
Flexible Semantic-Preserving Flattening of Hierarchical Component Models

Thomas Lévêque, Jan Carlson, Séverine Sentilles
Mälardalen Real-Time Research Centre,
Mälardalen University, P. O. Box 883,

SE-72133 Västerås, Sweden
Email: firstname.lastname@mdh.se

Etienne Borde
Institut TELECOM, TELECOM ParisTech, LTCI,

Paris, F-75634 CEDEX 13, France
Email: etienne.borde@telecom-paristech.fr

Abstract—Hierarchical component models allow to better
manage system design complexity compared to flat component
models. However, many analysis techniques lack support for
dealing with hierarchical models. This paper presents a general
approach to use existing analysis on hierarchical component
systems by means of a flattening transformation. The transfor-
mation can be partially applied, which provides a possibility
for tradeoffs between analysis scalability, result precision and
reusability concerns.

The general approach has been implemented and evaluated
in the context of ProCom, a hierarchical component model for
real-time embedded systems. As a result, the paper describes
a flattening transformation which preserves the ProCom oper-
ational semantics and presents the related optimizations.

Keywords-component model; transformation; analysis;

I. INTRODUCTION

Component-based software engineering (CBSE), where
systems are built from pre-existing components interacting
though well-defined interfaces, has been recognized as a
promising approach to deal with complexity and facilitate
reuse. To address the complexity of modern software, hi-
erarchical component models support components that are
in turn built from a collection of interconnected smaller
subcomponents. Contrasting these composite components,
the primitive components at the bottom of the hierarchy are
implemented by code.

The use of CBSE also brings other benefits, including the
possibility to model the functionality and extra-functional
properties (EFPs) of individual components, in order to
establish system level properties at an early stage of the de-
velopment. This is particularly important in domains where
aspects such as dependability and timing are crucial to the
overall correctness of the system, for example in critical
real-time embedded systems.

In the context of hierarchical models, we distinguish
between two classes of analysis methods that operate on
a single hierarchical level. Compositional analysis can be
applied recursively to each composite entity in the hierarchy,
since the result from one serve as input to the analysis of
the enclosing entity. As an example from this category, we
can consider analysis deriving the worst-case execution time
(WCET) of a composite component, based on the WCET of
subcomponents and the way they are interconnected.

Contrasting this, non-compositional analysis cannot be
applied recursively, e.g., because the analysis does not
produce the same information about the composite entity
as it requires as input for the subcomponents. To exemplify
this category, we can consider an analysis that checks if the
composite component is deadlock-free, based on input-to-
output dependencies of the subcomponents.

Applying non-compositional analysis techniques to hi-
erarchical component models is difficult and requires a
lot of additional manual effort. For example, transforming
manually the hierarchical model into a flat variant accepted
by the analysis, is error-prone and can make it hard to locate
problems identified by the analysis back to the right com-
ponent in the original model. At the same time, restricting
developers to flat component models limits their ability to
handle complexity during the development process.

Compositional analysis, on the other hand, can be di-
rectly applied to hierarchical models. However, this typically
comes at the cost of reduced analysis precision, since the
information propagated between hierarchical levels is often
a subset of the information available during the analysis of a
single level. For example, the compositional WCET analysis
outlined above is based on the WCET of subcomponents, but
has no information about the conditions under which these
worst cases occur, and must thus consider as a safe over-
approximation the case when all subcomponents exhibit their
worst possible behaviour at the same time.

This paper proposes a generic approach to allow both
compositional and non-compositional analysis to be used on
hierarchical component models, using a flattening transfor-
mation which preserves the original operational semantic.
In the case of compositional analysis, the approach provides
increased flexibility by facilitating tradeoffs between scala-
bility, precision and reuse concerns. The approach has been
experimented in the context of ProCom, a component model
specifically targeting real-time embedded systems [1].

Section II gives a high-level description of the proposed
solution, followed by a detailed concretization of the ap-
proach for the ProCom component model in Section III.
Section IV presents results of our experiments on ProCom,
and related works are described in Section V. Finally,
Section VI concludes and presents ongoing and future work.

jcn01
Textruta
37th EUROMICRO Conference on Software Engineering and Advanced Applications. August 30 to September 2, 2011. Oulu, Finland. Copyright by IEEE.

II. THE APPROACH

As stated in the introduction, many analysis techniques
cannot be performed directly on hierarchical component
models. In order to benefit from the EFP computation
capability of these existing analyses as well as benefiting
from the abstraction and reuse advantages of hierarchical
component models, our main objectives are to:

i. make the integration of existing analysis on hierarchi-
cal component models as easy as possible; and

ii. deal with analysis scalability and result precision.

The main idea of our approach is not to change analysis but
to work on the analysis inputs to reduce their complexity and
their size. Our generic approach addresses the considered
objectives with following solutions:

• Instead of modifying analysis, we choose to transform a
system described by a hierarchical component model to
a model which can be used as input to existing analysis.
This is achieved by providing a model transformation
which flattens all composition levels (objective i).

• One recurrent problem with analysis is their scalability
and their execution time. To speed up the analysis and
improve their scalability, we use optimization to reduce
model size by removing details that are redundant for
the current analysis purposes (objective ii).

• When dealing with large systems, scalability remains
the major problem for analysis. For compositional
analysis, we choose to perform analysis incrementally
on different composition levels. To allow a tradeoff
between scalability concerns, analysis precision and
reuse of analysis results, the flattening transformation
is parameterized to define which components to flatten
(objective ii).

Component 1
Step 1:
Merge 1

Step 2:
Flatten

Component 2
4 5

2 3

6

C 6

…

4 5 6

1Component 6

4 5

1

6

Analysis
Results

1

Step 5: Propagate Step 3: Optimize

Results 4 5 6

Step 4: Analyze

Component Instance

Generated Element

Input/Output

Composition Link

Transformation/Computation (Part of) System Model

Figure 1. Basic Flattening Process.

Algorithm 1: Basic Flattening

Input: Component specifications for all primitive and composite
components in the system.
Output: Analysis results and/or new EFP values associated with the
component specifications.

Step 1: Merge
Merge all component specifications into one model with explicit
links. If the individual component specifications contain implicit
references to other entities, e.g., relying on naming conventions,
these are replaced by explicit references.

Step 2: Flatten
Perform the flattening transformation. Informally, this is done by
replacing references to a composite component by direct
references between entities inside and outside, before removing the
composite. In addition, some new elements might have to be
introduced in order not to change the operational semantics of the
system. Associate EFPs with the generated elements, if required
by the analysis in question.

Step 3: Optimize
Optimize the flattened model. For example, some of the elements
introduced during flattening might not be needed in this particular
system or for this particular analysis, and can thus be removed.

Step 4: Analyze
Perform the needed analysis on the optimized flattened model.

Step 5: Propagate
If the analysis results in new EFPs of the analysed entities,
propagate these to the original model elements.

A. Basic Flattening

The basic flattening approach is defined in Algorithm 1,
and the process is illustrated by an example in Figure 1.
In the example, starting from a system model consisting
of six components (three composite and three primitive),
the first objective is to merge them into a single model
with explicit links between elements (Step 1). Then, the
composite components 2 and 3 are flattened, resulting in
a model consisting of a single composition level (Step 2).
After that, the flattened model is optimized in order to reduce
analysis time, and we assume in the example that one of the
generated elements is identified as semantically redundant
(Step 3). Then, analysis can be performed on the flattened
model (Step 4), and finally, the computed EFP values are
assigned back to the original model elements (Step 5).

The basic flattening process relies on the following as-
sumptions:

1) A flattening transformation exists that preserves rele-
vant properties.

2) The size of the resulting model does not exceed what
analysis can handle.

3) Support exists for annotating the elements of the
component model with extra-functional properties.

To preserve relevant properties of the original component
model, the flattening transformation might need to add new
model elements, such as components and connectors. Note
that it is the analysis purpose, and especially the information
upon which it relies, that should define what properties must

be preserved by the flattening transformation. Otherwise, the
correctness of analysis result is not ensured.

In cases where the analysis technique is based on specific
properties set on the model elements, these additional model
elements have to be decorated as well with these properties
to enable performing the analysis. Taking again the case of
WCET analysis as an example, having the WCET values
for each subcomponent is a prerequisite for the analysis,
and thus this must be specified for any generated element.

Setting these values can be part of the flattening transfor-
mation when the considered properties are known. However,
component models usually allow to define new EFP, e.g., as
a pair of key and value only. This cannot be handled by a
generic transformation, and we propose instead to associate
to each new EFP type definition a specification of how
EFP values of that type can be computed for the generated
elements.

B. Flexible Flattening

The basic process presented above does not completely
fulfil objective ii as analysis scalability problems are only
addressed using some optimization techniques to reduce the
size and complexity of the model. In case of compositional
analysis, a complete flattening potentially increases analysis
precision, but at the same time ruins the benefits of the
compositional approach in terms of scalability.

In order to give developers the means to balance the
benefits of flattening and compositional analysis, we propose
to parameterize the flattening transformation. The new pro-
cess is exemplified in Figure 2, following the steps defined
in Algorithm 2. Unlike the original approach, flattening
is performed on parts of the model instead of the whole
model. To this end, Steps 3 to 6 are iteratively performed
according to the components marked as partitioning points,
i.e., components that we do not want to flatten.

Note that partitioning points do not have to be in separate
parts of the hierarchy, as in the example. We might as well
have selected 3 and 9 to be the partitioning points.

In Figure 2, components 3 and 4 are selected as partition-
ing points. The flattening process is driven by this choice,
and the merged model is partitioned into three submod-
els corresponding to components 1, 3 and 4. Flattening,
optimization and analysis are performed on these models
separately, in a bottom-up order.

To ease the complex tasks of identifying good partitioning
point to drive model splitting, we propose to use component
properties to select candidates. For example, the following
properties could be helpful to guide the selection:
• Reusable: Components intended to be reused are in

general at a good granularity. They are not too fine
grained neither too coarse grained. As reusable units,
multiple instances of them can have been defined, so
their analysis results can be reused instead of being
recomputed multiple times.

Algorithm 2: Flexible Flattening

Input: Component specifications for all primitive and composite
components in the system, and a set of partitioning points.
Output: Analysis results and/or new EFP values associated with the
component specifications.

Step 1: Merge
Merge all component specifications into one model with explicit
links.

Step 2: Partition
Partition the model such that the top node of a submodel is either
a partitioning point or the top node in the merged model, and the
leaves are primitive components or partitioning points.

For each submodel, in bottom-up-order:
Step 3: Flatten

Perform the flattening transformation.

Step 4: Optimize
Optimize the flattened model.

Step 5: Analyze
Perform the needed analysis on the optimized flattened model.

Step 6: Propagate
If the analysis results in new EFPs of the analysed entities,
propagate these to the original model elements, and to the
submodel where this top node occur as a leaf.

• Substitutable: A component can be intended to be
substitutable. In this case, there should not be any
impact on the system using this component if the inter-
nal realization is changed and the component external
properties remain unchanged or are at least still valid.
This implies that system analysis should rely only on
the external properties of the substitutable components.

Other properties could also be considered, such as strong
timing requirement which require strong optimization and
accurate estimates. Metrics related to these properties could
be automatically computed to help the developer find good
partitioning point candidates. Further investigations must,
however, be performed to evaluate the suitability of different
metrics with respect to the partitioning points.

The potential benefit on analysis scalability can be ob-
served in the refined assumptions:

1) Analysis is composable.
2) A flattening transformation exists that preserves rele-

vant properties.
3) Analysis can handle the size of the largest submodel.
4) Support exists to annotate the elements of the compo-

nent model with extra-functional properties.
On one hand, performing analysis on every composite
component may be costly and may result in loss of result
precision, such as overestimates. On the other hand, per-
forming an analysis on the whole system can be infeasible
for scalability reasons. That is why a trade-off between
analysis execution time, scalability and result precision must
be defined.

The rest of the paper describes an application of this
approach to the ProCom component model. The main objec-

1 4
4

Step 3 & 4:
Flatten & Optimize Step 5:

Analyze
Step 2:
Partition

6 7

4

8 9

5

2 3

10 11

6 7

12
10 11 12

4
Results

10 11

6 7

12 13

8 9

14

8

5

3

9 8 13 14

3

Step 3 & 4:
Flatten & Optimize

Results

Step 5:
Analyze

8 9

1

8 13 14

Step 3 & 4:
Flatten & Optimize

13 14

Step 5:
Analyze

Composition Link

Component Instance

Input/Output

Transformation/Computation

4 3

1

4

2 3

Flatten & Optimize

Results

AnalyzeComponent Instance

Generated Element
(Part of) System Model

Partitioning Point

Figure 2. Flexible Flattening Process.

tive of the related experiments was to demonstrate that the
approach can be applied. To this end, we define a flatten-
ing transformation which preserves the original operational
semantic, present two optimizations which aim to reduce
complexity and size of resulting flattened model, and show
some performance results of the implementation.

III. FLATTENING IN PROCOM

In this section we concretize the general approach by
applying it to a particular component model. Before defining
the flattening transformation, we introduce the syntax and
operational semantics of this component model.

A. ProCom Component Model

The ProCom component model [1] is specifically devel-
oped to address typical concerns in the domain of distributed
embedded systems, such as resource limitations and require-
ments on safety and timeliness. ProCom is organized in
two distinct layers that differ in terms of architectural style
and communication paradigm. For this paper, however, we
consider only the lower layer, where a system or subsystem
is modelled as a collection of passive components based
on a pipes-and-filters architectural style with an explicit
separation between data- and control flow. The former is
captured by data ports where data of a given type can be
written or read, and the latter by trigger ports that control
the activation of components. Data ports always appear in
a group together with a single trigger port, and the ports
in the same group are read or written together in a single
atomic action. Together, an input group and its associated
output groups are called a service.

Figure 3 (a) shows a simple ProCom component with one
input port group and two output port groups (denoted by
dashed lines). Triangles and boxes denote trigger- and data
ports, respectively.

E1

Component E

E2

(a) (b)

Figure 3. Example of a composite ProCom component, with (a) being its
external view and (b) the internal view.

ProCom is hierarchical, allowing components to be in-
ternally constructed as a collection of interconnected sub-
components. Primitive components are implemented by C
functions. The functionality of a composite component is
determined by its subcomponents, their interconnections,
and connectors that provide detailed control over the data-
and control flow. The set of ProCom connectors include
constructs for forking and joining data and trigger paths,
and for dynamically selecting an execution path depending
on current data port values. Figure 3 (b) exemplifies the
definition of the internal contents of a composite component
consisting of two subcomponents and a fork connector,
graphically represented by a filled circle.

ProCom components do not communicate freely through
their ports, but follow a strict read-execute-write cycle,
where the activation is always initiated externally and the de-
pendencies between input and output are explicitly modelled
in the component interface. All services of a component
are initially in an idle state, just receiving data on its input
data ports. When a service is triggered, i.e., when the input
trigger port is activated, it switches from idle to active state
in which it ignores any further incoming triggers. The active
phase consists of the following steps:

1) The data at the input data ports of the service are atom-
ically copied to internal representations which remain
unchanged until the end of the service execution.

2) The service functionality is executed. Updates to the
output data ports of the service are not made visible
externally until the trigger port of that port group is
activated (from inside the service).

3) When all output port groups have been triggered once,
the service immediately returns to the idle state.

B. The Flattening Transformation

Considering the overall approach presented in the previous
section (see Figure 1), Step 1 is simplified in case of
ProCom, since ProCom models contain only explicit links
and do not rely on naming convention or other implicit link
mechanisms.

In ProCom, composite and primitive components are
subject to the same restrictions in terms of the read-execute-
write cycle described above. Two aspects of the operational
semantics are of particular interest in the context of flatten-
ing:
• Service locking: Triggering of an already active service

is ignored.
• Group synchronization: Data ports of a group are

always written or read together, in an atomic and
conceptually instantaneous action.

Without these, flattening could be achieved by simply re-
placing a composite component by its internal structure, and
merging incoming and outgoing connections of each port of
the composite into a single connection.

In this section, we show how flattening can be performed
in ProCom without violating the operational semantics, by
introducing constructs that explicitly implement the service
locking and group synchronization behaviours of the re-
moved composite component. Before presenting the formal
transformation, we describe informally the underlying idea.

Service locking is implemented by a selection connector
that intercepts all incoming trigger activations, and forwards
them only under conditions that correspond to an unlocked
service. To account for the port group synchronization, we
add a dummy component for each input and output group
(i.e., a primitive component that simply forwards data with-
out modifying it). These components also serve to control
the service locking selection connector, by signalling events
corresponding to the flattened composite being entered and
exited. Naturally, these additional model entities contribute
to the complexity of the flattened model. After presenting
the basic transformation, we will show how this overhead
can be reduced.

Figure 4 illustrates the added constructs when flattening is
applied to an instance of the component depicted in Figure 3.

In the description of the flattening transformation, the
trigger port of a port group (input or output) G is denoted

B1
S

A E1

B2E2
Original elements
Generated elements

Figure 4. Result of the flattening transformation. The circle and diamonds
are shorthand notation for fork- and or connectors, respectively.

Gt, and Gd denotes the data ports of G. To simplify the
presentation, we denote by Gd

n the nth data port of G.
Starting at the component selected for flattening, the

transformation is applied recursively to all subcomponent
instances down to instances that are either primitive or
marked as partitioning points. To flatten an instance of a
composite component, we first replace it by its constituent
elements. Then, for each service of the composite, with I
denoting the input port group and O = {O1, . . . , O|O|} the
output port groups of the service, we perform the following
steps:

1) Add a selection connector S, with boolean data ports
s1, . . . , s|O| initialized to true, one trigger input port
s and two trigger output ports sl and su (representing
the service being locked and unlocked, respectively).
The selection criteria of S are:

su : s1 ∧ . . . ∧ s|O| sl : ¬(s1 ∧ . . . ∧ s|O|)

2) Add a new component A, with one input group AI
identical to I , and one output group AO with AOd =
Id ∪ {a}, where a is a data port of type boolean. The
behavior of A is to simply copy data from input to
output ports, and to write false to port a.

3) Add a data-fork connector F , with one input port f
and output ports f1 . . . f|O|.

4) For each m ∈ {1 . . . |O|} add a data-or connector
Cm, with two input trigger ports cum and clm, and
an output trigger port cm.

5) For each m ∈ {1 . . . |O|} add a component Bm, with
one input group BIm identical to Om, and one output
group BOm with BOd

m = Od
m ∪ {bm} where bm is

a boolean data port. The behavior of Bm is to copy
data from input to output ports and to write true to
port bm.

6) For each m ∈ {1, . . . , |O|}, add the following connec-
tions:

〈su,AI t〉 〈a, f〉 〈fm, clm〉 〈cm, sm〉 〈bm, cum〉

7) For any connection matching the left-hand side of an
expression below, replace it by the right-hand side

connection (where p and p′ are ports outside and inside
the composite, respectively, and n ∈ {1, . . . , |Id|}):

〈p, It〉 ⇒ 〈p, s〉 〈It, p′〉 ⇒ 〈AO t, p′〉
〈p, Idn〉 ⇒ 〈p,AI dn〉 〈Idn, p′〉 ⇒ 〈AOd

n, p
′〉

8) Similarly, replace connections matching the left-hand
side of an expression below (where m ∈ {1, . . . , |O|}
and n ∈ {1, . . . , |Om

d|}):

〈p′, Om
t〉 ⇒ 〈p′,BImt〉 〈Om

t, p〉 ⇒ 〈BOm
t, p〉

〈p′, Om
d
n〉 ⇒ 〈p′,BImd

n〉 〈Om
d
n, p〉 ⇒ 〈BOm

d
n, p〉

C. Optimization
The flattening transformation defined above is developed

to guarantee operational equivalence in all possible scenar-
ios, by adding constructs implementing key behaviours of
the removed composite. Next, we will identify situations
where the transformation can be simplified without compro-
mising the operational correctness.

Service lock optimization: Let E be the composite com-
ponent to flatten, and t the input trigger port of one of its
services. If there exists a composite component E′ such that
E is a subcomponent of E′ (on any level of nesting), and
t can be reached only from one input trigger port t′ of E′,
and only once per activation of t′, then the service which
t belongs to does not require locking, since this is already
ensured by the locking of the enclosing service.

Concretely, this means that the selection S, the data-fork
F , the data-or connectors C1 . . . C|O| and the associated
connections are not needed for this service. Instead, the
connection from an external trigger port leads to the trigger
port of A instead of S, i.e., connections 〈p, s〉 and 〈su,AI t〉
are replaced by the connection 〈p,AI t〉. Also, since the ports
a and bm are now unconnected, they can be removed from A
and Bm, respectively. Figure 5 illustrates this optimization.

A
B1E1

A

BE2 B2
Original elements
Generated elements

Figure 5. Result when service lock optimization is possible.

Group synchronization optimization: An input- or output
port group G of the flattened composite component can be
ignored if

i) all groups that trigger G (directly or through connec-
tors) also write to all data ports of G; or

ii) no group that is triggered by G (directly or through
connectors) receive data from any other group than G.

Under these conditions, the synchronization performed at
group G is also performed when data is produced (case i)
or received (case ii).

Ignoring an input group (I in the definition above) means
that the connections from the external data port leads directly
to ports of internal components or connectors instead of
leading to A. Formally, 〈p,AI dn〉 and 〈AOd

n, p
′〉 are replaced

by 〈p, p′〉 for all n ∈ {1, . . . , |Id|}. Moreover, these (now
unconnected) input and output data ports can be removed
from A.

Similarly, the result of ignoring an output group
(Om in the definition) is that connections 〈p′,BImd

n〉
and 〈BOm

d
n, p〉 are replaced by 〈p′, p〉, for all n ∈

{1, . . . , |Om
d|}. One example of this optimization is illus-

trated in Figure 6.

A B1
S

E1

B2
E2Original elements

Generated elements

Figure 6. Result when group synchronization optimization is possible for
the input group I and for the second output group O2.

Combining the two optimizations: In the case when an
input group I can be ignored and the service locking
optimization has been applied, then A can be completely
removed, and the connections 〈p,AI t〉 and 〈AO t, p′〉 are
replaced by 〈p, p′〉.

Similarly, when an output group Om can be ignored and
service locking optimization has been applied, then Bm can
be completely removed, and the connections 〈p′,BI t〉 and
〈BO t, p〉 are replaced by 〈p′, p〉.

D. EFP of the Generated Elements

Regarding the assignment of EFP values to generated
elements, in the case of our ProCom transformation it is
primarily the introduced primitive components that require
EFPs to be analyzable. For this, we extend the ProCom
attribute framework [2] by allowing value computation
functions (represented by QVT query expressions) to be
associated with each EFP type. The functions define, for
that particular EFP type, how the value should be computed
for A and for the Bm components.

Considering the WCET analysis presented in [3], the
execution time of all generated components consists of the
time required to copy data from input to output ports, which
can be computed from the number of ports and their types.
The execution time of the other constructs do not need to be
explicitly computed and represented in for of an attribute,
since the overhead of connectors is taken into account by
the analysis.

Table I
EXPERIMENT RESULTS.

Source Model Target Model Transform.
hd bf Inst. Conn. Inst. Conn. time
2 5 30 24 35 39 297 ms
2 6 42 28 48 46 375 ms
2 7 56 32 63 53 484 ms
3 5 155 124 185 214 829 ms
3 6 258 172 300 298 1 344 ms
3 7 399 228 455 396 2 253 ms
4 5 780 624 935 1089 3 391 ms
4 6 1554 1036 1812 1810 7 016 ms
4 7 2800 1600 3199 2797 74 563 ms

IV. VALIDATION

A formal proof that the flattening transformation does
preserve all aspects of the operational semantics is outside
the scope of this paper. However, the fact that the semantics
has been formally defined [4], provides a good starting
point for this part of the validation. Constructing the timed
automata defining the semantics of a composite component
and of the corresponding flattened structures, respectively, is
straightforward, but ensuring that they are indeed equivalent
is not quite as simple and will be addressed in our future
work.

Instead, as a first step of validation, we show that the
proposed transformation is not prohibitively costly. The
flattening transformation has been straightforwardly imple-
mented as an operational QVT transformation, and applied
to a number of system models of varying complexity. The
results are summarized in Table I.

For given parameters hd and bf (representing hierarchical
depth and branching factor), a source model is created of the
given depth, and where each composite component contains
bf subcomponent instances and four connectors. The total
number of component instances and connectors in the source
model is thus exponential with respect to the hierarchical
depth.

As expected, the resulting models are larger – as a result
of the introduced elements – but the difference is not that
big. The reported execution time for the transformation is
the average of ten transformations, performed on a dual core
CPU with 2,79 GHz and a memory space of 3,48 GB of
RAM. We observe that even for big systems containing a
thousand component instances, the flattening process takes
only a couple of seconds.

Although scalability of the transformation to handle ex-
tremely large models is not our primary concern, the high
execution time in the last experiment raises some concerns.
There are no conceptual reasons for this, and it is likely
to be an effect of linear searches in QVT, e.g., searching
through the list of connections to find the one leading out
from a particular port, since the model contains no explicit

reference from port to connection, only in the opposite
direction. As stated in [5], existing QVT engines are partial
implementations with room for improvement. Thus, we
believe that scalability can be significantly improved by
a more careful transformation implementation, but further
experiments would be required to investigate this.

The two optimizations discussion in Section III are not
included in the experiments, since their impact depends
to a large degree on the way components are connected.
The experiments needed to yield conclusive results, by
automatically generating composites with different kinds of
representative connection patterns, are part of our planned
future work.

V. RELATED WORK

From the categories described by Woodside et al. [6], our
work focuses on mixing early analysis which rely on the
component model and measurement based analysis used to
compute properties of primitive components and providing
efficient way to deal with analysis scalability issues which
remain a main concern. Our approach is not specific to
performance analysis but can be applied for other purposes
than performance ones.

Some works have proposed operational semantic preserv-
ing analysis to enable and/or simplify analysis and code
generation.

Lasnier et al. [7] propose an incremental transformation
which refines the considered AADL model into a flattened
model for analysis and code generation purposes. Comparing
to our work, the approach is AADL specific, the number of
considered nested levels is small and the AADL models do
not have well-defined formal semantics.

Bozga et al. [8] describe model transformation techniques
in the scope of the BIP component model. These model
transformations include flattening and optimization steps
similarly to the model transformation presented here. The
main differences are (i) in the flexibility of the model
transformation – i.e. the possibility to reuse existing com-
ponents without altering their structure – and (ii) in the
semantics of the component model. As a consequence of
this semantic difference, the considered optimization steps
are very different.

Asztalos et al. [9] propose a framework for formal ver-
ification of model transformations, by checking pre and
post conditions over transformation rules. The technique is
applied to a model transformation that aims at flattening an
input model. It would be interesting to consider this kind
of results to verify our model transformation process in
order to ensure correctness of our flattening transformation
is correct. Verifying the optimization transformation would
be more difficult since it requires a deeper interpretation of
the component model semantics.

In the work of Lublinerman et al. [10], the hierarchy
of components is based on synchronous block diagrams.

As a consequence, the consistency of a model can only
be assessed once the complete hierarchy of components
have been flattened, or using a specific profiling technique
(presented in [10]) which delays the consistency checking
until the complete graph of profiles is available. Considering
another component semantics gives more flexibility in the
flattening process.

A generic tool chain for the Think component model
is proposed by Leclercq et al. [11]. Models of individual
components are merged and explicit links are derived from
naming convention and reside in memory during compila-
tion process. Contrasting with our approach which aims to
simplify the component model used by analysis, it allows
plugging of additional compilation steps which enrich the
component model with additional information such as extra
functional properties.

VI. CONCLUSION

We have described a general approach to allow composi-
tional and non-compositional analysis techniques to be used
on hierarchical component models, by means of a partial
flattening transformation that preserves key semantic as-
pects. In the case of compositional analysis, the proposed ap-
proach facilitates tradeoffs between scalability, precision and
reuse concerns. The presented work improves management
of extra-functional properties by simplifying integration of
existing analysis techniques.

The general approach has been exemplified in the context
of ProCom, a component model specifically targeting real-
time embedded systems, by presenting a flattening transfor-
mation guaranteed to preserve the operational semantics of
ProCom composite components also in the flattened model.
Investigating the applicability of the general method to other
component models will be part of our future works.

In this paper, flattening has been presented in the context
of analysis, but the approach is also applicable as a first step
of code synthesis. Then, the possibility of partial flattening
means that some components in the system hierarchy can
be synthesized specifically to be reusable in any context,
while others can be aggressively optimized for the particular
context in this system.

Using the same flattening mechanism for analysis and
synthesis also helps reducing the gap between model-level
analysis and the properties of the generated code. For
example, a difficult part of the approach is to define EFP
of the constructs that are introduced by the transformation,
and knowing that the same constructs will be considered
during synthesis can significantly simplify this tasks.

Our future works include establishing a formal proof of
operational semantic preservation, implementation of model
transformation variants which preserves different properties,
investigating the role of partial flattening for code synthesis.

ACKNOWLEDGMENT

This work was partially supported by the Swedish Foun-
dation for Strategic Research via the strategic research centre
PROGRESS, and by the Swedish Research Council project
CONTESSE (2010-4276).

REFERENCES

[1] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković, “A component model for control-intensive dis-
tributed embedded systems,” in 11th Int. Symposium on
Component Based Software Engineering. Springer, 2008.

[2] S. Sentilles, P. Štěpán, J. Carlson, and I. Crnković, “Integra-
tion of Extra-Functional Properties in Component Models,” in
12th International Symposium on Component Based Software
Engineering. Springer, 2009.

[3] T. Leveque, E. Borde, A. Marref, and J. Carlson, “Hier-
archical composition of parametric WCET in a component
based approach,” in 14th IEEE International Symposium
on Object/Component/Service-oriented Real-time Distributed
Computing. IEEE, March 2011.

[4] A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu,
and P. Pettersson, “Formal semantics of the ProCom real-
time component model,” in 35th Euromicro Conference on
Software Engineering and Advanced Applications, 2009.

[5] I. Kurtev, “State of the art of QVT: A model transformation
language standard,” in Applications of Graph Transformations
with Industrial Relevance, ser. Lecture Notes in Computer
Science. Springer Berlin, 2008, vol. 5088, pp. 377–393.

[6] M. Woodside, G. Franks, and D. C. Petriu, “The future
of software performance engineering,” in 2007 Future of
Software Engineering, ser. FOSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 171–187.

[7] G. Lasnier, L. Pautet, and J. Hugues, “A model-based
transformation process to validate and implement high-
integrity systems,” in 14th IEEE International Symposium
on Object/Component/Service-oriented Real-time Distributed
Computing. IEEE, March 2011.

[8] M. Bozga, M. Jaber, and J. Sifakis, “Source-to-source archi-
tecture transformation for performance optimization in BIP,”
in IEEE International Symposium on Industrial Embedded
Systems, 2009, pp. 152–160.

[9] M. Asztalos, L. Lengyel, and T. Levendovszky, “Towards
automated, formal verification of model transformations,”
in Proceedings of the 2010 Third International Conference
on Software Testing, Verification and Validation. IEEE
Computer Society, 2010, pp. 15–24.

[10] R. Lublinerman, C. Szegedy, and S. Tripakis, “Modular code
generation from synchronous block diagrams: Modularity vs.
code size,” in Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages.
ACM, 2009, pp. 78–89.

[11] M. Leclercq, A. E. Özcan, V. Quéma, and J.-B. Stefani,
“Supporting heterogeneous architecture descriptions in an
extensible toolset,” in 29th International Conference on Soft-
ware Engineering. IEEE Computer Society, 2007.

