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Email: jan.carlson@mdh.se

Abstract—Component-based development of embedded sys-
tems has been suggested as a means to increase development
efficiency by, for example, facilitating reuse. However, the
specifics of the embedded systems domain also raise some
particular difficulties when applying this approach. For ex-
ample, when glue code is automatically produced from an
architectural specification, a systematic approach where fully
reusable code is generated for all entities in the system, can
lead to unaffordable overhead in embedded systems with severe
resource limitations and temporal constraints. If, on the other
hand, highly optimized code is produced by taking advantage
of the specific context in which each component is used, then
the generated code is not reusable in other contexts, and the
potential benefits of component-based development are not
fully exploited.

In this paper, we present a component-based framework
that permits a more detailed trade-off between optimization
and reusability, by automating the integration of components
for which the software designer can specify the desired reuse
potential. Depending on this specification, the integration code
is either reused and adapted, or completely optimized.
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I. INTRODUCTION

More and more products in our everyday life include func-
tionalities that are provided by embedded software systems.
In order to cope with an increasingly competitive market,
these functionalities are more and more sophisticated, and
thus increasingly complex. For the same reason, the design
of such embedded systems must cope with a constant need
to shorten time-to-market.

In order to accelerate the design of such systems,
component-based software engineering (CBSE) proposes to
build them by assembling well identified subsets of the
software functionalities, called software components. One
of the benefits of such an approach is the possibility to
reuse and integrate existing components, possibly developed
externally. In this context, software components are most
of the time of gray-box nature: even if their behaviour can
be captured by the component model semantics or some
external specifications, their internal implementation is not
exhaustively modelled.

Although gray-box component models have been success-
fully used in general purpose software engineering, their
adoption in the domain of real-time embedded systems still
raises important challenges [1]. In particular, these systems
often have heterogeneous non-functional constraints, which
makes the reuse of existing code in different usage contexts
difficult. Reuse of code has a greater potential impact on
development time than reuse only at model-level, since
it allows for reuse of code-level analysis and test results
together with the code.

Indeed, generating code for a fully reusable entity requires
considering that this entity might be reused in any usage
context, and the overhead of the resulting code may be
unaffordable due to the required general mechanisms. On
the other hand, synthesizing code for one particular usage
context leads to produce optimized entities although loosing
the potential benefits of a CBSE approach: component
independence and reusability.

In this paper, we present a component-based framework
that automates the integration of reusable gray-box com-
ponents. This framework helps in realizing the trade-off
between reusability and optimization by proposing:

i) an architecture of the generated code that separates
clearly three different levels of reusability and optimi-
sations,

ii) a general purpose implementation of the generated code
that aims for reusability of the produced entity; and

iii) optimization algorithms that address the fusion of hier-
archically nested components.

The remainder of this paper is organized as follows: In
Section II we present ProCom, the component model our
approach is based on. Sections III, IV, and V present respec-
tively the architecture of the generated code, the principles
of its implementation from a reusability perspective, and
the adaptation of an implementation to a particular usage
context. Finally, we compare our contribution to related
works in Section VI, before Section VII concludes the paper
and outlines future work.
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II. BACKGROUND – PROCOM, THE COMPONENT MODEL

The proposed synthesis approach has been investigated in
the context of ProCom [2], a component model specifically
targeting the domain of distributed real-time systems. In this
section, we present those aspects of the component model
that have a significant impact on the synthesis process.

To address the different concerns that exist on different
levels of the design of such systems, ProCom consists of
two distinct, but related, layers. The upper layer models
a distributed embedded system as a number of active and
concurrent subsystems, communicating by message passing.
Our synthesis approach, however, is concerned with the
lower layer which addresses the internal design of a subsys-
tem. That layer is based on a notion of passive components,
and the communication between them follows a pipes-and-
filters architectural style with an explicit separation between
data and control flow. The former is captured by data ports
where data of a given type can be written or read, and
the latter by trigger ports that control the activation of
components.

In order to implement complex functionalities, compo-
nents can be connected by simple connections that transfer
data or control, or connectors providing more elaborate
manipulation of the data- and control flow.

ProCom is hierarchical, meaning that components can be
internally constructed by a set of interconnected subcom-
ponents, possibly in several levels of nesting. Contrasting
such composite components, the primitive components at the
bottom of the hierarchy are implemented as C functions.

Figure 1 shows the model of a composite ProSave com-
ponent. Trigger and data ports are denoted by triangles and
rectangles, respectively, and the filled circle is a compact
representation of data fork and control fork connectors.

A main characteristic of ProCom is that the control flow
is very explicitly captured in the architectural model. This
is partly due to the separation of data- and trigger ports,
which allows the control flow to be modelled by trigger port
connections, but more importantly it is a consequence of the
severe restrictions imposed on the component behavior by
the component model.
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Figure 1: Composite ProCom component

Ports are structured into port groups (denoted by dashed
boxes in the figure) consisting of one trigger port and a
number of data ports. The data of a group are always pro-
duced or consumed together, in an atomic and conceptually
instantaneous action, when the trigger port of the group is
activated.

The functionality of a component is provided as a set
of services, each consisting of one input port group and
a number of output groups. In Figure 1, the composite
component consists of a single service with two output
groups, and the two subcomponents have two services each,
denoted by the dashed lines.

Services are triggered individually and can execute con-
currently, while sharing only internal state data. The data at
the input port group are accessed at the very start of each
invocation, and any subsequent writing of data to the input
ports will not affect the component until the next invocation.
When each output port group has been activated once, the
service changes from active to idle state.

These restrictions serve for tight read-execute-write be-
havior of a service, but they also mean that the control flow
can be determined without knowledge of the component’s
internals. Another restriction, stating that an activation of a
service that is already active is simply ignored, avoids the
problem of multiple concurrent, and possibly overlapping,
activations of a service.

III. ARCHITECTURE OF THE GENERATED CODE

The architecture of the generated code aims at imple-
menting a trade-off between reusability of existing code
and adaptation to a specific usage context. To achieve
this objective, we have identified possible variations in the
implementation of the ProCom semantic. These variations
depend on the architectural context in which a component
is used as a subcomponent. As an example, Figure 2 shows
three different usage contexts of the components Producer,
Consumer1 and Consumer2. The impact of this variation
on the implementation of the component wrappers will be
addressed in Sections IV and V.

We present in this section how the architecture of the
generated code has been designed in order to deal with
this variability while reusing as much as possible the code
that has already been produced, and possibly validated.
The basic principle of this architecture is to externalize all
variable parts in a service handler implementation, while
the interfaces definition and the internal implementation
represent the reusable view of the service implementation.

Figure 3 represents the data structures generated for a
composite component. This architecture is divided in three
main parts. The first one represents the component inter-
faces, a data structure that can be reused in any usage context
of the component. This architectural layer consists of two
data structures: The Component data structure represents a
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Figure 2: Different usage contexts of the same subcomponents
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Figure 3: Generated Code Architecture

component instance, and also defines a reference to the inter-
nal state of the component, to be used by the functional code
to define, initialize and access the internal state. The Service
data structure corresponds to a service of this component,
including references to its input and output ports.

The second part represents the implementation of those
interfaces, and corresponds to the external, variable part
of the generated code in that it be adapted to a specific
context. The Service handler data structure is the main
constituent of this layer. This entity represents a context
dependent implementation of the service interfaces, and will
be replaced when the user context is known. It implements
context-independent trigger operations (in and out) as well
as data transfer operations (in and out).

Finally, the third layer represents the internal implemen-
tation of a component. This layer implements the behaviour
specified by connections to (and between) subcomponents
inside the composite, and remains unchanged independently
of changes in the usage context of the component. In some
situations it might be beneficial to allow adjustments also
in this layer, but such an extension of the approach is
not addressed in this paper. The Subservice handler data
structure corresponds to the internal implementation of a
composite component. This entity gathers the definition of
subservices, either in reusable form or a re-synthesized
version.

This architecture separates the variable and stable parts of

the generated code. Based on this architecture, we present
in the next section the synthesis of component code that can
be used in any context. After that, in Section V, we describe
how components are adapted for a given context.

IV. GENERAL PURPOSE SYNTHESIS

When a component is independently synthesized, the syn-
thesis tool does not have any information about the context
in which the component will be used. As a consequence,
the production of a reusable unit requires implementing
the component interfaces in the most general case, while
ensuring the respect of the component semantics.

A. General Interface Implementation

Some aspects of the ProCom semantics were presented
in Section II, and we extract from this specification the fol-
lowing properties that have to be ensured for the generated
code to satisfy the semantics independently of context:

1) Stable data: Input ports are read at service invoca-
tion, and the resulting values must remain unchanged
throughout the computation, independently of new
data arriving to the ports.

2) Service locking: Activations arriving to an already
active service are ignored.

3) Atomic group data transfer: The data of the out-
put data ports in a group are all transferred to the
connected components in a single atomic action, per-
formed when the trigger port of the group is activated.

To tackle the issues of stable data and atomicity, we
propose a double buffer implementation for data interac-
tions: the output port of a component is represented by two
buffers, one that can be updated during the execution of
the component, and one that contains the last up-to-date
value. The transfer of data from producer to consumers then
consists of just sending a reference to the up-to-date buffer.

When a service is triggered (i.e., when the trigger port
of the input port group is activated), service locking is
implemented by first checking if the service is already active.
If in idle state, data for each input port group is copied to an
internal data structure from the source of the last reference
received. This internal structure remains unmodified during
the execution of the service.



In order to ensure data atomicity and consistency, this
copying of data into a consumer must never be performed
simultaneously with (or interleaved by) the action transfering
data from the producer. This is ensured by executing the
trigger operation in a dedicated critical section, as further
detailed in [3]. The double buffer solution, described above,
is preferred over a single buffer implementation, since it
reduces time spent in the critical section (only a pointer
switch on the writer side).

Listing 1 illustrates service locking and data transfer
operations as they are generated for the service handler of
component Consumer1 from Figure 2(a), independently of
any usage context.

1 int Consumer1 t in1 (Consumer1 svc ∗ svc){
2 // Ignore trigger if already active
3 if (svc−>active) return 0;
4 else {
5 svc−>active=1;
6 Consumer1 transfer d in1(svc );
7 return 1; // Schedule the component’s execution
8 }
9 }

10
11 void Consumer1 transfer d in1(Consumer1 svc ∗ svc) {
12 // Copy external−>internal view (cnx d in1−>d in1)
13 svc−>d in1=svc h−>cnx d in1;
14 }

Listing 1: Component interface implementation

B. Internal Implementation
One of the main advantage of the ProCom component

model is the ability to explicitly model the control and
data flow. Thus, in most cases the internal behaviour can
be achieved by a hardcoded sequence of calls invoking
subcomponent services.

However, there are constructs in ProCom that allows
the definition of systems where the control-flow is only
partially known statically. One such construct is the se-
lection connector, by which data dependent control flow
decisions can be defined. Another case is when there are
subcomponent services with multiple output groups, and
that subcomponent is reused rather than re-syntesized in
this particular context. The semantics states that for each
activation of the subservice, each of the output port groups
will be triggered exactly once, but the order in which ports
are triggered is not known at design time.

Thus, in the general case, the generated code must enable
the orchestration of components based on information re-
ceived at runtime. To handle this, the enclosing component
stores information about activated subservices in a list and
schedules the corresponding subcomponents according to a
predefined orchestration policy.

V. REUSE AND ADAPTATION

Whenever a component is used (or reused) within a larger
system, the external part of the component implementation

(i.e., the interface implementation) can be adjusted based
on information about that particular context, to reduce the
overhead.

Generally speaking, the usage context of a component
instance consists of all entities in the enclosing unit that
is being synthesised, and attributes associated with them or
with the system as such, including for example temporal
requirements and the mapping of components onto the
execution platform. It also includes attributes associated
specifically with this instance of the reused component. The
detailed adaptation algorithm proposed here is mainly based
on architectural information, and extending it to pay more
attention to non-functional requirements will be addressed
as future work.

As an example, we consider the three contexts illustrated
in Figure 2. In (a) and (c), the writing of data to port d in 2
of the Consumer2 component is potentially performed in a
different thread than (and thus possibly concurrently with)
the triggering and execution of the component. Thus, in these
cases, the general interface implementation, with double
buffers and locking, is needed to ensure data consistency
and conformance to the ProCom operational semantics.
However, in (b), since the producer and consumer belong to
the same service in the enclosing composite, and since the
triggering order between them can be determined statically,
the interface implementation can be optimized to use a single
buffer and no locking, without modifying the internal imple-
mentation of the component. The details of this adaption are
described later in this section.

A key objective of our approach is to take advantage of the
usage context information in order to reduce the overhead
in the general purpose service handlers and the generated
glue code. To accomplish this, we propose a set of model
transformation steps in order to achieve an optimal fusion
of components and subcomponents in that particular context.
The main requirement of this fusion process is to preserve
the integrity of the components semantic.

Given a composite component to synthesise, the role of
our synthesis process is to produce an optimized reusable
binary code library for that component based on the archi-
tecture defined in Section III.

The main steps of the synthesis process are the following:
1) Transform the hierarchical model into a single flat

model (down to components that are primitive or
reused).

2) Extract the control and data flow information.
3) Refine the order of service execution.
4) Generate optimized interface implementations for sub-

components.
5) Generate the interfaces and general interface imple-

mentation code for the synthesised entity, and code
realizing the internal control- and data flow.

In the remainder of this section we present in more details
these different steps.



1) Model Flattening: The model flattening is completely
safe with regards to preservation of the operational com-
ponent semantics. This step consists of representing the
whole tree of nested subcomponents as a single collection
of connected primitive and reused components. Instances
of composite components are removed, and their internal
subcomponent structure is added to the enclosing entity,
together with constructs that emulate the semantics of the
removed composites where needed.

2) Control and Data Flow Extraction: From the result
of step 1, we build graphs corresponding to the control- and
data flow of the synthesised entity. For each service of the
synthesised entity, there is an associated set of subservices
(i.e., services of subcomponents) and a set of progress
steps representing the different advancement points in terms
of control flow, such as calling the entry function of a
subservice, evaluating the guard of a selection connector,
etc.

3) Control Flow Refinement: Without any requirements
on the synthesised component, it is not possible to make wise
choices about the optimal ordering of multiple interactions
(as presented in section IV). In our future work, we plan
to integrate non-functional requirements such as timing
and memory footprint requirements to lead this decision.
For now, the synthesis tool implements the straightforward
choice to execute forked paths in sequence, and to finish the
control path leading out of one port group before returning
to resume the subcomponent.

4) Adapting Subcomponent Interface Implementations:
As described previously, the general interface implementa-
tions of the subcomponents can be adapted to their particular
context in this synthesised entity. Concretely, two main
optimizations are applied to simplify the locking and double
buffer protection against concurrent reading and writing of
data, where applicable.

First, concurrent reading and writing of a data port is not
possible if all writing and reading of the port are performed
in the same enclosing service of the synthesised entity, since
the semantics prevents multiple threads from executing the
service concurrently. Thus, in these situations the costly
locking mechanism is not required, and can be removed.

Second, the role of the double buffers is to ensure that data
transfer takes place only when the trigger port of the group
is activated. The condition under which this holds trivially
without an additional buffer for the data port p is that for
all ports p′ receiving data from p, the following holds:

i) p and p′ belong to subcomponents, not to the synthe-
sised entity; and

ii) The port group of p is either always triggered before
the port group of p′, or always triggered after the full
execution of the subservice that p′ belongs to.

Removing the double buffering means that the reader
and writer can communicate by a single shared variable,
without breaking the strong limitations in the component

model restricting communication to occur only when a port
group is triggered.

5) Code Generation: As the final step of the synthesis
process, code is generated for the synthesised unit. Follow-
ing the architecture described in Section III, the generated
code consists of interfaces, a general interface implementa-
tion, and an internal implementation based on the control-
flow representation and references to the subcomponents
(primitive or reused).

VI. RELATED WORK

Many component frameworks already exist both in in-
dustry and in academic research. The focus of this this
section is approaches that support gray-box components,
i.e., their internal behaviour is not exhaustively known, and
address synthesis and integration of reusable components in
embedded systems.

CAmkES [4] is a component model dedicated to the
design of real-time operating system focusing on secu-
rity properties. The interaction semantic of this component
model is based on three paradigms: interface based, event
based, and data based. Data interactions are meant for
representing shared memory space between two software
components. As a consequence, this component framework
requires identifying, during the design, the existence of
shared memory accesses.

CIAO [5] and MyCCM-HI [6] is a component framework
dedicated to the adaptation of the Lw-CCM1 standard to the
domain of real-time and embedded systems. The scope of
the work presented in [5] is very close to the scope of the
contribution presented in this paper insofar as it aims at au-
tomating the fusion of components in order to meet the strict
non-functional requirements of embedded systems. To that
respect, the component-based architecture presented in this
paper defines a specific structure (namely context) that has to
deal with modifications of the component’s usage context.
However, this approach relies on a semantic, initialization
process and underlying middleware that limits its usability
in very constrained (in terms of memory, performances, and
predictability) embedded systems. Indeed, the architecture
focuses on flexibility of the design and thus relies on
dynamic initialization and configuration of the components’
data structure. In [6], the authors use a static deployment and
configuration approach on top of a middleware dedicated to
embedded systems. However, this work focuses on adaptive
systems, not on the reuse/optimization trade-off.

Contrasting with our approach, the component models
used in these frameworks does not impose any restriction on
the component’s behaviour: once a component is activated,
its output interfaces may (not must) be activated. As a conse-
quence, our framework automates the decision of the usage

1Standard from the Object Management Group: Light Weight CORBA
Component Model Revised Submission; Document realtime/03-05-05 edn.



of shared memory by i) using a more abstract specification
of the interactions and ii) taking advantage of the semantic
restriction imposing that when a component is activated, its
output interfaces must be triggered once and only once.

Component adaptation is also addressed by, e.g., Canal
et al. [7]. The main difference compared to our work is
that they use interface adaptation as a means to compose
components that are not fully compatible, while our goal is
to increase efficiency without violating a restricted commu-
nication semantics.

In the scope of model driven optimizations for embedded
systems, two works are of particular interest. Both use
AADL2, a component-based language in which the mod-
elling artefacts represent concrete entities of the software
and hardware architecture (processes, data, subprograms,
processors, memory, etc.). Besides, AADL defines a precise
execution semantic for each of the software components that
enables the formal analysis of the whole system.

Based on the Ocarina tool suite, that aims at synthesizing
AADL model into different programming languages, [8]
proposes an approach to fusion the different activities (or
threads) of a real-time embedded system. This work is a
complement to the contribution presented in this paper, and
the proposed fusion of activities can be an interesting result
to be used as an input of our optimizations.

In ArcheOpterix [9], the authors propose some heuris-
tics to automate the decision of the software-to-hardware
allocation, thus improving different quality attributes of the
architecture. The results presented in this work are also
complements of our contribution.

Besides complementary, our contribution pursues a differ-
ent objective: reusability of generated code. Both [8] and [9]
focus on optimizations at a different level of abstraction,
closer to the final realization of the overall system.

VII. CONCLUSION AND FUTURE WORKS

The integration of software components is a difficult
task, especially when addressed in the domain of embedded
systems. Indeed, it requires implementing the interactions
between those components not only in order to provide
the desired functionalities but also to ensure the respect of
non-functional properties. Considering the effort required to
reach this objective, a satisfactory result should be reused
in future evolutions of the system, or even in other systems
requiring the same functionality.

In general, component-based software engineering has
been a fruitful solution for both integration and reuse of
existing software. However, its adoption in the scope of
embedded systems still raises important challenges. In par-
ticular, we have shown in this paper that the usage of CBSE
in embedded systems implies a trade-off between reusability

2Standard from the Society of Automotive Industry: Architecture Anal-
ysis and Design Language

and optimization of the corresponding component. To tackle
this issue, the principles presented in this paper help in
synthesizing code for components integration. Besides, we
propose in this paper a set of optimization steps that aim
at reducing the overhead (in terms of memory footprint and
execution time) due to the presence of glue code.

As future work, we need to extend our approach by taking
into account more information about the usage context of a
component, like non-functional properties for instance. This
could help the software designer in deciding the level of
optimization/reuse of a component. The treatment of non-
functional properties to decide on the ordering of compo-
nents is also part of our future work.
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