Memory Positioning of Real-Time Code
for Smaller Worst-Case Execution Times

Amine Marref Adam Betts
Department of Computer Science Malardalen University
Umm Al-Qura University School of Innovation, Design, and Engineering
Makkah, Saudi Arabia Vasteras, Sweden
ajmarref@uqu.edu.sa adam.betts@mdh.se

Abstract—The process of determining the worst-case execution returned by SA is a function of the number and magnitude
time (WCET) is challenged in the presence of caches due toof cache hits and cache misses — the latter influences the
their unpredictable effect on the speed of memory referenc® agtimation considerably since the cost of a cache miss is
In particular, when cache conflicts between program lines a@ .
common, thrashing occurs and this inadvertently increaseshe s_everal orQers of magnitude larger tha_n the cost of a cache
WCET, sometimes significantly so. One way to minimise the cae hit. Reducing the number of cache conflicts eventually reduc
impact on the WCET, therefore, is to judiciously lay out code the number of definite cache misses and unclassified cache
and data in memory to avoid cache conflicts. accesses, allowing SA to derive a tighter WCET bound.

ljn thlis papert, Webfhow hOWCtO f?rm”tl%e t.the. WCEE%VS&G The number of cache conflicts in the task also affects DA —
?80?35 Evlvcrﬁg]eganp;ﬂ ene rgeaesﬁ% er?t?; srgll\r/]ed Ey'rgg ?hlg-nsh eicop Whichinvolves .exegutin.g the tgsk on its target hard\{vareeWh
solvers. Experimental evaluation of our proposed analysishows the WCET estimation is obtained by DA, a certain level of
that the proposed analysis successfully identified code pitiening execution-time coverage [3] is usually needed to acquireemo
that yields the minimum WCET for over half of the problems confidence in the WCET estimation. When the analysed task
within manageable time. exhibits a complex cache behaviour, reasoning about timing
coverage becomes very hard as the testing process of DA
must be able to stress task execution in situations thatecaus

Real-time systems (RTSs) must operate in a timely manngorst-case cache behaviour which might only be observed
to ensure their correct functioning. An RTS is a set of tasks very pathological executions of the task. Reducing the
that cooperate in order to deliver a specific functionallty. number of cache conflicts reduces the number of cache misses
ensure that the RTS works correctly, a schedulability aigly during execution which contributes to a smaller WCET, and
is performed which checks whether or not all tasks can mesito minimizes the timing variations which allows a better
their deadlines at runtime — this requires knowledge alwait treasoning about timing coverage.
worst-case execution time (WCET) of the individual tasks. | One way to make the WCET smaller is to organise its code
order to estimate the WCET of a task, either static analy$is memory in a way that minimizes cache conflicts at run-
(SA) or dynamic analysis (DA) are performed [1]. time — this is the problem for which we offer a solution in

The SA of a real-time task to obtain an upper bounthis paper. The proposed technique only applies to instmict
on the WCET involves creating a mathematical model @faches which we refer to as simply caches throughout this
the hardware where the task runs. Contemporary hardwaeper.
inevitably contains caches since they speed-up computatio In this work, we consider the problem of code positioning
time considerably. Consequently, the SA of modern hardwasé real-time tasks that contain a number of functions. The
to obtain the WCET naturally includes the analysis of theroblem for which we propose a solution is how to organise
cache behaviour that classifies cache accessdefaste hits the functions that form the real-time task in main memory so
definite missesand unclassified accesse#\n unclassified that their interaction in cache at run-time yields a minimal
cache access results when SA fails to determine whethenwamber of cache conflicts, and hence decreases the WCET.
portion of the task will or not be in the cache when it iShe analysis could in theory additionally be applied at the
accessed because of some complashe-conflicpattern that basic-block level of the different functions i.e., minirinig
cannot be accurately captured by the SA. Since safety in $Ache conflicts resulting from both intra-function and iinte
is mandatory, the unclassified cache accesses are combsid&raction cache interaction. We focus on this level of granu-
as cache misses — as long as this does not cause timigngty because the computed layout can only be enforced with
anomalies [2] i.e., situations where assuming a local wordinker support, which typically only allows control overeth
case behaviour leads a global non worst-case behaviour. start addresses of functions.

Large WCET estimations are not practical as they mightIn this paper, we show how to model the problem of
eventually lead to unschedulable systems, and so decgeasiade positioning in memory for lower WCET as a constraint-
the WCET is always desired. The magnitude of the WCEGptimization problem (COP). Using a COP to model the

I. INTRODUCTION

problem has two main advantages. First, it is possible ¢ost of positioning is derived from branch-prediction pées,
obtain theoptimal code positioning in memory that yields thewhile in our case it is derived from cache-conflict penalties
minimal number of cache conflicts using a complete searchin [6], code positioning is performed at the function level,
method. Second, the problem can seamlessly be augmentediy its cost is based on instruction-cache conflicts. Thécwor
extra constraints that describe restrictions on code plac¢ in [6] addresses the same problem that we attempt to solve —
or reflect functionality constraints between portions @ tlode but we make the following observations. First, the formiolat

of the task being analysed. This is a particularly importaof the problem is different; [6] views the code positioning
consideration in industry where it is often necessary, f@roblem as a heuristic problem while we formulate it as
example, to force functions to particular address so that nea COP. Second, the algorithm presented in [6] is greedy

layouts have minimal changes. whose solution is not guaranteed to be optimal. However,
The contributions of the paper are the following. our formulation enables obtaining optimal solutions ifided.
« We show how to model the problem of code positioninghird, [6] uses a third-party WCET analysis tool that penisr
to minimize the WCET as a COP. cache modelling, which is not required in our case because we

« We show that the COP solution to the code-positioniri tegrate the cache analysis as a set of constraints in o&r CO
problem can transparently be augmented by real- grmulation. Fourth, [6] does not consider real-life coastts
constraints that normally govern code positioning in maiffiat may restrict code positioning, while our COP formuiati
memory. can transparently be augmented with such constraints.

« We prove that positioning task code in order to minimize N [7], WCET reduction is implemented by careful inlining
the WCET never causes an increase in the WCET wifif task functions using machine-learning techniques. This
respect to the most-commonly used hardware accelefdfferent from our work in the sense that the reduction of
tors. the WCET is obtained by inlining functions as opposed to

« We evaluate the quality and cost of the solutions obtain@@sitioning them.
for the COP formulation using two off-the-shelf COP
solvers. . : :

« We implement our own COP search method in constraint- 1he problem that we address in this paper is the following.

logic programming, and evaluate the quality and cost 4 executable (real-time) task contains a set of functions
its solution. whose interaction with each other is dictated by the fumetio

emantics of the task. The functions are in object-codedibrm

.e., compiled; and are awaiting to be linked in the task’s
emory-address space. The way by which the functions are

inked yields a specific cache behaviour of the task charac-

¢ ve the COP f lati fth bl In Secti rised by a number of cache conflicts. We want to find the
use to solve the ormufation ofthe problem. in Section rrangement of functions in memory that yields a minimum

we present the enhancements we perform in the cop SONElber of cache conflicts and thus decreases the WCET of
that decreases the effort of solving the COP. In Section toF task

we conduct an_empirical evalu_at|0n of the_ goodness an In order to formulate the code-positioning problem to min-

comple>_<|ty of our prop(_)sed_ technique. In Section VI, We\’draimize the WCET as a COP, we define what a COP is. First,
conclusions and set directions for future work. a constraint-satisfaction problem (CSP) is defined as a set
of variables and a set of constraints on the variables; and a
solution to the CSP is a total assignment to the variables tha

Code positioning is a compiler technique [4] that aimsatisfies all the constraints. A COP is a CSP augmented with
at reducing the average-case execution time (ACET). Usiag objective function and a cost variable; in this case aiswmiu
execution-profile data, the compiler decides on a particul the COP is a total assignment to the variables that satisfie
code (and data) positioning that enhances spacial and tampall the constraints and optimizes (minimizes or maximizbs)
locality which at the end yields a better use of the cache. cost variable according to the objective function.

Code positioning aimed at decreasing the ACET is notIn the problem of code positioning to minimize the WCET,
guaranteed to also decrease the WCET — it can potentiahe variables are the functions and their attributes eagitipn
increase it. Therefore, code-positioning techniques tuece in main memory. The set of constraints dictates mandatory
the ACET are relevant to our work, but non-comparable. properties (e.g., no two functions can map to the same mem-

In [5], [6], the problem of code positioning to reduce th@ry address) and optional properties of functions (e.gg tw
WCET is considered. The work in [5] addresses the issfiegnctions are mutually exclusive). The cost that we want to
of positioning basic blocks in main memory in a way thaminimize is the WCET of the task.
reduces the branch penalties along the longest path. This wo Formally, we consider a task of n functions F;. Each
is different from ours in two ways. First, the positioning ofunction F; has a start address, an end address;, and
code is performed at a basic-block level, while in our casa,sizez;. The start and end addressgsand e; respectively
the positioning is performed at the function level. Secdhd, will indicate the placement of the functions in main memory

Ill. PROBLEM FORMULATION AS A COP

The rest of the paper is organised as follows. In Section
we review related work. In Section Ill, we describe th
COP formulation of the code-positioning problem in a WCE
setting. In Section IV, we describe the search methods tkat

Il. RELATED WORK

and hence finding an assignment to them — that minimizes) 1;1 5122 wFng — jl’:L
the WCET — is the objective of the solution. The sizesre 0 0 | waz | - | wan
given and they are a function of the number of instructions F; 1 0 0 0 [- | wsn
in the object code (known from the object code) and their S N R T _
respective sizes (known from the instruction-set desoript 710 0 T 0

Table | shows the memory constraints of the COP that
we attempt to solve. Constraint 1 defines the domain of theFig. 1. The weight matri¥” of graphG' containingn functions F;.
variabless; ande; between memory boundariesem; and
memy, (for memory low and memory high respectively); infor-
mally constraint 1 states that the functions can be positionresent the interaction of the functions in the cache. Fdynal
anywhere in the memory-address space. Here, the memdtyeall-and-loop graplis = (V, E), [V|=n, ECV xV is a
address space is a finite range of integers fromn; to directed graph where each nodec V' is a functionf;, and
memy,, inclusive. Constraint 2 adds information about ththere is an edgév;, v;) € £ if and only if F; andF; call each
sizes of the functions. Constraint 3 states the no-oveihgpp Other in task or belong to the same loop nest. Notice that the
property i.e., the functions are arranged in disjoint porsiof construction ofG is not sensitive to loop-nest levels. Building
the address space available for the task. The constrainis 1Gtmight potentially encounter problems e.g., the resolutibn
3 are mandatory. function pointers — solving this problem which is relevamt t

Optionally, the COP can be augmented with addition&lany static code-analysis techniques is considered eutised
constraints specified by the user. For example, specificsarég80pe of this work.
of memory cannot be used for procedure allocation becausé pair of functions might conflict with each other more
e.g., they are reserved for interrupt-service routiness Th than another pair e.g., a pair of large functions executing i
encoded in the COP using constraint 4 in Table | whR® a loop that iterates many times will conflict more than a pair
(for reserved space) is the set of address-space ranges wlérfunctions that call each other once only. For this reason,
no function can be positioned. Another example is thatthe graphG should be weighted with maximum number of
particular function must always be positioned at a specif@xecutions of functions to accurately model the sourcebef t
address in memory. This is implemented by constraint 5 whetache conflicts. Since the positioning of functions is penfed
k is a user-specified address where the funciigris to be in a WCET setting, the weights on the graph must be safe.
mapped. A third example is that, an extra memory spad&e information about these weights or execution countmor
following the end address of some function is needed to beecisely (i.e., the number of times they are executed in any
free in case the function’s code increases in size in fulliies ~ single run of the task) either comes as annotations from the
is achieved using constraint 6 whekeaddress-space unitsuser in the form of loop and recursion bounds or using a third-
after the end of functiorF; cannot be used to position otheparty flow-analysis tool for WCET e.g., SWEET [8].
functions. The graphG is represented in the COP as a (square) weight

The problem as formulated so far is a CSP (or a CQORatrix W of the form shown in Figure 1 where the entry
with a non-variable cost) whose solution returns a feasibW (F;, F;) contains the weight;;. Notice that the entries of
positioning of functions in memory. The next step is tdV below the main diagonal are zeros since the weights are
devise a cost variable that guides the optimization of tt@ready accounted for in their symmetric entries with respe
CSP which will be a function of the memory layout of thdo the main diagonal. This is becau&eis directed.
functions, their execution behaviour in the task, and trehea A function F; can have its size; superior to the cache i.e.,
architecture. In this paper, we restrict our analysis teatir z; > cache_size. In this case, the address range of function
mapped caches, which are commonplace in embedded systéinss split into [—=2——] address ranges of hypothetical
because they conserve power by preventing the simultanefwsctionsF;, with the constraintgs;, ., = e;, +1) to preserve
tag comparison needed by set-associative caches. the contiguousness @f; — wheres;, , is the start address of

In order to define the cost variable, we need to determitiee (k+ 1) (split) portion of F; ande;, is the end address of
which functions might conflict with each other in the cache. e k*" one. For this reason, no functidn in our formulation
naive solution is to consider that every function can conflihas a size larger than the cache i.e., no function can conflict
with every other function. This does not yield an accuratgith itself — but its split contiguous parts may conflict with
positioning of functions in main memory. A more accurateach other, and hence the zeros along the main diagonal in
solution is to consider the call and loop relationships leetwwv matrix W.
functions. For example, if som#} calls someF, and both Now that we know which functions can potentially conflict
conflict in the cache, a large number of misses is incurredth each other in the form of a weighted graph we can
compared to when they do not conflict. Similarly, A} and define the cost variable. The amount of conflicts will depend
Fy are part of the same loop nest, a large number of cachiethe positioning in memory e.g., consider Figure 2 wheee th
misses is incurred if they conflict in the cache, compared tache is direct-mapped of siB@0 units. In the left-hand side
when they do not conflict. of the figure, functiong”;, and F5 both fit disjointly in cache at

For this purpose, we define the call-and-loop graph to repddress spacé8..199] and[200..499] respectively resulting in

TABLE |
THE MEMORY CONSTRAINTS OF THECOPREPRESENTATION OF THE CODEPOSITIONING PROBLEM TO MINIMIZE THEWCET.

1| Vie[l.n]e{s;,e;} C[mem;..memy]
2 | Vie[l.nJee;—s;+1=2
3| Vi,jel.n],i #je[s;..e]N[sj..e;]=0
4| Vie[l.n],Vrs€ RSe[s;.e;]Nrs=10
5 | Jie[l.n]es; =k, k € [mem;..memy]
6 | el.n]Vje[l.n,iFjelsj.e;]JNle;+1.e;+k]=0,k>1
r—— - - - - - - -""-"-—" - - -V = = — = A
[| I must show that reducing inter-function cache conflicts dugs
L oo . o— o |] o— o ! cause an _(unlntentlonal) m_creaseumdt by e.g., worsening
: 209 1 199 oo | 20 : F: : intra-function cache behaviour.
sl " e | | In our formulation of the problem, we view a function as
| 599 599 | 1 599 59, a black-box “chunk” of memory with a start address, an end
Cache Mapping E Cache Mapping
[o | address, and a size. The way by which the instructions or
I | I basic blocks are arranged inside the functions is not medell
| ey Postenns Memory Positoning ! in our formulation. We want to show that the amount of cache

conflicts between the basic blocks of some functigndoes
sﬁg- 2. A”hexampfll? of hOVr\: PIO?titioniﬂg ?lf funC“OHShi“ m‘;moﬂs'ﬂlts innot increase if we “slide” its start address over a range
ifferent cache conflicts: to the left, no conflicts occurthe right, an amount . .
of 21 (size of Fy) conflicts oceur. of addresses in memory. !f we show thls, then we can safe_ly
state that the way by which the functions are positioned in
main memory does not lead to an increase in the number of

zero cache conflicts — a cache line at address memory intra-function cache conflicts.
maps to ¢ mod cache_size) in a direct-mapped cache. In Since a function is mapped to the cache according to a
the right-hand side of the ﬁgure, the memory mappmg (_o;nod cache_size) relation, the cache behaviour & when
different resulting in non-zero cache conflicts. Therefdhe s: = a is the same as its cache behaviour wher- b, a # b
cost variable will depend both on the number of edges and if (a mod cache_size = b mod cache_size). This means
also their weights and magnitudes, and is computed acaprdfhat when studying how positioning df; in main memory
to Formula (1) wherewost, is the cost of the positioning of affects its internal cache behaviour, we can limit oursehee
functions in memory for the task (v;,v;) € E is an edge @ range of memory addresses of sizehe_size since outside
of the call-and-loop grapki, w;; is the weight on the edge this range, the (internal) cache behaviourfgfrepeats itself
(vi,v;) computed by a safe WCET flow analysis, ang is because of thenodulusmapping.
the number of the cache conflicts that occur between funstion Now, all is needed is to show that the number of inter-
F; and F; given the chosen memory layout is yet to be nal cache conflicts of functiorf; does not change when
defined. its start address; changes over the memory-address range
r; = [s}..sgache-size] This reduces to showing that for any two
cost, = Z wij % cij, G = (V, E) Q) basic_ prcksBi,l, B; > of fupction F;, the magnitude of their
conflict in the cache remains the same whegmoves along
the ranger;. For this, we need to determine the magnitude
What happens now (informally) is that when the COP isf the cache conflicts between two basic blocks — this is
passed to a COP solver, the latter makes an initial assignmtiie number of cache lines occupied by one of the two blocks
to the variabless; ande; that satisfies the constraints of thewvhich are displaced by the execution of the other block. The
underlying CSP. Then, using a search method e.g., bramth-amumber of displaced cache lines depends on how the blocks
bound, better solutions (i.e., other assignments to vi@$abB; 1, B; > are mapped in the cache.
s; ande;) to the CSP are found that optimize (in our case Figure 3 shows the possible ways by which two blofks,
minimize) the cost variableost,. At the end of the search, B; ; can be mapped to the cache in the form of positioning
an assignment to the variables and e; that makes the scenarios labelled-16; and from which we should derive
value ofcost; minimum (globally or locally depending on thethe number of cache lines between the two blocks that will
search method) is found — which will be the best functiopotentially be displaced. Positioning scenaribgnd 10 are
positioning in our case. annotated to explain the notation used in Figure 3. Table I
Next, we definec;; which represents the number of cachéists the magnitude of the cache conflicts incurred by the
conflicts between functiond; and Fj. In this case, we execution of the two basic blockB; 1, B; 2. Rows 1-3 in
conjecture that the WCEWcet, of taskt is reduced when the Table Il correspond to the three rows (from top to bottom) of
functionsF; are positioned in memory in an arrangement th&tigure 3 respectively. Each row of Table Il captures the each
minimizescost,; which is equivalent to saying that reducingmapping of the blocks3; 1, B; > as a boolean expression in
inter-function cache conflicts reducescet;. However, we the columnPositioning-Scenario Conditigmnd the respective

(vi,vj)EE

start of cache

| e |
T e T N N B B SRR ------ 5.1 mod cachesize |
| Biz Bis |
B B B B
l -1 1 -2)] ...~ &1 mod cachesize l
! Biz --{------ s mod cachesize |
| B|.2 l
| -{------ e, mod cachesize |
| E Q \i ﬂ -+ end of cache |
| |
G - - S |
| B|2 B|.2 B|2 |
| Bi> Bi2 |
| Biz |
| B\ 1 BI 1 B\ 1 Bl.l — B\ 1 BI 1 |
Biz B
' 1.2 B, ~.|....... &, mod cachesize '
! Bi> B, B 1 s mod cachesize |
| i.2 |
| 5] (6] 17 8] L9l [14 |
| mmmmmm e ettt Smmmttmmmmmees i STmTtemmmmmmees et - |
I B|2 B|.2 B|2 I
l Bi1 Bi1 Bi1 Bi1 Biz Bi1 Bi> Bi1 l
| Biz !
| — — — — — — |
— s
! "2 B|.2 B !
| Bi1 Bi1 Bi1 Bi1 1.2 Bi1 Bi1 |
| Bi> Bi2 Bi. I
! 1] 12| 13| L4 5] i !
L - e e e —_ e e e e — — — — — — — — — — — — — — — — — — -

Fig. 3. Half of all the possible ways two block3; 1 and B; 2 can be arranged in the cache with respect to their start ssleke; 1, s; 2, and end addresses
ei.1, €;.2 respectively. The other half is symmetric by makiBg 1 < B; 2 and B; 2 < B; 1 simultaneously.

TABLE Il
THE MAGNITUDE OF THE CACHE CONFLICTS INCURRED FROM THE EXECUDN OF B; 1, B; 2 AS SHOWN INFIGURE 3.

HERE, m;k = x; . mod cache_size, AND ‘@’ IS THE EXCLUSIVE-OR LOGICAL OPERATOR
Positioning-Scenario Condition Conflict-Magnitude Expression
1 [condr =(s), <el YAsl,<el, | magi = maz((minle] |, el) —max(s, |, ,)),0)
i , , , mags maz((mazx(e] |, e ,) —max(s] 1,5, ,)),0)
2 | condz = (s;; >e€;,)Ds;,>e;, +mcéx,((miln(§< el 2)((_ mz?(} 1,,27.)2))70)
) , , , mags = min(e; |, €; o) + max((max € 1,€9
3 | conds = (sj, >€;q) Nsjp> €y _mmzsi 1,le. ,)),0) + cache._size - maz (s, |, s)

cache-conflict magnitude in the colum@onflict-Magnitude straightforward and will not be shown here.
Expression— which is the exact number of cache lines that When the start address of function F; changes in the

conflict between the two blocks. Notice that the union of thr%nger- the start addresses ; of the blocks B, . of E
three conditions in the table i.e., their disjunction isattogy 50 change. Since the function “slides” asvhole chunkin

which means that they capture every possible positioning @fs memory space, the distance between the starting address

blocks B;.1, B; »: the positioning scenarios shown in Figure 3, of the blocksB, ;. is preserved. This means that whenever
and their symmetric counterparts. the starting address; of function F; changes by an amount

The equations in Table Il have been derived by hand; fo the starting addresses of all block . change by the
prove their correctness, they are applied to their respectf@me amound since they all move together_ i.e., the relative
cache-mapping scenarios in Figure 3, in which case theyl yieglacement of block®; 1, to each other remains unchanged.
the exact number of conflicting cache lines. For example, theConsequently, we want to show that the number of cache
amount of conflict between blockB; 1, B; 2 as arranged in conflicts between block®; 1, B;» is the same when their
positioning scenarid4 in Figure 3 is derived according tostarting addresses 1, s;» change by the same amouhte
the third row of Table Il since the arrangement satisfies the. When the starting addresses;, s; o change by the same
condition(s] ; > e} ;As; 5 > €} ,). By applying the expression amount, what happens is that the mapping of blogks,
mags of row 3, we obtain the valuée] | +cache_size—s;) B2 changes through the scenarios enumerated in Figure 3.
which is the exact number of cache lines that conflict betwe&or example, ifB; 1, B; 2 have initial positioning as shown
the two basic blocks. The correctness of the expressidnsscenario 3 and their starting addressgs s; .o increase by
is proved by applying them to all6 scenarios which is an amountd > 0 in memory, they could end up having the

TABLE IV
THE CACHE-CONFLICT COSTSc;; OF THE COPREPRESENTATION OF THE the valuewcet;.
CODE-POSITIONING PROBLEM TO MINIMIZE THEWCET.

IV. SOLVING THE COP

TV e e eond — . . _
G,g € [Lnli 7 j e condi = ciy = magy A COP can be solved using a variety of techniques e.g.,

2 | Vi,j € [1.n],i # j @ conda = c;; = magz i i . i i

3 Vi, j € [Lnli £ % conds = ci; = mags linear programming, constraint programming, evolutignar

search, etc. — depending on the characteristics of the COP
e.g., linearity of the constraints, integrality of the galn,
positioning scenari@ or remain in scenari@ depending on guaranteed optimality, etc. It is not possible — within this
the magnitude of the changé Since the distance betweerpaper — to exhaustively compare the applicability of all dif
s, €ehq, si,, ande;, is always preserved, the number oferent optimization techniques to solve our COP, but welshal
cache lines that conflict is always preserved whgrslides choose the following two criteria: integrality and optirity
by some amount in main memory. the former is compulsory while the latter is desired.

We have just shown that when a functidf) changes its By integrality, we mean that the assignment to the variables
position in main memory, the internal cache conflicts betwee;, e; must be (positive) integer. This suggests the use of an
its constituent basic blocks remain unchanged. This meayptimization method that solves COPs over discrete domains
that minimizing the inter-function cache conflicts of task of which there is integer programming and finite-domain con-
with respect to its constituent functions does not cause Straint programming. Both integer and constraint progrémgm
an increase inwcet; due to intra-function cache effects.guarantee optimality through the use of (the NP-complete)
The positioning of functions; will not affect the internal branch-and-bound. Constraint programming, however, is su
pipeline timing behaviour of the individual functions sinc perior in the sense that the search for the solution can be
the timing behaviour of the pipeline depends on the intra agdntrolled by appropriate heuristics that aim at speedipg-
inter basic-block overlapping of instructions both of whic the search by exploiting relevant COP attributes.
are not affected by altering the position of the function in It is desired to obtain the optimal solution of the COP, how-
main memory. In addition to this, the branch prediction igver, it is not a pressing need. This by no means undermines
not affected since it is not a function of the memory locatiothe usefulness of obtaining an optimal placement of code tha
of basic-block instructions. Finally, the data-cache tighi minimizes the WCET — which has both its scientific value
behaviour depends on the positioning of data in main memaapd allows reasoning (via comparison) about the goodness of
— not the positioning of code and so remains unaffected Isyb-optimal approaches to the problem. Neverthelessnreso
the positioning of functions in main memory. COP instances, obtaining the optimal solution can be very

Pipelines, branch predictors, and data caches are the hawaktly since the process is NP-complete in the general case.
ware accelerators normally accounted for in WCET analysis. suboptimal solution to the code-positioning problem is a
We have shown that the positioning of functions in maigood-enough placement of functions in memory that reduces
memory with the aim of minimizing the WCET will not the WCET by some amount depending on the quality of the
unintentionally cause the WCET to increase with respect teturned solution
intra-function instruction-cache behaviour, pipelind@éour, We suggest to use a COP solution method that guarantees
branch-predictor behaviour, or data-cache behaviour. optimality (potentially expensive) and another solutioathod

The valuesc;; of the inter-function cache conflicts arethat does not guarantee optimality (potentially fast); aaoh-
computed in the same way by which the basic-block cacpare (empirically) the quality of the returned solution i
conflicts are computed in Table Il. The reason for this isethods.
that the functionsF; just like blocks B; ; are regarded as We shall use constraint programming as a solution method
whole chunks of code. Therefore, the positioning scenarfosto the COP which guarantees both integrality and optimality
basic blocksB; 1, B; 2 in Figure 3 also apply to functions As for the quick (and potentially suboptimal) solution
F;, F; with attributess;, e;, s;, ande;. Function-positioning method, there is an issue to be faced. Most optimization
can be illustrated by a figure equivalent to Figure 3 whetechniques in the literature are suitable for continuounaias
Bi1 — F, Bio «— Fj, si1 < si, ei1 < e, si2 < S;, I1.e., the returned solutions are not guaranteed to be tegr
ande; o «— e;. The values;; together with their associatedA quick fix to this problem involves rounding up/down the
positioning-scenario categories are shown in Table Ilithwiassignments to the variables, e¢; to their closest integer
reference to Table Ill, the costs; are added to the COP asvalues. Such rounding of values might result in a lower-idyial
shown in Table IV. solution, but most importantly, might result in a solution

In summary, we have shown that the CSP underlying otlvat does not satisfy the constraints. Therefore, the tiagul
COP representation is modelled as shown by Table I, the cogkgral assignment is checked for consistency against the
function is shown in Formula (1), the costs of the pairwiseonstraints of the COP. Notice that this process of checking
conflicting functions are captured by Tables Ill and IV. Ahe feasibility of the solution is not a CSP: we check the
solution to this COP — which minimizes the valdest; in feasibility of a given assignmento the variables against a
Formula (1) yields the positioning of functiord§ of the task set of constraints as opposed to findeng assignmento the
t that reduces the number of cache conflicts which minimizeariables that satisfies the set of constraints which is a way

TABLE Il
THE MAGNITUDE OF THE CACHE CONFLICTS INCURRED FROM THE EXECUDN OF F;, Fj.
HERE, :c’L = x; mod cache_size, AND ‘@’ 1S THE EXCLUSIVE-OR LOGICAL OPERATOR

| Positioning-Scenario Condition Conflict-Magnitude Expression

1 [condi =s] <efAs) <e} magi maz((min(e}, e}) — maz (s, s7)),0)

magz = max((maz(e], e;) — max(s], s;.)), 0)
+maz((min(e;, e}) — min(s}, s})), 0)

ir€5) + maz((maz(e], e})

—min(s}, s})),0) + cache_size — max(s], s’)

o / / /
2 cond2—8i>ei69sj>ej

J— > 7
3 | conds =s; >e;Ns; >e} mags min(e

cheaper process. The loss in the quality of the solutiorr afthe goodness of using an IASM for finding a good code
a successful rounding might or not be significant; it will b@ositioning as opposed to improving an existing one.
considered as one of the shortcomings of the quick approachA major speed hindrance in the IASM could potentially be
When the rounding of the non-integral solution yields a noithe generation of new solutions: it is compulsory to produce
feasible solution, the quick solution method is declaredats only new vectors), that satisfy the constraints of Table I. For
finding a solution to the COP. this reason, the generation of new solutions is not comlglete
Next, we have to decide on which continuous-domainee in choosing new vectorss — but rather goes through
solution method to use. Given that our cost variabdet; the process of checking the constraint consistency of every
is implemented using the implication and modulus operatorseewly created vector,. For IASMs that base their solution
a linear programming method — which otherwise is vergeneration on an element of randomness e.g., GAs, this can
attractive — is not suitable since the two operators cannag very costly.
be expressed as linear equalities or inequalities to our besln summary, a solution to the COP formulation of code
knowledge. positioning to minimize the WCET must be integral and
A COP can also be solved by an iterative algorithm or searpheferably optimal. In order to guarantee integrality amd o
method (IASM) which in general attempts to find a solutiotimality, constraint programming over finite domains is dise
to a problem where it is possible to evaluate the goodness ofvith a complete search method e.g., branch-and-bound. When
particular solution with respect to another solution. \gsihis the constraint-programming solution to the COP turns out to
kind of comparison, the space of solutions is visited always costly, a quicker solution method consisting of an IASM
looking for a better solution. The way by which the spaceombined with integer rounding of solution and constraint-
of solutions is visited depends on the implementation of tlw@nsistency checking is used.
IASM which can be e.g., a genetic algorithm (GA) [9]. It is
not possible to state whether or not the final solution of the
IASM is optimal, nor is it guaranteed that the IASM finds The reason for using constraint programming (CP) — over
better sub-optimal solutions than the COP in a shorter timigteger programming — to solve the COP is that it allows
However, in general, IASMs have successfully been appligte user to define own search heuristics that reduce the
to optimization problems that otherwise do not have efficiegffort of finding a solution. A search method in CP explores
algorithms to solve them. systematically the variables in the problem, and attempts t
Formally, the IASM optimizes a vecte, or a set of vectors make new value assignments to them from their respective
v, of the form shown in Formula (2) wheeg, e; are the start domains that satisfy the constraints and optimize the cost
and end addresses of functidh. variable. The efficiency of such search method depends to a
great extent on the order in which the variables are visited,
and also on the order by which the values are assigned to
the variables. In CP, we normally have heuristics\fariable
Assignments ta, are explored in the search space until nordering and heuristics fovalue ordering
further improvement in the quality of the solution is fourad, For instance, it makes sense to start with the variables
until a predefined amount of time has elapsed. that are mostly constrained as they have smaller domains and
When using an IASM, we are normally concerned aboutill enhance constraint propagation if they dabelled (i.e.,
how fast it converges to a good-enough solution. The speassigned a value) first. The order of choosing values to label
of the IASM depends on the goodness of its starting vector{griables is equally important, for example, in a maxiniaat
v, the cost of evaluating the goodness of a solution, and theblem, if the cost variable is proportional to some prable
cost of finding new solutions. With respect to this work, theariable, then it makes sense to label that problem variaple
initial input to the IASM is random since any other initialchoosing its largest value first.
code positioning is not guaranteed to be better than randonWith respect to code positioning to minimize the WCET,
unless it comes from a code-positioning technique in a WCH/riable ordering is important. The cost variahlest, in-
setting — in which case applying the IASM is only usefutreases with respect to the terms; * ¢;; according to
if further improvement is sought. Here, we want to evaluateormula (1); and each term;; = ¢;; increases with respect to

V. ENHANCING THE CONSTRAINT SEARCH

Ut = <817€1,827€2,' o 7Snaen> (2)

w;;, andc;; since both are always non-negative. The orderirand we argue in favour of using a good solver if one can
of variables must be determined at compile time where tlh@ve access to it.
costsc¢;; — which depend on the values 6f, ¢; that are The CLP solver is a CP solver with syntax based on logic
determined at runtime — are not available. Therefore, thg orprogramming. We will evaluate the goodness and complexity
available information is the weights;; from the call-and-loop of finding a solution to the COP in three different ways.
graphG. A variable ordering in this case is to first label thd-irst, we use the default variable and value ordering pexyid
si, €, s;, ande; of functions F;, F; whosew;; is highest. by the solver as-is. Second, we use a conjunction of the
This obviously can be misleading as someg, * ¢12 can be greedy variable ordering and value ordering. Third, we use
smaller thanwsy * c34 even thoughuo > w34 — this is why a conjunction of the less-greedy variable ordering andevalu
it is a heuristic ordering.

Formally, variable ordering is determined as follows. The MOT contains a comprehensive set of IASMs, of
First, the weightsw;; available at compile time are or-which we choose to use the GA for its common use in
dered from largest to smallest to obtain the sequenselving general optimization problems (functiga in the

(Wi1j1, Wizj2, -+, Wimjm) Where|E| = m. Then, the search MOT). The GA implementation in Matlab allows the user to
method in the COP is instructed to visit the variablese; add constraints on the vectors which are to be evolved.
in the order(s;1, e;1, $j1, €1, Si2, €2, Sj2, €52, - - , Sjm,€jm). The MOT also contains an efficient implementation of the

Let us call thisgreedy variable orderingo reflect the fact that sequential quadratic-programming (SQP) method [11] func
it promotes the labelling of variables involved in the lagetion f m ni con in the MOT) which can be used to solve
conflicts w;;. multivariate (non-linear) constrained optimization peshs.

We can also have a (rather unimaginativelgys-greedy An SQP method uses a quadratic model for the objective
variable orderingwhich promotes the labelling of variablesfunction and a linear model of the constraints and solves a
s;, e; whose associated functions are involved in large series of sub-problems that optimize the objective fumctio
global conflicts. For example, the variables e; of someF; subject to the constraints. The objective function is esgee
involved in conflictsw,; are labelled before the variableg, using conditionals to implement the different cost sceosari
es of someF;, involved in conflictsway, if (3 wi; > > woi). (Which cannot be achieved using linear programming). The

Formally, for each functiod;, we computew; = > w;;+ returned solution by the SQP method is not guaranteed to be
> wyi), and then the variables are labelled in the ordéttegral and so the (non-integer) assignments to the Jasab
(8i1,€i1, 8i2, €2y "+ » Sin, €in) I (Wi1 > wig > -+ > wip). sq, €; are rounded up or down to their closest integer values.

As for value ordering, choosing (maximum) boundaryhis rounding of values may yield less optimal, potentially
values does not benefit the search since the cost varialbligasible solutions.
does not increase/decrease in a proportional way to the |§] Evaluati
crease/decrease of the variabdgse;. Intuitively labelling the ~ valuation
variabless;, e; starting bymem; is better than labelling them An evaluation metric for the goodness of our approach is
starting frommem;, for obvious reasons. to compute by how much the WCET of the task is reduced

In summary, the CP solver for the COP is augmentd¥en the linker uses the output of the COP solver. For this, we
by heuristics specifying variable ordering and value arager nNeed a reference WCET to compare to, apply the optimization,
during search. The usefulness of this approach can only ®jain the new WCET, and compare the old WCET to the

evaluated through empirical experiments. new WCET. One way to proceed is to use real-life programs
e.g., from the WCET benchmarks [12] compiled and linked
VI. EVALUATION using some compiler — with maybe some inter-function code

)))) _ optimization techniques for the ACET — which are then re-
In this section we describe our experlmental__envanmerﬁhked using the suggested positioning by our approach, and
evaluate the goodness, and evaluate the scalability otigalac finally the WCETs obtained from compiler positioning and
applicability of our proposed COP approach. our suggested positioning are compared.

The problem with the above way of evaluation is that it
only reflects the goodness of the positioning for the specific

All experiments are conducted on a personal computer witenchmarks, and using a specific compiler. It could be the
the following specification: 32-bit x86 CPU running at 2.8%H case that a compiler with no inter-function optimizationtioe
and 4GB memory on Ubuntu 9.10. ACET gives a better WCET positioning than that of a compiler

The COP is implemented and solved by both the constraitirat performs inter-function positioning to minimize th€ET
logic programming (CLP) solveECLiPSeand the Matlab — in which case evaluating the goodness of our approach
optimization Toolbox [10] (MOT). The reason for choosindy comparing to the compiler's positioning is biasedly in
ECLiIPSe as the CP language is its ease of use for ©Br favour. It could also be the case, that for the specific
“outsiders”, and also efficiency. The reason for choosirg tihenchmarks used, the positioning of functions to minimize
MOT to implement the quick COP solution is that it containthe ACET always leads to a large WCET — which might not
mature, well-engineered algorithms to solve general CORe true for another set of benchmarks.

A. Experimental Setup

In order to conduct a more convincing evaluation, we
suggest to estimate both the (inter-function) code positmp
that yields the largest WCET (by maximizirgst;), and the
one that yields the smallest WCET (by minimizingst;).
In this case, we obtain a range of WCETscet,,..wcet,,]
(wcety, and wcet;, not optimal in the general case). If th
size of the range is large then it means that the method
good practically since it could be the case that the positpn

creasing the search effort. Choosing a random weight
from the rangew;; € [1..1000] ensures enough disparity
in the generated COP.

We have generated 1000 instances of COPs which are
then encoded both iBECLiPSeand the MOT. An exhaustive
i;sting of all the results is not feasible here, but we refbet
fo?lowing.

generated by the compiler for the ACET case yieldt,,,. .

The method can obviously not generate positioning thatgiel
a smallerwcet, if the compiler positioning to reduce the ACET
already results invcety, .

The inputs to our suggested approach are the weighted

call-and-loop graphG, the sizesz; of the functionsF;, the
constraints on the positioning of functiord§ as shown in

We have computed the reduction in the number of cache
conflicts as follows. First, we solve each of the generated
COPs using both optimization methods while maximizing
cost; which results incost]*** (the largest value of
cost; obtained by any of the two optimization methods).
Then, we solve the COP using both methods while
minimizing cost; which results incost;". Finally, we

Table I, the cache size, and the main-memory size. To perform
our evaluation, we prefer to generate COP instances oeselv
and solve them instead of using real-life programs since all
that matter in our analysis are the number of functidfs
per taskt, their sizesz;, and their interaction that makes
the graphG. As for the number of functions and sizes, they
can be generated randomly while obeying real-life constsai
e.g., they must all fit in main memory at the same time. As
for the interaction between functions in the task, it can be
anything — from a function conflicting with a few functions
to a function conflicting with every other function in the kas
In this evaluation, we generate hundreds of COPs — whiche
again is superior to basing the evaluation on a small set of
benchmark programs.

A COP instance is generated like follows.

« The number of functiong; per task isn € [10..100].
This is way above the number of functions per benchmark
programs in e.g., [12]. Choosing a large number of
functions per task stresses more the COP and IASM since
more variables and constraints are added to the problem
— which is useful for the complexity evaluation later on.

=N

compute(cost*® — costi™™) /cost*** which represents
the percentage of the cache conflicts that can potentially
be avoided using the positioning that yieldsst; =
cost***. We took the average of this percentage across
the 1000 COP solutions and this gave about 28%. The
smallest recorded percentage is 19% while the largest
is 42% with a standard deviation of about 11 for all
the 1000 percentages. This result shows that the method
has the potential to minimize the WCET considerably by
reducing the total number of cache conflicts by a good
percentage.
The time taken to solve the COP using the GA function
in the MOT is unmanageable because of the random
generation of solutions and checking their constraint sat-
isfaction. However, the time taken using the SQP function
was less than 10 seconds in all generated COPs. The time
taken to solve the COP usirgCLiPSeranged from less
than one second to just below 15 minutes which was set
as the maximum time allowed to find the solution after
which the COP solver is forced to return its (so far) best
solution. This result shows that solving (and modelling)
the code-positioning problem using constraint-logic pro-
« The constraint™g*= < Zzl < mem, is always grammilng or sequential-quadratic programming is not
o i=1 . expensive.
satisfied where(mem. = memy, —mem; +1). This. |5 the generated COPs, 58% were solved optimally by
constraint ensures that the functions cover (together) at £cliPSein less than 15 minutes each. A further 20%
least half of the memory space because there are always .4,,1d be solved optimally by increasing the time limit
costs that need to be minimized when choosing hardware ;1 hour each. The solver could not decide whether or
for real-time systems e.g., memory space, i.e., a MeMOIY ot the current solution is optimal for the remaining 22%

size is chosen depending on the code and data sizé gyen when increasing the time limit to 2 hours. This result
of th?_Lntended applications. A more relaxed constraint gnows that it is possible to determine the optimal code
e.g.,zzi < mem, could lead to easy-to-solve COPs positioning for a Iarge_ number_of problems. _

; e In 23% of the obtained optimal COP solutions by
ECLiPSe the SQP method generated an optimal solution
too. The time it takes the SQP method to find the optimal
solution is significantly less (5% in some cases) than
the time it takesECLiPSeto find the optimal solution.
This result shows that using an IASM method has the
advantage of quickly obtaining a good solution with a
good probability of it being optimal.

The less-greedy variable ordering combined with value

sincezfﬁere is more “freedom” in placing the functions in
memory.

« Aweight on an edgév;, v;) in G is w;; € [1..1000]. The
magnitudes of the weighis;; — alone — are orthogonal
to the complexity of solving the COP but a combination
of the magnitude and their disparity is of relevance as
eachw;; pushes the optimization search in a potentially
different direction depending on its magnitude; thus in- «

ordering converges to a solution quicker than the greegyi] R.Brayton, S. Director, G. Hachtel, and L. Vidigal, “Aew algorithm for

variable ordering with value ordering in 79% of the statistical circuit design based on quasi-Newton methodk fanction
splitting,” Circuits and Systems, IEEE Transactions eol. 26, no. 9,

cases. The difference in solution time in these cases ., 784" 794, September 1979.

is on average 10% of the slowest-heuristic’s solution2] Malardalen WCET Research Group, “WCET project/benatks,”
time. In few cases, the quicker heuristic reached the http://www.mrtc.mdh.se/ projects/wcet/benchmarkd,hfune 2010.
optimal solution before the time limit while the slower

heuristic either reached the optimal solution after time-

limit extension or never decided whether it has reached

it or not. This result shows that heuristics can reduce

the time taken by the COP solver to reach an (optimal)

solution.

VIl. CONCLUSION

In this paper we have shown how to formulate and solve the
code-positioning problem to reduce the worst-case exatuti
time (WCET) as a constraint-optimization problem (COP).
We have shown via empirical evaluation that the solutions we
obtain using our proposed approach are optimal in numerous
cases; and when they are not optimal, they still result in
a significant (potential) decrease of the WCET by reducing
instruction-cache conflicts.

In a future paper, we explain how to apply the method to set-
associative caches. We also aim to devise even better search
heuristics to reduce the COP solution time even further.

ACKNOWLEDGEMENTS

This work is supported by the Swedish Foundation for
Strategic Research (SSF) through the Research Centre for
Predictable Embedded Software Systems (PROGRESS).

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. ThegiD. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Merll
|. Puaut, P. Puschner, J. Staschulat, and P. Stenstrome, \Widrst-Case
Execution-Time Problem — Overview of Methods and Survey@d|3,”
ACM Transations on Embedded Computing Systemis 7, no. 3, pp.
1-53, 2008.

[2] T. Lundgvist and P. Stenstrom, “Timing Anomalies in ynically
Scheduled Microprocessors,” iRroceedings of the IEEE Real-Time
Systems Symposiyui999, pp. 12-21.

[3] A. Betts, G. Bernat, R. Kirner, P. Puschner, and |. Wen2e&/CET
Coverage for Pipelines,” TU Vienna, Tech. Rep., 2006.

[4] S.S. Muchnick,Advanced Compiler Design and Implementatiollor-
gan Kaufmann Publishers, 1997.

[5] W. Zhao, D. Whalley, C. Healy, and F. Mueller, “Improving/CET
by applying a WC code-positioning optimizationrXCM Trans. Archit.
Code Optim.vol. 2, no. 4, pp. 335-365, 2005.

[6] P. Lokuciejewski, H. Falk, and P. Marwedel, “WCET-dnveCache-
based Procedure Positioning Optimizations,Pimceedings of the 2008
Euromicro Conference on Real-Time Systems (ECRT.S0&shington,
DC, USA: IEEE Computer Society, 2008, pp. 321-330.

[7] P. Lokuciejewski, F. Gedikli, P. Marwedel, and K. MorikAutomatic
WCET Reduction by Machine Learning Based Heuristics ford&on
Inlining,” in Proceedings of the 3rd Workshop on Statistical and Ma-
chine Learning Approaches to Architectures and Compiraf8MART)
Paphos / Cyprus, 2009, pp. 1-15.

[8] WCET-IDT-MRTC, “SWEET,” http://www.mrtc.mdh.se/projects/wcet/
sweet.htmlJune 2010.

[9] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning Reading, Massachusetts: Addison-Wesley Publishing
Company, 1989.

[10] MathWorks, “The MathWorks — Optimization ToolBox,”
http://www.mathworks.com/products/optimizatjodéine 2010.

