1 Run 2 1

Ipoint Timestamp  Ipoint  Timestamp

1 0 1 36 c=10 c=4
r=1 =1
2 10 3 40
2 14 3 46
! ‘

2 ‘ 27 3@ 54

2 I 31 3 I 57 T

4 36 4 61 4
(a) CFG Instrumented with Pre-Dominator Ipro- (b) Two Timing Traces. (c) IPG with Execution Timesd) and Execution
file. Bounds ) of Edges.

Fig. 1: Example Used to Demonstrate IPG Construction.

fly during trace parsing. Solid edges depict new transitions an open research question which is outside the scope of this
serted into the IPG, whereas dashed edges depict the thvepaper. It is important to emphasise that the comparison in
of an existing transition. Note that, because we assume th@is paper is between end-to-end approaches and our grey-
ipoint identifiers are unique (see Section 1l-A), issueshwitbox HMBA; in this respect, Section IV demonstrates that the
a non-deterministic automaton are avoided; that is, thegnarWCET estimate produced by the latter benefits much sooner
canalways uniquely determine the exact transition to insert drom simple coverage metrics than does the former.
traverse with a simple one token lookahead scheme. Ex@cutio Second, information concerning the loops — and their
times and execution bounds of IPG edges are also retrievegbting relation — in the IPG is missing since the trace parse
during this construction. For instance, on the first obs@ma only builds the IPG structure. Devoid of loop-nesting déte,
of edge2 — 2, its WCET is set tol4 — 10 = 4, which is trace parser cannot detect when a particular loop hasetkrat
overwritten on its second observation sirxfe- 14 = 13 > 4; relative to an outer loop, nor when it exits. The implication
that is, the WCET of an IPG edge is its maximum observasl that only aglobal execution bound on IPG edges can be
execution time across all timing traces. Similarly, theaestsn retrieved, and not onlecal to an outer nested loop, potentially
bound of an IPG edge is its maximum number of traversdlading to overestimation in the WCET estimate (discussed
in any particular run. In this example, three traversalsdafee further in Section 111-B). It would appear that the problem
2 — 2 are observed in the first run, which is committed wheoan be circumvented by identifying loops as new edges are
ipoint 4 is observed, as this is the ipoint delimiting successivaserted into the IPG. Previous work [7], however, has shown
timing traces. The resultant IPG is shown in Fig. 1(c), thget that the IPG resulting from arbitrary instrumentation ofte
with the execution timed) and the execution boundX of containsirreducible loops. These are basically loops with
each edge obtained from trace parsing. multiple entries which complicate the formation of nesting
) ) . relations between cyclés Although algorithms have been

There are a couple of issues with construction of the 'P&esented to handle irreducibility [17], [18], each of them
in this manner that warrant further discussion. First, géhisr -qid produce different loop-nesting data for the same IPG
a reliance on the test hamness to sufficiently stress progrggtause there is no coherent view of what constitutes a
execution such that the data (IPG edges, execution tlmﬁfop in an arbitrary flow graph [16]. The upshot is that the
execution bounds) extracted from trace parsing are re"abéomputed WCET estimate is sensitive to the chosen loop-
In general, any property derived from timing traces which i§etection algorithm: underestimation is possible becarse
subsequently used in the WCET calculation can potentialiyiernative algorithm could later be developed that resulta
cause underes‘gimr_;ltion. Fo_r_example, observe in the CFGIé}fgerWCET estimate. In essenaey WCET analysis relying
Fig. 1(a) that ipoint transiton® — 3 and3 — 2 are op gych an algorithm to handle irreducibility cannot aserib
structurally possible but, unless triggered by the teshéss 5 guarantee to the WCET estimate since the cyclic properties
and subsequently written to a timing trace, will not be if&®r of the program model cannot be formally proven. This is not
into the IPG. Complicating the matter still further, trafif®is 5 jssue when global execution bounds are utilised, however

2 — 3 and3 — 2 might not be possible when consideringince the bound is relative to a single execution of the ogr
the semantics of the code. However, timing coverage is gAd not to an outer loop.

issue forany approach based on measurements and the exact
conditions under which underestimation arises in HMBA is 3See [13], [16] for a detailed discussion of irreducibility.



B. The IPET the objective function. Clearly, overestimation ensuesabse

. the paths througR and3 cannot be taken simultaneously.
The trace-parsing stage produces the structure of the IPGo,schner-Schedl termed this tHisconnected circulation

and derives the ex_ecution_timgs and executior_1 bounds 9f IStr%blem and proved that relative capacity constraints are its
edges: the_ calculation engine is then tasked with prOdm'n_%olution. A relative capacity constraint models the exiecut
WCET estimate from these data. We use the IPET — whighy \nt of a variable with respect to its enclosing loop, rathe
is basically an objective function to be maximised subject t,,n or in addition to, the global execution count. However
a number of constraints — since it can easily model arbitragy jiscyssed in Section I1I-A, the simple construction @ th
control flow and is not therefore hindered by the wre_duﬁ&nl IPG by the trace parser does not provide loop information and
of an IPG‘ Puschner-Schedl [3] showed how to build $UChV\?e only have access to global execution counts. This is one
model with an ILP, although recent work [19] has considered, ;¢ of overestimation in our model, and its severity depe
constraint logic programming as an alternative. Here weflyri o the shape of the IPG. We believe this can be overcome by
describe the ILP with respect to an IPG= (I, ), wherel g3 anteeing reducibility in the IPG generated from anfifero
IS its set OT |p9|nts ano? C Ixlits set of fed_ges. _ for example, by positioning ipoints in the headers of allgeo
The objective function, to be maximised, i€ = Thjs allows the trace parser to derive the necessary looal o
D ou—ver, weet(u — v) * f(u — v), wherewcet(u — v)  pounds, which can be fed accordingly into the ILP — how

is the longest observed execution time of the IPG edge v this is realised is considered beyond the scope of this paper
as obtained from the trace parser, afithk — v) is its

non-negative execution count. Program structural coimstra V. EVALUATION
represent the basic structure of the IPG, effectively pi@sg  Thjs section is split into three parts: Section IV-A expkain

flow at each vertex. Capacity constraints, on the other hang,- experimental framework, Section IV-B describes the set

bound both the minimum and maxi_ml_Jm gxecution count %ff programs under analysis, and finally, Section IV-C dissem
each IPG edge, otherwise the maximisation of the objectiygites our results.

function is co since everyf(u — v) can be assignedo. In

our model, upper capacity constraints are execution boundlsExperimental Set-up

o!erived fr_om trace parsing. Solving this model via stan_dard Our HMBA requires timing traces. For this purpose, we em-
(integer) linear program solvers returns both a WCET e$8may|qy e the SimpleScalar toolset [11] because such infdemat
and a setting of the execution count for each IPG edge {8 pe extracted in a relatively straightforward mannee Th

the worst case. In this way, all paths are implicitly consste eyact stages of our framework are depicted in Figure 2 for
since the solver attempts different assignments to thelt®c \,hich a detailed description now ensfies

counts in determining the worst case [20]. In general, we
cannot determine thexact longest path from the execution
C source |
files

counts because the order of execution is missing.

When the execution times and upper capacity constrai
on the decision variables are safe, the solution to the ILP
always returns an upper bound on the actual WCET. As proven
by Puschner-Schedl, however, initial reduction to a catiah
problem does not precisely characterise the set of executio
paths through the flow graph — in this case the IPG —

\ e } constructor
Simple@—b ptrace
!
potentially leading to overestimation.

In particular, the ILP models a number of “self-contained” | WCET A A

circulations, i.e. loops. As the ILP solver can satisfy all [22tmate Analysﬂ‘_ — J_ ptrace

upper bounds on capacity constraints simultaneously, rerin engine files parser __ | |
circulation C' becomes disconnected from the longest path HWMT i
selected through its outermost circulatiomless this path
always includes”. More formally, the flow graph induced by
the execution counts is not strongly connected, and the path
is therefore structurally infeasible. For example, in Fifc),
there are two inner circulationg, — 2 and 3 — 3, which

are enclosed in the outer circulation encapsulated by tge ed ) . )
4 — 1. Observe that the longeatyclic path through the outer ~ Each program under analysis was compiled using a GCC

circulation is1 — 2 — 4: therefore, when the ILP solver alsot'0ss compiler that produces executables for the Portable |
satisfies the upper capacity constraintbn 2 — 2, i.e. Struction Set Architecture (PISA, the SimpleScalar dénea

f(2 — 2) = 3, no pessimism arises sin@appears on this , _ _ : . .

h. H th | ill al 3 3)—3b Note that the steps corresponding to disassembling andimentation are
path. However, the solver will also Sﬁ( - ) = 2 DBCAUSE oniy of relevance to this evaluation as they are our meansbtairo timing
it does not violate any other constraint and it must maximiseces.

GCC Executable »E)bjduma—b Disassembly

CFG

Fig. 2: Overview of Experimental Framework.



of the MIPS-IV instruction set); level two of optimisationd. with an increasing number of TVs, we performed a WCET
using the—02 flag) was selected to increase the speed oélculation aftereach timing trace and not only when the
execution on SimpleScalar. The binary was then loaded ormnotire trace file had been processed. A capacity constmint t
si m out or der, the SimpleScalar utility that simulates arthe ILP was added for each cycle-inducing edge in the IPG
out-of-order processor. Our configuration of the CPU wag vewith the maximum execution count as retrieved at that point
simple, comprising instruction and data caches of 128 byteg the trace parser. In typical WCET analyses, these edges
each and a single-fetch in-order pipeline. Therefore,ethgr are those identified by a loop-detection algorithm. But &s th
little jitter in execution times due to hardware effectsdanmodel detailed in Section Il does not detect IPG loops, a
deducing the worst-cadest Vector (TV) for each benchmark capacity constraint is added for any IPG edge categorised as
was subsequently straightforward. a back edge during a depth-first search.

We used a GA to generate TVs for the binary since previousFinally, for each of the benchmarks, we determined the
work [21]-[23] has shown its relative success in generatingworst-case TV by manual inspection in order to extract the
HWMT which lies in close proximity to the actual WCET.actual WCET.

Therefore, we could compare our WCET estimate with the

HWMT produced by a state-of-the-art end-to-end approagl. genchmarks

Our implementation of the GA uses two-point crossover,

elitism, a crossover rate @¢f9, and a mutation rate aj.01. ~ The benchmarks under investigation are taken from the
The fitness function in the GA is the execution time as retarn&alardalen suite [8], which are used by many groups in WCET
by5| m out or der , which allows for quick evaluation of the analySiS to evaluate their tools. In this evaluation the@ ar
fitness of each chromosome. The number of generations &@ticularly appealing since the worst-case TVs are easy to
the size of the population varied according to the particuldeduce.

benchmark (see Section IV-B). Due to space restrictions, we cannot present the analysis

Each run of the executable osi m out or der with a Of every benchmark in the Malardalen suite; Table | in-
single TV produces atrace, which is a detailed time- stead lists the chosen programs under analysis, togetiier wi
stamped history of each instruction as it progresses througfoperties relevant to the test stage. Programisbl esor t
each pipeline stage When the TV produced by the GA isandi nsertsort were selected because previous work [23]
unique, i.e. it has not previously been generated, our framBas shown the difficulty encountered by a GA in finding
work manipulates th@t r ace to output three timing traces, its worst-case TV (i.e. the reverse-sorted array). The aghoi
one each for the iprofiles detailed in Section II; each timingf j anne_conpl ex was motivated by its complex input-
trace is subsequently concatenated onto its correspotrdicgy  dependant execution behaviour [24] and, similaeypi nt
file. This means that we avoid duplicating timing traces ifontains an inner loop which only triggers when its second

the trace file since the GA often generates congruent T\Rarameter isl, potentially complicating the unguided search
particularly as evolution increases. of a GA. For the sorting programs, the size of the population

Clearly, in order to transform thetrace into timing @and the number of generations were both set(to because

traces, we needed the CFGs of the program under analysigh@y ensure sufficient diversity in the TVs without signifidg
know which addresses correspond to ipoints. This was ddfgpeding the turnaround time of the test stage; in addition,
by disassembling the binary (using thkj dunp utility) and they are generally suited to a wide range of optimisation
then constructing the CFGs from the disassembly. Note that Roblems [25]. These parameters were reducezbteach for
would normally assume the instrumentation step has alres®§Pi nt andj anne_conpl ex because their input space is
been undertaken, or that there is access to a hardware de®gh smaller. Using a00 = 100 evolution will likely cause
interface or simulator, since the central assumption of tHexhaustive input-space coverage and therefore discovéing o
paper is that disassembling of the object code is forbiddenactual WCET, which is unrealistic in the general case asgst

Upon completion of testing, the trace files generated féfPically covers a small subset of the input space. By reuyci
each iprofile were passed to the analysis engine. As detailBg evolution process t@5 * 25, the testing set-up is more
in Section |11, processing of a single trace file results iftbe-  realistic, maintaining a reasonable ratio between the reave
fly construction of the IPG, extraction of the data needed iAPUt space and the overall input space. Table | also present
the WCET calculation, and generation of the ILP. In orddhe number ofinique TVs that the GA produced in comparison
to plot how the HWMT and our WCET estimate change® the total number of TVs.

Table II displays properties of interest with respect to

5It is important to stress that, for each generated TV, thargirhad to the iprofiles. Observe that the basic block (respectivel pr
be reloaded ontasi m out or der, the implication of which is that the gominator) iprofile is the densest (respectively sparsestich
initial hardware state is always the same. This is unréalistan industrial . . . .
setting where a test harness typically cycles through its, Tiwvoking the 1S also reflected in the trace file sizes. Further note thah eac
program without resetting the hardware; that is, the harelstate remaining iprofile requires ipoints positioned at the start and end the

from one run is inherited by the next run. Our intention wasstmulate program in order to determine the HWMT — this explains
such an environment, but fundamental limits with Simplé&cprevented its

implementation, namely the inability pt r ace to handle large pipeline trace Wh_y the basic block ipro_file always has+ 1 ipoints, Whe_r(_:"
files. n is the number of basic blocks, because of the additional



TABLE I: Properties of Benchmarks Selected for Analysis.

[ Program | #Parameterg Input Range| #Generations| Population Size] #Unique Test Vectorg #Total Test Vectors|
bubbl esort 10 1..100 100 100 1017 10,000
expi nt 2 0..100 25 25 39 625
insertsort 10 1..100 100 100 949 10,000
janne_conplex | 2 1..30] 25 25 34 625

TABLE II: Instrumentation Properties for Benchmarks: Tedele Sizes and Number of Ipoints.

Program #Basic blocks Iprofile
Basic block Branch Pre-dominator
Trace File Size (bytes] #lpoints | Trace File Size (bytes] #lpoints | Trace File Size (bytes) #lpoints
bubbl esort 9 1,898,234 10 1,468,974 7 1,051,258 6
expi nt 34 95,476 35 82,642 23 32,506 18
i nsertsort 7 1,033,058 8 633,854 6 522,704 4
janne_conplex | 11 19,461 12 14,807 10 8,970 8

ipoint at the end of the program (see the third assumption ri@present worst-case behaviour, although how this issegli
Section ). is an open research question.

C. Results Third, the WCET estimates computed from the basic block

Our results are presented in Table Il which shows: tIﬂFénd branch iprofiles are equivalent for each benchmark. How-
HMWT obtained by the GA: the actual WCET obtained b ver, the key difference is the latter is genera_lly spatsan the
executing the program with its worst-case TV (derived b rmer, as demonstrated. by the trace file sizes. For example,
hand): the percentage of optimism in the HWMT (with resped@P!€ |l shows that, fori nsertsort, there is a38.6%
to the actual WCET); the WCET estimate computed fror_rﬁadu_Ctlon m_tra_\ce f||(_a size between_the basm_block and H;ranc
each iprofile; and the percentage of pessimism in the WC ofiles. This IS an |mport_ant _con3|derat|on in HMBA, given
estimate (with respect to the actual WCET). A graphicégl‘at trace parsing is often its biggest bottleneck [7]. 'élfnme
representation of how the HWMT and the WCET estima ese results suggest that the sparser brgnch |profllegeduc
change during testing appears in Figure 3. Note that thes urﬁf/erhe.ads — including the probe effect.(n‘ any) — without
of time in Table Il and Figure 3 are simulation cycles. ~ Impacting the accuracy of the WCET estimate.

There are five interesting observations from these resultsFourth, there is considerable overestimation given thegeh
First, the GA did not manage to expose the actual WCET fprograms are small and simple. For example, the WCET
any of the benchmarks, although the margin of underestimestimate of every benchmark suffers from at €&t pes-
tion is minimal. This underlines the fragility of any end-tosimism for both the basic block and branch iprofiles. Two

end approach: it is completely dependent on the test harnesasons underpin this problem. First, as detailed aboged|
finding the worst-case TV. only contains capacity constraints for cycle-inducing el

Second, our WCET estimates bound the actual WCET®e IPG, and not foevery edge. Including the latter would
very quickly, irrespective of the iprofile. In the case oprovide the most accuracy as the feasible execution paths
bubbl esort and i nsertsort, the actual WCET is through the IPG would be further constrained, although it
bounded immediately, after the first TV. On the other hané more susceptible to underestimation because the data are
for expi nt andj anne_conpl ex, this occurs after the collected entirely from measurements. Second, after mignua
third and second TV, respectively. On further investigatioinspecting the ILPs generated for the IPG in conjunctiomwit
we discovered that underestimation occurs in these insganthe trace file, we found that there was significant overesti-
because some of the basic blocks remain uncovered; nagtion in the execution times of IPG edges: our ILP simply
soon as100% basic block coverage is attained, the WCETodels asingle execution time for each IPG edge, thereby
estimate bounded the actual WCET. This is precisely tlignoring different execution times arising from, for exdmp
benefit of HMBA: rather than rely on TVs to trigger longcache effects. In theory, the model could include the exaecut
end-to-end execution times, the measured execution timhestime profile [26] of each IPG edge; that is, a variable in the
small program segments can be pieced together with pathP for each of its observed execution times together with
specific information. Therefore, the test harness need ndt firespective capacity constraints. Marref [27] has preskate
a TV causing all loops to iterate through their maximurmechanism to deduce these type of constraints from timing
bound simultaneously whilst also, at the same time, triggertraces and how to subsequently model them in a constraint
the WCET of blocks of code in theame run. By using a logic programming model. Obviously, this burdens the test
program model, HMBA instead multiplexes this informatiomarness further because it must ensure that the executien ti
from the set of timing traces before carrying out the WCEprofile is representative of its worst-case behaviour. éNot
computation. Obviously, coverage remains an issue sinee that the lack of relative capacity constraints in the ILP, as
units of computation must be stressed adequately enoughhighlighted in Section 1lI-B, is not a cause of overestiroati



TABLE llI: Analysis Results for Benchmarks.

Program HWMT | Actual WCET | Optimism Iprofile
Basic block | Branch | Pre-dominator
WCET EstimatgPessimisiWCET EstimatéPessimisfWCET Estimat¢Pessimism
bubbl esort 1008 1028 2.0% 1818 76.8% 1818 76.8% 2310 124.7%
expi nt 10721 10956 2.1% 16644 51.9% 16644 51.9% 12414 13.3%
insertsort 1113 1175 5.3% 1799 53.1% 1799 53.1% 2124 80.7%
j anne_conpl ex | 367 398 7.8% 743 86.7% 743 86.7% 705 77.1%

for these benchmarks. We checked the IPGs induced by thehnique, but that underestimation exists. One drawbsack i
execution counts and discovered that all were structuratlyat the fitness function only considers the execution time,
feasible paths.) disregarding other factors which could later lead to a long
Fifth, the WCET estimate produced by the pre-dominatexecution time, such as the number of cache misses. han
iprofile is larger than the basic block and branch iprofiles fal. [21] considered including multiple criteria, e.g. hardear
bubbl esort andi nsertsort but smaller forexpi nt  effects and loop bounds, into the fitness function with a view
and j anne_conpl ex. Since thesame TVs were used to to recommending which criteria suit which systems. Ermédah
produce each trace file, the only conclusion to be drawn is tret al. [24] have investigated generating the worst-case TV for
the iprofile affects the precision of the WCET estimate. We particular program. Our approach also uses testing tgerig
therefore examined the execution times of IPG edges and tHeihg execution times, but the WCET estimate is derived from
execution counts (as set by the ILP solver) since these are ¢hsubsequent calculation operating on a program model, and
only variables between different iprofiles. The tighter WICE s therefore not reliant on the test harness finding the abesol
estimates forexpi nt andj anne_conpl ex are explained worst-case TV, as our results demonstrated.
by more execution context being included on IPG edges. ThatSimilarly, Williams [28] employs a form of limited path
is, since the pre-dominator iprofile is sparser in terms cbverage [29] usingPat hCrawl er [30] to find the actual
ipoints, basic blocks appear anultiple IPG transitions and WCET of the program, suffering from obvious scalability
the WCETSs of basic blocks benefit from the execution histoproblems. Our work avoids scalability issues by insteadveler
incorporated on those edges. For example, the WCET of baisig execution times and execution counts of program segment
block b in Figure 1 is likely to be higher on transition— 2 before combining this information globally to obtain the
than2 — 2 because of cache misses. In contrast, the baS#CET estimate.
block and branch iprofiles incorporate less execution histo In terms of HMBA, three works are closest to our approach.
in their units of computation (because they are denser) aRiist, Bernatet al.[26], [31] obtains an Execution Time Profile
are more pessimistic as a result. The looser WCET estima{€J P), rather than an integer value, for each program segmen
for bubbl esort andinsertsort, on the other hand, An ETP is obtained through measurements and represents the
arise due to insufficient modelling in the ILP. We summeftequency of execution for a particular execution time. The
the execution counts dfasic blocks by observing on which calculation engine is then able to combine dependent ETé®s th
IPG edges they appear. This revealed that the ILP of tbecur from hardware effects which have not been captured in
pre-dominator iprofile returned over-approximations, veas the measurement stage. Second, Celial.[12] generate tim-
those returned for the basic block and branch iprofiles weirey traces through SimpleScalar, parse them to derive WCETs
precise. These findings suggest that sparsity of instruatient of basic blocks, and finally compute a WCET estimate using
is desirable, to reduce tracing overheads and to allow tbettke standard timing schema [2] of an Abstract Syntax Tree
accuracy in the units of computation, but that positioninfAST). Third, Marref [19] has presented predicated WCET
of ipoints with respect to program structure is crucial tanalysis, which deduces execution time effects betweeis bas
avoid problems in the ILP. Closer investigation of this ssublocks from timing traces. These execution time effects are

however, is considered as future work. later injected into the calculation as constraints on etienu
paths, consequently tightening the WCET calculation. Our
V. RELATED WORK work differs from all three: the Bernat and Colin approaches

A comparison with SA is not relevant here since it requirded very specific ipoint placement and are restricted to
the source code or the disassembly to build the compléurce-level analysis due to adoption of the AST; whereas
program model, both of which are assumed absent in this pap@gic blocks serve as the unit of computation in the Marref
in particular components of the RTS. This section therefofgéthod and, consequently, the CFG is the underlying program
reviews end-to-end approaches and HMBA paradigms whigkdel for which the disassembly is needed.
are the closest to our approach.

Wegeneret al.[22], [23] first proposed using a GA to stress
the end-to-end execution time of a program. Their resultsComposing a real-time system out of software components
indicate that the obtained HWMT lies closer to the actu@ a pervasive area of interest, both in academia and in
WCET than does the WCET estimate computed by a SAdustry. When a component is shipped to a client, however,

VI. CONCLUSION



source code is withheld and the relocatable object codeotanrie] J. J. Chilenski and S. P. Miller, “Applicability of Mod#id Condition/De-
usually be disassembled, to protect intellectual propehtyler cision Coverage fo Software Testingbftware Engineering Journal,
h . t tate-of-the-art WCET analvsis vol. 9, no. 5, pp. 193-200, September 1994.
t ese-cwcums ances, S ate-o ysl o [7] A. Betts, “Hybrid Measurement-Based WCET Analysis gsimstru-
techniques are neutralized because they are unable towoinst ~ mentation Point Graphs,” Ph.D. dissertation, Universftyark, Novem-
a pragram model. 8] lt\)/liirlazrgglsén University WCET project

This paper showed how to d(_arlve a s_afer WCET est|mat[e http:/ww.mrtc.mdh.se/projectsiwcet, May 2010.
than end-to-end approaches using hybrid measurement-ba$®y The Nexus 5001 Forum, hitp://mww.nexus5001.org, May 2010.
analysis. Rather than statically derive any data needelbein flo] ARM development tools, http:/www.arm.com, May 2010.
WCET calculati h . d h d duri i 11] D. Burger and T. Austin, “The simplescalar tool set, sien 2.0,
i calculation, they are 'nSt_ea ggt €reda auring parsing University of Wisconsin, Madison, Technical Report CS-T897-1342,
time-stamped traces of execution which have been produced 1997. . . _
by an instrumented program. How these traces are produceﬂ% A. Colin and S. M. Petters, “Experimental evaluationcofie properties
orthogonal: our approach does not place any restrictiorie@n

homepage,

for WCET analysis,” inProceedings of the 24th Real-Time Systems

type of instrumentation deployed and thus supports pro&e-f [13]

tracing as supplied by hardware debug interfaces. Howeser,

evaluated the accuracy of the WCET estimate when diﬁeré%%]
instrumentation profiles are deployed. Our results indithaat

Symposium (RTSS 03), December 2003.

S. S. Muchnick Advanced Compiler Design and Implementation.  Mor-
gan Kaufmann Publishers, 1997.

M. M. Tikir and J. K. Hollingsworth, “Efficient Instrumaation for Code
Coverage Testing,” irProceedings of the International Symposium on
Software Testing and Analysis, July 2002.

achieving minimal coverage, i.e. all basic blocks, is sigfic [15] Rapita Systems Ltd., http:/www.rapitasystems.cokty 2010.
b d th | WCET f h d | {16] G. Ramalingam, “On Loops, Dominators, and Dominancenfers,”
to bound the actua or the programs under analyss, ACM Transactions on Programming Languages and Systems (TOPLAS),

whereas a state-of-the-art end-to-end approach failed g&nd
We also found that branch tracing mechanisms offer the safh8
precision as basic block tracing mechanisms but with rediuce
trace overheads. Furthermore, simple changes in the qgositiis]
of instrumentation points can dramatically change the gu
of the WCET estimate.

Future work will investigate ways in which to reduce thg2o]
pessimism by modelling the execution times and execution
counts of program segments in a more powerful way. Asy
the position of instrumentation is also key to the analysis,
we intend to consider where instrumentation points should
be placed to ensure more accurate WCET estimates. Finglly
we will consider more rigorous coverage metrics than those
proposed in the functional domain, given their inabilitytage
timing into account.
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Fig. 3: How the HWMT and WCET Estimate Change as the Genetiypthm Evolves Test Vectors for each Benchmark,
Iprofile Combination.



