
WCET Analysis of Component-Based Systems using Timing Traces

Adam Betts
Mälardalen University

School of Innovation, Design, and Engineering
Västerås, Sweden

adam.betts@mdh.se

Amine Marref
Department of Computer Science

Umm Al-Qura University
Makkah, Saudi Arabia
ajmarref@uqu.edu.sa

Abstract—Construction of a Real-Time System (RTS) out of
a number of pre-fabricated pieces of software, otherwise known
as components, is a pervasive area of interest. Typically, only
relocatable object code of the component is shipped to the
customer, so that it can later be linked into the overall application.
Source code is therefore withheld, and disassembling of theobject
code is normally disallowed to protect intellectual property. Both
of these restrictions complicate, or even prevent, state-of-the-art
Worst-Case Execution Time (WCET) analysis of the RTS since
most techniques are grounded on their availability in order to
generate a complete program model. The alternative solution —
widespread in industrial circles — is to record the largest end-
to-end execution time of the RTS under functional testing, but
this underestimates the actual WCET, in the general case.

This paper shows how to obtain a safer WCET estimate of
a RTS composed of components using time-stamped traces of
program execution. In effect, the data needed in the WCET
computation (program model, execution times, execution bounds)
are derived exclusively from parsing of the traces. Experiments
indicate that, once simple coverage metrics have been obtained,
the calculated WCET estimate bounds the actual WCET. More-
over, where instrumentation (which produces the time-stamped
traces) is placed with respect to program structure has a
significant bearing on the accuracy of the computed WCET
estimate.

I. I NTRODUCTION

A Real-Time System(RTS) is an embedded system for
which precise operation also depends on timing constraints.
Depending on the type of application, failure of a RTS has
a wide range of possible consequences, from a jittery video
streaming application to the delayed release of an airbag. It
is therefore critical — sometimes even safety critical — that
some analytical process has been undertaken to verify the
temporal properties of a RTS before its eventual dispatch into
the real world.

The design of a RTS revolves heavily around a model known
as a task schedule, which allots the CPU resource to exe-
cuting tasks, assuming access to theWorst-Case Execution
Time (WCET) of each task. However, determining theactual
WCET is not trivial because software and hardware properties
both cause variation in execution times. On the one hand,
software typically has an exponential number of paths, and on
the other hand, the time taken for each instruction depends on
the features present in the hardware architecture, e.g. cache.
For these reasons,WCET estimates are sought in which a
common requirement is to bound the actual WCET so that
the task schedule is not compromised. Yet, simply providing
a safe upper bound is tempered by the desire for accuracy

because RTS resources are limited and need to be maximised
accordingly. The epitome ofWCET analysis is to therefore
compute a WCET estimate that is the actual WCET.

Techniques to perform WCET analysis can broadly be
categorised as follows [1]:

1) End-to-End: Under quite extensive and demanding test
conditions, theHigh Water-Mark Time (HWMT) is
obtained, which is the longestobserved end-to-end ex-
ecution time. The underlying premise is that the testing
regime is representative of real system operation and
that, with enough testing, the HWMT lies in close
proximity to the actual WCET. However, acknowledging
that there could be some underestimation, the HWMT
is subsequently augmented using engineering wisdom
from previous projects: this augmented value is then
considered to be the WCET estimate.

2) Static Analysis (SA): Rather than run the software on
target, SA constructs two different models: aprogram
model, which represents small segments of the software;
and aprocessor model, which synthesises the functional
and temporal behaviour of the hardware. Execution
times of the program segments are gleaned from the
processor model and, together with flow information
bounding loops and constraining the set of feasible
execution paths, finally combined by a calculation en-
gine [2]–[4] operating on the program model, resulting
in a WCET estimate.

3) Hybrid Measurement-Based Analysis (HMBA): The
steps are similar to those of SA, except it collects
the execution times of program segments viainstru-
mentation points (ipoints) as the software runs on
target. Processor modelling is therefore bypassed, but
the program model is retained as the measured data still
needs to be combined in the calculation stage.

Both SA and HMBA rely on access to the source code
or the ability to disassemble the binary in order to construct
the program model. However, both of these assumptions are
challenged when a RTS is composed of a number of pre-
fabricated pieces of software called components, which is a
continuously increasing trend in the embedded domain [5].
Only the relocatable object code of a component is shipped
to the client so that it can later be linked into the over-
all application. Since the source code of the component is
unavailable, and because disassembling of its object code



is typically disallowed to protected intellectual property, the
complete program model cannot be built. As a result, existing
SA and HMBA techniques to WCET analysis are neutralised
and, according to the above taxonomy, the only alternative to
obtain a WCET estimate is through end-to-end measurements.

However, the end-to-end approach has a number of short-
comings. First, the HWMT could severly underestimate the ac-
tual WCET. This is because, to date, no coverage metrics have
been proposed which stress execution time variability caused
by loop iterations, context-dependent execution, or hardware
effects; that is, allde factotest-vector generation mechanisms
stop once functional coverage metrics (e.g. MC/DC [6]) have
been satisfied. Second, the safety margin added to the HWMT
is clearlyad hoc: there is no guarantee that the actual WCET
is bounded, but there could also be severe underutilisation
of system resources if, in fact, the HWMT equals the actual
WCET but the safety margin is too excessive.

The crux of the problem is that the end-to-end approach
simply treats the system as a black box, whereas SA and
HMBA need more information about system internals and are
therefore white box by nature. In this paper, we present a
technique to perform WCET analysis on a component-based
RTS that is effectively a grey-box HMBA. Rather than rely on
the disassembly or the source code, our approach builds the
program model on the fly from a set oftiming traces which
have been generated by an instrumented1 program during
the test phase. Given that no algorithmic properties of the
system under analysis are exposed during this construction,
any restrictions on reverse engineering of the object code
are implicitly observed. Moreover, another advantage of our
approach is that it is immediately applicable toany code
construct, whereas some tools and techniques cannot handle
particular structures, e.g. recursion or function pointers, since
the program model isstatically constructed. Following are the
concrete contributions:

• We show how to deliver a safer WCET estimate than
end-to-end approaches without the disassembly or source
code. This is done by constructing theInstrumentation
Point Graph (IPG) [7] on the fly from a set of timing
traces and at the same time collecting information needed
in the WCET calculation, e.g. execution times of its
atomic units of computation; these data are subsequently
combined through theImplicit Path Enumeration Tech-
nique (IPET) [3] to produce a WCET estimate. Fur-
thermore, how the code is instrumented is completely
orthogonal to the presented approach.

• Our evaluation compares the impact of different instru-
mentation policies (see Section II) on the WCET esti-
mates of a collection benchmarks [8] — to the authors’
best knowledge, no such comparison has previously been
disseminated. Results indicate that the locations of in-
strumentation with respect to program structure can have

1We emphasise that the term ‘’instrumented” umbrellas software and
hardware probes; the exact means by which timing traces can be extracted
are explored in detail in Section II.

significant bearing on the precision of the WCET estimate
and also on the overheads associated with tracing.

• We demonstrate that, for the programs under analysis,
our WCET estimate bounds the actual WCET once
basic block2 coverage has been satisfied. In contrast, the
HWMT obtained by using aGenetic Algorithm (GA)
as the test driver does not manage to bound the actual
WCET

The rest of the paper is organised as follows. Section II
discusses mechanisms available to extract timing traces, de-
scribes existing options to instrument a program, and outlines
our assumptions. Next, Section III provides more details about
the IPG and the IPET, including a thorough examination
of the limitations. The evaluation framework and results are
presented in Section IV. A comparison with previous work
appears in Section V, before conclusions are drawn in Sec-
tion VI.

II. T RACING AND INSTRUMENTATION

Our HMBA relies on the ability to generate a sequence
of tuples (i, t) — called a timing trace — wherei is the
identifier of an ipoint andt its time of observation. The set
of timing traces are collated into atrace file. How a timing
trace is generated and stored depends on the type of tracing
mechanism available:

• On-target: A tailored ipoint routine is inserted into the
source/object code at particular locations. Upon execution
an ipoint causes the target to produce a timestamp; the
timing trace is stored in a memory buffer to be down-
loaded on program completion. The advantage of this
approach is that porting to new architectures is relatively
straightforward. However, because ipoints are compiled
into the executable, theprobe effect manifests: normal
(i.e. without instrumentation) register and cache usages
are displaced, a timing penalty is incurred, and overall
code size increases.

• External capture device: An ipoint still exists in the
executable but it writes its identifier to an I/O port. The
port is monitored by an external capture device, e.g. a
logic analyser, which timestamps ipoints off target as they
appear and also serves to store the timing trace. Penalties
associated with the probe effect are minimised because
the ipoint routine can be reduced to a few instructions.
However, the target must have available and accessible
pins to emit the data, which is not always practical with
more advanced CPUs. It may also be necessary to disable
the cache so that the data written by the ipoint routine is
observed on the bus.

• Debug interface: Nexus [9] and Embedded Trace Macro-
cell [10] technologies trace program flow discontinuities,
i.e. conditional and unconditional jumps, in a transparent
fashion. That is, the probe effect is completely eliminated.
Timestamps are generated on target and the trace data are

2Basic blocks consist of consecutive instructions in which flow of control
enters at the beginning and leaves at the end.



either written to an on-chip trace buffer for subsequent
download, or exported directly in real time through an
external port. However, bandwidth remains the major
technical obstacle because the port or debugger must
keep pace with the rate at which trace data are produced;
otherwise, blackouts arise in which parts of a timing trace
are overwritten and essentially lost.

• Simulation: Cycle-accurate simulators, such as Sim-
pleScalar [11], allow individual instructions to serve as
ipoints whereby the simulator provides the timestamp.
The timing trace is written to a file on the host, which
is a distinct advantage given the storage capabilities
of desktop computers. Furthermore, the probe effect
is eliminated and there are no issues with blackouts.
The downside is that creating a cycle-accurate simulator
reduces to constructing a precise SA processor model,
which can be difficult, or even impossible, particularly for
advanced CPUs. (This is due to unpredictable hardware
accelerators and imprecise manuals.)

The tracing mechanism only serves to gather a timing
trace: it is the job of aninstrumentation profile (iprofile)
to determinewhere the ipoints should reside. Here we review
three common iprofiles applicable to theControl Flow Graph
(CFG) of a program, which are later used in Section IV to
evaluate our HMBA:

1) In many techniques proposed by SA and HMBA, the
basic block is the atomic unit of computation because
the CFG is the program model derived from the dis-
assembly. Thebasic block iprofile therefore considers
the first instruction in a basic block as an ipoint: it
has previously been used in the evaluation of another
HMBA technique [12]. It is the most coarse-grained
iprofile (besides tracing every instruction) and is easily
supported by simulation.

2) As noted above, hardware debug interfaces trace condi-
tional and unconditional jumps. To mimic this tracing
solution, thebranch iprofile uses each branch target as
an ipoint. This iprofile is primarily of interest due to the
elimination of the probe effect.

3) The pre-dominator tree of a CFG models the pre-
dominance relation between basic blocks: a basic block
u pre-dominates a basic blockv if all paths from the
entry of the CFG tov pass throughu [13]. The pre-
dominator iprofile [14] instruments the leaves of the
pre-dominator tree. It hails from the coverage domain
where the aim is to reduce trace file size whilst still
enabling coverage metrics to be measured; hence, it is
typically sparser than either of the basic block or branch
iprofiles.

A. Assumptions

Our HMBA assumes the following with respect to tracing
and instrumentation:

1) The component can generate a timing trace. Either the
supplier inserts ipoints into the source/object code using

an iprofile, or the client has access to a debug interface;
the latter is preferred due to elimination of the probe
effect.

2) Identifiers of ipoints are unique. When an ipoint iden-
tifier corresponds to an address, the assumption clearly
holds. Alternatively, it can easily be enforced by a tool,
e.g.RapiTime [15], which automatically inserts ipoints
into the program.

3) There are two identified ipoints which delimit the start
and end of a new program run. These delimiters allow
our analysis to deduce where each new run begins in the
trace file (otherwise it will consider the entire trace file
as a single execution) and also enable the HWMT to be
extracted.

It is also important to stress thatthis work does not attempt
to quantify the impact of the probe effect on WCET estimates.

III. SYSTEM MODEL

The problem addressed in this paper is how to compute
a WCET estimate for a program comprised of a number of
components, assuming that neither the source code nor the
disassembly of these components are available. As detailedin
the previous section, we assume that a tracing mechanism is
available to extract a trace file from the instrumented program.
This section describes how our HMBA calculates a WCET
estimate from the trace file. Section III-A first shows how the
IPG is built on the fly, before Section III-B presents how to
derive anInteger Linear Program (ILP) from the IPG and
the timing information, thus resulting in a WCET estimate.

A. Instrumentation Point Graph

The IPG is a program model representing the transitions
among ipoints at the intermediate code level. Its vertices are
therefore ipoints and each edge contains the functional code
executed when a particular transition is followed. In contrast
to a CFG, therefore,the edges of an IPG are its atomic unit
of computation rather than its vertices.

Previous work [7] has shown how to build the IPGstatically
given the CFG and the relative locations of ipoints in the
CFG. But clearly this presupposes the ability to disassemble or
derive the CFG during compilation from the source code. Here
we instead explore how to construct the IPG from a trace file;
to this end, we use an illustrative example as the mechanism
itself is straightforward.

Consider the example CFG shown in Fig. 1(a), which has
been instrumented with the pre-dominator iprofile. Although
the pre-dominator tree is not displayed, note thatc, d, f are its
only leaves since they do not pre-dominate any other basic
blocks — these basic blocks have been instrumented with
ipoints 2, 3, 4, respectively. Further observe thata has been
instrumented with ipoint1 and that ipoint4 appears after the
execution off rather than before it, both of which ensure the
instrumentation is compliant with the third assumption detailed
in Section II-A.

Two different timing traces through the CFG are given in
Fig. 1(b), which also shows how the IPG is constructed on the



1

2 3

4

a

b

c d

e

f

(a) CFG Instrumented with Pre-Dominator Ipro-
file.

11

2

2

2

2

3

3

3

3

4 4

0

10

14

27

31

36

36

40

46

54

57

61

IpointIpoint Timestamp Timestamp

Run 1 Run 2

(b) Two Timing Traces.

11

1 1

1

2
33

3

4

4

4

5

8

10

13

x = x =

x =x =

x = x =

c = c =

c =c =

c = c =

(c) IPG with Execution Times (c) and Execution
Bounds (x) of Edges.

Fig. 1: Example Used to Demonstrate IPG Construction.

fly during trace parsing. Solid edges depict new transitionsin-
serted into the IPG, whereas dashed edges depict the traversal
of an existing transition. Note that, because we assume that
ipoint identifiers are unique (see Section II-A), issues with
a non-deterministic automaton are avoided; that is, the parser
canalways uniquely determine the exact transition to insert or
traverse with a simple one token lookahead scheme. Execution
times and execution bounds of IPG edges are also retrieved
during this construction. For instance, on the first observation
of edge2 → 2, its WCET is set to14 − 10 = 4, which is
overwritten on its second observation since27−14 = 13 > 4;
that is, the WCET of an IPG edge is its maximum observed
execution time across all timing traces. Similarly, the execution
bound of an IPG edge is its maximum number of traversals
in any particular run. In this example, three traversals of edge
2 → 2 are observed in the first run, which is committed when
ipoint 4 is observed, as this is the ipoint delimiting successive
timing traces. The resultant IPG is shown in Fig. 1(c), together
with the execution time (c) and the execution bound (x) of
each edge obtained from trace parsing.

There are a couple of issues with construction of the IPG
in this manner that warrant further discussion. First, there is
a reliance on the test harness to sufficiently stress program
execution such that the data (IPG edges, execution times,
execution bounds) extracted from trace parsing are reliable.
In general, any property derived from timing traces which is
subsequently used in the WCET calculation can potentially
cause underestimation. For example, observe in the CFG of
Fig. 1(a) that ipoint transitions2 → 3 and 3 → 2 are
structurally possible but, unless triggered by the test harness
and subsequently written to a timing trace, will not be inserted
into the IPG. Complicating the matter still further, transitions
2 → 3 and 3 → 2 might not be possible when considering
the semantics of the code. However, timing coverage is an
issue forany approach based on measurements and the exact
conditions under which underestimation arises in HMBA is

an open research question which is outside the scope of this
paper. It is important to emphasise that the comparison in
this paper is between end-to-end approaches and our grey-
box HMBA; in this respect, Section IV demonstrates that the
WCET estimate produced by the latter benefits much sooner
from simple coverage metrics than does the former.

Second, information concerning the loops — and their
nesting relation — in the IPG is missing since the trace parser
only builds the IPG structure. Devoid of loop-nesting data,the
trace parser cannot detect when a particular loop has iterated
relative to an outer loop, nor when it exits. The implication
is that only aglobal execution bound on IPG edges can be
retrieved, and not onelocal to an outer nested loop, potentially
leading to overestimation in the WCET estimate (discussed
further in Section III-B). It would appear that the problem
can be circumvented by identifying loops as new edges are
inserted into the IPG. Previous work [7], however, has shown
that the IPG resulting from arbitrary instrumentation often
contains irreducible loops. These are basically loops with
multiple entries which complicate the formation of nesting
relations between cycles3. Although algorithms have been
presented to handle irreducibility [17], [18], each of them
could produce different loop-nesting data for the same IPG
because there is no coherent view of what constitutes a
loop in an arbitrary flow graph [16]. The upshot is that the
computed WCET estimate is sensitive to the chosen loop-
detection algorithm: underestimation is possible becausean
alternative algorithm could later be developed that results in a
larger WCET estimate. In essence,any WCET analysis relying
on such an algorithm to handle irreducibility cannot ascribe
a guarantee to the WCET estimate since the cyclic properties
of the program model cannot be formally proven. This is not
an issue when global execution bounds are utilised, however,
since the bound is relative to a single execution of the program
and not to an outer loop.

3See [13], [16] for a detailed discussion of irreducibility.



B. The IPET

The trace-parsing stage produces the structure of the IPG
and derives the execution times and execution bounds of its
edges: the calculation engine is then tasked with producinga
WCET estimate from these data. We use the IPET — which
is basically an objective function to be maximised subject to
a number of constraints — since it can easily model arbitrary
control flow and is not therefore hindered by the irreducibility
of an IPG. Puschner-Schedl [3] showed how to build such a
model with an ILP, although recent work [19] has considered
constraint logic programming as an alternative. Here we briefly
describe the ILP with respect to an IPGI = 〈I, E〉, whereI

is its set of ipoints andE ⊆ I × I its set of edges.
The objective function, to be maximised, isZ =∑
u→v∈EI

wcet(u → v) ∗ f(u → v), wherewcet(u → v)
is the longest observed execution time of the IPG edgeu → v

as obtained from the trace parser, andf(u → v) is its
non-negative execution count. Program structural constraints
represent the basic structure of the IPG, effectively preserving
flow at each vertex. Capacity constraints, on the other hand,
bound both the minimum and maximum execution count of
each IPG edge, otherwise the maximisation of the objective
function is∞ since everyf(u → v) can be assigned∞. In
our model, upper capacity constraints are execution bounds
derived from trace parsing. Solving this model via standard
(integer) linear program solvers returns both a WCET estimate
and a setting of the execution count for each IPG edge in
the worst case. In this way, all paths are implicitly considered
since the solver attempts different assignments to the execution
counts in determining the worst case [20]. In general, we
cannot determine theexact longest path from the execution
counts because the order of execution is missing.

When the execution times and upper capacity constraints
on the decision variables are safe, the solution to the ILP
always returns an upper bound on the actual WCET. As proven
by Puschner-Schedl, however, initial reduction to a circulation
problem does not precisely characterise the set of execution
paths through the flow graph — in this case the IPG —
potentially leading to overestimation.

In particular, the ILP models a number of “self-contained”
circulations, i.e. loops. As the ILP solver can satisfy all
upper bounds on capacity constraints simultaneously, an inner
circulation C becomes disconnected from the longest path
selected through its outermost circulationunless this path
always includesC. More formally, the flow graph induced by
the execution counts is not strongly connected, and the path
is therefore structurally infeasible. For example, in Fig.1(c),
there are two inner circulations,2 → 2 and 3 → 3, which
are enclosed in the outer circulation encapsulated by the edge
4 → 1. Observe that the longestacyclic path through the outer
circulation is1 → 2 → 4; therefore, when the ILP solver also
satisfies the upper capacity constraint of3 on 2 → 2, i.e.
f(2 → 2) = 3, no pessimism arises since2 appears on this
path. However, the solver will also setf(3 → 3) = 3 because
it does not violate any other constraint and it must maximise

the objective function. Clearly, overestimation ensues because
the paths through2 and3 cannot be taken simultaneously.

Puschner-Schedl termed this thedisconnected circulation
problem and proved that relative capacity constraints are its
solution. A relative capacity constraint models the execution
count of a variable with respect to its enclosing loop, rather
than, or in addition to, the global execution count. However,
as discussed in Section III-A, the simple construction of the
IPG by the trace parser does not provide loop information and
we only have access to global execution counts. This is one
source of overestimation in our model, and its severity depends
on the shape of the IPG. We believe this can be overcome by
guaranteeing reducibility in the IPG generated from an iprofile,
for example, by positioning ipoints in the headers of all loops.
This allows the trace parser to derive the necessary local loop
bounds, which can be fed accordingly into the ILP — how
this is realised is considered beyond the scope of this paper.

IV. EVALUATION

This section is split into three parts: Section IV-A explains
our experimental framework, Section IV-B describes the set
of programs under analysis, and finally, Section IV-C dissem-
inates our results.

A. Experimental Set-up

Our HMBA requires timing traces. For this purpose, we em-
ployed the SimpleScalar toolset [11] because such information
can be extracted in a relatively straightforward manner. The
exact stages of our framework are depicted in Figure 2 for
which a detailed description now ensues4.

Fig. 2: Overview of Experimental Framework.

Each program under analysis was compiled using a GCC
cross compiler that produces executables for the Portable In-
struction Set Architecture (PISA, the SimpleScalar derivative

4Note that the steps corresponding to disassembling and instrumentation are
only of relevance to this evaluation as they are our means to obtain timing
traces.



of the MIPS-IV instruction set); level two of optimisation (i.e.
using the−O2 flag) was selected to increase the speed of
execution on SimpleScalar. The binary was then loaded onto
sim-outorder, the SimpleScalar utility that simulates an
out-of-order processor. Our configuration of the CPU was very
simple, comprising instruction and data caches of 128 bytes
each and a single-fetch in-order pipeline. Therefore, there is
little jitter in execution times due to hardware effects, and
deducing the worst-caseTest Vector (TV) for each benchmark
was subsequently straightforward.

We used a GA to generate TVs for the binary since previous
work [21]–[23] has shown its relative success in generatinga
HWMT which lies in close proximity to the actual WCET.
Therefore, we could compare our WCET estimate with the
HWMT produced by a state-of-the-art end-to-end approach.
Our implementation of the GA uses two-point crossover,
elitism, a crossover rate of0.9, and a mutation rate of0.01.
The fitness function in the GA is the execution time as returned
by sim-outorder, which allows for quick evaluation of the
fitness of each chromosome. The number of generations and
the size of the population varied according to the particular
benchmark (see Section IV-B).

Each run of the executable onsim-outorder with a
single TV produces aptrace, which is a detailed time-
stamped history of each instruction as it progresses through
each pipeline stage5. When the TV produced by the GA is
unique, i.e. it has not previously been generated, our frame-
work manipulates theptrace to output three timing traces,
one each for the iprofiles detailed in Section II; each timing
trace is subsequently concatenated onto its correspondingtrace
file. This means that we avoid duplicating timing traces in
the trace file since the GA often generates congruent TVs,
particularly as evolution increases.

Clearly, in order to transform theptrace into timing
traces, we needed the CFGs of the program under analysis to
know which addresses correspond to ipoints. This was done
by disassembling the binary (using theobjdump utility) and
then constructing the CFGs from the disassembly. Note that we
would normally assume the instrumentation step has already
been undertaken, or that there is access to a hardware debug
interface or simulator, since the central assumption of this
paper is that disassembling of the object code is forbidden.

Upon completion of testing, the trace files generated for
each iprofile were passed to the analysis engine. As detailed
in Section III, processing of a single trace file results in on-the-
fly construction of the IPG, extraction of the data needed in
the WCET calculation, and generation of the ILP. In order
to plot how the HWMT and our WCET estimate changes

5It is important to stress that, for each generated TV, the binary had to
be reloaded ontosim-outorder, the implication of which is that the
initial hardware state is always the same. This is unrealistic in an industrial
setting where a test harness typically cycles through its TVs, invoking the
program without resetting the hardware; that is, the hardware state remaining
from one run is inherited by the next run. Our intention was tosimulate
such an environment, but fundamental limits with SimpleScalar prevented its
implementation, namely the inability ofptrace to handle large pipeline trace
files.

with an increasing number of TVs, we performed a WCET
calculation aftereach timing trace and not only when the
entire trace file had been processed. A capacity constraint to
the ILP was added for each cycle-inducing edge in the IPG
with the maximum execution count as retrieved at that point
by the trace parser. In typical WCET analyses, these edges
are those identified by a loop-detection algorithm. But as the
model detailed in Section III does not detect IPG loops, a
capacity constraint is added for any IPG edge categorised as
a back edge during a depth-first search.

Finally, for each of the benchmarks, we determined the
worst-case TV by manual inspection in order to extract the
actual WCET.

B. Benchmarks

The benchmarks under investigation are taken from the
Mälardalen suite [8], which are used by many groups in WCET
analysis to evaluate their tools. In this evaluation they are
particularly appealing since the worst-case TVs are easy to
deduce.

Due to space restrictions, we cannot present the analysis
of every benchmark in the Mälardalen suite; Table I in-
stead lists the chosen programs under analysis, together with
properties relevant to the test stage. Programsbubblesort
andinsertsort were selected because previous work [23]
has shown the difficulty encountered by a GA in finding
its worst-case TV (i.e. the reverse-sorted array). The choice
of janne_complex was motivated by its complex input-
dependant execution behaviour [24] and, similarly,expint
contains an inner loop which only triggers when its second
parameter is1, potentially complicating the unguided search
of a GA. For the sorting programs, the size of the population
and the number of generations were both set to100 because
they ensure sufficient diversity in the TVs without significantly
impeding the turnaround time of the test stage; in addition,
they are generally suited to a wide range of optimisation
problems [25]. These parameters were reduced to25 each for
expint andjanne_complex because their input space is
much smaller. Using a100 ∗ 100 evolution will likely cause
exhaustive input-space coverage and therefore discovery of the
actual WCET, which is unrealistic in the general case as testing
typically covers a small subset of the input space. By reducing
the evolution process to25 ∗ 25, the testing set-up is more
realistic, maintaining a reasonable ratio between the covered
input space and the overall input space. Table I also presents
the number ofunique TVs that the GA produced in comparison
to the total number of TVs.

Table II displays properties of interest with respect to
the iprofiles. Observe that the basic block (respectively pre-
dominator) iprofile is the densest (respectively sparsest), which
is also reflected in the trace file sizes. Further note that each
iprofile requires ipoints positioned at the start and end the
program in order to determine the HWMT — this explains
why the basic block iprofile always hasn + 1 ipoints, where
n is the number of basic blocks, because of the additional



TABLE I: Properties of Benchmarks Selected for Analysis.
Program #Parameters Input Range #Generations Population Size #Unique Test Vectors #Total Test Vectors

bubblesort 10 [1..100] 100 100 1017 10,000
expint 2 [0..100] 25 25 39 625
insertsort 10 [1..100] 100 100 949 10,000
janne_complex 2 [1..30] 25 25 34 625

TABLE II: Instrumentation Properties for Benchmarks: Trace File Sizes and Number of Ipoints.
Program #Basic blocks Iprofile

Basic block Branch Pre-dominator
Trace File Size (bytes) #Ipoints Trace File Size (bytes) #Ipoints Trace File Size (bytes) #Ipoints

bubblesort 9 1,898,234 10 1,468,974 7 1,051,258 6
expint 34 95,476 35 82,642 23 32,506 18
insertsort 7 1,033,058 8 633,854 6 522,704 4
janne_complex 11 19,461 12 14,807 10 8,970 8

ipoint at the end of the program (see the third assumption in
Section II).

C. Results

Our results are presented in Table III which shows: the
HMWT obtained by the GA; the actual WCET obtained by
executing the program with its worst-case TV (derived by
hand); the percentage of optimism in the HWMT (with respect
to the actual WCET); the WCET estimate computed from
each iprofile; and the percentage of pessimism in the WCET
estimate (with respect to the actual WCET). A graphical
representation of how the HWMT and the WCET estimate
change during testing appears in Figure 3. Note that the units
of time in Table III and Figure 3 are simulation cycles.

There are five interesting observations from these results.
First, the GA did not manage to expose the actual WCET for
any of the benchmarks, although the margin of underestima-
tion is minimal. This underlines the fragility of any end-to-
end approach: it is completely dependent on the test harness
finding the worst-case TV.

Second, our WCET estimates bound the actual WCETs
very quickly, irrespective of the iprofile. In the case of
bubblesort and insertsort, the actual WCET is
bounded immediately, after the first TV. On the other hand,
for expint and janne_complex, this occurs after the
third and second TV, respectively. On further investigation,
we discovered that underestimation occurs in these instances
because some of the basic blocks remain uncovered; as
soon as100% basic block coverage is attained, the WCET
estimate bounded the actual WCET. This is precisely the
benefit of HMBA: rather than rely on TVs to trigger long
end-to-end execution times, the measured execution times of
small program segments can be pieced together with path-
specific information. Therefore, the test harness need not find
a TV causing all loops to iterate through their maximum
bound simultaneously whilst also, at the same time, trigger
the WCET of blocks of code in thesame run. By using a
program model, HMBA instead multiplexes this information
from the set of timing traces before carrying out the WCET
computation. Obviously, coverage remains an issue since the
units of computation must be stressed adequately enough to

represent worst-case behaviour, although how this is realised
is an open research question.

Third, the WCET estimates computed from the basic block
and branch iprofiles are equivalent for each benchmark. How-
ever, the key difference is the latter is generally sparser than the
former, as demonstrated by the trace file sizes. For example,
Table II shows that, forinsertsort, there is a38.6%
reduction in trace file size between the basic block and branch
iprofiles. This is an important consideration in HMBA, given
that trace parsing is often its biggest bottleneck [7]. Therefore,
these results suggest that the sparser branch iprofile reduces
overheads — including the probe effect (if any) — without
impacting the accuracy of the WCET estimate.

Fourth, there is considerable overestimation given that these
programs are small and simple. For example, the WCET
estimate of every benchmark suffers from at least50% pes-
simism for both the basic block and branch iprofiles. Two
reasons underpin this problem. First, as detailed above, the ILP
only contains capacity constraints for cycle-inducing edges in
the IPG, and not forevery edge. Including the latter would
provide the most accuracy as the feasible execution paths
through the IPG would be further constrained, although it
is more susceptible to underestimation because the data are
collected entirely from measurements. Second, after manually
inspecting the ILPs generated for the IPG in conjunction with
the trace file, we found that there was significant overesti-
mation in the execution times of IPG edges: our ILP simply
models asingle execution time for each IPG edge, thereby
ignoring different execution times arising from, for example,
cache effects. In theory, the model could include the execution
time profile [26] of each IPG edge; that is, a variable in the
ILP for each of its observed execution times together with
respective capacity constraints. Marref [27] has presented a
mechanism to deduce these type of constraints from timing
traces and how to subsequently model them in a constraint
logic programming model. Obviously, this burdens the test
harness further because it must ensure that the execution time
profile is representative of its worst-case behaviour. (Note
that the lack of relative capacity constraints in the ILP, as
highlighted in Section III-B, is not a cause of overestimation



TABLE III: Analysis Results for Benchmarks.
Program HWMT Actual WCET Optimism Iprofile

Basic block Branch Pre-dominator
WCET EstimatePessimismWCET EstimatePessimismWCET EstimatePessimism

bubblesort 1008 1028 2.0% 1818 76.8% 1818 76.8% 2310 124.7%
expint 10721 10956 2.1% 16644 51.9% 16644 51.9% 12414 13.3%
insertsort 1113 1175 5.3% 1799 53.1% 1799 53.1% 2124 80.7%
janne_complex 367 398 7.8% 743 86.7% 743 86.7% 705 77.1%

for these benchmarks. We checked the IPGs induced by the
execution counts and discovered that all were structurally
feasible paths.)

Fifth, the WCET estimate produced by the pre-dominator
iprofile is larger than the basic block and branch iprofiles for
bubblesort and insertsort but smaller forexpint
and janne_complex. Since thesame TVs were used to
produce each trace file, the only conclusion to be drawn is that
the iprofile affects the precision of the WCET estimate. We
therefore examined the execution times of IPG edges and their
execution counts (as set by the ILP solver) since these are the
only variables between different iprofiles. The tighter WCET
estimates forexpint andjanne_complex are explained
by more execution context being included on IPG edges. That
is, since the pre-dominator iprofile is sparser in terms of
ipoints, basic blocks appear onmultiple IPG transitions and
the WCETs of basic blocks benefit from the execution history
incorporated on those edges. For example, the WCET of basic
block b in Figure 1 is likely to be higher on transition1 → 2
than 2 → 2 because of cache misses. In contrast, the basic
block and branch iprofiles incorporate less execution history
in their units of computation (because they are denser) and
are more pessimistic as a result. The looser WCET estimates
for bubblesort and insertsort, on the other hand,
arise due to insufficient modelling in the ILP. We summed
the execution counts ofbasic blocks by observing on which
IPG edges they appear. This revealed that the ILP of the
pre-dominator iprofile returned over-approximations, whereas
those returned for the basic block and branch iprofiles were
precise. These findings suggest that sparsity of instrumentation
is desirable, to reduce tracing overheads and to allow better
accuracy in the units of computation, but that positioning
of ipoints with respect to program structure is crucial to
avoid problems in the ILP. Closer investigation of this issue,
however, is considered as future work.

V. RELATED WORK

A comparison with SA is not relevant here since it requires
the source code or the disassembly to build the complete
program model, both of which are assumed absent in this paper
in particular components of the RTS. This section therefore
reviews end-to-end approaches and HMBA paradigms which
are the closest to our approach.

Wegeneret al. [22], [23] first proposed using a GA to stress
the end-to-end execution time of a program. Their results
indicate that the obtained HWMT lies closer to the actual
WCET than does the WCET estimate computed by a SA

technique, but that underestimation exists. One drawback is
that the fitness function only considers the execution time,
disregarding other factors which could later lead to a long
execution time, such as the number of cache misses. Khanet
al. [21] considered including multiple criteria, e.g. hardware
effects and loop bounds, into the fitness function with a view
to recommending which criteria suit which systems. Ermedahl
et al. [24] have investigated generating the worst-case TV for
a particular program. Our approach also uses testing to trigger
long execution times, but the WCET estimate is derived from
a subsequent calculation operating on a program model, and
is therefore not reliant on the test harness finding the absolute
worst-case TV, as our results demonstrated.

Similarly, Williams [28] employs a form of limited path
coverage [29] usingPathCrawler [30] to find the actual
WCET of the program, suffering from obvious scalability
problems. Our work avoids scalability issues by instead deriv-
ing execution times and execution counts of program segments
before combining this information globally to obtain the
WCET estimate.

In terms of HMBA, three works are closest to our approach.
First, Bernatet al. [26], [31] obtains an Execution Time Profile
(ETP), rather than an integer value, for each program segment.
An ETP is obtained through measurements and represents the
frequency of execution for a particular execution time. The
calculation engine is then able to combine dependent ETPs that
occur from hardware effects which have not been captured in
the measurement stage. Second, Colinet al. [12] generate tim-
ing traces through SimpleScalar, parse them to derive WCETs
of basic blocks, and finally compute a WCET estimate using
the standard timing schema [2] of an Abstract Syntax Tree
(AST). Third, Marref [19] has presented predicated WCET
analysis, which deduces execution time effects between basic
blocks from timing traces. These execution time effects are
later injected into the calculation as constraints on execution
paths, consequently tightening the WCET calculation. Our
work differs from all three: the Bernat and Colin approaches
need very specific ipoint placement and are restricted to
source-level analysis due to adoption of the AST; whereas
basic blocks serve as the unit of computation in the Marref
method and, consequently, the CFG is the underlying program
model for which the disassembly is needed.

VI. CONCLUSION

Composing a real-time system out of software components
is a pervasive area of interest, both in academia and in
industry. When a component is shipped to a client, however,



source code is withheld and the relocatable object code cannot
usually be disassembled, to protect intellectual property. Under
these circumstances, state-of-the-art WCET analysis tools and
techniques are neutralized because they are unable to construct
a program model.

This paper showed how to derive a safer WCET estimate
than end-to-end approaches using hybrid measurement-based
analysis. Rather than statically derive any data needed in the
WCET calculation, they are instead gathered during parsingof
time-stamped traces of execution which have been produced
by an instrumented program. How these traces are produced is
orthogonal: our approach does not place any restrictions onthe
type of instrumentation deployed and thus supports probe-free
tracing as supplied by hardware debug interfaces. However,we
evaluated the accuracy of the WCET estimate when different
instrumentation profiles are deployed. Our results indicate that
achieving minimal coverage, i.e. all basic blocks, is sufficient
to bound the actual WCET for the programs under analysis,
whereas a state-of-the-art end-to-end approach failed to do so.
We also found that branch tracing mechanisms offer the same
precision as basic block tracing mechanisms but with reduced
trace overheads. Furthermore, simple changes in the position
of instrumentation points can dramatically change the accuracy
of the WCET estimate.

Future work will investigate ways in which to reduce the
pessimism by modelling the execution times and execution
counts of program segments in a more powerful way. As
the position of instrumentation is also key to the analysis,
we intend to consider where instrumentation points should
be placed to ensure more accurate WCET estimates. Finally,
we will consider more rigorous coverage metrics than those
proposed in the functional domain, given their inability totake
timing into account.

ACKNOWLEDGEMENTS

This work is supported by the Swedish Foundation for
Strategic Research (SSF) through the Research Centre for
Predictable Embedded Software Systems (PROGRESS).

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The Worst-Case
Execution-Time Problem–Overview of Methods and Survey of Tools,”
ACM Transations on Embedded Computing Systems, vol. 7, no. 3, pp.
1–53, 2008.

[2] C. Y. Park and A. C. Shaw, “Experiments With A Program Timing Tool
Based on Source-Level Timing Schema,”IEEE Computer, vol. 24, no. 5,
pp. 48–57, May 1991.

[3] P. Puschner and A. Schedl, “Computing Maximum Task Execution
Times - A Graph-Based Approach,”Real-Time Systems, vol. 13, no. 1,
pp. 67–91, 1997.

[4] F. Stappert, A. Ermedahl, and J. Engblom, “Efficient longest executable
path search for programs with complex flows and pipeline effects,”
in Proceedings of the 2001 international conference on Compilers,
architecture, and synthesis for embedded systems (CASES’01). New
York, NY, USA: ACM Press, 2001, pp. 132–140.

[5] F. Lüders, S. Ahmad, F. Khizer, and G. Singh-Dhillon, “Use of software
component models and services in embedded real-time systems,” in
Proceedings of the 40th Hawaii International Conference on System
Sciences, January 2007.

[6] J. J. Chilenski and S. P. Miller, “Applicability of Modified Condition/De-
cision Coverage to Software Testing,”Software Engineering Journal,
vol. 9, no. 5, pp. 193–200, September 1994.

[7] A. Betts, “Hybrid Measurement-Based WCET Analysis using Instru-
mentation Point Graphs,” Ph.D. dissertation, University of York, Novem-
ber 2008.

[8] Mälardalen University WCET project homepage,
http://www.mrtc.mdh.se/projects/wcet, May 2010.

[9] The Nexus 5001TM Forum, http://www.nexus5001.org, May 2010.
[10] ARM development tools, http://www.arm.com, May 2010.
[11] D. Burger and T. Austin, “The simplescalar tool set, version 2.0,”

University of Wisconsin, Madison, Technical Report CS-TR-1997-1342,
1997.

[12] A. Colin and S. M. Petters, “Experimental evaluation ofcode properties
for WCET analysis,” inProceedings of the 24th Real-Time Systems
Symposium (RTSS’03), December 2003.

[13] S. S. Muchnick,Advanced Compiler Design and Implementation. Mor-
gan Kaufmann Publishers, 1997.

[14] M. M. Tikir and J. K. Hollingsworth, “Efficient Instrumentation for Code
Coverage Testing,” inProceedings of the International Symposium on
Software Testing and Analysis, July 2002.

[15] Rapita Systems Ltd., http://www.rapitasystems.com/, May 2010.
[16] G. Ramalingam, “On Loops, Dominators, and Dominance Frontiers,”

ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 24, no. 5, pp. 455–490, September 2002.

[17] ——, “Identifying Loops in Almost Linear Time,”ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 21, no. 2, pp.
175–188, March 1999.

[18] V. C. Sreedhar, “Efficient Program Analysis using DJ Graphs,” Ph.D.
dissertation, McGill University, 1995.

[19] A. Marref, “Predicated Worst-Case Execution-Time Analysis,” Ph.D.
dissertation, York, UK, 2009.

[20] Y. S. Li, S. Malik, and A. Wolfe, “Efficient microarchitecture modeling
and path analysis for real-time software,” inProceedings of the IEEE
Real-Time Systems Symposium, 1995, pp. 298–307.

[21] U. Khan and I. Bate, “WCET analysis of modern processorsusing
multi-criteria optimisation,” in Proceedings of the 1st International
Symposium on Search Based Software Engineering (SSBSE’09), May
2009.

[22] J. Wegener and M. Grochtmann, “Verifying timing constraints of real-
time systems by means of evolutionary testing,”Real-Time Systems,
vol. 15, no. 3, pp. 275–298, 1998.

[23] J. Wegener and F. Müeller, “A comparison of static analysis and
evolutionary testing for the verification of timing constraints,” Real-Time
Systems, vol. 21, no. 3, pp. 241–268, 2001.

[24] A. Ermedahl, J. Fredriksson, J. Gustafsson, and P. Altenbernd, “De-
riving the worst-case execution time input values,” in21st Euromicro
Conference of Real-Time Systems (ECRTS’09), July 2009.

[25] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, Massachusetts: Addison-Wesley Publishing
Company, 1989.

[26] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis ofprobabilistic
hard real-time systems,” inProceedings of the 23rd Real-Time Systems
Symposium (RTSS’02), December 2002.

[27] A. Marref and G. Bernat, “Towards Predicated WCET Analysis ,” in
Proceedings of the 8th International Workshop on Worst-Case Execution
Time (WCET) Analysis, July 2008.

[28] N. Williams, “WCET measurement using modified path testing,” in Pro-
ceedings of the 5th International Workshop On Worst-Case Execution-
Time (WCET) Analysis in conjunction with the 17th Euromicro Inter-
national Conference on Real-Time Systems, 2005.

[29] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit testcoverage
and adequacy,”ACM Computing Surveys, vol. 29, no. 4, pp. 366–427,
1997.

[30] N. Williams, B. Marre, P. Mouy, and M. Roger, “Pathcrawler: Automatic
generation of path tests by combining static and dynamic analysis,” in
Proceedings of the 5th European Dependable Computing Conference
(EDCC’5), 2005, pp. 281–292.

[31] G. Bernat, M. Newby, and A. Burns, “Probabilistic timing analysis: an
approach using copulas,”Journal of Embedded Computing, vol. 1, no. 2,
pp. 179–194, 2005.



(a) bubblesort, Basic Block. (b) bubblesort, Branch. (c) bubblesort, Pre-Dominator.

(d) expint, Basic Block. (e) expint, Branch. (f) expint, Pre-Dominator.

(g) insertsort, Basic Block. (h) insertsort, Branch. (i) insertsort, Pre-Dominator.

(j) janne_complex, Basic Block. (k) janne_complex, Branch. (l) janne_complex, Pre-Dominator.

Fig. 3: How the HWMT and WCET Estimate Change as the Genetic Algorithm Evolves Test Vectors for each Benchmark,
Iprofile Combination.


