
TRITA-MMK 2000:16
ISSN 1400-1179

ISRN KTH/MMK/R--00/16--SE
MRTC Report 00/15

V 1.02

Monitoring, Testing and Debugging of
Distributed Real-Time Systems

by
Henrik Thane

Stockholm 2000

V 1.02:010212

Doctoral Thesis
Mechatronics Laboratory,

Department of Machine Design
Royal Institute of Technology, KTH

S-100 44 Stockholm,
Sweden

Akademisk avhandling som med tillstånd från Kungliga Tekniska Högskolan i
Stockholm, framlägges till offentlig granskning för avläggande av teknologie
doktorsexamen fredagen den 26 maj 2000 kl. 10.00 i sal M2, Kungliga Tekniska
Högskolan, Brinellvägen 64, Stockholm.

Fakultetsopponent: Jan Jonsson, Chalmers Tekniska Högskola, Göteborg.

© Henrik Thane 2000

Mälardalen Real-Time Research Centre (MRTC),
Department of Computer Engineering
Mälardalen University (MDH)
S-721 23 Västerås

(www.mrtc.mdh.se, henrik.thane@mdh.se)

To
Marianne and Cornelia

TRITA-MMK 2000:16
ISSN 1400-1179
ISRN KTH/MMK/R--00/16—SE
MRTC Report 00/15

Mechatronics Laboratory,
Department of Machine Design
Royal Institute of Technology (KTH)
S-100 44 Stockholm, Sweden.

Document type
Doctoral Thesis

Date

May 1, 2000

Supervisors
Jan Wikander, Hans Hansson

Author

Henrik Thane
Sponsors
ARTES/SSF, Scania AB

Abstract

Testing is an important part of any software development project, and can typically surpass more
than half of the development cost. For safety-critical computer based systems, testing is even
more important due to stringent reliability and safety requirements. However, most safety-
critical computer based systems are real-time systems, and the majority of current testing and
debugging techniques have been developed for sequential (non real-time) programs. These
techniques are not directly applicable to real-time systems, since they disregard issues of timing
and concurrency. This means that existing techniques for reproducible testing and debugging
cannot be used. Reproducibility is essential for regression testing and cyclic debugging, where
the same test cases are run repeatedly with the intention of verifying modified program code or
to track down errors. The current trend of consumer and industrial applications goes from single
micro-controllers to sets of distributed micro-controllers, which are even more challenging than
handling real-time per-see, since multiple loci of observation and control additionally must be
considered. In this thesis we try to remedy these problems by presenting an integrated approach
to monitoring, testing, and debugging of distributed real-time systems.

For monitoring, we present a method for deterministic observations of single tasking, multi-
tasking, and distributed real-time systems. This includes a description of what to observe, how to
eliminate the disturbances caused by the actual act of observing, how to correlate observations,
and how to reproduce them.

For debugging, we present a software-based method, which uses deterministic replay to achieve
reproducible debugging of single tasking, multi-tasking, and distributed real-time systems.
Program executions are deterministically reproduced off-line, using information concerning
interrupts, task-switches, timing, data accesses, etc., recorded at runtime.

For testing, we introduce a method for deterministic testing of multitasking and distributed real-
time systems. This method derives, given a set of tasks and a schedule, all execution orderings
that can occur at run-time. Each such ordering is regarded as a sequential program, and by
identifying which ordering is actually executed during testing, techniques for testing of
sequential software can be applied.

For system development, we show the benefits of considering monitoring, debugging, and
testing early in the design of real-time system software, and we give examples illustrating how to
monitor, test, and debug distributed real-time systems.

Keywords

Monitoring, testing, debugging, testability,
distributed real-time systems, deterministic
replay, scheduling.

Language

English

2

3

Preface

Science and technology have fascinated me as long as I can remember. When I was a
kid, comics, TV-shows, popular science magazines, movies, school, and science
fiction books set off my imagination.

When I was a teenager, computers started to fascinate me, and I started to play around
with games programming, which proved to be a very creative, intellectually
stimulating, and fun activity. This experience went on for years and made me realize
that computers and computer programming were things I really wanted to work with
in the future.

And, so it became. Parallel with studies at the university, I worked part time as a
computer programmer for a company that designed real-time system applications, and
I kept at it for a year after graduation. After some escapades around the world, I
began studying for a Ph.D. at the Royal Institute of Technology (KTH), in April
1995. My research topic was safe and reliable software in embedded real-time system
applications. This resulted in a Licentiate degree in Mechatronics, in the fall of 1997.
The research topic was a bit broad, but gave me great insight into the problems of
designing and verifying safe and reliable computer software. While still being
associated with the Mechatronics laboratory at the KTH, I moved in the fall of 1997
to Mälardalen University in Västerås, and started working as part time teacher and
part time Ph.D. student. At the same time my research narrowed and I begun focusing
on testability of real-time systems, which for natural reasons led me to also consider
testing, debugging and monitoring. That work gave fruit – this thesis.

The work presented in this thesis would not have been possible if I had not had such
stimulating and creative people around me, including my supervisors Jan Wikander
and Hans Hansson. I am also very grateful for the financial support provided by the
national Swedish Real-Time Systems research initiative, ARTES, supported by the
Swedish Foundation for Strategic Research, as well as for the donation provided by
Scania AB during 1995-1997.

However, my greatest thanks go Hans Hansson, Christer Norström, Kristian
Sandström, and Jukka-Mäki Turja for all creative work, and intense, and stimulating
discussions we have had during the years. Other special thanks go to Anders Wall,
Mårten Larsson, Gerhard Fohler, Mohammed El-Shobaki, Markus Lindgren, Björn
Alvin, Sasikumar Punnekkat, Iain Bate, Mikael Sjödin, Mikael Gustafsson and Martin
Törngren for also providing insightful input. Not only being a friendly bunch of
people, they have all also over the years provided input and feedback on drafts of
papers – not forgetting, this thesis. Thank you very much.

A very special thank you goes to Harriet Ekwall for handling all the ground service
here at MRTC, and for always being such happy and friendly spirit. Thank you.

Finally, the greatest debt I owe to my family, Marianne and Cornelia, who have been
extremely supportive, not to mention Cornelia’s artwork on my thesis drafts.

Västerås, a beautiful and warm spring day in April 2000.

4

5

Publications

1. Thane H and Hansson H. Testing Distributed Real-Time Systems. Submitted for journal
publication.

2. Thane H. and Hansson H. Using Deterministic Replay for Debugging of Distributed Real-Time
Systems. In proceedings of the 12th Euromicro Conference on Real-Time Systems (ECRTS’00),
Stockholm, June 2000.

3. Thane H. Asterix the T-REX among real-time kernels. Timely, reliable, efficient and extraordinary.
Technical report. In preparation. Mälardalen Real-Time Research Centre, Mälardalen University,
May 2000.

4. Thane H, and Wall A. Formal and Probabilistic Arguments for Reuse and testing of Components
in Safety-Critical Real-Time Systems. Technical report. Mälardalen Real-Time Research Centre,
Mälardalen University, March 2000.

5. Thane H. and Hansson H. Handling Interrupts in Testing of Distributed Real-Time Systems. In
proc. Real-Time Computing Systems and Applications conference (RTCSA’99), Hong Kong,
December 1999.

6. Thane H. and Hansson H. Towards Systematic Testing of Distributed Real-Time Systems. In
proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS’99), Phoenix, Arizona,
December 1999.

7. Thane H. Design for Deterministic Monitoring of Distributed Real-Time Systems. Technical
report, Mälardalen Real-Time Research Centre, Mälardalen University, November 1999.

8. Norström C., Sandström K., Mäki-Turja J., Hansson H., and Thane H. Robusta Realtidssytem.
Book. MRTC Press, September, 1999.

9. Thane H. and Hansson H. Towards Deterministic Testing of Distributed Real-Time Systems. In
Swedish National Real-Time Conference SNART'99, August 1999.

10. Thane H. Safety and Reliability of Software in Embedded Control Systems. Licentiate thesis.
TRITA-MMK 1997:17, ISSN 1400-1179, ISRN KTH/MMK/R--97/17--SE. Mechatronics
Laboratory, the Royal Institute of Technology, S-100 44 Stockholm, Sweden, October 1997.

11. Thane H. and Norström C. The Testability of Safety-Critical Real-Time Systems. Technical report.
Dept. computer engineering, Mälardalen University, September 1997.

12. Thane H. Safe and Reliable Computer Control Systems - an Overview. In proceedings of the 16th

Int. Conference on Computer Safety, Reliability and Security (SAFECOMP’97), York, UK,
September 1997.

13. Thane H. and Larsson M. Scheduling Using Constraint Programming. Technical report. Dept.
computer engineering, Mälardalen University, June 1997.

14. Thane H. and Larsson M. The Arbitrary Complexity of Software. Research Report. Mechatronics
Laboratory, the Royal Institute of Technology, S-100 44 Stockholm, Sweden, May 1997.

15. Eriksson C., Thane H. and Gustafsson M. A Communication Protocol for Hard and Soft Real-
Time Systems. In the proceedings of the 8th Euromicro Real-Time Workshop, L'Aquila Italy, June
1996.

16. Thane, H. Safe and Reliable Computer Control Systems - Concepts and Methods. Research Report
TRITA-MMK 1996:13, ISSN 1400-1179, ISRN KTH/MMK/R-96/13-SE. Mechatronics
Laboratory, the Royal Institute of Technology, S-100 44 Stockholm, Sweden, 1996.

17. Eriksson C., Gustafsson M., Gustafsson J., Mäki-Turja J., Thane H., Sandström K., and Brorson E.
Real-TimeTalk a Framework for Object-Oriented Hard & Soft Real-Time Systems. In proceedings
of Workshop 18: Object-Oriented Real-Time Systems at OOPSLA,Texas,USA,October 1995.

6

7

Contents

1 INTRODUCTION ..9

2 BACKGROUND ...11

2.1 THE SCENE...11
2.2 COMPLEXITY ...11
2.3 SAFETY MARGINS...12

2.3.1 Robust designs ..12
2.3.2 Redundancy...13

2.4 THE VERIFICATION PROBLEM ...14
2.4.1 Testing...14
2.4.2 Removing errors..15
2.4.3 Formal methods ..15

2.5 TESTABILITY..16
2.5.1 Ambition and effort ...18
2.5.2 Why is high testability a necessary quality? ...20

2.6 SUMMARY..21

3 THE SYSTEM MODEL AND TERMINOLOGY...23

3.1 THE SYSTEM MODEL..23
3.2 TERMINOLOGY...23

3.2.1 Failures, failure modes, failure semantics, and hypotheses ...23
3.2.2 Determinism and reproducibility ..28

4 MONITORING DISTRIBUTED REAL-TIME SYSTEMS...31

4.1 MONITORING ...35
4.2 HOW TO COLLECT SUFFICIENT INFORMATION...36
4.3 ELIMINATION OF PERTURBATIONS..38

4.3.1 Hardware monitoring ...38
4.3.2 Hybrid monitoring ..39
4.3.3 Software monitoring..40

4.4 DEFINING A GLOBAL STATE..43
4.5 REPRODUCTION OF OBSERVATIONS..44

4.5.1 Reproducing inputs ...44
4.5.2 Reproduction of complete system behavior...45

4.6 SUMMARY..45

5 DEBUGGING DISTRIBUTED REAL-TIME SYSTEMS..47

5.1 THE SYSTEM MODEL ..49
5.2 REAL-TIME SYSTEMS DEBUGGING..50

5.2.1 Debugging single task real-time systems ..50
5.2.2 Debugging multitasking real-time systems ...50
5.2.3 Debugging distributed real-time systems..52

5.3 A SMALL EXAMPLE ..53
5.4 DISCUSSION ...54
5.5 RELATED WORK ...56
5.6 SUMMARY..57

6 TESTING DISTRIBUTED REAL-TIME SYSTEMS...59

6.1 THE SYSTEM MODEL ..62
6.2 EXECUTION ORDER ANALYSIS..63

6.2.1 Execution Orderings ...63
6.2.2 Calculating EXo(J) ..65

6.3 THE EOG ALGORITHM...69

8

6.3.1 GEXo – the Global EOG ...71
6.4 TOWARDS SYSTEMATIC TESTING..76

6.4.1 Assumptions ..76
6.4.2 Test Strategy..77
6.4.3 Coverage ...77
6.4.4 Reproducibility..79

6.5 EXTENDING ANALYSIS WITH INTERRUPTS ..80
6.6 OTHER ISSUES..82

6.6.1 Jitter ..82
6.6.2 Start times and completion times ..83
6.6.3 Testability..83
6.6.4 Complexity ..83

6.7 SUMMARY..85

7 CASE STUDY ...87

7.1 A DISTRIBUTED CONTROL SYSTEM...87
7.2 ADDING PROBES FOR OBSERVATION ..90
7.3 GLOBAL EXECUTION ORDERINGS ...93
7.4 GLOBAL EXECUTION ORDERING DATA DEPENDENCY TRANSFORMATION94
7.5 TESTING...94
7.6 IMPROVING TESTABILITY ...96
7.7 SUMMARY..97

8 THE TESTABILITY OF DISTRIBUTED REAL-TIME SYSTEMS......................................99

8.1 OBSERVABILITY...99
8.2 COVERAGE...100
8.3 CONTROLLABILITY ..100
8.4 TESTABILITY..101

9 CONCLUSIONS ...103

10 FUTURE WORK..105

10.1 MONITORING, TESTING AND DEBUGGING...105
10.2 FORMAL AND PROBABILISTIC ARGUMENTS FOR COMPONENT REUSE AND TESTING IN SAFETY-
CRITICAL REAL-TIME SYSTEMS...106

10.2.1 Software components in real-time systems? ...107
10.2.2 Component contracts ..108
10.2.3 Component contract analysis..112
10.2.4 Summary ...117

11 REFERENCES..119

9

1 INTRODUCTION
The introduction of computers into safety-critical systems lays a heavy burden on
software designers. Public and legislators demand reliable and safe computer systems,
equal to or better than the mechanical or electromechanical parts they replace. The
designers must have a thorough understanding of the system and more accurate
software design and verification techniques than have usually been deemed necessary
for software development. However, since computer related problems, relating to
safety and reliability, have just recently been of any concern for engineers, there are
no holistic engineering principles for construction of safe and reliable computer based
systems. There exist only scarce pools of knowledge and no silver bullets1 that can
handle everything. Some people do nonetheless, with an almost religious glee, decree
that their method, principle or programming language handles or kills all werewolves
(which these days have shrunken to tiny, but sometimes lethal bugs) [9][38][85].

The motivation for writing this thesis is an ambition to increase the depth of
knowledge in the pool of distributed real-time systems verification, which previously
has been very shallow. We will specifically address testing and debugging, and as
most real-time systems are embedded with limited observability, we will also cover
monitoring. Testing is an important part of any software development project, and can
typically surpass more than half of the development cost. High testability is therefore
of significance for cost reduction, but also for the ability to reach the reliability levels
required for safety-critical systems. A significant part of this thesis is accordingly
dedicated to discussions on testability, and testability increasing measures for
distributed real-time systems.

The shallowness of knowledge in the pool of distributed real-time systems
verification, is partly due to the fact that the majority of current testing and debugging
techniques have been developed for sequential programs. These techniques are as
such not directly applicable to real-time systems since they disregard timing and
concurrency issues. The implication is that reproducible testing and debugging are not
possible using these techniques. Reproducibility is essential for regression testing and
cyclic debugging, where the same test cases are run repeatedly with the intention of
verifying modified program code or to track down errors (bugs). The current trend of
consumer and industrial applications goes from single micro-controllers to sets of
distributed micro-controllers, for which current testing and debugging techniques also
are insufficient; they cannot handle the multiple loci of observation and control
required. In this thesis we try to remedy these problems by presenting novel
approaches to monitoring, testing, and debugging of both single CPU and distributed
real-time systems.

The main contributions of this thesis are in the fields of:

• Monitoring. We present a method for deterministic observations of single
tasking, multi-tasking, and distributed real-time systems. This includes a
description of what to observe, how to eliminate the disturbances caused by the
actual act of observing, how to correlate observations between nodes, and how to
reproduce the observations. We will give a taxonomy of different observation
techniques, and discuss where, how and when these techniques should be applied
for deterministic observations. We argue that it is essential to consider monitoring
early in the design process, in order to achieve efficient and deterministic
observations.

1 Silver bullets, which in folklore are the only means to slay the mythical werewolves.

10

• Debugging. We present a software based technique for achieving reproducible
debugging of single tasking, multi-tasking, and distributed real-time systems, by
means of deterministic replay. During runtime, information is recorded with
respect to interrupts, task-switches, timing, and data. The system behavior can
then be deterministically reproduced off-line using the recorded information. A
standard debugger can be used without the risk of introducing temporal side
effects, and we can reproduce interrupts, and task-switches with a timing
precision corresponding to the exact machine instruction at which they occurred.
The technique also scales to distributed real-time systems, so that reproducible
debugging, ranging from one node at a time, to multiple nodes concurrently, can
be performed.

• Testing. We present a method for deterministic testing of multitasking real-time
systems, which allows explorative investigations of real-time system behavior.
For testing of sequential software it is usually sufficient to provide the same input
(and state) in order to reproduce the output. However, for real-time systems it is
not sufficient to provide the same inputs for reproducibility – we need also to
control, or observe, the timing and order of the inputs and the concurrency of the
executing tasks. The method includes an analysis technique that given a set of
tasks and a schedule derives all execution orderings that can occur during run-
time. The method also includes a testing strategy that using the derived execution
orderings can achieve deterministic, and even reproducible, testing of real-time
systems. Each execution ordering can be regarded as a sequential program and
thus techniques used for testing of sequential software can be applied to real-time
system software. We also show how this analysis and testing strategy can be
extended to encompass interrupt interference, distributed computations,
communication latencies and the effects of global clock synchronization. The
number of execution orderings is an objective measure of the testability of a
system since it indicates how many behaviors the system can exhibit during
runtime. In the pursuit of finding errors we must thus cover all these execution
orderings. The fewer the orderings the better the testability.

Outline:

The outline of this thesis is such that we begin in chapter 2 with a description of the
peculiarities of software in general and why software verification constitutes such a
significant part of any software development project. In chapter 3, we define a basic
system model and some basic terminology, which we will refine further on in the
thesis. In chapter 4, we give an introduction to monitoring of real-time systems
(RTS), and discuss and give solutions on how monitoring can be deterministically
achieved in RTS, and distributed real-time systems (DRTS). In chapter 5, we discuss
and present some solutions to deterministic and reproducible debugging of DRTS. In
chapter 6, we present our approach to deterministic testing of DRTS, including results
on how to measure the testability of RTS, and DRTS. In chapter 7, we present a
larger example illustrating the use of the techniques presented in chapters 3, and 5. In
chapter 8, we discuss the testability of DRTS. Finally, in chapter 9 we summarize and
draw some conclusions, and in chapter 10 we outline some future work.

11

2 BACKGROUND
This thesis is about monitoring, testing, and debugging, of distributed real-time
systems, but as a background and to set the scene we begin with a description of
the peculiarities pertaining to computer software development and why software
verification is such a dominant factor in the development process.

2.1 The scene
Experience with software development has shown that software is often delivered
late, over budget, and despite all that still functionally incorrect. A question is
often asked: ”What is so different about software engineering? Why do not
software engineers do it right, like traditional engineers? Or at least once in a
while?”

These unfavorable questions are not uncalled for; the traditional engineering
disciplines are founded on science and mathematics and are able to model and
predict the behavior of their designs. Software engineering is more of a craft,
based on trial and error, rather than on calculation and prediction. However,
knowing the peculiarities of software, this comparison is not entirely fair; it does
not acknowledge that computers and software differ from physical systems on
two key accounts:

(1) They have discontinuous behavior and

(2) Software lacks physical attributes like e.g., mass, inertia, size, and lacks
structure or function related attributes like e.g., strength, density and form.

The sole physical attribute that can be modeled and measured by software
engineers is time. Therefore, there exist sound work and theories regarding
modeling and verification of systems’ temporal attributes [4][75][117][58]. The
theory for real-time systems gives us a platform for more “engineering wise”
modeling and verification of computer software, but since the theory is mostly
concerned with timing, and ordering of events, we still have to face functional
verification.

We will now in the remainder of this chapter discuss the peculiarities of software
development compared to classical engineering. We will discuss the impact that
the two fundamental differences (1 and 2 above) have on software development as
compared to classical engineering of physical systems. We will progress in
several steps: beginning with software complexity, and then continuing on with
safety margins, testing, modeling, validation, and finally testability.

2.2 Complexity
The two properties (1) and (2) above give rise to both advantages and
disadvantages compared to regular physical systems. One good thing is that
software is easy to change and mutate hence the name software. The bad thing is
that complexity easily arises. Having no physical limitations, complex software
designs are possible and no real effort to accomplish this complexity is needed.
That is, it is very easy to produce solutions to a problem that are vastly more
complex than the intrinsic complexity of the problem.

12

Complexity is a source of design faults. Design faults are often due to failure to
anticipate certain interactions between components in the system. As complexity
increases, design faults are more prone to occur since more interactions make it
harder to identify all possible behaviors. Since, software does not suffer from
gravity, or have any limits to structural strength there is nothing that hinders our
imagination in solving problems using software. Although not explicitly
expressed, programming languages, programming methodologies and processes
in fact introduces virtual physical laws and restrains the imagination of the
programmers. At a seminar Nobel Prize winner Richard Feynman once said:
“Science is imagination in a straightjacket.”

2.3 Safety margins
In the classical engineering disciplines such as civil
engineering it is common practice to make use of safety
margins. Bridges are, for example, often designed to
withstand loads far greater than they would encounter
during normal use. For software it is in the classical
sense not possible to directly make use of safety margins
because software is pure design – like the blue prints for
bridges. Safety margins on software would be like
substituting the paper in the blue prints for thick sheets of steel. Software is pure
design and can thus not be worn-out or broken by physical means. The physical
memory where the software resides can of course be corrupted due to physical
failures (often transient), but not the actual software. All system failures due to
errors in the software are design-flaws, built into the system from the beginning
(Figure 2-1).

2.3.1 Robust designs
A plausible substitute to safety margins in the software context is defensive
programming using robust designs (Figure 2-2). Every software module has a set
of pre-conditions and post-conditions to ensure that nothing unexpected happens.
The pre-conditions must be valid when entering the software module and the post-
conditions must be valid at the end of execution of the module. If these conditions
are violated the program should do something sensible. The
problem is that if the unexpected does happen, then the design
might be deficient and a sensible local action might have a
non-predictable effect on the entire system.

Fault Error FailureFailure
Figure 2-1. Cause-consequence diagram of fault, error and failure.

Where the failure signifies a behavior non-compliant with
the specification. Where an error signifies a state that can
lead to a failure, and where the fault is the hypothesized
cause for the error.

Fault Error FailureFailure
Figure 2-2. Robust designs intend to stop infections of the system.

13

2.3.2 Redundancy
Another method for achieving safety margins that does not directly work in the
context of software design, as it does in the physical world, is fault-tolerance by
redundancy (Figure 2-3).

Physical parts can always succumb to manufacturing defects, wear, environmental
effects or physical damage. Thus, it is a good idea to have spares handy that can
replace defective components, but in order for a redundant system to function
properly it must by all means avoid common mode failures. For example,

Two parallel data communication cables were cut in Virginia, USA, 1991.
The Associated Press (having learned from earlier incidents, had
concluded that a spare could be a good idea) requested two separate
cables for their primary and backup circuits. However, both cables were
cut at the same time because they were adjacent [84].

Design faults are the sources for common mode failures, so fault tolerance against
design faults seems futile. An adaptation of the redundancy concept has,
nonetheless been applied to software. It is called N-version programming and uses
N versions of dissimilar software produced from a common specification. The N
versions are executed in parallel and their results voted upon, as illustrated in
Figure 2-4. Empirical studies have unfortunately concluded that the benefit of
using N-version programming is questionable. A clue is common mode errors in
the requirement specifications and the way humans think in general [48][49][99].

Spatial redundancy and time redundancy have proven to be effective against
permanent and transient physical faults, and are applied in a multitude of different
engineering disciplines. Redundancy against design errors in software has not
been proven efficient though.

Fault Error FailureFailure
Figure 2-3. Fault-tolerant designs intend to stop the

propagation of errors before they lead to
failures, by means of redundancy.

Figure 2-4. N-modular redundancy
using N-version
programming.

Input Output
2

N

1

Vote

14

2.4 The verification problem
The application of defensive programming and redundancy may sometimes be
of benefit against systematic (design) errors but mostly the system designers
are left only with the choice of eliminating all errors, or at least those with
possibly serious consequences. It is however not sufficient to only remove
errors, the system designer must also produce evidence that the errors indeed
have been eliminated successfully – usually through the process of
verification.

2.4.1 Testing
The task of considering all system behaviors and all the circumstances a system
can encounter during operation is often intractable. Physical systems can be tested
and measured. There often exist piece-wise continuous relationships between the
input and the output of a system. Only a few tests, for each continuous piece, need
to be performed. The behavior of the system intermediate to the samples can be
interpolated, and the behavior of the system exterior to the samples can be
extrapolated. Thus the number of behaviors to be considered is reduced. However,
it is not possible, in general, to assume that the behavior of computers and
software is continuous because quantization errors are propagated and boundaries
to the representation of numbers can affect the output
(Figure 2-5). Equally influential is the fact that the execution paths through
software change for every decision, depending on whether or not a condition is
true. For example, a simple sequential list of 20 if-then-else statements may, in
the worst case, yield 220 different behaviors due to 220 possible execution paths. A
small change in the input can have a severe effect on which execution path is
taken, which in turn may yield an enormous change in output [93]. That is,
software behavior is discontinuous and has no inertia like physical systems do.

In order to achieve complete confidence in program correctness we must thus
explore all behaviors of the program. But, for a program that takes two 32 bit
integers as input, we must cover 264 possible input combinations, and if each test
case takes 1 µs to perform we would need 565 000 years to cover all possible
input combinations. Not surprisingly E. Dijkstra concluded [19]:

“Non-exhaustive testing can only show the presence of errors
not their absence.”

Figure 2-5. Interpolation cannot represent the discontinuos
behavior of software.

15

Aggravating the situation further is the fact that typically more than half of the
errors in a system are due to ambiguous or incomplete requirement specifications
[20][24][67][76]. The intention of testing is to verify that a specific input will
yield a specific output defined by the specification. Possibly erroneous
requirements thus further limits the confidence gained by testing software.

2.4.2 Removing errors
Software does not wear out over time. It is
therefore reasonable to assume that as long as
errors are discovered, reliability increases for
each error that is eliminated – of course given
that no new errors are introduced during
maintenance. This has led to the development
of a wide range of reliability growth models as
introduced by Jelinski et al. [44][72][71][69]
[1][47]. Reliability growth models assume that
the failures are distributed exponentially. Initially a system fails frequently but
after errors are discovered and removed the frequency of failures decreases. Due
to the history of encountered failures and the removal of errors, these models can
make predictions about the future occurrence of failures (extrapolation). For ultra
reliable systems (10-9 failures/hour or less) it has been proven that these types of
models cannot be used because a typical system would have to be tested for
115000 years or more [10][70]. In addition, for typical testing environments it is
very hard to reproduce the operational profiles for rare events. Taking these
factors into account and considering the time required to restart the system for
each test run, the failure rates that can be verified empirically are limited to about
10-4 failures/hour [10].

2.4.3 Formal methods
Just as traditional engineers can model their designs
with different kinds of continuous mathematics, formal
methods is an attempt to supply the software engineers
with mathematical logic and discrete mathematics as
modeling and verification tools.

Formal methods can be put to use in two different ways,
(Barroca et al.[57]): (1) They can be used as a syntax to
describe the semantics of specifications which are later
used as a basis for the development of systems in an
ordinary way. (2) Formal specifications can be
produced as stated by (1) and then used as a fundament
for verification (proof) of the design (program).

If (1) and (2) are employed, it is possible to prove equivalence of program and
specification, i.e., to prove that the program does what it is specified to do. This
stringency gives software development the same degree of certainty as a
mathematical proof [57].

Unfortunately a proof (when possible) cannot guarantee correct functionality or
safety. In order to perform a proof, the correct behavior of the software must first
be specified in a formal, mathematical language. The task of specifying the
correct behavior can be as difficult and error-prone as writing the software to

16

begin with [67][68]. In essence the difficulty comes from the fact that we cannot
know if we have accurately modeled the ”real system”, so we can never be certain
that the specification is complete. This distinction between model and reality
attends all applications of mathematics in engineering. For example, the
”correctness” of a control loop calculation for a robot depends on the fidelity of
the control loop’s dynamics to the real behavior of the robot, on the accuracy of
the stated requirements, and on the extent to which the calculations are performed
without error.

These limitations are however, minimized in engineering by empirical validation.
Aeronautical engineers believe that fluid dynamics accurately models the air
flowing over the wing of an airplane, and civil engineers believe that structural
calculus accurately models the structural integrity of constructions. Aeronautical
engineers and civil engineers have great confidence in their respective models
since they have been validated in practice many times. Validation is an empirical
pursuit to test that a model accurately describes the real world.

Worth noting is that the validation of the formal models has to be done by testing,
and as formal models are based on discrete mathematics they are discontinuous.
The implication is thus that we cannot use interpolation or extrapolation, leaving
us in the same position – again, as when using simple testing. We have
nonetheless gained something compared to just applying testing solely; we can
assume that the specifications are non-ambiguous and complete within
themselves. Although, they may still be incomplete or erroneous with respect to
the real target system they attempt to model.

Further limitations to current formal methods are their lack of scalability (due to
exponential complexity growth), and their inability to handle timing and resource
inadequacies, like violation of deadlines and overload situations (although some
tools do handle time [60]). That is, any behavior (like overload) not described in
the formal model cannot be explored. Testing can however do just that, because
testing explores the real system, not an abstraction.

2.5 Testability
So, even if we make use of formal methods and fault-tolerance we can never
eliminate testing completely. But, in order to achieve complete confidence in the
correctness of software we must explore all possible behaviors, and from the
above discussion we can conclude that this is seemingly an impossible task.

A constructive approach to this situation has led to research into something called
testability. It is known that some software is easier to verify than other software,
and therefore potentially more reliable.

Definition. Testability. The probability for failures to be observed during testing
when errors are present.

Consequently, a system with a high level of testability will require few test cases
in order to reveal all errors, and vice versa a system with very low testability will
require intractable quantities of test cases in order to reveal all errors. We could
thus potentially produce more reliable software, if we knew how to design for
high testability.

17

In order to define the testability of a program we need to know when an error
(bug) causes a failure. This occurs if and only if:

(1) the location of the error is executed in the program, (Execution)

(2) the execution of the error leads to an erroneous state, (Infection) and

(3) the erroneous state is propagated to output (Propagation).

Based on these three steps 1-2-3 Voas et al. [116][115][114] formally define the
testability, q, of a program P, due to an error l, with input range I and input data
distribution D as:

ql = Probability {executing error}

 × Probability {infection | execution}

 × Probability {propagation | infection}

Where the value of ql is the probability of failure caused by the error l, and where
ql is viewed as the size of the error l. The testability, q, for the entire program is
given by the smallest of all errors in P, that is, q = min{∀l | ql}. This smallest
error, q, will consequently be the most elusive during testing, and require the
greatest number of test cases before leading to a detectable failure. This model has
been named the PIE model, by Voas [116].

Example 2-1

Figure 2-6 depicts an erroneous program which testability we will
explore. Assume that the program has an input space of all positive
integers with a rectangular distribution, and that there is an erroneous
statement in line 8, which is executed 25% of the time (E=0.25). Based on
this we can calculate the probability of failure for this program due to the
error in line 8. The probability of failure according to the PIE model is
then q = 0.25 × 1.0 × 2/30000 = 0.00001667. The error in line 8 will
always infect the variable x (I=1.0), and the probability for propagation is
defined by the value difference between the correct statement and the
error, and the integer division (P=2/30000).

If a certain program P has a testability of 1.0, a single test case is needed to verify
whether the program is correct or not. Vice versa, if a program P’ has a testability
measure of 0.0 it does not matter how many test-cases we devise and run – we
will never be able to detect an error. These two extremes are both desirable
attributes of a program. The benefit of the first attribute, 1.0, is obvious because

1: int f(positive integer a)
2: {
3: positive integer x;
4: if(...)
5: {
6: if(...)
7: {
8: x = a - 1;/* Correct is: x = a + 1;*/
9: x = x div 30000; /* integer division*/
10: }
11: }
12: return x;
13: }

Figure 2-6. An erroneous function.

18

we can easily explore program correctness. The use of the second attribute, 0.0,
might not be as obvious, but if we can never detect an error, it will never cause a
failure either. A testability score of 1.0 is utopia for a tester and a testability score
of 0.0 is utopia for a designer of fault-tolerance. A tester wants by all means to
detect a failure, and a designer of fault-tolerance wants by all means to stop the
execution, infection and propagation of an error before it leads to a failure. There
is thus a fundamental trade-off between testability and fault-tolerance.

2.5.1 Ambition and effort
Testing of software is done with a certain ambition and
effort. We might for example, have the ambition to assess
that a program has a reliability of 10-9 failures per hour. By
analogy this could be viewed as hitting bull’s eye on a
dartboard blindfolded. Depending on how many darts we
throw we get a certain confidence in how likely it is that we
have hit bulls eye. The testability of a system can be
regarded as the size of the bull’s eye. Since the testability q gives the probability
of finding the smallest error, we can after hitting testability bull’s eye assume that
the system is correct, since there should be no error smaller than q. That is, in
order to find the smallest error with a certain confidence we have to run a specific
minimum number of test cases. This minimum number is larger than the number
needed to find any other error larger than the smallest error.

The confidence can be regarded as a measure of how thick the darts are. That is,
as confidence increases, the size of the dart increases – meaning that it will
eventually fill the entire dartboard and that we thus have hit the bull’s eye.

It has been argued that reliability is not the software attribute we want to
determine, but rather what we really want is confidence in the correctness of
software. The probable correctness model by Hamlet [37] provides this ability.
The model works like this: Assume that we have some estimated probability f, for
program failure according to some input data distribution D. Then the probability
that the software will not fail during the next input data is

(1 - f).

The probability that it will not fail during the next N inputs is

 (1 - f)N.

The probability of at least one failure during the next N inputs is

1 - (1 - f)N.

If we test the program with N inputs without failure we get the confidence

C = 1 - (1 - f)N

that the real probability of failure is less than or equal to f [114]. Using this
relation between confidence, probability of failure, and the number of test cases
we can derive an expression for how many test cases we need to execute without
failure in order to verify a certain failure frequency with a certain confidence:

−
−=

)1ln(
)1ln(

f
CN (2-1)

19

Table 2-1 illustrates the relation between the ambition of achieving a certain
failure frequency and the number of test cases required (effort) for achieving this
with a certain confidence. Table 2-2 illustrates how the number of test cases
required corresponds to the time needed to perform all these tests.

From Table 2-2 we can conclude that safety-critical software
(f<10-9 failures/hour) require a ridiculous number of hours of testing. However, if
we know the testability, q (the size of the bull’s eye) we can reduce the number of
test cases required, because when we have found the smallest error, we can
assume that the software is correct – there should be no error smaller. Based on
this, we can substitute the f in equation (2-1) with the testability q, and calculate
how many test cases, N, are required before we can assume that the program is
correct with a certain confidence, C.

Table 2-3 illustrates the number of test cases needed in relation to the testability,
q, of the program, before we can assume that the program is correct (compare
with Table 2-1).

Table 2-2. The relation between reliability, the number of test cases and the
time required. Confidence C=0.99.

f
Failures/test case

Number of test cases 1 test per
second

1 test per
hour

10-1 44 44 seconds 1.8 days
10-2 459 7.6 minutes 19.1 days
10-3 4600 1.25 hours 191 days
10-4 46,000 13 hours 5.25 years
10-5 460,000 5.5 days 52.5 years
10-6 4,600,000 1.75 months 525 years
10-7 46M 1.5 years 5250 years
10-8 460M 15 years 52 500 years
10-9 4,600M 150 years 525 000 years
10-10 46,000M 1,500 years 5,25 106 years
10-11 460,000M 15,000 years 5,25 107years

Table 2-1. The relation between targeted reliability f, the number of
test cases and the confidence, C, in f according to formula (2-1).

f
Failures/test case

C=.9 C=.99 C=.999

10-1 22 44 66
10-2 230 460 690
10-3 2,300 4,600 6,900
10-4 23,000 46,000 69,000
10-5 230,000 460,000 690,000
10-6 2,300,000 4,600,000 6,900,000
10-7 23M 46M 69M
10-8 230M 460M 690M
10-9 2,300M 4,600M 6,900M
10-10 23,000M 46,000M 69,000M
10-11 230,000M 460,000M 690,000M

20

2.5.2 Why is high testability a necessary quality?
There are many arguments for designing systems with high testability:

• The cost of verification and maintenance of software encompass typically
more than half of the cost for a software project [6][16][30][40]. If we have a
limited amount of resources we can achieve higher levels of reliability if we
design for high testability rather than if we do not. “Get more bang for the
buck.”

• More than 50% of all system failures can be traced back to the requirement
specifications [20][24][67][76]. This has led to the application of iterative
development processes where the requirements are refined for each iteration
and prototype produced – which are then validated against the customer.
Following this scheme it is possible to decrease the portion of failures coming
from the requirements due to wanting or erroneous requirements.

However, for each iteration and prototype we must re-test the system. High
testability is thus of utmost importance in order to decrease the testing effort
for each iteration.

• For safety critical software (10-9 failures/hour) [23] it is obligatory to design
for high testability since reliability growth models have proven that testing of
software to below 10-4 failures/hour is infeasible [10]. Testability scores (error
sizes) of software must thus be larger than 10-4 failures/hour. If we have
achieved a reliability corresponding to the testability of the system, we can
assume that the system is correct, there should be no error smaller than
indicated by the testability of the program [116][115][114].

q
Failures/test case

C N

0,0000001 0,00 1 000
0,0000001 0,7 10 000 000
0,00001 0,01 1 000
0,00001 0,63 100 000
0,00001 0,999955 1 000 000
0,001 0,63 1000
0,001 0,999955 10 000
0,001 0,999999998 20 000
0,1 0,999973 100
0,1 0,99999999929 200

Table 2-3. The relation between the testability, q, the confidence, C, and the
number of test cases N, according to formula (2-1).

21

2.6 Summary
In this chapter we have given an introduction to the peculiarities of computer
software. From that we conclude that the problems of designing and verifying
software are fundamental in character: Software has discontinuous behavior, no
inertia, and has no physical restrictions what so ever, except for time. Silver bullets,
i.e., techniques or methods that solely will eliminate all bugs have shown to be myths
[9][38][85]. Any Programming language, any formal method, any theory of
scheduling, any fault tolerance technique, and any testing technique will always be
flawed or incomplete. To design reliable software we must thus make use of all these
concepts in union. Consequently, we will never be able to eliminate testing
completely. However, with respect to testing, debugging and monitoring of real-time
systems software there has been very little work done. We will therefore in the
remainder of this thesis discuss and give solutions to the peculiarities of monitoring,
debugging and testing of single program real-time systems, multitasking real-time
systems, and distributed real-time systems.

22

23

3 THE SYSTEM MODEL AND TERMINOLOGY
In this chapter we define a basic system model which we will refine and extend in
subsequent chapters. We will also introduce basic terminology and vocabulary.

3.1 The system Model
We assume a distributed system consisting of a set of nodes. Each node is a self
sufficient computing element with CPU, memory, network access, a local clock and
I/O units for sampling and actuation of an external process. We further assume the
existence of a global synchronized time base [27][51] with a known precision δ,
meaning that no two nodes in the system have local clocks differing by more than δ.

The software that runs on the distributed system consists of a set of concurrent tasks
and interrupt routines, communicating by message passing or via shared memory, all
governed by a real-time kernel. Tasks and interrupts may have functional and
temporal side effects due to preemption, message passing and shared memory.

We assume that there exists a set of observers, which can observe/monitor the system
behavior. These observers can be situated on different levels, ranging from dedicated
nodes, which eavesdrop on the network, to programming language statements inside
tasks that outputs significant information. These observers are fundamental for
monitoring, testing and debugging of real-time systems (RTS) and distributed real-
time systems (DRTS).

We will in subsequent chapters make additions and refinements to this system model.

3.2 Terminology
In this section we will define some of the basic vocabulary that is used in the
remainder of the thesis. We begin with failures, and conclude with determinism and
reproducibility. We will refer to software modules, tasks, and groups of tasks as
components.

3.2.1 Failures, failure modes, failure semantics, and hypotheses
What constitutes a failure, what is a failure mode, what is a fault hypothesis?

3.2.1.1 Fault, error, and failure
Definition. A failure is the nonperformance or inability of the system or component
to perform its intended function for a specified time under specified environmental
conditions [67]. That is, an input, X, to the component, O, yields an output, O(X),
non-compliant with the specification.

Figure 3-1. A distributed system. Figure 3-2.An observer.

24

Definition. An error is a design flaw, or a deviation from a desired or intended state
[67]. That is, if we view the program as a state machine, an error (bug) is an unwanted
state. We can also view an error as a corrupted data state, caused by the execution of
an error (bug) but also due to e.g., physical electromagnetic radiation.

Definition. A fault is the adjudged (hypothesized) cause for an error [59]. Generally
a failure is a fault, but not vice versa, since a fault does not necessarily lead to a
failure.
The relation between the definitions of fault, error, and failure, is depicted in
Figure 3-3.

Systematic and physical failures

Failures are usually divided into two categories:

• Systematic failures which are caused by specification or design flaws, i.e.,
behaviors that do not comply with the goals of the intended, designed and
constructed system. Examples of contributing causes, are erroneous, ambiguous,
or incomplete specifications, as well as incorrect assumptions about the target
environment. Other examples are failures caused by design and implementation
faults. Wear, degradation, corrosion, etc. do not cause these types of failures, all
errors are built in from the beginning, and no new errors will be added after
deployment.

Definition. A systematic failure occurs if and only if:

1) the location of an error is executed in the program,

2) the execution of the error leads to an erroneous state, and

3) the erroneous state is propagated to the output.

This means, that if an error is not executed it will not cause a failure. If the effect
of the execution of the error (infection) is indistinguishable from a correct system
state it will not cause a failure. If the system’s state is infected but not propagated
to output there will be no failure.

• Physical failures which are the result of a violation upon the original design.
Environmental disturbances, wear or degradation over time may cause such
failures. Examples, are electromagnetic interference, alpha and beta radiation, etc.

Definition. A physical failure occurs if and only if:

1) the system state is corrupted or infected, and

2) the erroneous state is propagated to the output.

Fault-tolerance mechanisms usually try to prevent (1) by applying robust designs,
and (2) by applying redundancy, etc.

Fault Error FailureFailure Fault
Figure 3-3. Cause consequence diagram of fault, error and failure.

25

3.2.1.2 Failure modes
Depending on the architecture of the system we can assume different degrees, and
classes, of failure behavior. That is, certain types of failures are extremely improbable
(impossible) in some systems, while in other systems it is very likely that they occur.
For example, consider multitasking systems where we have to resolve access to
shared resources by means of mutual exclusion. One approach is to make use of
semaphores, and another to make use of separation in time. In the latter case deadlock
situations are impossible, while in the previous case deadlocks certainly are possible.
Using synchronization in time we thus eliminate an entire class of failures, and can
therefore during testing eliminate the search for them.

Components can fail in different ways and the manner in which they fail can be
categorized into failure modes. The failure modes are defined through the effects, as
perceived by the component user. We are going to present categories, i.e., failure
modes, (1 to 6) ranging from failure behavior that sequential programs, or single tasks
in solitude, can experience, to failure behavior that is only significant in multitasking,
distributed systems and real-time systems, where more than one task is competing for
the same resources, e.g., processing power, memory, computer network, etc.

Failure modes:

1. Sequential failure behavior (Clarke et. al. [17]):

• Control failures, e.g., selecting the wrong branch in an if-then-else
statement.

• Value failures, e.g., assigning an incorrect value to a correct (intended)
variable.

• Addressing failures, e.g., assigning a correct (intended) value to an
incorrect variable.

• Termination failures, e.g., a loop statement failing to complete because
the termination condition is never satisfied.

• Input failures, e.g., receiving an (undetected) erroneous value from a
sensor.

Multitasking and real-time failure behavior

2. Ordering failures, e.g., violations of precedence relations or mutual exclusion
relations.

3. Synchronization failures, i.e., ordering failures but also deadlocks.

4. Interleaving failures, e.g., unwanted side effects caused by non-reentrant
code, and shared data, in preemptively scheduled systems.

5. Timing failures. This failure mode yields a correct result (value), although the
procurement of the result is time-wise incorrect. For example, deadline
violations, too early start of task, incorrect period time, too much jitter, too
many interrupts (too short inter-arrival time between consecutive interrupt
occurrences), etc.

6. Byzantine and arbitrary failures. This failure mode is characterized by a non-
assumption, meaning that there is no restriction what so ever with respect to
which effects the component user may perceive. Therefore, the failure mode
has been called malicious or fail-uncontrolled. This failure mode includes

26

two-faced behavior, i.e. a component can output “X is true” to one component
user, and “X is false” to another component user.

The above listed failure modes build up a hierarchy where byzantine failures are
based on the weakest assumption (a
non-assumption) on the behavior of the
components and the infrastructure, and
sequential failures are based on the
strongest assumptions. Hence
byzantine failures are the most severe
and sequential failures the least severe
failure mode. The byzantine failure
mode covers all failures classified as
timing failures, which in turn covers
synchronization failures, and so on
(see Figure 4-4).

The component user can also
characterize the failure modes
according to the viewpoints domain. A
distinction can be made between
primary failures, secondary failures
and command failures (Leveson [67]):

• Primary failures
A primary failure is caused by an error in the software of the component so
that its output does not meet the specification. This class includes sequential
and byzantine failure modes, excluding sequential input failures.

• Secondary failures
A secondary failure occurs when the input to a component does not comply
with the specification. This can happen when the component is used in an
environment for which it is not designed, or when the output of a preceding
task does not comply with the specifications of a succeeding task’s input. This
class includes interleaving failures, sequential input failure modes, as well as
changed failure mode assumptions.

• Command failures
Command failures occur when a component delivers the correct result but at
the wrong time or in the wrong order. This class covers timing failures,
synchronization failures, ordering failures, as well as sequential termination
failures.

The persistence of failures

The persistence of failures can be categorized into three groups:

• Transient failures. Transient failures occur completely aperiodic, meaning
that we cannot bound their inter-arrival time. They can appear once, and then
never appear again. Typically, these types of failures are induced by
electromagnetic interference, or radiation, which may lead to corruption of
memory, or CPU registers – bit-flips. Transient failures are mostly physical
failures.

Byzantine

Timing

Synchronization

Ordering

Sequential
failures

Figure 4-4. The relation between the
failure modes.

Interleaving

27

• Intermittent failures. The inter-arrival time of intermittent failures can be
bounded with a minimum and/or maximum inter-arrival time. These types of
failures typically take place when a component is on the verge of breaking
down, for example, due to a glitch in a switch. Examples from the software
world could be failures due to sporadic interrupts.

• Permanent failures. A permanent failure that occurs, stays until removed
(repaired). A permanent failure can be a damaged sensor, or typically for
software, a systematic failure – caused by an error in a program, which stays
there until removed.

3.2.1.3 Failure semantics
The above classification of failure modes is not restricted to individual instances of
failures, but can be used to classify the failure behavior of components, which is
called a component’s failure semantics (Poledna [87]):

• Failure semantics
A component exhibits a given failure semantic if the probability of failure modes,
which are not covered by the failure semantic, is sufficiently low.

If a given component is assumed to have synchronization failure semantics, then all
individual failures of the component should be synchronization-, ordering-, or
sequential failures. The possibility of more severe failures, like timing failures, should
be sufficiently low. The failure semantic is a probabilistic specification of the failure
modes a component may exhibit. The semantic has to be chosen in relation to the
application requirements. In other words, the failure semantics defines the most
severe failure mode a component should experience. Fault-tolerant systems are
designed with the assumption that any component that fails will do so according to a
given failure semantic. When we test a system we do so also with a certain failure
semantic in mind. That is, we look for failures of a certain kind. For plain sequential
programs we usually do not look for interleaving failures, or timing failures.
However, if the component will be used in a multitasking or real-time system we
certainly have to look for these types of failures.

3.2.1.4 Fault hypothesis
When a system is designed for fault-tolerance or when testing is performed it is
always based on a fault hypothesis, which is simply the assumption that the system
will behave according to a certain failure semantic.

Confidence

2 4 Hypothesis51 3

Figure 3-5. The achieved confidence (of the reliability) for different
fault hypothesis.

28

This means that if a system is tested with a specific fault hypothesis, and a certain
confidence in its reliability is achieved (Figure 3-5), then if we later assume a more
severe fault hypothesis, the confidence in the achieved reliability decreases
(Figure 3-6). For example, if we have tested a system, which has memory protection,
and then remove the memory protection we cannot say anything about the achieved
reliability with respect to that fault hypothesis. Changes of this type typically give rise
to secondary failures.

3.2.2 Determinism and reproducibility
Sequential programs are usually regarded as having deterministic behavior, that is,
given the same initial state and inputs, the sequential program will consistently
produce the same output on repeated executions, even in the presence of systematic
errors. For example,

Given that the parameters a and b were equal on repeated calls to SUM(a,b,c) then the
function would deterministically reproduce the sum of a and b – regardless of the
value of c.

The determinism of a system with respect to an observed behavior can be defined as:

Definition. Determinism. A system is defined as deterministic if an observed
behavior, P, is uniquely defined by an observed set of necessary and sufficient
parameters/conditions, O.

Definition. Partial Determinism. A system is defined as partially deterministic if an
observed behavior, P, is uniquely defined by a known set of necessary and sufficient
parameters/conditions, O, but the observations are limited to a subset of O.

The implication of the definition of determinism is that if we have a function
f(a, b, c) and the observed behavior, P, of this function is deterministically determined
by the necessary and sufficient conditions (or parameters) of a and b, then we can
execute the function f(a, b, c) an infinite number of times and deterministically

int SUM(int a, int b, int c)
{

int s;
s = a+b;
printf(“c=%d\n”, c);
return(s);

}

Confidence

2 4 Hypothesis51 3

Figure 3-6. The confidence in the reliability for more severe fault
hypothesis collapses when basic assumptions do not hold due to e.g.,
the removal of memory protection.

29

observe this behavior by observing the output of f and by observing a and b. The
value of c is of no significance because it is not necessary for P’s determinism. If we
can also control, not only observe, the values of a and b we can also reproduce the
observation of behavior P.

Definition. Reproducibility. A system is reproducible if it is deterministic with
respect to a behavior P, and if it is possible to control the entire set of necessary and
sufficient conditions, O.

Definition. Partial reproducibility. A system is partially reproducible if it is
deterministic with respect to a behavior P, and if it is possible to control a subset of
the necessary and sufficient conditions, O.

Hence, the relation is such that the property reproducibility is stronger than the
property determinism, i.e., if some observations are reproducible they are
deterministic, but not necessarily vice versa, thus:

Determinism ⊂⊂⊂⊂ Partial reproducibility ⊂⊂⊂⊂ Reproducibility

This is an important distinction to make, since the desired behavior, the fault
hypothesis and the infrastructure dictates how many conditions/variables/factors we
need to observe in order to guarantee determinism of observations, as well as how
many conditions we must control for reproducibility of observations.

30

31

4 MONITORING DISTRIBUTED REAL-TIME SYSTEMS
We will in this chapter discuss how to observe the behavior of embedded real-time
systems (RTS), and how to observe and correlate observations between nodes in
distributed real-time systems (DRTS). There are two significant differences between
debugging and testing of software for desktop computers and embedded real-time
systems:

• It is more difficult to observe embedded computer systems, simply because
they are embedded, and that they thus have very few interfaces to the outside
world, and

• the actual act of observing RTS and DRTS can change their behavior.

In order to dynamically verify a system, i.e., to test or debug it, we must observe its
run-time behavior and deem how well these observations comply with the system
requirements. Fundamental in all physical sciences, as well as in testing of software,
is the non-ambiguity, or determinism, of observations, and the ability to reproduce
observations. Of equal importance is that the actual act of observation does not
disturb, or intrude on, system behavior. If nonetheless the observations are intrusive
then it is imperative that their effect can be calculated and compensated for. If we
cannot, there are no guarantees that the observations are accurate or reproducible.

Race conditions with respect to order of access to shared resources occur naturally in
multi-tasking real-time systems. Different inputs to the racing tasks may lead to
different execution paths. These paths will in turn lead to different execution times for
the tasks, which depending on the design may lead to different orders of access to the
shared resources. As a consequence there may be different system behaviors if the
outcome of the operations on the shared resources depend on the ordering of accesses.

Example 4-1.

Consider figures 4-1 and 4-2. Assume that two tasks A and B, use a shared
resource X, which they both do operations on, and that the resource X is protected
by a semaphore S. Task B has higher priority than task A. Depending on the
inputs, the execution time of task A will vary, which will result in different
accesses to the shared resource:

(1) Figure 4-1 illustrates a scenario, in which task B locks the semaphore, and
enters the critical region before task A. Task B then preempts A and
performs an operation on X. The new value of X is B(X). The entire
transaction will yield a value of X corresponding to A(B(X)).

(2) Figure 4-2 illustrates a different scenario, in which task A terminates
before task B is released, and thus performs an operation on X before B.
The new value of X is A(X). The entire transaction will yield a value of X
corresponding to B(A(X)).

If we now add a probe to task A, in order to test its behavior, we may extend its
execution time so that only scenario (1) is run. Consequently scenario (2) will
never be executed during run-time, and if B(A(X)) is erroneous due to e.g., an
error in task A, this will not be revealed during testing. If we later, after
satisfactory testing, remove the probe in task A, scenario (2) may occur again and
the erroneous calculation B(A(X)) may be executed, leading to a failure. This non-

32

deterministic effect of intrusively observing a system is called the probe-effect
[31][78] or the Heisenberg uncertainty in software [64][77].

Figure 4-1. The releases of tasks A and B - Figure (a). Where task B has
higher priority than task A. Task B enters the critical section before A, when
A has its worst case execution time. Figure (b) depicts the resulting
execution, where A is preempted by B.

t

Priority

4 10

B

A t

Priority

4 10

BA

Critical section

(a) (b)

A

t

Priority

4 10

Figure 4-2. The releases of tasks A and B - Figure (a). Where B has higher
priority than task A. Due to shorter execution time task A starts and
terminates before task B is released. Figure (b) depicts the resulting
execution, where A precedes B.

B

A t

Priority

4 10

Critical section

(a) (b)

AA B

33

Example 4-2.

Consider Figure 4-3 which depicts the execution orderings of tasks during the
Least Common Multiple (LCM) of the period times of the involved tasks A, B and
C, based on a schedule generated by a static off-line scheduler and where later
release time gives higher priority. Due to a varying execution time of task A, with
a best case execution time (BCET) of 2 and a worst case execution time (WCET)
of 6, we get three different scenarios, depicted in figures 4-3(a–c). As exemplified
below the execution of these different execution orderings will give different
results.

Assume in addition that all tasks call a common subroutine f(), that is by error
non-reentrant, and that the tasks A, B, and C execute the program code in Figure
4-4. Task A is also in error by assigning 7 to b, when it should be 10. A critical
point for the values computed by task A is indicated in the code for task A, by the
preemption point.

The values calculated for task A, depending on which scenario is run, would thus
be scenario (a) ans = 13 (correct), scenario (b) ans = 13 (correct), and scenario (c)
ans = 10 (erroneous).

Hypothesize now, that we add a probe to task A, in order to test its behavior, and
thus extend its execution time to always exceed its BCET. As a consequence
scenario (c) will never be executed during run-time, and the error in task A will
not be revealed during testing. If we later, after satisfactory testing, remove the
probe in task A, scenario (c) can occur again and task A will fail. Thus giving rise
to the probe effect.

Figure 4-3 Three different execution order scenarios.

A A A

B
C

2 4 6 8

A A

B
C

2 4 6 8 1010

A

B
C

2 4 6 8 10

(a) CA=6 (b) CA=4 (c) CA=2

Figure 4-4. The tasks A, B and C and the called function f()

int f(int a)
{

int sum;

sum =a+b;
return(sum);

}

Task A:
int b; /* global*/
int ans;

/*1st assignenment in prg. */
b=7; /* error*/
…
…
/* Preemption point */
…
…
/*last assignment in prg.*/
ans = f(3);

…

Task B:
...
int ans;
...
b=10;
ans = f(2);

…

Task C:
...
int ans;
...
b=10;
ans = f(5);

…

34

Besides race-conditions, and the occurrence of the probe-effect in DRTS, there is also
a difference between DRTS and sequential software with respect to control.
Achieving deterministic observations of regular sequential programs is easy because
in order to guarantee reproducibility we need only control the sequence of inputs and
the start conditions [78]. That is, given the same initial state and inputs, the sequential
program will deterministically produce the same output on repeated executions, even
in the presence of systematic faults [94], or in the presence of intrusive probes.
Reproducibility is essential when performing regression testing or cyclic debugging
[92][96], where the same test cases are run repeatedly with the intent to validate that
either an error correction had the desired effect, or simply to make it possible to find
the error when a failure has been observed [59], or to show that no new errors have
been introduced when correcting another error. However, trying to directly apply test
techniques for sequential programs on distributed real-time systems is bound to lead
to non-determinism and non-reproducibility, because control is only forced on the
inputs, disregarding the significance of order and timing of the executing and
communicating tasks.

Consequently, in order to facilitate reproducible monitoring of DRTS we must:

1. Reproduce the inputs with respect to contents, order, and timing

2. Reproduce the order and timing of the executing and communicating tasks.

3. Eliminate the probe-effect.

However, if deterministic monitoring is sufficient it is enough to only observe all
entities with respect to contents, order and timing. A system can be defined as
deterministic with respect to a certain set of behaviors if we can observe all necessary
and sufficient conditions for the set of behaviors to occur. As for sequential software,
it would be necessary to observe inputs and outputs in order to deterministically deem
if the outputs comply with the requirements. If the control flow of the sequential
program also depends on random number generators, we would have to observe these
also for determinism. For a multitasking real-time systems, with ordering failure
semantics or stricter semantics assumed, it would be necessary to observe contents,
order and timing of all inputs, outputs, and executions of the involved tasks in order
to deterministically deem if the system fulfills its requirements. For reproducibility
however, it would also be necessary to control all necessary and sufficient conditions
for a set of behaviors to deterministically occur. A system is partially reproducible if
we can deterministically observe it but only control some of the necessary and
sufficient conditions.

Reproducibility is a necessity when debugging, when regression testing [92], or when
sufficient coverage during testing is sought (we will in section 4.5, chapter 5 and
section 6.4.4 elaborate on this).

Contributions

• In this chapter we present a software-based method for deterministic observations
of single tasking, multi-tasking, and distributed real-time systems.

• This includes a description of what to observe, how to eliminate the disturbances
caused by the actual act of observing, how to correlate observations between
nodes, and how to reproduce the observations.

• We will give a taxonomy of different observation techniques, and discuss where,
how and when these techniques should be applied for deterministic observations.

35

• We argue that it is essential to consider monitoring early in the design process, in
order to achieve efficient and deterministic observations.

4.1 Monitoring
Research on testing of shared memory multiprocessor systems and distributed
systems have been penetrated in some detail over the years. The focus has mainly
been on monitoring, i.e. gathering of run-time information for debugging
[86][111][112] and performance measurements [11].

The research issues have been:

• The intrusiveness (perturbation) of observations in software [31][64][78] and
how to eliminate the perturbations using special hardware [113].

• How to deterministically reproduce the observations using mechanisms in
software [22][63] [104] or mechanisms in hardware [113]

• The problem of defining a global state in distributed systems [29] using
logical clocks [12][58] or synchronized physical clocks [51][53][87].

However, the number of references on research regarding monitoring for testing and
debugging of single node real-time systems, and multiple node (distributed) real-time
systems, that consistently handle time, distribution, interrupts, clock synchronization,
and scheduling, dwindle fast (to zip).

The observational requirements for testing and debugging differ, in the amount and
type of information required. The quintessential difference comes from the fact that
testing is used for finding failures (or showing their absence), while debugging is
used for finding the errors that cause the failures. Another difference is that testing
can easily be automated, while debugging is essentially a manual task. For the
verification of safety-critical software (failure rates of 10-4 to 10-9 failures/hour) it is
necessary that the test process can be automated since the number of test cases
required is enormous [10][70] (see chapter 2).

For testing of sequential programs it is usually sufficient to monitor inputs, and
outputs via predefined interfaces of the programs, and based on that information
deem, according to the specification, if a test run was successful or not. For
(distributed) real-time systems we need also observe the timing and order of the
executing and communicating tasks, since the outputs depend on these variables, and
thus also the determinism of the observations.

To detect errors using debugging it is also necessary to monitor the internal behavior
of the programs with respect to intermediate computed values, internal variables, and
the control flow. For interactive debugging, in the classical sense of sequential
programs, it is required that the control flow can be altered via manual or conditional
breakpoints, or via traces, all in order to be able to increase the observability of the
program. Consequently, for debugging of (distributed) real-time systems, we need to
control the timing and order of the executing and communicating tasks, otherwise we
cannot achieve deterministic debugging. However, the problem of defining a global
state in distributed real-time systems, and break-pointing tasks on different nodes at
exactly the same time, is a serious obstacle when debugging. Either we need to send
stop or continue messages from one node to a set of other nodes with the problem of
nonzero communication latencies, or we have a priori agreed upon times when the
execution on the processors should be halted or resumed. In the latter case there is the
problem of non-perfectly synchronized clocks, so the tasks may not halt or resume

36

their execution at the same time. Most real-time systems are also driven by the
environment, so just because we breakpoint one task on one node, does not stop the
external process.

When monitoring a DRTS there are some fundamental questions that must be
answered:

• How to extract enough information from the system?

• How to eliminate the perturbations that the observations cause?

• How to correlate the observations, i.e., how to define a consistent global
state?

• How to reproduce the observations?

We are now going to address each of these questions in turn.

4.2 How to collect sufficient information
The amount of monitoring needed in order to collect sufficient information is
dependent on two basic factors:

• What is the fault hypothesis? That is, the more severe failure semantics, the
more information we need to store and process in order to achieve
deterministic observations. For sequential software it is sufficient to observe
inputs and outputs. For multi-tasking systems we need also observe task
execution orderings and their access to shared resources. For real-time
systems we further need to observe the timing of the tasks. However, if we
want to test a multitasking real-time system and assume sequential failure
semantics we need only test tasks in solitude, since we can regard each task as
a sequential program. The probability that the multitasking real-time system
will only exhibit sequential failure behavior in practice is not very high
though. It is therefore very important to chose a realistic fault-hypothesis and
observe the system based on that fault hypothesis.

• What is the a priori knowledge of the system with respect to its behavior and
attributes? The validity of the fault-hypothesis is based on the support that the
environment and the infrastructure (real-time kernel, hardware, etc.) give the
fault hypothesis.

Does the system have memory protection? How does the system synchronize
access to shared resources (time or semaphores)? Is the execution strategy
time-triggered or event-triggered?

For example, if the system is time-triggered and scheduled using e.g., strict
periodic fixed priority scheduling or static scheduling, we know that the
system will repeat its execution every LCM. For event-triggered systems we
have no such general limit and might have to observe and store copious
amounts of information.

37

The actual information to be observed can be categorized into three groups:

• Data flow (internal and external)

• Control flow (execution and timing)

• Resources (memory and execution resources)

Data flow

• Inputs – determine for which input the task will execute, this is important if
the actual input is not provided by a test oracle, but rather by an external
process or an environment simulator.

• Outputs – what are the produced outputs via the predefined interfaces of the
task? This includes messages that are passed between the system nodes, in a
DRTS.

• Auxiliary outputs – output intermediately computed values, or program state,
which are not visible via the predefined interfaces. For sequential software
these are commonly implemented using e.g., assertions, or even using printf
statements in C. For distributed real-time systems the situation is more
complex and we need to define the type of data we additionally need.
Typically these are related to memory mapped I/O interfaces, for example
received messages over the network, readings of A/D converters, readings of
the local clock, etc. Because any additional outputs will require more
memory, communication bandwidth, and execution time, we need to take
these auxiliary outputs into account when designing and scheduling, in order
to avoid the probe-effect. These auxiliary outputs could also be parameterized,
i.e., we can during run-time switch between different auxiliary outputs, given
of course that this parameterization is designed in such a way that the timing
behavior is constant.

Control flow

• Inputs, outputs, auxiliary outputs, and inter-node messages. At what time and
in what order were the inputs received? At what time and in what order were
the outputs produced?

• Task switches – which, when, and in what order are tasks starting,
preempting, and finishing? We can make use of this information for deriving
the synchronization and execution orderings between tasks. We can also make
use of the timing information in order to deem if tasks start too early, too late,
finish too late or finish too early. We can further measure the periodicity of
the tasks and thus deem if jitter requirements are met. Making use of this
timing information we can also measure the execution times of the tasks.

• Interrupts – which, when, how long, and in what order are interrupts
interfering with tasks. Using this information we can judge how the interrupts
interfere with the execution of the tasks. We can thus measure if basic
assumptions of interrupt overhead are true.

• Real-time kernel overhead. What is the execution time of the real-time kernel?
What are the latencies due to interrupt disable, that is, when the kernel needs
to perform atomic operations it usually disables all interference by interrupts,
for how long time can the kernel block all interrupts?

38

• Tick rate. The tick rate is the frequency at which the real-time kernel is
invoked, and at which new scheduling decisions are taken. However, the tick
rate can vary due to global clock synchronization. That is, the inter arrival
time between ticks might increase or decrease if the local clock is to slow or
to too fast compared to the global time base.

Resources

• Memory use – stack use, etc. How much of the memory is used by the tasks,
interrupt service routines, or the kernel?

• CPU utilization. How much of the CPU’s calculating power is used?

• Network utilization. How much of the networks bandwidth is used?

• The state of the real-time kernel: Which tasks are waiting for their turn to
execute (waiting queue, list, or table)? Which task is running? Which tasks
are blocked?

It is very important to deem which information is necessary for monitoring of the
system, because if you extract too much there will be a heavy performance and cost
penalty. If you extract too little, the precision of the observations will be too coarse or
simply non-deterministic for judging how and why the system behaved as it did. For
determinism there is a least necessary level of observability required, i.e., we need to
observe the necessary and sufficient parameters as defined in section 3.2.2. Any
additional (useful) information surpassing the level of necessity for determinism will
increase the precision of the observations. Think of inputs, and outputs for sequential
software as the least necessary level for determinism, while debugging provides a
higher level of observability (precision) since we can inspect the internal control flow
and the contents of the variables.

4.3 Elimination of perturbations
After a decision on what entities to observe we need to decide on how to eliminate the
probe-effect. There are basically three approaches (1) non-intrusive/passive hardware,
(2) intrusive software instrumentation, and a hybrid (3) where the software
instrumentation is minimized.

4.3.1 Hardware monitoring
A transparent non-intrusive approach towards monitoring, is the application of special
hardware, e.g. hardware that allows buss sniffing, or non-intrusive access to memory
via dual-port memories, etc., but also through the use of hardware CPU emulators,
(Lauterbach et al. [61]). Hardware monitoring has been applied for performance
measurements [8], execution monitoring of multiprocessor systems [73], and real-
time systems [74][86][113]. Since the monitoring hardware is interfaced to the target
system’s hardware via the CPU socket (emulator) or via the data and address busses,
it can observe the target system without interfering with its execution, and thus not
introduce any probe-effects. The drawbacks are that the monitoring mechanisms must
be very target specific and therefore very expensive, but also that the observations
will be on a very low level of detail, since only the external interfaces of the
microprocessors and shared resources such as dual-port memories, can be monitored.
The ever-increasing integration of functionality in current general-purpose micro-
controllers makes it correspondingly harder to observe the internal behavior of the
micro controllers/CPUs, due to cache memory, on-chip memory, etc. Hardware

39

monitoring must also be considered early in the design of the system since monitoring
mechanisms will be difficult to integrate when the rest of the hardware configuration
is set. Non-intrusive monitoring of distributed real-time systems also requires that we
have dedicated monitoring hardware on each node, and that the nodes are
interconnected via a dedicated monitoring network for data transfer and
synchronization, in order to avoid the probe-effect. We need also establish a globally
synchronized time base, relative which all observed events on the nodes can be
correlated otherwise there can be no guarantees of the consistency between
observations.

It can be argued that the cost for the monitoring hardware will only impact the
development budget, not the production cost, since the monitoring hardware can be
removed from the target system. Experience of software development has however
shown that maintainability is a necessity also after deployment. The non-portability,
the lack of scalability and the observations low level of detail severely limit the
viability of the hardware approach. The current trend of making application specific
hardware using FPGAs and VHDL [11] gives, however, an opportunity to
conveniently integrate non-intrusive monitoring mechanisms in the hardware for
single node systems.

4.3.2 Hybrid monitoring
In order to increase the level of abstraction and decrease the amount of information
recorded, hybrid approaches to monitoring have been suggested. “Triggers” are
implemented in software, which using a minimum number of instructions assists the
hardware in recording significant events. Software triggers do for example, write to
specific addresses that are memory mapped with the monitoring hardware, or use
special co-processor instructions. When the monitoring software writes to these
addresses the hardware records the data passed on the data bus of the processor.
Using this approach the limitations of hardware monitoring can be alleviated,
although the cost and non-portability issues still remain. The monitoring instructions
in the software must also be resource adequate, and remain in the target system in
order to avoid the probe-effect. Hybrid performance monitoring of distributed
systems have been covered by Haban et al. [36], and performance monitoring of
multiprocessor systems by Mink et al. [81][91][34].

40

4.3.3 Software monitoring
Historically, the contributing motivations for using hardware, and hybrid, monitoring
approaches have been the problem of predicting the perturbations caused by
instrumenting software [28]. That is, any instrumentation of the software will require
memory and execution time resources, while hardware can passively monitor the
system with no interference. For software instrumentation there will be a probe-effect,
if the probes are removed after satisfactory monitoring, or if the probes are added to a
system that has already been shown, e.g., using scheduling theory, to always meet its
deadlines. If the probes are not removed there will be a financial penalty due to the
dedicated resources (memory, processing, bandwidth, etc.) or they might hamper the
performance of the system.

In order to test and debug a system to satisfactory levels of reliability we
fundamentally need to observe the system, and by including instrumentation code in
the software (application and kernel), we can observe significantly more than possible
with hardware approaches. Software monitoring of real-time systems have been
covered by Chodrow et al. [14], distributed systems by Joyce et al. [46][80], and
distributed real-time systems by Tokuda et al. [111][90]. In general it is necessary to
leave the software probes in the target system in order to eliminate the probe-effect. If
the target system is a real-time system, which can be scheduled e.g., using fixed
priority or static scheduling it is straightforward to analyze the effects that the probes
have on the system. Just make the probes part of the design, i.e., allocate execution
time and memory, and then make use of execution time analysis [89] and scheduling
theory [4][75][117]. For monitoring of distributed real-time systems we need also to
allocate communication bus bandwidth and account for the probes when making the
global schedule. We need also establish a global time-base in order to correlate
observations on different nodes.

For software monitoring of distributed real-time systems we have identified the
following four different types of probes, depending on where they are implemented:

• Kernel-probes – System and kernel level probes, monitor task switches, interrupt
interference, etc. (Figure 4-5). These types of probes are typically not
programmable by the application designer, but rather given as an infrastructure by
the real-time kernel. In order to avoid the probe effect, these types of probes
should be left permanently in the kernel, their contributing overhead must also be
predictable, and minimized.

TASK
Recorder

Time stamps

Activation
System calls
Preemptions
Termination
Interrupt hits

RT-kernel
monitor

Figure 4-5. Kernel-probe mechanism.

41

• Inline-probes – Are task level probes that add auxiliary outputs to the task they
instrument (Figure 4-6). These types of outputs are outputs that are regarded
necessary from a monitoring, testing or debugging perspective, rather than from a
functional application requirement perspective. As they are part of the application
code they will also be covered in the estimations, or measurements of the
execution times. This also means that we usually need to let them remain in the
target system in order to eliminate the probe effect.

• Probe-tasks – Are tasks dedicated to collecting data from kernel-probes, inline-
probes and other probe-tasks. As depicted in the Figure 4-7, a dedicated probe-
task receives data from a set of tasks. All probe-tasks must be taken into account
when designing and scheduling the system. These types of probes need also
remain in the target system in order to avoid the probe effect. We will however
soon elaborate on this, and show that there are certain circumstances that allow
for these probes to be removed from the target system.

• Probe-nodes – Are dedicated nodes that collect data from probe-tasks and are able
to monitor communication busses (Figure 4-8). The probe-node can also analyze
the collected data for performance estimations or for testing and debugging. These
probe-nodes must also be taken into account when allocating resources for the
system since they will require communication bus bandwidth, unless they
passively eavesdrop on the network. These types of probes are however easier to
remove from the target system since they usually are self-contained computing
elements, and can thus be regarded as passively observing hardware monitoring
elements, and consequently they can be removed with minimal interference.

….

….

 printf(“red alart”);

…

Figure 4-6. Inline- probe.

Figure 4-8. Probe-node.

Sample

Sam ple
1

Control
Actuate

Sam ple
2

Period = 5 m s Period = 30 m s

Probe

Figure 4-7. Probe-task receives data from other tasks.

42

Resource allocation

The prerequisites for avoiding the probe-effect when using the above-defined probes
are the allocation of sufficient resources e.g., execution time, network bandwidth and
memory. It is not very plausible that these resources will “pop” up in the right place
during the test phase if they have not been taken into account during the design phase.

Eliminating the probes?

In most embedded systems the execution time (CPU speed) and memory are limited
resources, mostly due to large production volumes, where per unit cost reduction is of
significance. From an end-quality, and verification point of view, it is not hard to
motivate the extra cost for dedicated probes. That is, you fundamentally need the
probes for testing. If you do not have the probes you cannot assess the reliability, or
find the errors. Accidents have however, shown that having non-functional code in
the target system can be hazardous [67]. Some testing measures are sometimes also
deemed so hazardous that they must by all means be eliminated from the target
system. Examples include test procedures for train signaling systems, where the test
procedures actually change the state of the signals, and consequently could an
inadvertent execution of these procedures during runtime cause severe accidents.

So, is there any possibility for us to remove probes after satisfactory testing without
introducing the probe-effect? For some execution strategies, e.g., statically scheduled
real-time systems, probes can be removed without temporal side-effects if they are
situated within temporal firewalls [96] (Figure 4-9). That is, as long as we do not
change the start and completion times of tasks, and change their times of output
(communication or access to shared resources), we can remove the probes. The
probes can also be eliminated in fixed priority scheduled systems, if we make use of
offsets and thus erect temporal firewalls, or if the probes have lower priority than the
rest of the tasks in the system (Figure 4-10). In the latter case we must also guarantee
that the monitoring probes cannot ever block a higher priority task.

If it now would be possible to eliminate the probes, to what end could we use the
spare resources (memory and time)? If we remove the probes and thus decrease the
processor utilization, we could possibly use the spare resources for non-critical
activities (soft real-time tasks) [26]. However, how do we guarantee that the non-
critical software does not introduce new errors? In most micro-controllers we do not
have memory protection schemes, and consequently can a soft real-time task wreak
havoc in the memory space where the hard real-time tasks reside and operate. Could
we use a cheaper and slower processor? It is not very likely that we could use a
processor with different timing characteristics than the one tested, because all
execution times and scheduling are based on the timing specifics of the target

A B C

2 4 6 8 10

Figure 4-9. Probe task B can be
removed due to fixed release times
of A and C.

A A A
B

C

2 4 6 8 10

Figure 4-10. Low priority probe
task A can be removed without
side effects.

43

processor. That is, if we change the processor we need to reschedule the entire
system, and consequently retest the entire system again; thus gaining nothing.

Memory reduction

One possible benefit however, could be the reduction of memory use. If it can be
shown that the removal of probes will not change the functional behavior of the
system with respect to memory access, and memory side effects, and all the memory
used by the probes have been allocated in a specific address space, we could remove
this memory and thus save money.

4.4 Defining a global state
In order to correlate observations in the system we need to know their orderings, i.e.,
determine which observations are concurrent, and which precede and succeed a
particular event. In single node systems or tightly coupled multiprocessor systems
with a common clock this is not a problem, but for distributed systems without a
common clock this is a significant problem. An ordering on each node can be
established using the local clocks, but how can observations between nodes be
correlated?

One approach is to establish a causal ordering between observed events, using for
example logical clocks [58] derived from the messages passed between the nodes.
However, this is not a viable solution if tasks on different nodes work on a common
external process without exchanging messages, or when the duration between
observed events is of significance. In such cases we need to establish a total ordering
of the observed events in the system. This can be achieved by forming a synchronized
global time base [27][51]. That is, we keep all local clocks synchronized to a
specified precision δ, meaning that no two nodes in the system have local clocks
differing by more than δ.

Figure 4-11 illustrates the local ticks in a distributed system with three nodes, all with
tick rate Π, and synchronized to the precision δ. There is no point in having
Π ≤ δ, because the precision δ dictates the margin of error of clock readings, and thus
a Π ≤ δ would result in overlaps of the δ intervals during which the synchronized
local ticks may occur [56].

Figure 4-11. The occurrence of local ticks on three nodes

δ δ

C1(t)
i+1i

i+1

i+1

i

i

Π

C2(t)

C3(t)

44

Consider Figure 4-12, illustrating two external events that all three nodes can
observe, and which they all timestamp. Due to the sparse time base [53] and the
precision δ, we end up with timestamps of the same event that differ by 1 time unit
(i.e., Π) while still complying with the precision of the global time base. This means
that some nodes will consider events to be concurrent (i.e., having identical time
stamps), while other nodes will assign distinct time stamps to the same events. This is
illustrated in Figure 4-12, where node 2 will give the events e1 and e2 identical time
stamps, while they will have difference 2 and 1 on nodes 1 and 3, respectively. That
is, only events separated by more than 2Π can be globally ordered with consensus
among the nodes. Due to the precision of the global clock synchronization there is
thus a smallest possible granule of time defined by 2δ for deterministic ordering
events in the system, since tick overlaps are not acceptable, i.e., 2Π > 2δ.
Consequently the ultimate precision of the global state, i.e., the observed state, will be
defined by the precision of the global clock synchronization.

4.5 Reproduction of observations
In order to reproduce observations we must bring about the exact same circumstances
as when the original observations were made. That is, for distributed real-time
systems we need to reproduce the inputs, and as the behavior of a distributed real-
time system depends on the orderings, and timing of the executing and
communicating tasks, we need also reproduce that behavior in order to reproduce
their outputs.

4.5.1 Reproducing inputs
For the reproduction of inputs it is common to use environment simulators [33][65].
The simulators are models of the surrounding environment, e.g., models of the
hardware, or the user and user interface, that can simulate the environment’s inputs
and interactions with the target system, with respect to contents, order and timing.

Classically, the environment simulators have not focused on reproducing inputs to the
system, but rather been necessities when the target hardware has not been available,
due to concurrent development, or when the application domain has been safety-
critical. For the verification of safety-critical systems it is necessary to produce very
rare scenarios (10-9 occurrences/hour) that would be extremely difficult (or even
dangerous) to produce even if the target system and target environment were available
to the testers [85][97]. Examples are space applications, weapons systems, and
medical treatment devices.

Figure 4-12. Effects of a sparse time base.

Event e2Event e1

C1(t)

C2(t)

C3(t)

δ δ

i

i

i

i+1

i+1

i+1

45

4.5.2 Reproduction of complete system behavior
When it comes to the reproduction of the state and outputs of single tasking RTS,
multitasking RTS and DRTS, with respect to the orderings, and timing of the
executing and communicating tasks, there are two approaches:

(1) Off-line replays, i.e., record the runtime behavior and examine it while
replaying it off-line.

(2) On-line reproduction, i.e., rerun the system while controlling all necessary
conditions.

We will in subsequent chapters discuss and give solutions to (1) and (2). That is,
elaborate on how reproduction of observations can be made with respect to debugging
and testing of distributed real-time systems.

4.6 Summary
We have in this chapter presented a framework for monitoring single tasking, multi-
tasking, and distributed real-time systems. This includes a description of what to
observe, how to eliminate the disturbances caused by the actual act of observing (the
probe effect), how to correlate observations (how to define a global state), and how to
reproduce them. We have given a taxonomy of different observation techniques, and
where, how and when these techniques should be applied to obtain deterministic
observations. We have argued that it is essential to consider monitoring early in the
design process in order to achieve efficient and deterministic observations. Software
monitoring is also the preferable approach since it scales better than the hardware
approaches. Software monitoring can compared to hardware monitoring also observe
the system on many levels of abstraction while hardware monitoring is limited to
observation of low level details.

46

47

5 DEBUGGING DISTRIBUTED REAL-TIME SYSTEMS
We will in this chapter present a method for reproducible debugging of real-time
systems (RTS) and distributed real-time systems (DRTS). Classical debugging
techniques used for cyclic debugging of sequential programs like breakpoints,
watches and single stepping (tracing) cannot immediately be applied to real-time
systems software without sacrificing determinism and reproducibility. We will in this
chapter discuss and describe a software based technique for achieving reproducible
debugging, based on on-line recording and off-line replay, that covers interleaving
failure semantics.

Testing is the process of revealing failures by exploring the runtime behavior of the
system for violations of the specifications. Debugging on the other hand is concerned
with revealing the errors that cause the failures. The execution of an error infects the
state of the system, e.g., by infecting variables, memory, etc, and finally the infected
state propagates to output. The process of debugging is thus to follow the trace of the
failure back to the error. In order to reveal the error it is imperative that we can
reproduce the failure repeatedly. This requires knowledge of the start conditions and
deterministic executions. For sequential software with no real-time requirements it is
sufficient to apply the same input and the same internal state in order to reproduce a
failure. For distributed real-time software the situation gets more complicated due to
timing and ordering issues.

There are several problems to be solved in moving from debugging of sequential
programs (as handled by standard commercial debuggers) to debugging of distributed
real-time programs. We will briefly discuss the main issues by making the transition
in three steps:

Debugging sequential real-time programs

In moving from debugging sequential non real-time programs to debugging sequential
real-time programs temporal constraints on interactions with the external process have
to be met. This means that classical debugging with breakpoints and single stepping
(tracing) cannot be directly applied, since it would make timely reproduction of
outputs to the external process impossible. Likewise, using a debugger we cannot
directly reproduce inputs to the system that depend on the time when the program is
executed, e.g., readings of sensors and accesses to the local real-time clock. A
mechanism, which during debugging faithfully and deterministically reproduces these
interactions, is required.

Debugging multi-tasking real-time programs

In moving from debugging sequential real-time programs to debugging multitasking
real-time programs executing on a single processor we must in addition have
mechanisms for reproducing task interleavings. For example, we need to keep track of
preemptions, interrupts, and accesses to critical regions. That is, we must have
mechanisms for reproducing the interactions and synchronizations between the
executing tasks.

Reproducing rendezvous between tasks has been covered by Tai et al. [104], as have
reproduction of interrupts and task-switches using special hardware, by Tsai et al.
[113]. Reproducing interrupts and task switches using both special hardware and
software have been covered by Dodd et al. [22]. However, since both the two latter
approaches are relying on special hardware and profiling tools they are not very

48

useful in practice. They all also lack support for debugging of distributed real-time
systems, even though Dodd et al. claim they have such support. We will in section 5.5
elaborate on their respective work.

Debugging of distributed real-time systems

The transition from debugging single node real-time systems to debugging distributed
real-time programs introduces the additional problems of correlating observations on
different nodes and break-pointing tasks on different nodes at exactly the same time.

To implement distributed break-pointing we either need to send stop or continue
messages from one node to a set of other nodes with the problem of nonzero
communication latencies, or we need á priori agreed upon times when the executions
should be halted or resumed. The latter is complicated by the lack of perfectly
synchronized clocks (se section 4.4), meaning that we cannot ensure that tasks halt or
resume their execution at exactly the same time. Consequently a different approach is
needed.

Debugging by deterministic replay

We will in this chapter present a software based debugging technique based on
deterministic replay [63][78], which is a technique that records significant events at
run-time and then uses the recorded events off-line to reproduce and examine the
system behavior. The examinations can be of finer detail than the events recorded.
For example, by recording the actual inputs to the tasks we can off-line re-execute the
tasks using a debugger and examine the internal behavior to a finer degree of detail
than recorded.

Deterministic replay is useful for tracking down errors that have caused a detected
failure, but is not appropriate for speculative explorations of program behaviors, since
only recorded executions can be replayed.

We have adopted deterministic replay to single tasking, multi-tasking, and distributed
real-time systems. By recording all synchronization, scheduling and communication
events, including interactions with the external process, we can off-line examine the
actual real-time behavior without having to run the system in real-time, and without
using intrusive observations, which potentially could lead to the probe-effect [31].
Probe-effects occur when the relative timing in the system is perturbed by
observations, e.g., by breakpoints put there solely for facilitating observations. We
can thus deterministically replay the task executions, the task switches, interrupt
interference and the system behavior repeatedly. This also scales to distributed real-
time systems with globally synchronized time bases. If we record all interactions
between the nodes we can locally on each node deterministically reproduce them and
globally correlate them with corresponding events recorded on other nodes.

Contribution

In this chapter we present a method for debugging of real-time systems, which to our
knowledge is

• The first entirely software based method for deterministic debugging of single
tasking and multi-tasking real-time systems.

• The first method for deterministic debugging of distributed real-time systems.

49

5.1 The system model
In addition to the original system model in chapter 3 we assume the use and existence
of a run-time real-time kernel that supports preemptive scheduling, and require that
the kernel has a recording mechanism such that significant system events like task
starts, preemptions, resumptions, terminations and access to the real-time clock can be
recorded [108], as illustrated in Figure 5-1. The detail of the monitoring should
penetrate to such a level that the exact occurrence of preemptions and interrupt
interference can be determined, i.e., it should record program counter values where
the events occurred. All events should also be time-stamped according to the local
real-time clock.

We further require that the recording mechanism governed by the run-time kernel
supports programmer defined recordings. That is, there should be system calls for
recording I/O operations, local state, access to the real-time clock, received messages,
and access to shared data.

All these monitoring mechanisms, whether they reside in the real-time kernel or
inside the tasks, will give rise to probe-effects [31][78] if they are removed from the

TASK
Recorder

Time stamps

External process

I/O

Activation
Preemptions
Termination
Interrupt hits
System calls

RT-kernel
monitor

Figure 5-1. Kernel with monitoring and recording.

Figure 5-2. Offline kernel with debugger

TASK

Recorder

I/O

Activation
Preemptions
Termination
Interrupts
System calls

 RT-kernel
off-line

DEBUGGER

50

target system. That is, removing the monitoring probes will affect the execution,
thereby potentially leading to new and untested behaviors.

We further assume that we have an off-line version of the real-time kernel (shown in
Figure 5-2), where the real-time clock and the scheduling have been disabled. The
off-line kernel with support by a regular debugger is capable of replaying all
significant system events recorded. This includes starting tasks in the order recorded,
and making task-switches and repeating interrupt interference at the recorded program
counter values. The replay scheme also reproduces accesses to the local clock, writing
and reading of I/O, communications and accesses to shared data by providing
recorded values.

5.2 Real-time systems debugging
We will now in further detail discuss and describe our method for achieving
deterministic replay. We follow the structure in the introduction and start by giving
our solution to debugging sequential software with real-time constraints, and then
continue with multitasking real-time systems, and finally distributed multitasking
real-time systems.

5.2.1 Debugging single task real-time systems
Debugging of sequential software with real-time constraints requires that debugging
is performed in such a manner that the temporal requirements imposed by the
environment are still fulfilled. This means, as pointed out in the introduction, that
classical debugging with breakpoints and single-stepping cannot be directly applied,
since it would invalidate timely reproduction of inputs and outputs.

However, if we identify and record significant events in the execution of the
sequential program, such as reading values from an external process, accesses to the
local clock, and outputs to external processes, we can order them. By ordering all
events according to the local clock, and recording the contents of the events (e.g., the
values read) together with the time when they occurred we can off-line reproduce
them in a timely fashion. That is, during debugging we “short-circuit” all events
corresponding to the ones recorded by substituting readings of actual values with
recorded values.

An alternative to our approach is to use a simulator of the external process, and
synchronize the time of the simulator with the debugged system. However, simulation
is not required if we already have identified the outputs that caused the failure.

5.2.2 Debugging multitasking real-time systems
To debug multitasking real-time systems we need, in addition to what is recorded for
single task real-time systems, to record task interleavings. That is, we have to record
the transfers of control. To identify the time and location of the transfers we must for
each transferring event assign a time stamp and record the program counter (PC).

To reproduce the run-time behavior during debugging we replace all inputs and
outputs with recorded values, and instrument all tasks by inserting trap calls at the PC
values where control transfers have been recorded. These trap calls then execute the
off-line kernel, which has all the functionality of a real-time kernel, but all transfer of
control, all accesses to critical regions, all releases of higher priority tasks, and all
preemptions by interrupts are dictated by the recording. Inter-process communication

51

is however handled as in the run-time kernel, since it can be deterministically
reproduced by re-executing the program code.

Figure 5-3 depicts an execution with the three tasks A, B, and C. We can see that task
A is being preempted by task B and C. During debugging this scenario will be
reproducible by instrumenting task A with calls to the kernel at A’s PC=x and PC=y.

The above reasoning is a bit simplistic when we have program control structures like
loops and recursive calls, since in such structures the same PC value will be executed
several times, and hence the PC value does not define a unique program state. This
can be circumvented if the target processor supports instruction or cycle counters. The
PC will together with any of these counters define a unique state. However, since
these hardware features are not very common in commercial embedded micro-
controllers, we suggest the following alternative approach:

Instead of just saving the PC, we will save all information stored by the kernel in
context-switches, including CPU registers (address and data), as well as stack and
program counter registers pertaining to the task that is preempted. The entire saved
context can be used as a unique marker for the preempted program. The program
counter and the contents of the stack register would for example be sufficient for
differentiating between recursive calls.

For loops, this approach is not guaranteed to uniquely identify states, since (at least
theoretically) a loop may leave the registers unchanged. However, for most realistic
programs the context together with the PC will define a unique state. Anyhow, in the
unlikely situation, during replay, of having the wrong iteration of a loop preempted
due to indistinguishable contexts, the functional behavior of the replay will be

A A A

B
C

Figure 5-3. Task A is preempted twice by task
B and C.

Save: PC=x
Restore: PC=x

Save: PC=y
Restore: PC=y

Figure 5-4. A kernel that stores and retrieves contexts from
the recording when making context switches.

ADBACABAA

Kernel

Preemption
Store context

Resumption
Retrive context

Recording

52

different from the one recorded – and therefore detectable; or if the behaviors are
identical, then it is of no consequence.

Any multitasking kernel must save the contexts of suspended tasks in order to resume
them, and in the process of making the recording for replay we must store contexts an
additional time. To reduce this overhead we can make the kernel store and retrieve all
contexts for suspended tasks from the recording instead, i.e., we need only store the
contexts once (see Figure 5-4).

Our approach eliminates the need for special hardware instruction counters since it
requires no extra support other than a recording mechanism in the real-time kernel. If
we nonetheless have a target processor with an instruction counter, or equivalent, we
can easily include these counter values into the recorded contexts, and thus guarantee
unique states.

To enable replay of the recorded event history we insert trap calls to the off-line
kernel at all recorded PC values. During replay we consequently get plenty of calls to
the kernel for recorded PC values that are within loops, but the kernel will not take
any action for contexts that are different from the recorded one.

An alternative approach to keep track of loop executions is to make use of software
instruction counters [79] that count backward branches and subroutine calls in the
assembly code. However, this technique requires special target specific tools that scan
through the assembly code and instrument all backward branches. The approach also
affects the performance, since it usually dedicates one or more CPU registers to the
instruction counter, and therefore reduces the possibility of compiler optimizations.

5.2.3 Debugging distributed real-time systems
We will now show how local recordings can be used in achieving deterministic
distributed replay. The basic idea is to correlate the local time stamps up to the
precision of the clock synchronization. This will allow us to correlate the recordings
on the different nodes. As we by design can record significant events like I/O
sampling and inter-process communication, we can on each node record the contents
and arrival time of messages from other nodes. The recording of the messages
therefore makes it possible to locally replay, one node at a time, the exchange with
other nodes in the system without having to replay the entire system concurrently.
Time stamps of all events make it possible to debug the entire distributed real-time
system, and enables visualizations of all recorded and recalculated events in the
system. Alternatively, to reduce the amount of information recorded we can off-line
re-execute the communication between the nodes. However, this requires that we
order-wise synchronize all communication between the nodes, meaning that a fast
node waits up until the slow node(s) catch up. This can be done truly concurrently
using several nodes, or emulated on a single node for a set of homogenous nodes.

Global states

As defined in section 4.4 we can only globally order events separated by more than
2Π, where Π is the inter-arrival time of operating system clock-ticks. Due to the
precision of the global clock synchronization there is thus a smallest possible granule
of time defined by 2δ for deterministic ordering events in the system, since tick
overlaps are not acceptable, i.e., Π > δ. Consequently the precision of the global state,
i.e., the observed state, will be defined by the precision of the global clock
synchronization.

53

5.3 A small example
We are now going to give an example of how the entire recording and replay
procedure can be performed. The considered system has four tasks A, B, C, and D
(Figure 5-5). The tasks A, B, and D are functionally related and exchange
information. Task A samples an external process via an analog to digital converter
(A/D), task B performs some calculation based on previous messages from task D,
and task D receives both the processed A/D value and a message from B;
subsequently D sends a new message to B.

Task C has no functional relation to the other tasks, but preempts B at certain rare
occasions, e.g., when B is subject to interrupt interference, as depicted in Figure 5-6.
However, task C and B both use a function that by a programming mistake is made
non re-entrant. This function causes a failure in B, which subsequently sends an
erroneous message to D, which in turn actuates an erroneous command to an external
process, which fails. The interrupt Q hits B, and postpones B’s completion time. Q
causes in this case B to be preempted by C, and B therefore becomes infected by the
erroneous non-reentrant function. This rare scenario causes the failure. Now, assume
that we have detected this failure and want to track down the error.

A
Read A/D

C

B

D

Figure 5-5 The data-flow between the tasks.

2

B
C

4 6 8 10

A D

12 14 16

Figure 5-6. The recorded execution order scenario

Q

54

We have the following control transfer recording for time 0 -16:

Together with the following data recording:

During debugging all tasks are instrumented with calls to the off-line kernel at their
termination, and the preempted tasks B and C are instrumented with calls to the off-
line kernel at their recorded PC values. Task A’s access to the read_ad() function is
short circuited and A is fed with the recorded value instead. Task B receives at its start
a message from D, which is recorded before time 0.

The message transfers from A and B to C is performed by the off-line kernel in the
same way as the on-line kernel.

The programmer/analyst can breakpoint, single step and inspect the control and data
flow of the tasks as he or she see fit in pursuit of finding the error. Since the replay
mechanism reproduces all significant events pertaining to the real-time behavior of
the system the debugging will not cause any probe-effects.

As can be gathered from the example it is fairly straightforward to replay a recorded
execution. The error can be tracked down because we can reproduce the exact
interleavings of the tasks and interrupts repeatedly.

5.4 Discussion
In a survey on the testability of distributed real-time systems Schütz [96] has
identified three issues related to deterministic replay in general, which we briefly
comment below:

Issue 1: One can only replay what has previously been observed, and no guarantees
that every significant system behavior will be observed accurately can be provided.

1. Task A at time 1, read_ad() = 234

2. Task B at time 4, message from D = 78

1. Task A starts at time 0

2. Task A stops at time 2

3. Task B starts at time 4

4. Interrupt Q starts at time 6, and preempts task B
at PC=x

5. Interrupt Q stops at time 6,5

6. Task B resumes at time 6,5, at PC=x

7. Task C starts at time 8, and preempts task B at
PC=y

8. Task C stops at time 10

9. Task B resumes at time 10, at PC=y

10. Task B stops at time 10,3

11. Task D starts at time 14

12. Task D stops at time 16

55

Since replay takes place at the machine code level the amount of information required
is usually large. All inputs and intermediate events, e.g. messages, must be kept.

The amount and the necessary information required is of course a design issue, but it
is not true that all inputs and intermediate messages must be recorded. The replay can
as we have shown actually re-execute the tasks in the recorded event history. Only
those inputs and messages which are not re-calculated, or re-sent, during the replay
must be kept. This is specifically the case for RTS with periodic tasks, where we can
make use of the knowledge of the schedule (precedence relations) and the duration
before the schedule repeats it self (the LCM – the Least Common Multiple of the task
period times.) In systems where deterministic replay has previously been employed,
e.g., distributed systems [83] and concurrent programming (ADA) [104] this has not
been the case. The restrictions, and predictability, inherent to scheduled RTS do
therefore give us the great advantage of only recording the data that is not
recalculated during replay.

Issue 2: If a program has been modified (e.g., corrected) there are no guarantees that
the old event history is still valid.

If a program has been modified, the relative timing between racing tasks can change
and thus the recorded history will not be valid. The timing differences can stem from
a changed data flow, or that the actual execution time of the modified task has
changed. In such cases it is likely that a new recording must be made. However, the
probability of actually recording the sequence of events that pertain to the
modification may be very low. This is an issue for regression testing [105][106]
which we will discuss in chapter 6, section 6.4.4.

Issue 3: The recording can only be replayed on the same hardware as the recording
was made on.

The event history can only be replayed on the target hardware. This is true to some
extent, but should not be a problem if remote debugging is used. The replay could
also be performed on the host computer if we have a hardware simulator, which could
run the native instruction set of the target CPU. Another possibility would be to
identify the actual high-level language statements where task switches or interrupts
occurred, rather than trying to replay the exact machine code instructions, which of
course are machine dependent. In the latter case we of course run into the problem of
defining a unique state when differentiating between e.g., iterations in loops.

56

5.5 Related work
There are a few descriptions of deterministic replay mechanisms (related to real-time
systems) in the literature:

• A deterministic replay method for concurrent Ada programs is presented by Tai et
al. [104]. They log the synchronization sequence (rendezvous) for a concurrent
program P with input X. The source code is then modified to facilitate replay;
forcing certain rendezvous so that P follows the same synchronization sequence
for X. This approach can reproduce the synchronization orderings for concurrent
Ada programs, but not the duration between significant events, because the
enforcement (changing the code) of specific synchronization sequences introduces
gross temporal probe-effects. The replay scheme is thus not suited for real-time
systems. Further, issues like unwanted side effects caused by preempting tasks are
not considered. The granularity of the enforced rendezvous does not allow
preemptions, or interrupts for that matter, to be replayed. It is unclear how the
method can be extended to handle interrupts, and how it can be used in a
distributed environment.

• Tsai et al. present a hardware monitoring and replay mechanism for real-time
uniprocessors [113]. Their approach can replay significant events with respect to
order, access to time, and asynchronous interrupts. The motivation for the
hardware monitoring mechanism is to minimize the probe-effect, and thus make it
suitable for real-time systems. Although it does minimizes the probe-effect, its
overhead is not predictable, because their dual monitoring processing unit causes
unpredictable interference on the target system by generating an interrupt for
every event monitored [22]. They also record excessive details of the target
processors execution, e.g., a 6 byte immediate AND instruction on a Motorola
68000 processor generates 265 bytes of recorded data. Their approach can
reproduce asynchronous interrupts only if the target CPU has a dedicated
hardware instruction counter. The used hardware approach is inherently target
specific, and hard to adapt to other systems. The system is designed for single
processor systems and has no support for distributed real-time systems.

• The software-based approach HMON [22] is designed for the HARTS distributed
(real-time) system multiprocessor architecture [100]. A general-purpose processor
is dedicated to monitoring on each multiprocessor. The monitor can observe the
target processors via shared memory. The target systems software is instrumented
with monitoring routines, by means of modifying system service calls, interrupt
service routines, and making use of a feature in the pSOS real-time kernel for
monitoring task-switches. Shared variable references can also be monitored, as
can programmer defined application specific events. The recorded events can then
be replayed off-line in a debugger. In contrast to the hardware supported
instruction counter as used by Tsai et al., they make use of a software based
instructions counter, as introduced by Mellor-Crummey et. al. [79]. In conjunction
with the program counter, the software instruction counter can be used to
reproduce interrupt interferences on the tasks. The paper does not elaborate on
this issue. Using the recorded event history, off-line debugging can be performed
while still having interrupts and task switches occurring at the same machine code
instruction as during run-time. Interrupt occurrences are guaranteed off-line by
inserting trap instructions at the recorded program counter value. The paper lacks
information on how they achieve a consistent global state, i.e., how the recorded
events on different nodes can consistently be related to each other. As they claim

57

that their approach is suitable for distributed real-time systems, the lack of a
discussion concerning global time, clock synchronization, and the ordering of
events, diminish an otherwise interesting approach. Their basic assumption about
having a distributed system consisting of multiprocessor nodes makes their
software approach less general. In fact, it makes it a hardware approach, because
their target architecture is a shared memory multiprocessor, and their basic
assumptions of non-interference are based on this shared memory and thus not
applicable to distributed uniprocessors.

5.6 Summary
We have presented a method for deterministic debugging of distributed real-time
systems that handles interleaving failure semantics. The method relies on an
instrumented kernel to on-line record the timing and occurrences of major system
events. The recording can then, using a special debug kernel, be replayed off-line to
faithfully reproduce the functional and temporal behavior of the recorded execution,
while allowing standard debugging using break points etc. to be applied.

The cost for this dramatically increased debugging capability is the overhead induced
by the kernel instrumentation and by instrumentation of the application code. To
eliminate probe-effects, these instrumentations should remain in the deployed system.
We are however convinced that this is a justifiable penalty for many applications,
especially safety-critical such.

58

59

6 TESTING DISTRIBUTED REAL-TIME SYSTEMS
In this chapter we will present a novel method for integration testing of multitasking
real-time systems (RTS) and distributed real-time systems (DRTS). This method
achieves deterministic testing of RTS by accounting for the effects of scheduling,
jitter in RTS, and the inherent parallelism of DRTS applications.

A real-time system is by definition correct if it performs the correct function at the
correct time. Using real-time scheduling theory we can provide guarantees that each
task in the system will meet its timing requirements [4][75][117], given that the basic
assumptions, e.g., task execution times and periodicity, are not violated at run-time.
However, scheduling theory does not give any guarantees for the functional behavior
of the system, i.e., that the computed values are correct. To assess the functional
correctness other types of analysis are required. One possibility, although still
immature, is to use formal methods to verify certain functional and temporal
properties of a model of the system. The formally verified properties are then
guaranteed to hold in the real system, as long as the model assumptions are not
violated. When it comes to validating the underlying assumptions (e.g., execution
times, synchronization order and the correspondence between specification and
implemented code) we must use dynamic verification techniques which explore and
investigate the run-time behavior of the real system. Testing [94] is the most
commonly used such technique. Testing which is the state-of-practice can be used as
a complement to, or a replacement for formal methods, in the functional verification.

Reproducible and deterministic testing of sequential programs can be achieved by
controlling the sequence of inputs and the start conditions [78]. That is, given the
same initial state and inputs, the sequential program will deterministically produce the
same output on repeated executions, even in the presence of systematic faults [93].
Reproducibility is essential when performing regression testing or cyclic debugging,
where the same test cases are run repeatedly with the intent to validate that either an
error correction had the desired effect, or simply to make it possible to find the error
when a failure has been observed [59]. However, trying to directly apply test
techniques for sequential programs on distributed real-time systems is bound to lead
to non-determinism and non-reproducibility, because control is only forced on the
inputs, disregarding the significance of order and timing of the executing and
communicating tasks. Any intrusive observation of a distributed real-time system
will, in addition, incur a temporal probe-effect [31] that subsequently will affect the
temporal and functional behavior of the system (see chapter 4).

The main contribution of this chapter is a method for achieving deterministic testing
of distributed real-time systems. We will specifically address task sets with recurring
release patterns, executing in a distributed system where the scheduling on each node
is handled by a priority driven preemptive scheduler. This includes statically
scheduled systems that are subject to preemption [117][95], as well as strictly periodic
fixed priority systems [4][5][75]. The method aims at transforming the non-
deterministic distributed real-time systems testing problem into a set of deterministic
sequential program testing problems. This is achieved by deriving all the possible
execution orderings of the distributed real-time system and regarding each of them as
a sequential program. A formal definition of what actually constitutes an execution
order scenario will be defined later in the chapter. The following small example
presents the underlying intuition:

60

Consider Figure 6-1a, which depicts the execution of the of the tasks A, B and C
during the Least Common Multiple (LCM) of their period times, dictated by a
schedule generated by a static off-line scheduler. The tasks have fixed execution
times, i.e. the worst and best-case execution times coincide (WCETi=BCETi, for i
∈ {A,B,C}). A task with later release time is assigned higher priority. These non-
varying execution times have the effect of only yielding one possible execution
scenario during the LCM, as depicted in Figure 6-1a. However, if for example,
task A had a minimum execution time of 2 (BCETA=2; WCETA=6) we would get
three possible execution scenarios, depicted in figures 6-1a to 6-1c. In addition to
the execution order scenario in Figure 6-1a, there are now possibilities for A to
complete before C is released (Figure 6-1b), and for A to complete before B is
released (Figure 6-1c).

Given that these different scenarios yield different system behaviors for the same
input, due to the order or timing of the produced outputs, or due to unwanted side
effects via unspecified interfaces (caused by bugs), we would by using regular
testing techniques for sequential programs get non-deterministic results. For
example, assume that all tasks use a common resource X which they do operations
on. Assume further that they receive input immediately when starting, and deliver
output at their termination. We would then for the different scenarios depicted in
figures 6-1a to 6-1c get different results:

• The scenario in Figure 6-1a would give A(X), B(X) and C(B(X)).

• The scenario in Figure 6-1b would give A(X), B(X) and C(A(X)).

• The scenario in Figure 6-1c would give A(X), B(A(X)) and C(B(A(X))).

Making use of the information that the real-time system depends on the execution
orderings of the involved tasks, we can achieve deterministic testing, since for the
same input to the tasks and the same execution ordering, the system will deliver the
same output on repeated executions.

We would thus be able to detect failures belonging to ordering failure semantics as
defined in section 3.2. For ordering failure semantics it is sufficient to only observe
orderings of identical task starts and completions, it is not necessary to observe
exactly where in its execution a task is preempted, as is required for interleaving
failure semantics (which we assumed for the deterministic replay in chapter 5).

Figure 6-1 Three different execution order scenarios.

A A A

B
C

2 4 6 8

A A

B
C

2 4 6 8 1010

A

B
C

2 4 6 8 10

(a) CA=6 (b) CA=4 (c) CA=2

TASKRead(X) Write(X)

61

In order to address the scenario dependent behavior we suggest a testing strategy (as
illustrated in Figure 6-2) consisting of the following:

1. Identify all possible execution order scenarios for each scheduled node in the
system during a single instance of the release pattern of tasks with duration T;
typically equal to the LCM of the period times of the involved tasks (Figure
6-2 illustrates eight scenarios.)

2. Test the system using any regular testing technique of choice, and monitor for
each test case which execution order scenario is run during [0,T], i.e., which,
when and in what order jobs are started, preempted and completed. By jobs
we mean single instances of the recurring tasks during T.

3. Map test case and output onto the correct execution ordering, based on
observation. This is handled by the module execution ordering in Figure 6-2.

4. Repeat 2-3 until the sought coverage is achieved.

Contribution

In this chapter we present a method for functional integration testing of multitasking
real-time systems and distributed real-time systems: This method is to our knowledge
the first testing method to fully encompass scheduling of distributed real-time systems
and jitter. More specifically we will show how to:

• Identify the execution order scenarios for each node in a distributed real-time
system

• Compose them into global execution order scenarios

• Make use of them when testing (the test strategy)

• Reproduce the scenarios.

Figure 6-2. The testing procedure. Where
each execution ordering must satisfy a
certain required level of coverage.

Test result

Execution
ordering

1 2 3 4 5 6 7 8

Required
coverage

Test

62

6.1 The system model
We refine the original system model from chapter 3 to encompass a distributed
system consisting of a set of nodes, which communicate via a temporally
predictable broadcast network, i.e. upper and lower bounds on communication
latencies are known or can be calculated [50][110]. Each node is a self sufficient
computing element with CPU, memory, network access, a local clock and I/O
units for sampling and actuation of the external system. We further assume the
existence of a global synchronized time base [51][27] with a known precision δ,
meaning that no two nodes in the system have local clocks differing by more than
δ.

We further refine the original system model by assuming that the software that
runs on the distributed system consists of a set of concurrent tasks,
communicating by message passing. Functionally related and cooperating tasks,
e.g., sample-calculate-actuate loops in control systems, are defined as
transactions. The relationship between the cooperating tasks with respect to
precedence (execution order), interactions (data-flow), and a period time typically
define each transaction. The tasks are distributed over the nodes, typically with
transactions that span several nodes, and with more than one task on each node.
All synchronization is resolved before run-time and therefore no action is needed
to enforce synchronization in the actual program code. Different release times and
priorities guarantee mutual exclusion and precedence. The distributed system is
globally scheduled, which results in a set of specific schedules for each node. At
run-time we need only synchronize the local clocks to fulfill the global schedule
[50].

Task model

We assume a fairly general task model that includes both preemptive scheduling
of statically generated schedules [117] and fixed priority scheduling of strictly
periodic tasks [4][75]:

• The system contains a set of jobs J, i.e. invocations of tasks, which are
released in a time interval [t, t+TMAX], where TMAX is typically equal to the
Least Common Multiple (LCM) of the involved tasks period times, and t
is an idle point within the time interval [0, TMAX] where no job is
executing. The existence of such an idle point, t, simplifies the model
such that it prevents temporal interference between successive TMAX

intervals. To simplify the presentation we will henceforth assume an idle
point at 0 for all participating nodes.

• Each job j∈ J has a release time rj, worst case execution time (WCETj),
best case execution time (BCETj), a deadline Dj and a priority pj. J
represents one instance of a recurring pattern of job executions with
period TMAX, i.e., job j will be released at time rj, rj+ TMAX, rj+ 2TMAX, etc.

• The system is preemptive and jobs may have identical release-times.

Related to the task model we assume that the tasks may have functional and
temporal side effects due to preemption, message passing and shared memory.
Furthermore, we assume that data is sent at the termination of the sending task
(not during its execution), and that received data is available when tasks start (and
is made private in an atomic first operation of the task) [108][26][54].

63

Fault hypothesis

Note that, although synchronization is resolved by the off-line selection of release
times and priorities, we cannot dismiss unwanted synchronization side effects.
The schedule design can be erroneous, or the assumptions about the execution
times might not be accurate due to poor execution time estimates, or simply due to
design and coding errors.

Inter-task communication is restricted to the beginning and end of task execution,
and therefore we can regard the interval of execution for tasks as atomic. With
respect to access to shared resources, such as shared memory and I/O interfaces,
the atomicity assumption is only valid if synchronization and mutual exclusion
can be guaranteed.

The fault hypothesis is thus:

Errors can only occur due to erroneous outputs and inputs to jobs, and/or
due to synchronization errors, i.e., jobs can only interfere via specified
interactions. This hypothesis corresponds to ordering failure semantics as
defined in section 3.2.

One way to guarantee the fault hypothesis in a shared memory system is to make
use of hardware memory protection schemes, or during design eliminate or
minimize shared resources using wait-free and lock-free communication
[108][52][13].

6.2 Execution order analysis
In this section we present a method for identifying all the possible orders of
execution for sets of jobs conforming to the task model introduced in section 6.1.
We will also show how the model and analysis can be extended to accommodate
for interrupt interference and multiple nodes in a distributed system by
considering clock-synchronization effects, parallel executions, and varying
communication latencies.

6.2.1 Execution Orderings
In identifying the execution orderings of a job set we will only consider the
following major events of job executions:

• The start of execution of a job, i.e., when the first instruction of a job is
executed. We will use S(J) to denote the set of start points for the jobs in a
job set J; S(J) ⊆ J × [0, TMAX] × J ∪{_}, that is S(J) is the set of triples
(j1, time, j2), where j2 is the (lower priority) job that is preempted by the
start of j1 at time, or possibly “_” if no such job exists.

• The end of execution of a job, i.e., when the last instruction of a job is
executed. We will use E(J) to denote the set of end points (termination
points) for jobs in a job set J; E(J) ⊆ J × [0, TMAX] × J ∪{_}, that is E(J) is
a set of triples (j1, time, j2), where j2 is the (lower priority) job that
resumes its execution at the termination of j1, or possibly “_” if no such
job exists.

64

We will now define an execution to be a sequence of job starts and job
terminations, using the additional notation that

• ev denotes an event, and Ev a set of events.

• ev.t denotes the time of the event ev,

• Ev\I denotes the set of events in Ev that occur in the time interval I,

• Prec(Ev, t) is the event in Ev that occurred most recently at time t
(including an event that occurs at t).

• Nxt(Ev, t) denotes the next event in Ev after time t.

• First(Ev) and Last(Ev) denote the first and last event in Ev, respectively.

Definition 6-1. An Execution of a job set J is a set of events X ⊆ S(J) ∪ E(J), such
that

1) For each j∈J, there is exactly one start and termination event in X,
denoted s(j,X) and e(j,X) respectively, and s(j,X) precedes e(j,X), i.e.
s(j,X).t ≤ e(j,X).t, where s(j,X) ∈ S(J) and e(j,X) ∈ E(J).

2) For each (j1, t, j2) ∈ S(J), pj1 > pj2, i.e., jobs are only preempted by higher
priority jobs.

3) For each j∈J, s(j,X).t ≥ rj, i.e., jobs may only start to execute after being
released.

4) After its release, the start of a job may only be delayed by intervals of
executions of higher priority jobs, i.e., using the convention that
X\[j.t, j.t)=∅.

For each job j∈J each event ev∈X\[Prec(X,rj).t, s(j,X).t) is either

• A start of the execution of a higher priority job, i.e. ev = s(j’, X) and
pj’>pj

• A job termination, at which a higher priority job resumes its
execution, i.e., ev = (j’, t, j”), where pj”>pj

5) The sum of execution intervals of a job j∈J is in the range
[BCET(j), WCET(j)], i.e.,

 BCET(j) ≤ ≤ WCET(j)

That is, we are summing up the intervals in which j starts or resumes its
execution.

We will use EXt(J) to denote the set of executions of the job set J. Intuitively,
EXt(J) denotes the set of possible executions of the job set J within [0,TMAX].
Assuming a dense time domain EXt(J) is only finite if BCET(j)= WCET(j) for all
j∈J. However, if we disregard the exact timing of events and only consider the
ordering of events we obtain a finite set of execution orderings for any finite job
set J.

∑
∈∪∈)}(),,'(|),,'({ X)}{s(j, ev

ev.t -ev.t).t Nxt(X,
JEjtjjtj

65

Using ev{x/t} to denote an event ev with the time element t replaced by the
undefined element “x”, we can formally define the set of execution orderings
EXo(J) as follows:

Definition 6-2. The set of Execution orderings EXo(J) of a job set J is the set of
sequences of events such that ev0{x/t}, ev1{x/t}, ..., evk{x/t} ∈ EXo(J) iff there
exists an X∈ EXt(J) such that

• First(X) = ev0

• Last(X) = evk

• For any j∈ [0..(k-1)]: Nxt(X,evj.t) = evj+1

Intuitively, EXo(J) is constructed by extracting one representative of each set of
equivalent execution orderings in EXt(J), i.e., using a quotient construction EXo(J)
= EXt(J)\ ~, where ~ is the equivalence induced by considering executions with
identical event orderings to be equivalent. This corresponds to our fault
hypothesis, with the overhead of keeping track of preemptions and resumptions,
although not exactly where in the program code they occur. This overhead means
that we can capture more than what ordering failure semantics do, although not as
much as needed for interleaving failure semantics, since we do not keep track of
exactly where in the program code the preemptions occur. We could thus reduce
the number of execution orderings further if we define EXo(J) = EXt(J)\ ≈, where
≈ is the equivalence induced by considering executions with identical job start and
job stop orderings to be equivalent. In the process of deriving all the possible
execution orderings we need however to keep track of all preemptions, i.e.,
EXt(J)\ ~, but after having derived this set we can reduce it to EXt(J)\ ≈. Even
further reductions could be of interest, for instance to only consider orderings
among tasks that are functionally related, e.g., by sharing data.

In the remainder we will use the terms execution scenario and execution ordering
interchangeably.

6.2.2 Calculating EXo(J)
This section outlines a method to calculate the set of execution orderings EXo(J)
for a set of jobs J, complying with definition 6-2. We will later (in section 6.3)
present an algorithm that performs this calculation. In essence, our approach is to
make a reachability analysis by simulating the behavior during one [0,TMAX]
period for the job set J.

6.2.2.1 The Execution Order Graph (EOG)
The algorithm we are going to present generates, for a given schedule, an
Execution Order Graph (EOG), which is a finite tree for which the set of possible
paths from the root contains all possible execution scenarios.

But before delving into the algorithm we describe the elements of an EOG.
Formally, an EOG is a pair <N, A>, where

• N is a set of nodes, each node being labeled with a job and a continuous time
interval, i.e., for a job set J: N⊆ J ∪{“_”} × I(TMAX), where {“_”} is used to
denote a node where no job is executing and I(TMAX) is the set of continuous
intervals in [0, TMAX].

66

• A is the set of edges (directed arcs; transitions) from one node to another
node, labeled with a continuous time interval, i.e., for a set of jobs
J: A ⊆ N × I(TMAX) × N.

Intuitively, an edge, corresponds to the transition (task-switch) from one job to
another. The edge is annotated with a continuous interval of when the transition
can take place, as illustrated in Figures 6-3 and 6-4.

The interval of possible start times [a’, b’) for job B, in Figure 6-4, is defined by:

a’ = MAX(a, rA) + BCETA (6-1)

b’ = MAX(b, rA) + WCETA

The MAX functions are necessary because the calculated start times a and b can
be earlier than the scheduled release of the job A.

A node represents a job annotated with a continuous interval of its possible
execution, as depicted in Figure 6-5.

We define the interval of execution, [α, β) by:

α = MAX(a, rA) (6-2)

β = MAX(b, rA) + WCETA

That is, the interval, [α, β), specifies the interval in which job A can be
preempted.

[a, b)

Figure 6-3. A Transition.

[a, b)
A

[a’, b’)
B

Figure 6-4 Two transitions, one to job
A and one from job A to job B.

[α, β)
A

[a, b)

Figure 6-5. A job annotated with its possible
execution and start time.

67

From each node in the execution ordering graph there can be one or more
transitions, representing one of four different situations:

1) The job is the last job scheduled in this branch of the tree. In this case the
transition is labeled with the interval of finishing times for the node, and
has the empty job “_” as destination node, as exemplified in Figure 6-6.

2) The job has a WCET such that it definitely completes before the release of
any higher priority job. In this case we have two situations:

a) Normal situation. One single outgoing transition labeled with the
interval of finishing times for the job, [a’, b’). Exemplified by (1) in
Figure 6-6.

b) Special case. If a higher priority job is immediately succeeding at
[b’,b’] while b’ > a’, and there are lower priority jobs ready, or made
ready during [α,β) then we have two possible transitions: One branch
labeled with the interval of finishing times [a’,b’) representing the
immediate succession of a lower priority job, and one labeled [b’, b’)
representing the completion immediately before the release of the
higher priority job. Exemplified by (2) in Figure 6-6.

3) The job has a BCET such that it definitely is preempted by another job. In
this case there is a single outgoing transition labeled with the preemption
time t, expressed by the interval [t, t], as exemplified by (3) in Figure 6-6.

4) The job has a BCET and WCET such that it may either complete or be
preempted before any preempting job is released. In this case there can be
two or three possible outgoing edges depending on if there are any lower
priority jobs ready. One branch representing the preemption, labeled with
the preemption time [t, t], and depending on if there are any lower priority
jobs ready for execution we have two more transition situations:

a) No jobs ready. Then there is one branch labeled [a’, t) representing
the possible completion prior to the release of the higher priority job.
Exemplified by (4) in Figure 6-6.

b) Lower priority jobs ready. If β > α then there is one branch labeled
[a’, t) representing the immediate succession of a lower priority job,
and one labeled [t, t) representing the completion immediately before
the release of the preempting job. Exemplified by (5) in Figure 6-6.

68

Example 6-1

Figure 6-6 gives an example of an EOG, using the above notation and the
attributes in Table 6-1. In Figure 6-6, all paths from the root node to the “_”
nodes correspond to the possible execution order scenarios during one
instance of the recurring release pattern.

Figure 6-6. The resulting execution order graph
for the job set in Table 6-1.

3

2

4

1

5

Table 6-1 A job set for a schedule with
a LCM of 400 ms.
Task r p WCET BCET

A 0 4 39 9
B 40 3 121 39
C 40 2 59 49
A 100 4 39 9
A 200 4 39 9
A 300 4 39 9
D 350 1 20 9

69

6.3 The EOG algorithm
Here we will define the algorithm for generating the EOG (Figure 6-7).
Essentially, the algorithm simulates the behavior of a strictly periodic fixed
priority preemptive real-time kernel, complying with the previously defined task
model and EOG primitives. In defining the algorithm we use the following
auxiliary functions and data structures:

1) rdy – the set of jobs ready to execute.
2) Next_release(I) – returns the earliest release time of a job j∈J within the

interval I. If no such job exists then ∞ is returned . Also, we will use I.l
and I.r to denote the extremes of I.

3) P(t) – Returns the highest priority of the jobs that are released at time t.
Returns -1 if t = ∞.

4) Make_ready(t, rdy) – adds all jobs that are released at time t to rdy.
Returns ∅ if t=∞, else the set.

5) X(rdy) extracts the job with highest priority in rdy.
6) Arc(n, I, n’) creates an edge from node n to node n’ and labels it with the

time interval I.
7) Make_node(j, XI) creates a node and labels it with the execution interval

XI and the id of job j.
The execution order graph for a set of jobs J is generated by a call Eog(ROOT, {},
[0, 0], [0, TMAX]), i.e., with a root node, an empty ready set, and the initial release
interval [0,0], plus the considered interval [0, TMAX].

70

// n- previous node, rdy- set of ready jobs, RI – release interval, SI – the considered interval.
Eog(n, rdy, RI, SI)
{

//When is the next job(s) released?
t = Next_release(SI)
if (rdy = ∅)

rdy = Make_ready(t, rdy)
if(rdy ≠ ∅)

Eog (n, rdy, RI, (t,SI.r])
else Arc(n, RI, _)

else
//Extract the highest priority job in rdy.
T = X(rdy)
[α,β) = [max(rT, RI.l), max(rT, RI.l)+WCETT)
a’ = α + BCETT
b’ = β
n’ = Make_node(T, [α,β)) Arc(n, RI, n’)

// Add all lower priority jobs that are released before
T's termination, or before a high priority job is preempting T.
while((t < β) ∧ (P(t) < pT))

rdy = Make_ready(t, rdy)
t = Next_release((t, SI.r])

// Does the next scheduled job preempt T?
if((pT < P(t)) ∧ (t < β))

// Can T complete prior to the release of the next job at t?
if(t > a’)

Eog (n’, rdy, [a’,t), [t,SI.r])
if(rdy ≠ ∅)

Eog(n’,Make_ready(t,rdy),[t,t),(t,SI.r])
else if(t = a’)

Eog(n’, Make_ready(t, rdy), [t,t), (t,SI.r])

//Add all jobs that are released at time t.
rdy = Make_ready(t, rdy)

//Best and worst case execution prior to preemption?
BCETT = max(BCETT - (t–(max(rT, RI.l)),0)
WCETT = max(WCETT - (t–(max(rT, RI.r)),0)
Eog(n’, rdy + {T}, [t,t], (t,SI.r])

// No preemption
else if(t = ∞) //Have we come to the end of the simulation?

Eog(n’, rdy, [a’,b’),[∞,∞]) //Yes, no more jobs to execute

 else // More jobs to execute

//Is there a possibility for a high priority job to succeed immediately,
while low priority jobs are ready?
if(rdy ≠ ∅ ∧ t = β) //Yes, make one branch for this transition

Eog(n’, Make_ready(t, rdy),[t,t),(t,SI.r])
if(a’ ≠ b’) //And one branch for the low priority job

else Eog(n’, rdy, [a’,b’),[t, SI.r))
// The regular succession of the next job (low or high priority)
else Eog(n’, rdy, [a’,b’),[t, SI.r))

}//End

Figure 6-7. The Exection Order Graph algorithm.

71

6.3.1 GEXo – the Global EOG
In a distributed system with multiple processing units (and schedules) we generate
one EOG for each processing unit (node). From these, a global EOG describing
all globally possible execution orderings can be constructed. In the case of
perfectly synchronized clocks this essentially amounts to deriving the set of all
possible combinations of the scenarios in the individual EOGs. In other cases, we
first need to introduce the timing uncertainties caused by the non-perfectly
synchronized clocks in the individual EOGs.

Since the progress of local time on each node keeps on speeding up, and slowing
down due to the global clock synchronization, the inter-arrival time of the clock
ticks vary. The effect is such that for an external observer with a perfect clock the
start times and completion times change, as the global clock synchronization
algorithm adjusts the speed of the local clocks to keep them within specified
limits. Locally in the node, where all events are related to the local clock tick, the
effect will manifest itself as a differential in the actual BCET and WCET from the
estimated values. As the inter-arrival time between ticks increases, the BCET will
decrease because of the possibility to execute more machine code instructions due
to the longer duration between two consecutive ticks (see Figure 6-8). Likewise
the WCET increases due to the decrease in the inter-arrival time of ticks.

When scheduling the distributed real-time system it is essential to accommodate
for the clock synchronization effects by time-wise separating the completion
times of preceding, or mutually exclusive, tasks from the release time of a
succeeding task with a factor δ, corresponding to the precision of the global time
base.

When deriving the execution orderings we need thus change the estimations of the
BCET and WCET:

BCETnew = MAX(BCET - δ/2 * K(BCET), 0) (6-3)

WCETnew = WCET + δ/2 * K(WCET) (6-4)

Where the function K() is derived from the clock synchronization control loop
implementation, and where the argument states how much of the clock
synchronization interval is under consideration. The K() function substantially
increases the precision, since it would be overly pessimistic to add, or subtract,

BCET

Tick

5 Tick

Slow

Normal
BCET

5 Tick
Fast

BCET

5

δ

Figure 6-8. The effects of the global clock synchronization on
the perceived BCET according to the local tick.

72

δ/2 when it is possible that the BCET and WCET will only be fractions of the
synchronization interval.

As an illustration, compare the non-adjusted task set in Table 6-2 and its EOG in
Figure 6-9 with the corresponding adjusted task set and EOG in Table 6-3, and
Figure 6-10.

6.3.1.1 Calculating GEXo

In testing the behavior of a distributed system we must consider the joint
execution of a set of local schedules; one on each node. Typically these schedules
are of equal length as a result of the global scheduling. However, if they are not,
we have to extend each of them by multiples until they equal the global LCM.

The next step is to generate EOGs for each node where the effects of global clock
synchronization have been accommodated for, as presented above. From these
local EOGs we can then calculate the set of global execution order scenarios,
GEXo, which essentially are defined by the product of the individual

Schedule δδδδ = 4
Task r p BCET WCET

A 0 1 98 302
B 300 2 98 302

Table 6-3 The adjusted job set for a node in a DRTS, with a clock
synchronization precision of δ = 4, and K(x) = x.

[98, 300)
[0, 0]

A
[0, 302)

B
[300, 602) [398, 602)

B
[300, 602) [398, 602)

A
[398, 602) [398, 604)

[300, 300]

Figure 6-10. The execution ordering for the job set in Table 6-3 where the
precision of the clock synchronization has been accounted for.

Schedule δδδδ = 4
Task r p BCET WCET

A 0 1 100 300
B 300 2 100 300

Table 6-2 The non-adjusted job set for a node in a DRTS, with
a clock synchronization precision of δ = 4.

[0, 0]
A

[0, 300) [100, 300)
B

[300, 600) [400, 600)

Figure 6-9. The execution ordering for the job set in Table 6-2 without
compensating for the precision of the clock synchronization.

73

sets of execution orderings on each node. That is, a set of tuples,
GEXo = EXo(node1) × … × EXo(noden), consisting of all possible combinations of
the local execution orderings. This set is not complete, but before delving into that
problem, we will give an illustrating example (6-2).

Example 6-2

Assume that we have two nodes, N1 and N2, with corresponding schedules (job
sets) J1 and J2, and derived execution orderings of the schedules
EXo(J1) ={q1, q2, q3} and EXo(J2) = {p1, p2}. Also assume that task C is a
calculating task in a control application, using sampled values provided by tasks
A, B, and E. Assume further that task G is another calculating task using values
received from tasks A, and E. Tasks C and G receives all inputs immediately at
their respective task starts, and tasks A, B, E all deliver outputs immediately prior
to their termination. The resulting set GEXo, is then equal to {(q1,p1), (q1,p2),
(q2,p1), (q2,p2), (q3,p1), (q3,p2)}.

Figure 6-11. The exection orderings for two nodes. The possible
global execution orderings are the possible combinations of the
individual orderings. for the precision of the clock synchronization.

q1

q2

1

1

2 2

2

p1

2

1

3 2

34

4q3

p2

74

The set GEXo = {(q1,p1), (q1,p2), (q2,p1), (q2,p2), (q3,p1), (q3,p2)}, is however
not complete. Analyzing the data dependencies between task C on node N1 and
task E on node N2, we see that task C can receive data from different instances of
task E. The same goes for task G, on node N2, with respect to task A, on node N1.

For example, during the global scenario (q1, p1), task C has a varying start time
of [80,100) and within that interval task instance E3, has a completion interval of
[85,90]. This means, if we assume communication latencies in the interval [3,6),
that task C can receive data from task instance E2 or E3. In order to differentiate
between these scenarios we should therefore substitute the global ordering (q1,p1)
with the set (q1:C(E2), p1) and (q1:C(E3), p1). Where “(q1:C(E2), p1)” means that
during scenario (q1,p1), task C receives data from task E, and that the originating
instance of task E is of significance.

For task G, assuming the same communication latencies, this means that it can
receive data from task instance A0 or A1, yielding a new set of scenarios, e.g.,
scenario (q1,p1) is substituted with (q1, p1:G(A0)) and (q1, p1:G(A1)). These
transformations necessitates that we, in addition to recording the execution
orderings during runtime, need to tag all data such that we can differentiate
between different instances, corresponding to different originators.

From the viewpoint of node N1 the transformed set would look like:
{(q1:C(E2), p1), (q1:C(E3), p1), (q1:C(E2), p2), (q1:C(E3), p2),

 (q2:C(E3), p1), (q2:C(E4), p1), (q2:C(E3), p2), (q2:C(E4), p2),

 (q3:C(E3), p1), (q3:C(E4), p1), (q3:C(E3), p2), (q3:C(E4), p2)}.

From the viewpoint of node N2 the transformed set would look like:
{(q1, p1:G(A0)), (q1, p1:G(A1)), (q1, p2:G(A0)), (q1, p2:G(A1)),

 (q2, p1:G(A0)), (q2, p1:G(A1)), (q2, p2:G(A0)), (q2, p2:G(A1)),

(q3, p1:G(A0)), (q3, p1:G(A1)), (q3, p2:G(A0)), (q3, p2:G(A1))}

That is, the new transformed execution orderings are:
• EXo(J1)={q1:C(E2), q1:C(E3), q2:C(E3), q2:C(E4), q3:C(E3), q3:C(E4)}

• EXo(J2)={ p1:G(A0), p1:G(A1), p2:G(A0), p2:G(A1)}

The new transformed set GEXo = EXo(J1) × EXo(J2) becomes:
{(q1:C(E2), p1:G(A0)), (q1:C(E3), p1:G(A0)), (q1:C(E2), p2:G(A0)), (q1:C(E3), p2:G(A0)),

 (q2:C(E3), p1:G(A0)), (q2:C(E4), p1:G(A0)), (q2:C(E3), p2:G(A0)), (q2:C(E4), p2:G(A0)),

 (q3:C(E3), p1:G(A0)), (q3:C(E4), p1:G(A0)), (q3:C(E3), p2:G(A0)), (q3:C(E4), p2:G(A0)),

 (q1:C(E2), p1:G(A1)), (q1:C(E3), p1:G(A1)), (q1:C(E2), p2:G(A1)), (q1:C(E3), p2:G(A1)),

 (q2:C(E3), p1:G(A1)), (q2:C(E4), p1:G(A1)), (q2:C(E3), p2:G(A1)), (q2:C(E4), p2:G(A1)),

 (q3:C(E3), p1:G(A1)), (q3:C(E4), p1:G(A1)), (q3:C(E3), p2:G(A1)), (q3:C(E4), p2:G(A1)}.

75

6.3.1.2 GEXo data dependency transformation
We will now more formally define these transformations. Assume the following
auxiliary functions:

• Start(j), returns the interval of start times for job j, (task instance)

• Finish(j), returns the interval of finishing times for job j.

• ComLatency(i,j), returns the communication latency interval for data sent
by job i to job j.

• Precede(j), returns the immediately preceding instance of the same task as
job j. Note that this may be a job from the previous LCM.

Data dependency transformation definition

We transform the local execution orderings, EXo(node), with respect to the set of
global execution orderings, GEXo = EXo(node1) × … × EXo(noden):

1. For each tupel l ∈ GEXo.
2. For each ordering x∈ EXo(n), where x is an element in tupel l, and

where K(x) is the set of jobs in x consuming data originating from the
set of jobs, P, belonging to the other execution ordering elements of l.
3. For each job j ∈ K(x).

4. For each subset Pt ⊆ P representing different instances of the
same task producing data for job j.
5. Let Q be the set of jobs in Pt with finishing times +

communication delays, in the start time interval of job j,
i.e., Q={u | start(j) ∩ (Finish(u) + ComLatency(u,j))≠∅}
The set can be ordered by earliest finishing time. We use q
to denote the earliest job in Q.

6. If Q ≠ ∅ substitute x. That is,
EXo(n) = EXo(n)\x + x: j(Precede(q)) + (∀u ∈ Q| x:j(u)).

7. Substitute all x:j(y) ∈ EXo(n) where j ∈ K(x) and y ∈ P such that
we for the scenario x, construct a substitute of all possible
combinations of {x:j(ym), x:j’(y’m’),…, x:j”(y”m”)} ⊆ EXo(n) for
consuming jobs, {j,…,j”} ⊆ K(x) not belonging to the same task
instance, i.e., combinations x:j(ym):j’(y’m’):…:j”(y”m”) in order of
start time for jobs consuming data produced by
jobs {ym,…,y”m”} ⊆ P.

8. New transformed GEXo = EXo(node1) × … × EXo(noden)

Example 6-3

Assume the same system as in Example 6-2, where the initial
GEXo = { (q1,p1) , (q1,p2), (q2,p1), (q2,p2) , (q3,p1), (q3,p2) }.

The first tupel would be l = (q1,p1), the consuming task set in scenario q1 would
be K(q1) = {C}, the producing set of jobs for K(q1) would be Pt=P={Eold,E1, E2,
E3, E4}, and the set of jobs Q that has a chance of producing data for the sole job
in K(q1), C, is Q={ E2, E3}. We thus substitute q1with q1:C(E2) and q1:C(E3).

76

Likewise we can transform all sets:

• EXo(J1)={q1:C(E2), q1:C(E3), q2:C(E3), q2:C(E4), q3:C(E3), q3:C(E4)}

• EXo(J2)={ p1:G(A0), p1:G(A1), p2:G(A0), p2:G(A1)}

The transformed global execution ordering set GEXo = EXo(J1) × EXo(J2) =
{(q1:C(E2), p1:G(A0)), (q1:C(E3), p1:G(A0)), (q1:C(E2), p2:G(A0)), (q1:C(E3), p2:G(A0)),

 (q2:C(E3), p1:G(A0)), (q2:C(E4), p1:G(A0)), (q2:C(E3), p2:G(A0)), (q2:C(E4), p2:G(A0)),

 (q3:C(E3), p1:G(A0)), (q3:C(E4), p1:G(A0)), (q3:C(E3), p2:G(A0)), (q3:C(E4), p2:G(A0)),

 (q1:C(E2), p1:G(A1)), (q1:C(E3), p1:G(A1)), (q1:C(E2), p2:G(A1)), (q1:C(E3), p2:G(A1)),

 (q2:C(E3), p1:G(A1)), (q2:C(E4), p1:G(A1)), (q2:C(E3), p2:G(A1)), (q2:C(E4), p2:G(A1)),

 (q3:C(E3), p1:G(A1)), (q3:C(E4), p1:G(A1)), (q3:C(E3), p2:G(A1)), (q3:C(E4), p2:G(A1)}.

6.4 Towards systematic testing
We will now outline a method for deterministic integration testing of distributed
real-time systems, based on the identification of execution orderings, as presented
above. This method is suitable if we want to address ordering failure semantics.
We can use it for interleaving failure semantics also, although since we do not
keep track of the exact interleavings we cannot guarantee deterministic testing,
only partial determinism (as defined in section 3.2.2).
If we are only interested in addressing sequential failure semantics we can make
use of regular unit testing [6], and regard each task as a sequential program.
However, if we want to take into account the effects that the tasks may have on
each other, we need to do integration testing, and assume ordering failure
semantics. In any case, we assume that some method for testing of sequential
programs is used.

6.4.1 Assumptions
In order to perform integration testing of distributed real-time systems we require
the following:

• A feasible global schedule, including probes that will remain in the target
system in order to eliminate the probe effect (as discussed in chapter 4).

• Kernel-probes on each node that monitors task-switches. This information is
sent to dedicated tasks (probe-tasks) that identify execution orderings from the
task-switch information and correlate it to run test cases.

• A set of in-line probes that instrument tasks, as well as probe-nodes, which
output and collect significant information to determine if a test run was
successful or not. This also includes auxiliary outputs of tasks’ state if they
keep state between invocations.

• Control over, or at least a possibility to observe, the input data to the system
with regard to contents, order, and timing.

77

6.4.2 Test Strategy
The test strategy is illustrated in Figure 6-12 and consists of the following steps:

1) Identify the set of execution orderings by performing execution order analysis
for the schedule on each node. This includes compensation for the global
clock synchronization jitter, and the global LCM, as introduced in section
6.3.1.

2) Test the system using any testing technique of choice, and monitor for each
test case and node, which execution ordering is run during the interval
[0, TMAX]. Where TMAX typically equals the global LCM in the distributed real-
time system case.

3) Map the test case and output onto the correct execution ordering, based on
observation.

4) Repeat 2-3 until required coverage is achieved.

6.4.3 Coverage
In order to establish a certain level of confidence in the correctness of a system,
we need to define coverage criteria, i.e., criteria on how much testing is required.
This is typically defined in terms of the fraction of program paths tested
[42][118]; paths, which in the multi-tasking/distributed scenarios we consider, are
defined by the execution order graphs. The derived execution orderings also
provide means for detecting violations of basic assumptions during testing, e.g.,
the execution of a scenario not defined by the EOG may be caused by an
exceeded worst case execution time.

Complete coverage for a single node is defined by the traversal of all possible
execution order scenarios, as illustrated in Figure 6-13. The coverage criteria for
each scenario is however defined by the sequential testing method applied.

Complete coverage for the distributed system would naively be all combinations
of all local execution order scenarios (as introduced in section 6.3.1). Depending

Test result

Execution
ordering

1 2 3 4 5 6 7 8

Required
coverage

Figure 6-12. The test strategy and testing procedure. The
numbers signify the different execution orderings, and the
bars the achieved coverage for each ordering.

Test

78

on the design, many of the combinations would however be infeasible due to data
dependencies, with the consequence that a certain scenario on one node always
gives a specific scenario on another node. Reductions could thus be possible by
taking these factors into account. Other reductions could also be facilitated by
limiting the scope of the tests, e.g., the entire system, multiple transactions
(running over several nodes, single transactions (running over several nodes),
multiple transactions (single node), single transactions (single node) or parts of
transactions. These issues are however outside the scope of this thesis, but will
definitely be considered in future work.

The correspondence between observations on each node will be limited by the
granularity of the global time base, i.e., the globally observable state has a
granularity of 2δ, defined by the precision of the clock synchronization (see
section 4.4).

Figure 6-13. The test strategy and testing procedure for a
DRTS. The orderings represent the different combinations of
the local execution orderings. The bars represent the achieved
coverage for each global execution ordering.

q1 q2 pq3

p2p1

Required
coverage

Ordering (q3,p2)(q1,p1) (q1,p2) (q2,p2)(q2,p1) (q3,p1)

79

Figure 6-14. The resulting execution order
scenarios for the job set in Table 6-1.

(1) (2) (3) (4)

(5)

6.4.4 Reproducibility
To facilitate reproducible testing we must identify which execution orderings, or
parts of execution orderings that can be enforced without introducing any probe
effect. From the perspective of a single transaction, this can be achieved by
controlling the execution times of preceding and preempting jobs that belong to
other transactions. This of course only works in its entirety, if we adhere to
ordering failure semantics, that the jobs have no unwanted functional side effects
via unspecified interfaces, otherwise we could miss such errors. Control over the
execution times in other transactions can easily be achieved by incorporating
delays in the jobs, or running dummies, as long as they stay within each job’s
execution time range [BCET, WCET].

For example, consider Figure 6-14, and assume that task C and A belong to one
transaction, and tasks B, D to another transaction. Assume that task C uses the last
five samples provided by task A. With respect to tasks A and C we can reproduce
the different scenarios by running a dummy in place of task B. By varying the
execution time of the dummy we can enforce the different scenarios.

[BBCET, BWCET]:

1) [39,60)

2) [60,60]

3) [121,121]

4) (60,121)

5) (60,121)

80

6.5 Extending analysis with interrupts
We will now incorporate the temporal side effects of interrupts, by regarding
them as sporadic jobs with a known minimum and maximum inter-arrival time. If
we were interested in addressing the functional side effects of the interrupts, we
would have to model each interrupt as a job. This would however make the EOG
practically intractable, since we do not know the release times (or phases) of the
interrupts, and must therefore consider infinite sets of release times within their
inter-arrival times. We will here make use of standard response time analysis
techniques [45][4] for calculating the execution- and completion intervals. This is
rather pessimistic when the duration between releases of tasks is non-harmonious
with the inter-arrival times of the interrupts, but we use this pessimistic (safe) and
uncomplicated method in order to simplify the presentation. More refined and less
pessimistic analysis can be developed as indicated by Mäki-Turja et al. [82].
Extended task model
We extend the task model in section 6.1 with a set of interrupts Int, where each
interrupt k ∈ Int has a minimum inter-arrival time Tk

min, a maximum inter-arrival
time Tk

max, a best case interrupt service time BCETk, and a worst case interrupt
service time WCETk.
Execution interval
Considering the interrupt interference, the execution interval [α, β) for an
arbitrary task A (formula 6-2 in section 6.2.2.1) changes to:

αααα = MAX(a, rA)
ββββ = MAX(b, rA) + w, where w is the sum of WCETA and the maximum delay
due to the preemption by sporadic interrupts, given by:

w = WCETA + k
 Intk

WCET
T

w
min

k

⋅

∑
∈∀

(6-5)

Hence, we calculate the interrupt interference on the preemption intervals in the
same way as Response Time Analysis (RTA) [45] is used to calculate the
response times for jobs that are subjected to interference by preemption of higher
priority jobs.

WCET

WCET

Figure 6-15. The worst case interrupt interference.

81

Start time interval

When adding interrupts, the upper bound b’ of the start time interval [a´, b’] for
task A is still equal to β, whereas the lower bound a’ changes to:

a’ = a + wa (6-6)

Where wa, is defined as:

w = BCETA + k
 Intk

BCET
T

w
max

k

⋅

∑
∈∀

(6-7)

This equation captures that the minimum interference by the interrupts occur
when they have their maximum inter-arrival time and execute with their minimum
execution time, and when they have their lowest possible number of hits within
the interval. The latter is guaranteed by the use of the floor function ().

Execution times

In the EOG we decrease a preempted job j’s maximum and minimum execution
time with how much it has been able to execute in the worst and best cases before
the release time t of the preempting job. Since we are now dealing with interrupts,
the effective time that j can execute prior to the preemption point will decrease
due to interrupt interference. The remaining minimum execution time BCETj’ is
given by:

BCETj’ = BCETj - (t – MAX (a, rj) – k
Intk

BCET
T max

k

)jr (a, MAX- t
⋅

∑

∈∀

) (6-8)

Note that the sum of interrupt interference is not iterative, but absolute, because
we are only interested in calculating how much the job j can execute in the
interval, minus the interrupt interference.

Likewise we can calculate the remaining maximum execution time, WCETj’:

WCETj‘ = WCETj – (t – MAX (b, rj) – k
Intk

WCET
T min

k

)jr (b, MAX- t
⋅

∑

∈∀

) (6-9)

BCET

BCET

Figure 6-16. The least case interference by interrupts.

82

Example 6-4

Here we assume that the system is subjected to preemption by interrupts. The
attributes are described in Table 6-4 and Table 6-5. The side effects of the
interrupts are solely of temporal character. Figure 6-17 depicts the EOG without
interrupt interference, and Figure 6-18 with interrupts accounted for. We observe
that the interrupt may delay the execution of job A such that it will be preempted
by job B, in contrast with the behavior without interrupts, where A always
completes before B.

6.6 Other issues
We will now outline some specifics of the execution order analysis with respect to
jitter, scheduling, testability, and complexity.

6.6.1 Jitter
In defining the EOG, and in the presented algorithms, we take the effects of
several different types of jitter into account:

• Execution time jitter, i.e., the difference between WCET and BCET of a job.

• Start jitter, i.e., the inherited and accumulated jitter due to execution time
jitter of preceding higher priority jobs.

• Clock synchronization jitter, i.e., the local clocks keep on speeding up, and
down, trying to comply with the global time base, leading to varying inter-
arrival times between clock ticks.

• Communication latency jitter, i.e., the varying data transmission times of data
passed between nodes in a DRTS, due to arbitration, propagation, etc.

• Interrupt induced jitter, i.e., execution time variations induced by the
preemption of interrupts.

[0, 0]
A

[0, 3) [1, 3)
B

[3, 6) [4, 6) _

Figure 6-17. Not considering interrupts.

[1, 3)
[0, 0]

A
[0, 5)

B
[3, 6) [4, 6) _

B
[3, 8) [4, 8)

A
[4, 10) [4, 10) _

[3, 3]

Figure 6-18. Considering interrupt interference.

Table 6-4. Schedule, J
Job r p BCET WCET
A 0 1 1 3
B 3 2 1 3

Table 6-5. Interrupts
Interrupt Tmax Tmin BCET WCET

I ∞ 3 1 1

83

Since any reduction of the jitter reduces the preemption and release intervals, the
preemption “hit” windows decrease and consequently the number of execution
order scenarios decreases. Suggested actions for reducing jitter is to have fixed
release times, or to force each job to always maximize its execution time, e.g. by
inserting (padding) “no operation” instructions where needed.

Even if the BCET = WCET for all tasks there will still be jitter if interrupts are
interfering. Considering the hypothetical situation that we had no jitter what so
ever on the nodes locally, then there could still be plenty of different execution
orderings if the communication medium contributed to communication latency
jitter.

In general, real-time systems with tighter execution time estimates and WCET ≈
BCET, as well as interrupt inter-arrival times of Tk

max ≈ Tk
min, low communication

latency jitter, and better precision of the clock synchronization yield fewer
execution orderings than systems with larger jitter.

6.6.2 Start times and completion times
An interesting property of the EOG is that we can easily find the best and worst
case completion-times for any job. We can also identify the best and worst case
start times of jobs, i.e., the actual start times of jobs not their release times as
dictated by the schedule. For identification of the completion times we only have
to search the EOG for the smallest and largest finishing times for all terminated
jobs. The response time jitter (the difference between the maximum and minimum
response times for a job) can also be quantified both globally for the entire graph
and locally for each path, as well as for each job during an LCM cycle. The same
goes for start times of jobs. The graph can thus be utilized for schedulability
analysis of strictly periodic fixed priority scheduled systems with offsets.

6.6.3 Testability
The number of execution orderings is an objective measure of system testability,
and can thus be used as a metric for comparing different designs, and schedules. It
would thus be possible to use this measure, for feedback, or as a new optimization
criterion in the heuristic search used for generating static schedules with fewer
execution orderings, with the intention of making the system easier to test. We
could also use the EOG, as a means for judging which tasks’ execution times
should be altered in order to minimize the number of execution orderings.

6.6.4 Complexity
The complexity of the EOG, i.e., the number of different execution orderings, and
the computational complexity of the EOG algorithm (section 6.3), is a function of
the scheduled set of jobs, J, their preemption pattern, and their jitter. From an
O(n) number of operations for a system with no jitter which yields only one
scenario, to exponential complexity in cases with large jitter and several
preemption points. In the latter case the number of scenarios is roughly 3X-1 for X
consecutively preempting jobs (as illustrated in Figure 6-19), given that each
preemption gives rise to the worst case situation of three possible transitions (see
section 6.2.2.1).

84

This complexity is not inherent to the EOG but rather a reflection of the system it
represents. In generating the EOG we can be very pragmatic, if the number of
execution order scenarios exceeds, say a 100, we can terminate the search, and
use the derived scenarios as input for revising the design. If the system has no
preemption points, but large jitter there will only be one scenario. If the system
has plenty of preemption points but no jitter, there will be only one scenario. If
the system has plenty of preemption points, and jitter, but the magnitude of the
jitter or the distribution of the preemption points are such that they will not give
rise to different execution orderings there would be just one scenario. Knowing
this, we can be very pragmatic in generating the EOG and try to tune the system
in such a way that the jitter is minimized. Alternatively, release-times of tasks can
be offset in such a way that they eliminate forks in the EOG (as long as the
schedule or requirements allow).

Event triggered vs. Time triggered

The choice of not trying to model interrupt interference as high priority jobs is the
choice of not modeling jobs with arbitrary arrival times. If we were interested in
addressing the functional side effects of the interrupts, we would have to model
each interrupt as a job. This would force us to consider all possible release times
(with a finer granularity than provided by the real-time kernel clock tick) which
would result in an (in practice) infinite number of execution orderings. This is
exactly why we cannot model interleaving failures deterministically. This could
be viewed as a critique against the EOG method but also as a critique against the
testability of event triggered systems (system where the release times of tasks are
arbitrary). The complexity and the testability of a system is thus strictly dependent
on the infrastructure and the assumed failure semantics. That is, if we assume
ordering failure semantics as we have done in the EOG method the number of
execution orderings would approach infinity if tasks with arbitrary arrival times
were allowed.

Figure 6-19. Consecutively preempting jobs.

Priority

Release time

85

6.7 Summary
In this chapter we have introduced a novel method for achieving deterministic
testing of distributed real-time systems (DRTS). We have specifically addressed
task sets with recurring release patterns, executing in a distributed system with a
globally synchronized time base, and where the scheduling on each node is
handled by a priority driven preemptive scheduler. The results can be summed up
to:

• We have provided a method for finding all the possible execution scenarios
for a DRTS with preemption and jitter.

• We have proposed a testing strategy for deterministic and reproducible testing
of DRTS.

• A benefit of the testing strategy is that it allows any testing technique for
sequential software to be used for testing of DRTS.

• Jitter increases the number of execution order scenarios, and jitter reduction
techniques should therefore be used whenever possible to increase testability.

• The number of execution orderings is an objective measure of the testability
of DRTS, which can be used as a new scheduling optimization criterion for
generating schedules that are easier to test, or simply make it possible to
compare different designs with respect to testability.

• We can use the execution order analysis for calculating the exact best-case
and worst-case response-times for jobs, as well as calculating response-time
jitter of the jobs. We could thus make use of the execution order analysis for
schedulability analysis of strictly periodic fixed priority scheduled systems
with offsets.

86

87

7 CASE STUDY
We will in this chapter give an example of how we for a given system can add
monitoring mechanisms, and how we, using these mechanisms can test the
system. We will also show how jitter reduction can increase the system testability.

7.1 A distributed control system
The considered system is a distributed control system (Figure 7-1), consisting of
two nodes, N1 and N2, which are interconnected by a temporally predictable
broadcast network. On these nodes a distributed feedback control application is
running. On node N1 we have one part of the control loop running, consisting of
four tasks A, B, C and D, and on node N2 we have the task E running. The entire
distributed transaction runs with period time, T = 400ms. Tasks A and E over
sample the external process and perform some calculations which after some
processing are passed on to task C, which in turn performs the control calculation.
In its calculations task C uses the last four values from task A, the last five values
from task E, the last value from task B, and the last value from task D. All
messages are buffered such that when task C starts to execute it can atomically
read received values without risk of violating consistency.

A

Sample

C

Calculate

D

Actuate

T = 50ms T = 400ms

E

Sample

Node
N2

Node
N1

Figure 7-1. The distributed control system, consisting of Tasks A-E and
their communication, on nodes N1 and N2.

B

Sample

T = 40ms

88

Given the illustrated data dependencies in Figure 7-1, and the task attributes in
Table 7-1 we can generate schedules on each node that minimize the sampling
and actuation jitter. In Table 7-2 and Table 7-3 we display the resulting schedules
for node N1 and node N2, respectively, also considering clock synchronization
effects.

The resulting initial execution orderings, before data transformations, are depicted
in figures 7-2, and 7-3. For node N1 the schedule and the execution time jitter
result in five different execution orderings, while for node N2 the result is just one
execution ordering. Task C on node N1 is relying on data from tasks A, B, E, and
a previous instance of D. However, depending on which execution ordering is
run, task C will receive data from different instances of tasks A, and E, due to the
multi-rate character of the application. We postpone the handling of this to section
7.4.

Table 7-1 The task attributes. The time unit is ms.

Task T WCET BCET Precede Offset
Communication
latency interval
[Best, Worst)

A 50 38 10
B 400 120 40 C
C 400 58 50 D
D 400 19 10 350

E 40 9 9 [2,5)

Clock synchronization precision
δ=2 ms/s

Table 7-2 The job set for node N1 with
a global LCM of 400 ms.
Task r p WCET BCET

A 0 4 39 9
B 40 3 121 39
C 40 2 59 49
A 100 4 39 9
A 200 4 39 9
A 300 4 39 9
D 350 1 20 9

Table 7-3 The job set for node N2 with
a global LCM of 400 ms.
Task r p WCET BCET

E 0 3 11 9
E 40 3 11 9
E 80 3 11 9
E 120 3 11 9
E 160 3 11 9
E 200 3 11 9
E 240 3 11 9
E 280 3 11 9
E 320 3 11 9
E 360 3 11 9

89

Figure 7-3. The
resulting execution
order scenario for the
schedule on node N2.

Figure 7-2. The resulting execution order
scenarios for the schedule on node N1.

90

7.2 Adding probes for observation
Having derived all execution orderings, are we all set to start testing the system?
No! We need also extract the necessary information for testing, i.e., the inputs,
outputs and execution orderings. We can assume that the real-time kernel
provides the necessary support for recording context switches, like the real-time
kernel Asterix does [108]. In order to collect all information, we need probes on
each node. These probes can relay the inputs, outputs, and execution orderings to
a test oracle. The test oracle deems if the inputs and outputs from the system
comply with the requirements (as illustrated in Figure 7-4). The inputs to the
system can be produced either by the actual target process environment, an
environment simulator, or a test case selection mechanism.

Assuming that the system is receiving inputs from the external process, and that
we do not know their values before hand, we need to monitor the sampled values,
and pass them on to the test oracle. We need also to provide the test oracle with
the outputs; the outputs sent to the actuators.

Observing Figure 7-1, we see that task C receives all inputs of significance for the
control loop, and that task D produces the output. We thus need to add an inline
probe to task C, which relays all inputs it has received, and add one inline probe
to task D, which relays the output it actuates. We also add a probe task that can
relay all the information from the probes in task C and D, as well as the execution
ordering run during the LCM to the test oracle, residing on another node. Since
the execution of the schedule on node N2 only results in one scenario, and that we
record the information that task C receives from task E, we do not need to
instrument node N2 with any probes except for the additional tagging of all
messages with the originating task instance, as discussed in section 6.3.1.2.

Target
System

Test
Oracle

Result
Database

Test Case
Selection

Test Case
Generator

Test Case
Database

Requirements
Input Output

Correctness

Test
Case

Process

Ordering

Figure 7-4. Typical test station components for integration
testing of real-time systems software.

91

The resulting system is illustrated in Figure 7-5.

A

Sample

C

Calculate

D

Actuate

T = 50ms T = 400ms

E

Sample

Node
N2

Node
N1

B

Sample

T = 40ms

F

Probe

Kernel

Task switches

Node
N3

Oracle

Figure 7-5. The distributed control system with probes in place and the
test oracle hooked up.

92

Assume that we by some optimization of the program code in task C, can add the
auxiliary outputs without increasing the WCET and BCET of the task with more
than 1ms, and that the auxiliary output of task D only extends its BCET and
WCET by 2ms. The resulting task attributes table can be viewed in Table 7-4, and
the resulting schedules in tables 7-5, and 7-6.

In Figure 7-6, the new execution ordering scenarios for the job set in
Table 7-5 are illustrated. The multi-rate character of the system and the execution
time jitter of the tasks can potentially lead to different behaviors of the control
application, even though we have fixed release times of the sampling and
actuation tasks.

In our system we thus have five different execution orderings on node
N1, (1-5), and one scenario on node N2, (α). That is, these are the original
scenarios before taking data dependency relations into account.

Table 7-5 The job set for node N1 with
a global LCM of 400 ms.
Task r p WCET BCET

A 0 4 39 9
B 40 3 121 39
C 40 2 60 50
A 100 4 39 9
A 200 4 39 9
A 300 4 39 9
D 350 1 23 11
F 380 1 15 8

Table 7-6 The job set for node N2 with
a global LCM of 400 ms.
Task r p WCET BCET

E 0 3 11 9
E 40 3 11 9
E 80 3 11 9
E 120 3 11 9
E 160 3 11 9
E 200 3 11 9
E 240 3 11 9
E 280 3 11 9
E 320 3 11 9
E 360 3 11 9

Table 7-4 The task attributes. The time unit is milliseconds.

Task T WCET BCET Precede Offset
Communication
latency interval
[Best, Worst)

A 50 38 10
B 400 120 40 C
C 400 59 51 D
D 400 22 12 F 350
F 400 14 9 380

E 40 9 9 [2,5)

Clock synchronization precision
δ=2 ms/s

93

7.3 Global execution orderings
The resulting initial set of execution orderings is thus
GEXo = EXo(N1) × Xo(N2) = {(1, α), (2, α), (3, α), (4, α), (5, α)}. But, as task C
on node N1 consume data produced by task E, on node N2 we need to analyze if
this relationship gives rise to more execution order scenarios, as introduced in
section 6.3.1.

(5)

Figure 7-6. The resulting execution order scenarios for
the schedule on node N1, with probes in place. All
scenarios are indexed.

(1)

(2)

(3) (4)
(α)

Figure 7-7. The resulting
execution order scenario,
(α), for the schedule on node
N2. All jobs, i.e., task
instances have been indexed.

2

3

4

5

6

8

9

10

1

7

94

7.4 Global execution ordering data dependency transformation
Beginning with scenario (1, α) we see that task C has a start time interval of
start(C) = [79,100). Considering the communication latency, [2,5), the only
candidates are E2 and E3, thus scenario (1, α) transforms into scenario
(1:E2, α), and (1:E3, α). Likewise:

• Scenario (2, α), where start(C) = [109,139), transforms into scenario
(2:E3, α), and (2:E4, α).

• Scenario (3, α), where start(C) = [209,239), transforms into scenario
(3:E5 α), and (3:E6, α).

• Scenario (4, α), where start(C) = [109,150), transforms into scenario
(4:E3 α), and (4:E4, α).

• Scenario (5, α), where start(C) = [140,200), transforms into scenario
(5:E4 α), and (5:E5, α).

The resulting global execution orderings set, GEXo, thus becomes:
{(1:E2, α), (1:E3, α), (2:E3, α), (2:E4, α), (3:E5, α), (3:E6, α), (4:E3, α),
(4:E4, α), (5:E4, α), (5:E5, α)}. Which we henceforth rename (1, α) … (10, α).

7.5 Testing
Assuming that all sampling tasks sample the external process with 8bit A/D
converters and that the actuator controls the process with an 8bit D/A converter,
we get (28)4 = 232 input combinations, considering the feedback loop. This is a
huge state space, and we will thus never in practice be able to do exhaustive
testing, since running each LCM takes 400ms. Exhaustive testing would require
continuous testing for at least 54 years. One possibility is to resort to statistical
black box testing, and decide on a reasonable level of reliability, and confidence
in this reliability. As the tasks in the feedback control loop all work on the same
physical process it is however very likely that the sampled values by the tasks are
dependent, which in practice will reduce the state space. Nonetheless, in this case
study we assume that all input combinations are possible. Since we, as testers,
cannot control the external process we have to settle for input observations. This
means that the basic assumption for statistical testing [6], that all inputs are
unique, do not hold. Consequently, we can run the same test case over and over
again. The test oracle does thus need to remember if the same test case has been
run or not. Having assumed all this we can start testing the system. The test
station can be viewed in Figure 7-8. Table 7-7 lists the resulting number of test
cases and the time required for testing one scenario and ten scenarios respectively.

95

Test
Oracle

Result
Database

Input

 Output

Correctness

Process

Ordering

N

N

Required
coverage

Ordering

Figure 7-8. The resulting test station with the coverage of the
global execution orderings illustrated.

(6,α) (7,α) (9,α)(8,α) (10,α)(1,α) (2,α) (4,α)(3,α) (5,α)

Table 7-7. The relation between reliability, the number of test cases
and the time required. Confidence C=0.99. One test case every
400ms.

Failures per
tescase

Number of test cases 150 tests per
minute
and ordering

10 orderings

10-1 44 0,3 minutes 2,9 minutes
10-2 459 3,1 minutes 31 minutes
10-3 4600 31 minutes 5,1 hours
10-4 46,000 5,1 hours 51,1 hours
10-5 460,000 51,1 hours 21,3 days
10-6 4,600,000 21,3 days 213 days
10-7 46M 213 days 5,8 years
10-8 460M 5,8 years 58 years
10-9 4,600M - Full coverage 58 years 580 years

96

7.6 Improving testability
As the number of scenarios is proportional to the number of preemption points
and the jitter in the system, we will now try to improve on the situation by
minimizing the jitter. After having analyzed the start times of task C, as illustrated
in Figure 7-6, we give it a new release time corresponding to its latest start time.
We also try to extend the BCET for task B such that it never can complete before
task A is released.

The resulting execution order scenarios can be viewed in Figure 7-9 and Figure
7-10. The global execution orderings set, GEXo, would thus be (1:E6, α), that is
just one scenario. Which for a desired failure rate of 10-5 failures per test case
would require testing for 51 hours instead of 21 days (according to Table 7-7). As
illustrated in this example jitter reduction is of great significance. Although we
did the analysis and the jitter reduction by hand this could easily be implemented
in a tool. The information that can be derived from the execution orderings
regarding preemption points, latest start times and jitter, could for example be fed
back to a preemptive static scheduler where this information could be used for
generating schedules with a reduced number of execution orderings.

Table 7-9 The job set for node N1 with
a global LCM of 400 ms.
Task r p WCET BCET

A 0 4 39 9
B 40 3 121 69
A 100 4 39 9
A 200 4 39 9
C 240 2 60 50
A 300 4 39 9
D 350 1 23 11
F 380 1 15 8

Table 7-10 The job set for node N2 with
a global LCM of 400 ms.
Task r p WCET BCET

E 0 3 11 9
E 40 3 11 9
E 80 3 11 9
E 120 3 11 9
E 160 3 11 9
E 200 3 11 9
E 240 3 11 9
E 280 3 11 9
E 320 3 11 9
E 360 3 11 9

Table 7-8 Changed task attributes in order to decrease jitter.

Task T WCET BCET Precede Offset
Communication
latency interval
[Best, Worst)

A 50 38 10
B 400 120 70 C
C 400 59 51 D 240
D 400 22 12 F 350
F 400 14 9 380

E 40 9 9 [2,5)

Clock synchronization precision
δ=2 ms/s

97

7.7 Summary
The case study in this chapter has shown how we from a specified system created
a schedule for it, derived its execution order scenarios, instrumented it in order to
extract significant information for testing, presented how we could test it and how
we could increase the testability of the system. This case study shows the
significance of considering testing and monitoring early in the design process.

Figure 7-10. The resulting
execution order scenario,
(α), for the schedule on node
N2. All jobs, i.e., task
instances have been indexed.

(α)

2

3

4

5

6

8

9

10

1

7

Figure 7-9. The resulting
execution order scenario,
(1), for the schedule on node
N1.

(1)

98

99

8 THE TESTABILITY OF DISTRIBUTED REAL-TIME
SYSTEMS
What fundamentally defines the testability of RTS and DRTS? We will in this
chapter summarize the definitions and results presented in this thesis.

8.1 Observability
As we have previously discussed, there is a least necessary level of
observability needed in order to guarantee determinism of observations.

Definition. Determinism. (See section 3.2.2). A system is defined as
deterministic if an observed behavior, P, is uniquely defined by an
observed set of necessary and sufficient parameters/conditions, O.

In defining the necessary and sufficient conditions for deterministic
observations we need to define which failure behavior we are looking for, i.e.,
we need to define a fault hypotheses (as defined in section 3.2):

1. Sequential failures

2. Ordering failures

3. Synchronization failures

4. Interleaving failures

5. Timing failures.

6. Byzantine and arbitrary failures.

That is, if we intend to deterministically detect ordering failures and
interleaving failures, we need to observe more parameters than if we only
want to deterministically detect sequential failures. Knowledge of the inputs
and state of the tasks are necessary, but not sufficient for deterministically
detecting ordering failures. That is, we need also observe the execution

Byzantine

Timing

Synchronization

Ordering

Sequential
failures

100

orderings of the tasks. Likewise for deterministic observations of interleaving
failures, e.g., non-reentrant code, we need, in addition, to observe the ordering
of task interleavings, also observe the exact timing (down to the exact machine
code instruction) when task interleavings occur, as done in the deterministic
replay in chapter 5. In contrast, if we are just looking for failures pertaining to
sequential failure modes, it would be overkill to observe the system to such a
level that we can deterministically observe interleaving failures.

However, if the fault hypothesis is interleaving failures, but we have an
infrastructure that supports memory protection, we would be able to reduce
some, if not all, interleaving failures pertaining to memory corruption and
non-reentrant code. We would then be able to reduce the fault hypothesis to
synchronization, or even orderings failures, and therefore reduce the
information necessary for observations. If we then, with memory protection
support, observe, test, and debug the system, we can achieve a certain level of
reliability. However, if we later remove the memory protection, more severe
failure modes can occur, and we can thus not guarantee the achieved
reliability, and as we have reduced the level of observation we cannot
guarantee that the observations are deterministic. We will elaborate on this in
the future work in chapter 9.

8.2 Coverage
In order to establish a certain level of confidence in the correctness of a
system, we need to define coverage criteria, i.e., criteria on how much testing
is required. This is typically defined in terms of sets of possible system states
that must be explored. Examples are fractions of possible inputs tested,
fractions of program paths tested, or in our case the number of execution
orderings that needs to be explored. Consequently is the testability of a
program a function of the number of states we must explore.

8.3 Controllability
In order to track down errors, achieve sufficient coverage when testing, or to
facilitate regression testing, we need to reproduce observations and failures.

Definition. Reproducibility. (See section 3.2). A system is
reproducible if it is deterministic with respect to a behavior P, and it is
possible to control the entire set of necessary and sufficient conditions,
O.

Definition. Partial reproducibility. (See section 3.2). A system is
partially reproducible if it is deterministic with respect to a behavior P,
and it is possible to control a subset of the necessary and sufficient
conditions, O.

101

8.4 Testability
Based on the above we can conclude that that the testability of a real-time
system is a function of:

• the fault hypothesis

• the extent to which the necessary and sufficient parameters for that
fault hypotheses can be observed,

• the ability to control these parameters, and

• coverage.

The testability of a system pertaining to this definition is thus dependent on
the infrastructure available, i.e., to which extent we can observe the system,
which fault hypothesis we can discard, and on the number of behaviors we
need to consider (coverage). The latter is facilitated by the infrastructure’s
support for control over all parameters necessary for achieving sufficient
coverage.

102

103

9 CONCLUSIONS
We have in this thesis shown that dynamic verification by testing can never be
eliminated when developing reliable software. Even if we make use of formal
methods or fault tolerance techniques we will never be able to do away with
testing, since testing can be used to validate underlying assumptions and the
fidelity of models. Software reliability is essential in computer controlled safety-
critical systems, all of which (with a few exceptions) are real-time systems, and
frequently also distributed real-time systems. Any testing of safety-critical
systems has thus to take into account the peculiarities of real-time systems (RTS)
and of distributed real-time systems (DRTS).

We have in this paper described, discussed and provide solutions to a number of
areas:

Monitoring

We have presented a framework for monitoring single tasking, multi-tasking, and
distributed real-time systems. This includes a description of what to observe, how
to eliminate the disturbances caused by the actual act of observing (the probe
effect), how to correlate observations between nodes (how to define a global
state), and how to reproduce the observations. We have given a taxonomy of
different observation techniques, and identified where, how and when these
techniques should be applied for deterministic observations. We have argued that
it is essential to consider monitoring early in the design process, in order to
achieve efficient and deterministic observations.

Debugging

We have presented a method for deterministic debugging of distributed real-time
systems, which to our knowledge is

• The first entirely software based method for deterministic debugging of single
tasking and multi-tasking real-time systems.

• The first method for deterministic debugging of distributed real-time systems.

The method relies on an instrumented kernel to on-line record the occurrences and
timings of major system events. The recording can then, using a special debug
kernel, be replayed off-line to faithfully reproduce the functional and temporal
behavior of the recorded execution, while allowing standard debugging using
break points etc. to be applied.

The method scales from debugging of single real-time tasks, to multi-tasking and
distributed multitasking systems.

The cost for this dramatically increased debugging capability is the overhead
induced by the kernel instrumentation and by instrumentation of the application
code. To eliminate probe-effects, these instrumentations should remain in the
deployed system. We are however convinced that this is a justifiable penalty for
many applications.

104

Testing

We have in this thesis introduced a novel method for deterministic testing of
multitasking and distributed real-time systems. We have specifically addressed
task sets with recurring release patterns, executing in a distributed system with a
globally synchronized time base, and where the scheduling on each node is
handled by a priority driven preemptive scheduler. The results can be summed up
to:

• We have provided a technique for finding all the possible execution scenarios
for a DRTS with preemption and jitter.

• We have proposed a testing strategy for deterministic and reproducible testing
of DRTS.

• A benefit of the testing strategy is that it allows any testing technique for
sequential software to be used to test DRTS.

• Jitter increases the number of execution order scenarios, and jitter reduction
techniques should therefore be used whenever possible to increase testability.

• The number of execution orderings is an objective measure of the testability
of DRTS, which can be used as a new scheduling optimization criterion for
generating schedules that are easier to test, or simply make it possible to
compare different designs with respect to testability.

• We can use the execution order analysis for calculating the exact best-case
and worst-case response-times for jobs, as well as calculating response-time
jitter of the jobs. We could thus make use of the execution order analysis for
schedulability analysis of strictly periodic fixed priority scheduled systems
with offsets.

Testability

We have in this thesis also argued that testability is an essential property of a
system, and that it is necessary to try to maximize the testability. The problems of
designing and verifying software are fundamental in character: software has a
discontinuous behavior, no inertia, and has no physical restrictions what so ever,
except for time. Thus, we cannot make use of interpolation or extrapolation when
testing, and we conclude that it is essential to design for high testability. If
software engineering is going to be established as a real engineering discipline we
must take the quest for high testability seriously.

Finally

Any programming language, any formal method, any theory of scheduling, any
fault tolerance technique and any testing technique will always be flawed or
incomplete. To design reliable software we must thus make use of all these
concepts in union. Consequently we will never be able to eliminate testing
completely. However, with respect to testing, debugging and monitoring of real-
time systems software there has been very little work done. Relating to what was
written in the introduction of this thesis, we believe however that the
contributions of this thesis increase the depth on the shallow side of the DRTS
verification pool of knowledge (no risk of drowning though).

105

10 FUTURE WORK
In this chapter we will outline some issues that we consider relevant and important to
pursue in the future. We will begin with some extensions to the work presented in this
thesis, and then widen the scope by discussing the use of components in real-time
systems, i.e., reusable software entities, and how these components affect the
potential reliability, and verification required.

10.1 Monitoring, testing and debugging
With respect to the results presented in this thesis we suggest the following
extensions and pursuits:

• Experimentally validate the usefulness of the presented results. This pursuit
will hopefully be facilitated by the use of the real-time kernel Asterix [108]
that has specifically been developed to give the necessary support for
monitoring, debugging and testing.

• Extend the execution ordering analysis to also encompass critical regions, by
for example assuming immediate inheritance protocols for resource sharing.
This analysis would however necessitate assumptions about the duration of
the critical regions (intervals), and assumptions about the intervals of delay
before entering the critical regions. Knowing these parameters we believe it is
straightforward to extend the execution ordering analysis.

• Devise an exact analysis (less pessimistic) for interrupt interference on the
execution order graph. The method presented in this thesis is rather
pessimistic when the duration between releases of tasks is non-harmonious
with the inter-arrival times of the interrupts. It is safe but pessimistic. For
example, consider a system where we have two tasks, A and B, where task B
has the highest priority, where rA=0, WCETA = 3, rB = 4, WCETB = 3, and an
interrupt with a Tmin = 3, and a service routine with a WCET of 1. The
response time for both tasks, just considering their execution time and the
worst case interference by the interrupt, is 5 (two interrupt hits each). It is
however not possible for both tasks to be hit twice by the interrupt during the
same scenario. We therefore suggest an extension of the analysis to minimize
the pessimism by taking these types of situations into account.

• Complete coverage for the distributed system would naively be all
combinations of all local execution order scenarios (as introduced in section
6.3.1). Depending on the design, many of the combinations would however
be infeasible due to data dependencies, with the consequence that a certain
scenario on one node always gives a specific scenario on another node.
Reductions that take these factors into account should be further investigated.
One possibility to reduce the required coverage could be to perform
parallel composition of the individual EOGs, using standard techniques
for composing timed transition systems [101], this would probably reduce
the pessimism introduced in the GEXo data dependency transformation.

We will now continue with a discussion on software reuse in real-time systems and
what the effects are on verification.

106

10.2 Formal and probabilistic arguments for component reuse
and testing in safety-critical real-time systems

In this section we will discuss how testing of real-time software relates to
component reuse in safety-critical real-time systems. Reuse of software
components is a new alleged silver bullet that will kill all bugs. This, as for all
previously alleged silver bullets is of course just a myth. Experience of software
reuse has shown that re-verification cannot be eliminated in general, which for
safety-critical systems is a significant problem since verification is the single most
cost and time consuming activity during system development (as discussed in
chapter 2).

In order to remedy this situation we will introduce a novel framework for formal
and probabilistic arguments of component reuse and re-verification in safety-
critical real-time systems. Using both quantitative and qualitative descriptions of
component attributes and assumptions about the environment, we can relate input-
output domains, temporal characteristics, fault hypotheses, reliability levels, and
task models. Using these quantitative and qualitative attributes we can deem if a
component can be reused without re-verification or not. We can also deem how
much and which subsets, of say input-output domains, that need additional
functional testing.

In order to be able to design software that is as safe and reliable as the mechanical
or electromechanical parts it replaces, and to reduce the time to market, focus of
current research and practice has turned to the reuse of proven software
components. The basic idea is that the system designer should be able to procure
(or reuse) software components in the same manner as hardware components can
be acquired. Hardware components like nuts, bolts, CPUs, memory, A/D
converters can be procured based on functionality, running conditions (the
environment) and their reliability. Hardware components are typically divided
into two classes, commercial and military grade components, where military
grade electronics can withstand greater temperature spans, handle shock and
humidity better than commercial components. However, for software it is not so
easy to make the same classification since the metrics of software are not based
on physical attributes, but rather on its design, which is unique for each new
design. As mentioned in the background of this thesis, software has no physical
restrictions what so ever and the sole physical entity that can be modeled and
measured by software engineers is time.

We will in this section elaborate on this idea of components for safety-critical
real-time systems. The arguments for reuse of software (components) are usually
arguments for rapid prototyping (reusing code), arguments for outsourcing, and
arguments for higher reliability. In the latter case it is assumed that verification of
the components can be eliminated and that the reliability of the component can be
“inherited” from previous uses. Expensive and catastrophic experiences have
however shown that it is not so simple: Ariane 5, and Therac 25. The explosion of
the Ariane rocket [43][62], and the accidents due to excessive dosage by the
radiotherapy machine Therac 25 [66] were all due to misconceptions, or
disregard, of changes in the target environment from earlier uses of the software
(Ariane 4 and Therac 20). The believed proven reliability of the components had
no bearing in the new environments where they were reused. The belief in the
reliability of the components meant in the cases of Ariane5 and Therac 25 that re-
verification and re-validation was ignored. One lesson learned from these

107

accidents is that reuse does not eliminate testing. However, as discussed in
chapter 2, verification and maintenance cost is the single most resource
consuming activity in software development projects (especially safety-critical
such). We will elaborate on this problem during the course of the section and
present a framework for determining when components in real-time systems can
be reused immediately, when complete re-testing is necessary, or when just parts
of the systems need additional verification.

10.2.1 Software components in real-time systems?
There exists yet no commonly agreed upon definition of what constitutes a
software component [103][25][98][32][2][15][18]. Most people do however agree
that the concept of components is the idea of reusable software entities. In this
section, for the sake of enabling analysis of components in safety-critical real-
time systems we do not only define a component in terms of software. We define
a component also in terms of design documentation, test documents, and in
evidence of the reliability achieved from previous uses.

We have chosen a hierarchical/recursive definition of components (Figure 10-1).
The smallest components are tasks. On the next level, several tasks work together
in a transaction where the transaction itself is a component. A transaction is a set
of functionally related and cooperating tasks, e.g., sample-calculate-actuate loops
in control systems. The relationship between the cooperating tasks with respect to
precedence (execution order), interactions (data-flow), and a period time typically
define each transaction. Further up in the hierarchy several transactions make up
more complex components. The entire system software is for example a
component from the complete system’s point of view. As this definition
eventually forces us to define the universe as a software component, we have to
stop the recursion somewhere. Here, in this paper the real-time kernel is not
considered to be a component. We define the real-time kernel as part of the
infrastructure of the system. It provides the necessary services for the software but
it also restricts the possibilities (freedom) of implementing the requirements put
upon tasks and transactions. Which in this case is regarded as a good quality since
it limits the complexity and also makes formal analysis possible.

Figure 10-1. Hierarchical definition of components for real-time systems.

tasks

transactions

software system

software and environment

108

10.2.2 Component contracts
A component contract is in many respects analogous to a contract in real life. It
defines certain obligations and benefits between the parties in an agreement, in
this case the agreement between the provider (the component) and the consumer
(the target system). The consumer must ensure that certain assumptions hold
before it can use the service offered by the provider, i.e. the component. A
component contract essentially specifies:

• The functionality of the component

• The running conditions for which the component has been designed. That is,
assumed inputs and outputs, as well as the assumptions about the
environment.

Contracts can be described with varying degrees of formality [7][39][41]. The
more formal the contracts are, the greater the possibilities are of verifying that the
component will work correctly together with the target system. In this section we
will settle for a functional description in some natural language, although a formal
temporal language such as timed automata [3] could have been used. The main
focus in this section is however on the specific demands put on component
contracts in safety-critical real-time systems, and we will as such not elaborate on
functional descriptions further.

As the temporal behavior is of utmost importance for the correctness of real-time
systems, the temporal assumptions have to be specified in the contracts. The
temporal attributes make up the task model, which is used when formally
verifying the temporal behavior of the system, e.g., when scheduling [4][117].
However, there exist in essence two different task models for real-time systems,
one that exists on the design level and one that is provided by the given
infrastructure (the real-time kernel). Typically, the design task model describes
timing requirements like the periodicity of the transactions, end-to-end deadlines,
jitter constraints, etc, and communication and synchronization requirements.
These requirements are after successful scheduling implemented by the
infrastructure. We will in the rest of this section distinguish between the design
task model and the infrastructure task model.

10.2.2.1 The design task model
We view components in real-time systems as single tasks or transactions
consisting of tasks and other transactions. Thus, the contract must specify whether
or not the component is a transaction or not. If the component is a transaction it
has a precedence relation between the cooperating tasks and there is a data-flow
between the tasks. Note that a single task is a special case of a transaction without
precedence relations or data-flow.

As defined previously the relationship between the cooperating tasks with respect
to precedence (execution order), interactions (data-flow), and a period time
typically define each transaction.

109

Precedence

Precedence relations can be represented in a multitude of ways, but we settle for a
simple graphical notation called a precedence graph. A precedence graph is a
directed graph visualizing the tasks in the transaction by interconnected arrows
indicating the direction of the precedence relation. In Figure 10-2 a simple
precedence graph is shown where task A precedes task B and C.

Data flow

Concerning the data-flow in components we identify two different attributes in
the contracts namely: where and how. The attribute where, declares which tasks
within the component exchange data. The attribute how, specifies if the
communication between the tasks flows in a synchronous or an asynchronous
manner. If the communication is asynchronous, the contract must specify how the
data is treated on the receiver side. This is important since data can be consumed
either faster or slower than it is produced in a multi-rate transaction (see Figure
10-3). If data is produced in a faster pace than it is consumed, the contract must
specify whether or not new data should overwrite old data or if data should be
buffered to provide history. Finally, concerning data propagation, the size of the
data is important since size will restrict the speed and periodicity at which the
component can execute.

Temporal attributes

The temporal attributes of real-time components specify the required temporal
behavior of the components. As discussed, these attributes must not necessarily
have their correspondence in the infrastructure, but they must in the end be
realized using the infrastructure. As we focus on reuse in this paper, we want our
components to be as general as possible in terms of the temporal constraints. The
generality is obtained by specifying the temporal constraints as time intervals.
Later on in section 10.2.3.2, we will elaborate further on how these intervals are
obtained. Transaction components (where a single task is a special case) can have
period times, jitter constraints on period times, end-to-end deadlines, etc. (Figure
10-4)

Figure 10-2. A simple precedence graph.

A B C

Figure 10-3. The data-flow between two tasks with different
period times.

Period time = 10 Period time = 5

A D

110

For a component consisting of two transactions which run with different period
times (multi-rate) we can construct a composite graph representing the Least
Common Multiple (LCM) of their period times (Figures 10-5 and 10-6).

Reuse and the design task model

The period time of a transaction is inherited from the system in which the
component will be reused. We therefore suggest that the design task model
attributes of the reused components can be parameterized, based on
decreased/increased period times of the transactions. That is, parameterized such

Figure 10-4. A transaction with a period time, precedence relation,
and an end-to-end deadline.

Period time = 10, Deadline = 10

A B C

A B C

Figure 10-5. A multirate component, where the attributes are D = deadline,
and R = release time relative transaction start.

Period time = 10

D = 10
R= 0

D = 10
R = 0

D =10
R = 0

Period time = 5

D = 5
R= 0

D

D

Period time = 10

D = 10
R= 0

D = 10
R = 0

D =10
R = 0

D = 5
R= 0

D= 10
R= 5

Figure 10-6. The composite transaction with a common period time.

A B C

D
’

111

that that all precedence relations, and temporal attributes still hold, the only thing
that changes is the scale. For example, a 20% decrease in the period time of the
transaction in Figure 10-6 is illustrated in Figure 10-7.

10.2.2.2 Infrastructure task model
Derived from the recursive definition of components and component relations, we
can with respect to real-time systems define the components forming the basis for
running the real-time tasks as the infrastructure, i.e., the real-time operating
system and its attributes. We are now going to give a classification of the
infrastructure for real-time operating systems based on their execution strategy,
synchronization mechanisms, and communication mechanisms.

Execution strategy

The execution strategy of a real-time system defines how the tasks of the system
are run. A usual classification is event and time triggered systems [55]. An event-
triggered system is a system where the task activations are determined by an event
that can be of external or internal origin, e.g., an interrupt, or a signal from
another task. There are usually no restrictions what so ever on when events are
allowed to arrive, since the time base is dense (continuos). For time-triggered
systems events are only allowed to arrive into the system, and activate tasks, with
a certain minimum and maximum inter-arrival time; the time-base is sparse [53].
The only event allowed is the periodic activation of the real-time kernel,
generated by the real-time clock.

Another characteristic of an execution strategy is the support of single tasking or
multitasking. That is, can multiple tasks share the same computing resource
(CPU), or not? If the infrastructure does support multitasking does it also support
task interleavings, i.e., does it allow an executing task to be preempted during its
execution by another task, and then allow it to be resumed after the completion of
the preempting task?

A very common characteristic of an execution strategy, especially for multi-
tasking RTS, is the infrastructure task model. The task model defines execution
attributes for the tasks [4][75][89][117]. For example:

D

Period time = 8

D = 8
R= 0

D = 8
R = 0

D =8
R = 0

D = 4
R= 0

D= 8
R= 4

Figure 10-7. A parameterized transaction.

A B C

D
’

112

• Execution time, Cj. Where Cj ∈ [BCETj, WCETj], i.e., the execution time
for a task, j, varies depending on input in an interval delimited by the
task’s best case execution time (BCETj) and its worst case execution time
(WCETj).

• Periodicity, Tj. Where Tj ∈ [Tj
min, Tj

max], i.e., the inter-arrival time
between the activations of a task, j, is delimited by an interval ranging
from the minimum inter-arrival time, to the maximum inter-arrival time.
For strictly periodic RTS, Tj

min = Tj
max.

• Release time, Rj. Where Rj defines an offset relative the period start at
which the task j should be activated. Release time also go by the name
Offset.

• Priority, Pj. Where Pj defines the priority of task j. When several tasks
are activated at the same time, or when an activated task has higher
priority than the currently running task, the priority determines which task
should have access to the computing resource.

• Deadline, Dj. Where Dj defines the deadline for the task, j, that is, when it
has to be finished. The deadline can be defined relative task activation, its
period time, absolute time, etc.

For different infrastructures the task model vary with different flavors of the
above-exemplified attributes.

Synchronization

Depending on the infrastructure we can either make necessary synchronizations
between tasks off-line if it is time triggered and supports offsets, or we can
synchronize tasks on-line using primitives like semaphores. In the off-line case
we guarantee precedence and mutual exclusion relations by separating tasks time-
wise, using offsets.

Communication

Communication between tasks in RTS can be achieved in a multitude of ways.
We can make use of shared memory which is guarded by semaphores, or time
synchronization, or we can via the operating system infrastructure send messages,
or signals between tasks. Depending on the relation between the communicating
tasks, in respect to periodicity, the communication can vary between totally
synchronous communication to totally asynchronous communication. That is, if
task i sends data to task j, and both tasks have equal periodicity, Tj = Ti, we can
make use of just one shared memory buffer. However, if Tj > Ti or Tj < Ti the
issue gets more complicated. Either we make use of overwriting semantics (state-
based communication), using just a few buffers, or we record all data that has
been sent by the higher frequency task so that it can be consumed by the lower
frequency task when it is activated. There are several approaches to solving this
problem [26][52][13].

10.2.3 Component contract analysis
We are now going to introduce a framework for formal and probabilistic
arguments of component reuse in safety-critical real-time systems. The basic idea
is to provide evidence, based on the components contracts and the experience
accumulated, that a component can be reused immediately, or if only parts can be
reused - or not at all. That is, we want to relate the environment for which the

113

component was originally designed and verified, with the new environment where
it is going to be reused. Depending on the match with respect to input-output
domains and temporal domains we want to deem how much of the reliability from
the earlier use of the component can be inherited in the new environment. Faced
with a non-match we usually are required to re-verify the entire component.
However, we would like to make use of the parts that match and only re-verify the
non-matching parts.

Specifically, we are now going to introduce two analyses, one with respect to
changes in the input-output domain, and one with respect to changes in the
temporal domain.

10.2.3.1 Input-output domain analysis
We are now going to establish a framework for comparative analysis of
components input-output domains, i.e. their respective expected inputs and
outputs, as defined by the components contracts (interfaces). But, we are also
going to relate the input-output domain to its verified and experienced reliability,
according to certain failure semantics. We can represent the input-output domain
for a component, c, as a tupel of inputs and outputs; Π(c) ⊆ I(c) × O(c). Where the
input domain, I(c), is defined as a tupel of all interfaces and their respective sets
of input; I(c) ⊆ I(c)1 ∪ … ∪ I(c)n. Further, the output domain, O(c), is defined as
a set of all interfaces and their respective sets of output;
O(c) ⊆ O(c)1 ∪ … ∪ O(c)n.

The basic idea is that, given that we have a reliability profile, R(c), of a
component’s input-output domain, Π(c) and that the attributes for the real-time
components are fixed, we can deem how well the component would fare in a new
environment. That is, we would be able to make comparative analysis of the
experienced input-output domain and the domain of the new environment.

For example, assume that we have designed and verified a component, c, that has
an input domain I(c) corresponding to a range of integer inputs, I(c) = [40,70], to
a certain level of reliability, R(c), as illustrated in Figure 10-8.

Consider now that we reuse this component in another system, where all things
are equal except for the input domain, I2(c) = [50,80], and that we by use and
additional verification have achieved another level of reliability. We can now
introduce a new relation called the experienced input-output-reliability domain,
E(c) ⊆ (Π1(c) × R1(c))∪ … ∪ (Πn(c) × Rn(c)), which represent the union of all
input-output domains and the achieved reliability for each of these domains. This
union is illustrated in Figure 10-9. Using this E(c) we can deem if we can reuse
the component immediately in a new environment Πnew(c) and inherit the

40 70 I(c)

R(c)

Figure 10-8. The reliability for input domain [40,70].

114

experienced reliability, or we can put another condition on the reuse, a reliability
requirement.

In Figure 10-10, the new environment and the area named X, illustrates the
reliability requirement. If it can be shown that Πnew(c) × Rnew(c) ⊆ E(c) then the
component can be reused without re-verification. However if the reliability
requirement cannot be satisfied as illustrated in Figure 10-10, reuse cannot be
done without additional verification.

If the Πnew(c) × Rnew(c) ⊂ E(c), then we cannot immediately reuse the component
without re-verification, however we need not re-verify the component entirely. It
is sufficient to verify the part of the input domain that is non-overlapping with the
experienced one, i.e., (Πnew(c) × Rnew(c)) \ E(c).

By making this classification we can provide arguments for immediate reuse,
arguments for re-verification of only cut sets and non-reuse. For example, assume
that the Πnew(c) (the area named Y in the Figure 10-11) has an Inew(c) = [35,45]
then we can calculate the cut set for Inew(c) and I(c) to be Icut(c) = [35,40]. This
limits the need for additional verification to only encompass the cut set Icut(c), see
Figure 10-11.

40 70 I(c)

R(c)

80

Figure 10-10. Reliability cannot be guaranteed in new
environment.

X

R(c)

40 70 I(c)80

Figure 10-11. Verification only necessary for a limited
area.

Y

40 70 I(c)

R(c)

80

Figure 10-9. The reliability for joint input domain.

115

10.2.3.2 Temporal analysis
Whenever a new component is to be used in a real-time system, the temporal
behavior of the system must be re-verified, i.e. we need to re-verify that all tasks
are schedulable. In order to schedule the system the components have to be
decomposed into their smallest entities, i.e., their tasks. Thus, the level of
abstraction provided by the component concept is violated.

In this section we will discuss the impact of changing some of the temporal
attributes of a component when reusing it. The following situations are dealt with:

• The same infrastructure and the same input-output domain

• The same input-output domain but a different infrastructure

A change in the temporal domain is always initiated by the system in which the
component will be used. For instance, if the new system executes on different
hardware, the execution times might vary (a faster or slower CPU). The changes
can also originate from the requirements of the new system, for example that the
component has to run with a higher frequency than originally designed for.

The same infrastructure and input-output domain
In this case, the infrastructure is exactly the same in the new environment as the
one previously used. Consequently, we have an exact match between the sets of
services provided (denoted as S below). The services required by the design task
model for the component have been satisfied earlier which implicates that they
still are satisfied in the new environment. Thus, S(c) ⊆ Sold(infrastructure) and
Snew(infrastructure) = Sold(infrastructure) holds, where S(c) is the set of services
required by component c.

Moreover, the new input-output domain for the new instance of component c,
Πnew(c), is completely within the verified range of input-output for the component
Π(c). That is, the following must hold Πnew(c) ⊆ Π(c).

The only alteration is in one or several of the temporal attributes for the
component. Such a change requires the system to undertake a schedulability
analysis [5][75][117], where the component is decomposed into its smallest
constituents, the tasks. The component can be considered to fit into the new
system if the system is schedulable and the relations between the tasks in the
component, as well as the tasks in the new system, are not violated.

The same input-output domain but different infrastructure

There exist two different types of infra-structural changes:

• One where the infrastructures are different, but where the infrastructure parts
pertaining to the component are the same. That is, if S(c) ⊆
Snew(infrastructure)∩Sold(infrastructure), then the necessary services are
provided by the new infrastructure. If this is the case, and a correct mapping
of the services required by the component to the new infrastructure is
performed, we can reuse the component with the same confidence in its
reliability as in the original environment.

116

• One where the infrastructures are different and the infrastructure parts
pertaining to the component are non-compliant. That is,
S(c)\ Snew(infrastructure) ≠ ∅.

In the latter case where the new infrastructure does not enable the same
implementation of the design task model, a new mapping from the design must be
performed. This mapping is a matter of implementing the new infrastructure
model using the services provided in the new infrastructure. If this mapping is not
possible then we cannot reuse the component at all. If the mapping is possible, we
can still argue if this is reuse at all, since major parts of the component must be
modified. Here we make a clear distinction between modify and parameterize,
where modifications are changes in the source code and parameterizations leave
the source code unchanged, but its behavior can be changed dynamically.

As an example, consider a component that has been proven to have a certain
reliability in an infrastructure that provides synchronization between tasks using
time-wise separation. If now the component is reused in an infrastructure that
handles synchronization using semaphores the synchronization strategy has to be
changed. Consequently, we cannot assume anything about the reliability
regarding synchronization failures. We have to assume weaker failure semantics
since the preconditions for which the reliability estimates regarding
synchronization failures are no longer valid. That is, we cannot guarantee
anything regarding synchronization failures when reusing the component.

Figure 10-12 illustrates the different reliabilities for the fault hypotheses
(assumptions of failure semantics as introduced in section 3.2), 1 through 5 for
component c.

If the assumptions made for the reliability measure of fault hypothesis 3 is
changed, the reliability is inherited from fault hypothesis 2 (see Figure 10-13),
and we cannot say anything about the reliability regarding more severe failure
semantics.

Reliability

2 4 Hypothesis51 3

Figure 10-12. The reliability/fault hypothesis before reuse in a new
infrastructure.

Reliability

2 4 Hypothesis51 3

Figure 10-13. The new reliability/fault hypothesis after reuse in a
new infrastructre.

117

Just as in the previous case where the infrastructure was not changed, the
schedulability analysis must be performed all over again, ensuring that no
temporal constraints are violated in the component as well in the rest of the
system.

A measure of the reusability of components

For every new environment in which a component is successfully reused, the
usability increases. That is, if a component has been proven in practice to work in
many different environments it is highly reusable. Figure 10-14 illustrates
successful reuses of a component, with respect to different period times and the
achieved reliability (R). The greater the number of period times covered by the
diagram, the more reusable the component is.

However, can one argue that a component, which has been reused in a lot of
different environments but where every reuse resulted in a low reliability, is
reusable? Probably not. Consequently, the reusability is a combination of the
number of environments where the component has been used, and the success of
every reuse.

A diagram like the one illustrated in Figure 10-14 can be generated for every type
of attribute in the component contract. For instance, the different types of real-
time operating systems for which the component has been reused. In this case, the
distribution is also a measurement of the portability for the component.

10.2.4 Summary
In this section of future work we have presented a novel framework for arguments
of reuse and re-verification of components in safety-critical real-time systems.
The arguments for reuse of software (components) are usually arguments for
rapid prototyping (reusing code), arguments for outsourcing, and arguments for
higher reliability. In the latter case it is assumed that verification of the
components can be eliminated and that the reliability of the component can be
“inherited” from previous uses. Expensive and catastrophic experiences have
however shown that it is not so simple, e.g., Ariane 5, and Therac 25 [43][62][66].
In this framework, we formally described component contracts in terms of
temporal constraints given in the design phase (the design task model) and the
temporal attributes available in the implementation (the infrastructure).
Furthermore, the input-output domain for a component is specified in the contract.
By relating the input-output domain, fault hypotheses, probabilistic reliability
levels and the temporal behavior of the component, we can deem if a component

1 2 3 4 5 6

T

R

Figure 10-14. Distribution of period times for which the
component has been reused, with reliability, R.

118

can be reused without re-verification or not. Of great significance is that we can
deem how much and which subsets, of say input-output domains, that need
additional testing based on reliability requirements in the environment in which
the reuse is intended. Faced with complete re-verification the possibility of
decreasing the testing effort is attractive, and essential for safety-critical real-time
systems.

119

11 REFERENCES
[1] Abdalla-Ghaly A. A. and Chan a. B. L. P. Y. Evaluation of competing reliability predictions.

IEEE Transactions on Software Engineering, pp. 950-967, 1986.
[2] Alexander C. The Timeless Way of Building. Oxford University Press, 1979.
[3] Alur R. and Dill D. A theory of timed automata. Theoretical Computer Science vol. 126 pp.

183-235, 1994.
[4] Audsley N. C., Burns A., Davis R. I., Tindell K. W. Fixed Priority Pre-emptive Scheduling: A

Historical Perspective. Real-Time Systems journal, Vol.8(2/3), March/May, Kluwer A.P.,
1995.

[5] Audsley N. C., Burns A., Richardson M.F., and Wellings A.J. Hard Real-Time Scheduling:
The Deadline Monotonic Approach. Proc. 8th IEEE Workshop on Real-Time Operating
Systems and Software, pp. 127-132, Atlanta, Georgia, May, 1991

[6] Beizer B. Software testing techniques. Van Nostrand Reinhold, 1990.
[7] Beugnard, Antoine, Jézéquel, Jean-Marc, Plouzeau, Noël and Watkins, Damien. Making

Component Contracts Aware. IEEE Computer July 1999, pp. 37-45.
[8] Brantley W.C., MeAuliffe K.P. and Ngo T.A. RP3 performance monitoring hardware. In M.

Simmons, R. Koskela, and I. Bucher, eds. Instrumentation for Future Parallel Computing
Systems, pp. 35-45. Addison-Wesley, Reading, MA, 1989.

[9] Brooks F. P. No silver bullet – essence and accidents of software engineering. In information
processing 1986, the proceedings of the IFIP 10th world computing conference. H-J Kugler ed.
Amsterdam: Elsevier Science, 1986, pp. 1069-1076.

[10] Butler, R.W. and Finelli, G.B. The infeasibility of quantifying the reliability of life-critical
real-time software. IEEE Transactions on Software Engineering, (19): 3-12, January, 1993.

[11] Calvez J.P., and Pasquier O. Performance Monitoring and Assessment of Embedded HW/SW
Systems. Design Automation for Embedded Systems journal, 3:5-22, Kluwer A.P., 1998.

[12] Chandy K. M. and Lamport L. Distributed snapshots: Determining global states of distributed
systems. ACM Trans. On Computing Systems, 3(1):63-75, February 1985.

[13] Chen J. and Burns A. Asynchronous Data Sharing in Muliprocessor Real-Time Systems Using
Process Consensus. 10th Euromicro Workshop on Real-Time Systems, June 1998,

[14] Chodrow S.E, Jahanian F., and Donner M. Run-time monitoring of real-time systems. In Proc.
of IEEE 12th Real-Time Systems Symposium, San Antonio, TX, pp. 74-83, December 1991.

[15] Ciupke O., Schmidt R. Components as Context-independent Units of Software. In Proc. of
ECOOP, 1996.

[16] Clark G. and Powell A. Experiences with Sharing a Common Measurement Philosophy. In
Proceedings International Conference on Systems Engineering (INCOSE’99), Brighton, UK,
1999.

[17] Clarke S.J. and McDermid JA. Software fault trees and weakest preconditions: a comparison
and analysis. Software Engineering Journal. 8(4):225-236, 1993.

[18] D’Souza D. F and Wills A. C. Objects, Components and Frameworks with UML. The
Catalysis Approach. Addison-Wesley, 1999.

[19] Dahl O.J, Dijskstra E.W., and Hoare C.A.R. Structured Programming. Academic Press, 1972.
[20] DeMarco T. Structured Analysis and System Specification. Yourdon Press 1978. ISBN 0-

917072-07
[21] DeMillo R. A., McCracken W.M., Martin R.J., and Passafiume J.F. Software Testing and

Evaluation. Benjamin/Cummings Publications. Co., 1987.
[22] Dodd P. S., Ravishankar C. V. Monitoring and debugging distributed real-time programs.

Software-practice and experience. Vol. 22(10), pp. 863-877, October 1992.
[23] E. Loyd and W. Tye. Systematic Safety: Safety Assessment of Aircraft Systems. Civil Aviation

Authority, London, England, 1982. Reprinted 1992.

120

[24] Ellis A. Achieving Safety in Complex Control Systems. Proceedings of the Safety-Critical
Systems Symposium. pp. 2-14. Brighton, England, 1995. Springr-Verlag. ISBN 3-540-19922-
5

[25] Ellis W. J., Hilliard R.F., Poon P.T., Rayford D., Saunders T. F., Sherlund B., Wade R. L.,
Toward a Recommended Practice for Architectural Description, Proceedings 2nd IEEE
International Conference on Engineering of Complex Commuter Systems, Montreal, Quebec,
Canada, October, 1996.

[26] Eriksson C., Mäki-Turja J., Post K., Gustafsson M., Gustafsson J., Sandström K., and
Brorsson E. An Overview of RTT: A design Framework for Real-Time Systems. Journal of
Parallel and Distributed Computing, vol. 36, pp. 66-80, Oct. 1996.

[27] Eriksson C., Thane H. and Gustafsson M. A Communication Protocol for Hard and Soft Real-
Time Systems. In the proceedings of the 8th Euromicro Real-Time Workshop, L'Aquila Italy,
June, 1996.

[28] Ferrari D. Consideration on the insularity of performance perturbations. IEEE Trans.
Software Engineering, SE-16(6):678-683, June, 1986.

[29] Fidge, C. Fundamentals of distributed system observation. IEEE Software, (13):77 – 83,
November, 1996.

[30] G J. Myers. The Art of Software Testing. John Wiley and Sons. New York 1979.
[31] Gait J. A Probe Effect in Concurrent Programs. Software – Practice and Experience,

16(3):225-233, Mars, 1986.
[32] Gamma E, Helm R., Johnson R., and Vlissides J. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, 1994.
[33] Glass R. L. Real-time: The “lost world” of software debugging and testing. Communications

of the ACM, 23(5):264-271,May 1980.
[34] Gorlick M. M. The flight recorder: An architectural aid for system monitoring. In Proc. of

ACM/ONR Workshop on Parallel and Distributed Debugging, Santa Cruz, CA, pp. 175-183,
May 1991.

[35] Graham R. L. Bounds on Multiprocessing Timing Anomolies. SIAM journal of Applied
Mathematics, 17(2), March, 1969.

[36] Haban D. and Wybranietz D. A Hyrbid monitor for behavior and performance analysis of
distributed systems. IEEE Trans. Software Engineering, 16(2):197-211, February, 1990.

[37] Hamlet R. G. Probable Correctness Theory. Information processing letters 25, pp. 17-25,
1987.

[38] Hatton L.. Unexpected (and sometimes unpleasant) Lessons from Data in Real Software
Systems. 12th Annual CSR Workshop, Bruges 12-15 September 1995. Proceedings, pp. 251-
259. Springer. ISBN 3-540-76034-2.

[39] Helm R., Holland I. and Gangopadhyay D. Contracts: Specifying Behavioral Compositions in
Object Oriented Systems. In Proc. of the Conference on Object Oriented Programming:
Systems, Languages and Application, 1990.

[40] Hetzel B.. The Complete Guide to Software Testing. 2nd edition. QED Information Sciences,
1988.

[41] Holland I. Specifying reusable components using contracts. In Proc. of ECOOP, 1992.
[42] Hwang G.H, Tai K.C and Huang T.L. Reachability Testing: An Approach to Testing

Concurrent Software. Int. Journal of Software Engineering and Knowledge Engineering, vol.
5(4):493-510, 1995.

[43] Inquiry Board. ARIANE 5 – Flight 50l Failure. Inquiry Board report,
http://wxtnu.inria.fr/actualirdsfra.htrnl (July 1996), l8 p.

[44] Jelinski Z. and Moranda P. Software reliability research. In Statistical Computer Performance
Evaluation (Frieberger W., ed.). New York: Academic Press.

[45] Joseph M. and Pandya P. Finding response times in a real-time system. The Computer Journal
– British Computer Society, 29(5), pp.390-395, October, 1986.

[46] Joyce J., Lomow G., Slind K., and Unger B. Monitoring distributed systems. ACM Trans. On
Computer Systems, 5(2):121-150, May 1987.

121

[47] Keiller P. A. and Miller D. R. On the use and the performance of software reliability growth
models. Reliability Engineering and System Safety, pp. 95-117, 1991.

[48] Knight J. C. and Leveson N. G. An experimental evaluation of the assumptions of
independence in multiversion programming. IEEE Transactions on Software Engineering,
vol. SE-12, pp. 96-109, Jan. 1986.

[49] Knight J. C. and N. G. Leveson. A reply to the criticism of the Knight and Leveson
experiment. ACM SIGSOFT Software engineering Notes, 15, p. 25-35, January 1990.

[50] Kopetz H. and Grünsteidl H. TTP - A Protocol for Fault-Tolerant Real-Time Systems. IEEE
Computer, January, 1994.

[51] Kopetz H. and Ochsenreiter W. Clock Synchronisation in Distributed Real-Time Systems.
IEEE Trans. Computers, 36(8):933-940, Aug. 1987.

[52] Kopetz H. and Reisinger J. The Non-Blocking Write Protocol NBW: A Solution to a Real-
Time Synchronization Problem. In Proceedings of he 14th Real-Time Systems Symposium,
pp. 131-137, 1993.

[53] Kopetz H. Sparse time versus dense time in distributed real-time systems. In the proceedings
of the 12th International Conference on Distributed Computing Systems, pp. 460-467, 1992.

[54] Kopetz H., Damm A., Koza Ch., Mulazzani M., Schwabl W., Senft Ch., and Zainlinger R..
Distributed Fault-Tolerant Real-Time Systems: The MARS Approach. IEEE Micro, (9):25-40,
1989.

[55] Kopetz H.. Event-Triggered versus Time-Triggered Real-Time Systems. Lecture Notes in
Computer Science, vol. 563, Springer Verlag, Berlin, 1991.

[56] Kopetz, H. and Kim, K. Real-time temporal uncertainties in interactions among real-time
objects. Proceedings of the 9th IEEE Symposium on Reliable Distributed Systems, Huntsville,
AL, 1990.

[57] L Barroca and J McDermid. Formal Methods: Use and Relevance for Development of Safety-
Critical Systems. The Computer Journal, Vol. 35, No. 6, 1992.

[58] Lamport L. Time, clock, and the ordering of events in a distributed systems. Comm. Of ACM,
(21):558-565: July 1978.

[59] Laprie J.C. Dependability: Basic Concepts and Associated Terminology. Dependable
Computing and Fault-Tolerant Systems, vol. 5, Springer Verlag, 1992.

[60] Larsen K. G., Pettersson P. and Yi W. Uppaal in a Nutshell. In Springer International Journal
of Software Tools for Technology Transfer 1(1+2), 1997.

[61] Lauterbach emulators. Lauterbach GmbH Germany. http://www.lauterbach.com/.
[62] Le Lann, G. An analysis of the Ariane 5 flight 501 failure - a system engineering perspective.

Proceedings., International Conference and Workshop on Engineering of Computer-Based
Systems, pp. 339 - 346, 1997.

[63] LeBlanc T. J. and Mellor-Crummey J. M. Debugging parallel programs with instant replay.
IEEE Trans. on Computers, C-36(4):471-482, April 1987.

[64] LeDoux C.H., and Parker D.S. Saving Traces for Ada Debugging. In the proceedings of Ada
int. conf. ACM, Cambridge University press, pp. 97-108, 1985.

[65] Lee J.Y., Kang K.C.,Kim G.J., Kim H.J. Form the missing piece in effective real-time system
specification and simulation. In proc. IEEE 4th Real-Time Technology and Applications
Symposium, pp.155 – 164, June 1998.

[66] Leveson N. and Turner C. An investigation of the Therac-25 accidents. IEEE Computer,
26(7):18-41, July 1993.

[67] Leveson N. G. Safeware - System, Safety and Computers. Addison Wesley 1995. ISBN 0-201-
11972-2.

[68] Leveson N. G. Software safety: What, why and How. ACM Computing surveys, 18(2),1986.
[69] Littlewood B. and Keiller P. A. Adaptive software reliability modeling. In 14th International

Symposium on Fault-Tolerant Computing, pp. 108-113, IEEE Computer Society Press, 1984.
[70] Littlewood B. and Strigini L. Validation of Ultrahigh Dependability for Software-based

Systems. Com. ACM, 11(36):69-80, November 1993.

122

[71] Littlewood B. Stochastic reliability-growth: A model for fault-removal in computer programs
and hardware designs.' IEEE Transactions on Reliability, pp. 313-320, 1981.

[72] Littlewood B.and Verrall. A Bayesian Reliability Growth Model For Computer Software.
Journal of the Royal Statistical Society, Series C, No. 22, p 332-346, 1973

[73] Liu A.C. and Parthasarathi R. Hardware monitoring of a multiprocessor systems. IEEE Micro,
pp. 44-51, October 1989.

[74] Lozzerini B., Prete C. A., and Lopriore L. A programmable debugging aid for real-time
software development. IEEE Micro, 6(3):34-42, June 1986.

[75] Lui C. L. and Layland J. W.. Scheduling Algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM 20(1), 1973.

[76] Lutz R. R.. Analyzing software requirements errors in safety-critical, embedded systems. In
software requirements conference, IEEE, January 1992.

[77] Malony A. D., Reed D. A., and Wijshoff H. A. G. Performance measurement intrusion and
perturbation analysis. IEEE Trans. on Parallel and Distributed Systems 3(4):433-450, July
1992.

[78] McDowell C.E. and Hembold D.P. Debugging concurrent programs. ACM Computing
Surveys, 21(4), pp. 593-622, December 1989.

[79] Mellor-Crummey J. M. and LeBlanc T. J. A software instruction counter. In Proc. of 3d
International Conference on Architectural Support for Programming Languages and Operating
Systerns, Boston, pp. 78-86, April 1989

[80] Miller B.P., Macrander C., and Sechrest S. A distributed programs monitor for Berkeley
UNIX. Software Practice and Experience, 16(2):183-200, February 1986.

[81] Mink K., Carpenter R., Nacht G., and Roberts J. Multiprocessor performance measurement
instrumentation. IEEE Computer, 23(9):63-75, September 1990.

[82] Mäki-Turja J., Fohler G. and Sandström K. Towards Efficient Analysis of Interrupts in Real-
Time Systems. In proceedings of the 11th EUROMICRO Conference on Real-Time Systems,
York, England, May 1999.

[83] Netzer R.H.B. and Xu Y. Replaying Distributed Programs Without Message Logging. In proc.
6th IEEE Int. Symposium on High Performance Distributed Computing. Pp. 137-147. August
1997.

[84] Neuman P G. Computer Related Risks. ACM Press, Adison-Wesley, 1995. ISBN 0-201-
55805-x.

[85] Parnas D.L., van Schouwen J., and Kwan S.P. Evaluation of Safety-Critical Software.
Communication of the ACM, 6(33):636-648, June 1990.

[86] Plattner B. Real-time execution monitoring. IEEE Trans. Software Engineering, 10(6), pp.
756-764, Nov., 1984.

[87] Poledna S. Replica Determinism in Distributed Real-Time Systems: A Brief Survey. Real-
Times systems Journal, Kluwer A.P., (6):289-316, 1994.

[88] Powell D. Failure Mode Assumptions and Assumption Coverage: In Proc. 22nd International
Symposium on Fault-Tolerant Computing. IEEE Computer Society Press, pp.386-395, July,
1992.

[89] Puschner P. and Koza C. Calculating the maximum execution time of real-time programs.
Journal of Real-time systems, Kluwer A.P., 1(2):159-176, September, 1989.

[90] Raju S. C. V., Rajkumar R., and Jahanian F. Monitoring timing constraints in distributed real-
time systems. In Proc. of IEEE 13th Real-Time Systems Symposium, Phoenix, AZ, pp. 57-67,
December 1992.

[91] Reilly M. Instrumentation for application performance tuning: The M3l system. In Simmons
M., Koskela R., and Bucher I., eds. Instrumentation for Future Parallel Computing Systems,
pp. 143-158. Addison-Wesley, Reading, MA, 1989.

[92] Rothermel G. and Harrold M.J. Analyzing regression test selection techniques. IEEE trans.
Software Engineering. 8(22):529-551. August 1996.

[93] Rushby J. Formal methods and their Role in the Certification of Critical Systems. Proc. 12th

Annual Center for Software Reliability Workshop, Bruges 12-15 Sept. 1995, pp. 2-42.
Springer Verlag. ISBN 3-540-76034-2.

123

[94] Rushby J., Formal Specification and Verification for Critical systems: Tools, Achievements,
and prospects. Advances in Ultra-Dependable Distributed Systems. IEEE Computer Society
Press. 1995. ISBN 0-8186-6287-5.

[95] Sandström K., Eriksson C., and Fohler G. Handling Interrupts with Static Scheduling in an
Automotive Vehicle Control System. In proceedings of the 5th Int. Conference on Real-Time
Computing Systems and Applications (RTCSA’98). October 1998, Japan.

[96] Schütz W. Fundamental Issues in Testing Distributed Real-Time Systems. Real-Time Systems
journal, vol. 7(2): 129-157, Kluwer A.P., 1994.

[97] Schütz W. Real-Time Simulation in the Distributed Real-Time System MARS. In proc.
European Simulation Multiconference 1990, Erlangen, BRD, June 1990.

[98] Shaw M., Clements P., A field guide to boxology: preliminary classification of architectural
styles. In proc. 21st Annual International Computer Software and Applications Conference,
1997 (COMPSAC '97). ISBN: 0-8186-8105-5.

[99] Shimeall T. J. and Leveson N. G. An empirical comparison of software fault-tolerance and
fault elimination. IEEE Transactions on Software Engineering, pp. 173-183, Feb. 1991.

[100] Shin K. G. HARTS: A distributed real-time architecture. IEEE Computer, 24(5), pp. 25-35,
May, 1991.

[101] Sifakis J. and Yovine S. Compositional specification of timed systems. In Proc. 13th Annual
Symposium on Theoretical Aspects of Computer Science, STACS'96, Grenoble, France,
Lecture Notes in Computer Science 1046, pp. 347-359. Springer Verlag, February 1996.

[102] Sommerville I. Software Engineering. Addison-Wesley, 1992. ISBN 0-201-56529-3.
[103] Szyperski C. Component Software - Beyond Object-Oriented Programming. Addison-Wesley,

1997.
[104] Tai K.C, Carver R.H., and Obaid E.E. Debugging concurrent Ada programs by deterministic

execution. IEEE transactions on software engineering. Vol. 17(1), pp. 45-63, January 1991.
[105] Thane H. and Hansson H. Handling Interrupts in Testing of Distributed Real-Time Systems. In

proc. Real-Time Computing Systems and Applications conference (RTCSA’99), Hong Kong,
December, 1999.

[106] Thane H. and Hansson H. Towards Systematic Testing of Distributed Real-Time Systems.
Proc. 20th IEEE Real-Time Systems Symposium, Phoenix, Arizona, December 1999.

[107] Thane H. and Hansson H. Using Deterministic Replay for Debugging of Distributed Real-
Time Systems. In proceedings of the 12th Euromicro Conference on Real-Time Systems
(ECRTS’00), Stockholm, June 2000.

[108] Thane H. Asterix the T-REX among real-time kernels. Timely, reliable, efficient and
extraordinary. Technical report in preparation, Mälardalen Real-Time Research Centre, Dept.
Computer Engineering, Mälardalen University, 2000

[109] Thane H. Design for Deterministic Monitoring of Distributed Real-Time Systems. Technical
report, Mälardalen Real-Time Research Centre, Dept. Computer Engineering, Mälardalen
University, 1999.

[110] Tindell K. W., Burns A., and Wellings A.J. Analysis of Hard Real-Time Communications.
Journal of Real-Time Systems, vol. 9(2), pp.147-171, September 1995.

[111] Tokuda H., Kotera M., and Mercer C.W. A Real-Time Monitor for a Distributed Real-Time
Operating System. In proc. of ACM Workshop on Parallel and Distributed Debugging,
Madison, WI, pp. 68-77, May, 1988.

[112] Tsai J.P., Bi Y.-D., Yang S., and Smith R.. Distributed Real-Time System: Monitoring,
Visualization, Debugging, and Analysis. Wiley-Interscience, 1996. ISBN 0-471-16007-5.

[113] Tsai J.P., Fang K.-Y., Chen H.-Y., and Bi Y.-D. A Noninterference Monitoring and Replay
Mechanism for Real-Time Software Testing and Debugging. IEEE Trans. on Software Eng.
vol. 16, pp. 897 - 916, 1990.

[114] Voas J M and Freidman. Software Assessment: Reliability, Safety, testability. Wiley
Interscience, 1995. ISBN 0-471-01009-x.

[115] Voas J. and Miller. Designing Programs that are Less Likely to Hide Faults. Journal of
Systems Software, 20:93-100, 1993,

124

[116] Voas J. PIE: A dynamic Failure Based Technique. IEEE Transactions on Software
Engineering, vol. 18(8), Aug. 1992.

[117] Xu J. and Parnas D. Scheduling processes with release times, deadlines, precedence, and
exclusion, relations. IEEE Trans. on Software Eng. 16(3):360-369, 1990.

[118] Yang R-D and Chung C-G. Path analysis testing of concurrent programs. Information and
software technology. vol. 34(1), January 1992.

