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Abstract. Data �elds provide a 
exible and highly general model for in-

dexed collections of data. Data Field Haskell is a dialect of the functional

language Haskell which provides an instance of data �elds. We describe

Data Field Haskell and exemplify how it can be used in the early phase

of parallel program design.

1 Introduction

Many computing applications require indexed data structures. The canonical in-

dexed data structure is the array. However, for sparse, distributed applications,

other, more dynamic indexed data structures are needed. It is desirable to de-

velop such algorithms on a high level �rst, in order to get them right, since the

low level data representations can be intricate.

Data Field Haskell provides an instance of data �elds { a data type for general

indexed structures. This Haskell dialect can be used for rapid prototyping of

parallel computational algorithms which may involve sparse structures.

Various versions of the data �eld model have been described elsewere [1{4].

The contribution of this paper is a description of an implementation and an

example of how it can be used in parallel program design.

2 The Data Field Model

Data �elds are based on the more abstract model of indexed data structures as

functions with �nite domain [1, 2]. This model is simple and powerful, but for

real implementations explicit information about the function domains is needed.

Data �elds are thus entities (f; b) where f is a function and and b is a bound, a

set representation which provides an upper approximation of the domain of the

corresponding function. We require that the following operations are de�ned for

bounds:

{ An interpretation of every bound as a set.
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{ A predicate classifying each bound as either �nite or in�nite, depending on

whether its set is surely �nite or possibly in�nite.

{ For every bound b de�ning a �nite set, size(b) which yields the size of the

set and enum(b) which is a function enumerating its elements.

{ Binary operations u, t on bounds (\intersection", \union").

{ The bounds all and nothing representing the universal and empty set, re-

spectively.

These operations are chosen to support the usually assumed set of collection-

oriented operations [7] without revealing the inner structure of the bounds. An

important derived operation is explicit restriction: (f; b) # b

0

= (f; b

0

u b). The

theory of data �elds also de�nes '-abstraction, a syntax for convenient de�nition

of data �elds which parallels �-abstraction for functions. See [3, 4].

3 Data Field Haskell

datafield de�nes data �eld from function and bound

! data �eld indexing

bounds the bound of a data �eld

outofBounds an out-of-bounds error value

predicate forms predicate bound from predicate

join, meet \union" and \intersection" of bounds

<\> explicit restriction of data �eld with bound

inBounds checks if an element belongs to the set de�ned by a bound

foldlDf folds (reduces) �nite data �eld w.r.t. binary operation

Table 1. Some operations on data �elds and bounds.

Data Field Haskell is a Haskell dialect where the arrays have been replaced

by an instance of data �elds, a variation of the sparse/dense arrays of [3, 4].

Our implementation of Data Field Haskell is based on the NHC compiler [6] for

Haskell v. 1.3. The implementation is sequential and we have not implemented

any advanced optimizations.

Data Field Haskell has data types Datafield a b for data�elds and Bounds a

for the corresponding bounds. Table 1 lists some functions for data �elds and

bounds. It has a rich variety of �nite and in�nite bounds: dense bounds, i.e., tra-

ditional array bounds, sparse �nite bounds, which represent general �nite sets,

predicate bounds, which are classi�ed as in�nite, universe which represents the

universal set, and empty which represents the empty set. Product bounds repre-

sent Cartesian products and generalise multidimensional array bounds.



3.1 Forall- and For-abstraction

Data Field Haskell provides '-abstraction, with syntax similar to �-abstraction

in Haskell [5]:

forall apat

1

: : : apat

n

-> exp

The semantics of forall x -> t is datafield (\x -> t) b, where b is com-

puted from bounds of data �elds in t as to give an upper approximation of the

domain of \x -> t. It can be thought of as an implicitly parallel, functional

forall statement where �rst b is computed and then, if needed, \x -> t is

computed for all x in b.

for-abstraction provides a convenient syntax to de�ne a data �eld by cases

over di�erent parts of its domain. The syntax is

for pat in { e

1

-> e

0

1

; : : : ; e

n

-> e

0

n

}

where the e

i

are bounds and the e

0

i

are data �eld values. The semantics is a data

�eld whose bound is restricted by the union of e

1

; : : : ; e

n

and whose value for

each x is e

0

i

! x, for the lowest i such that x belongs to e

i

.

4 An Example

We exemplify the use of Data Field Haskell with simulation of a system of

particles over a range of time. Each particle i has a state (�r

i

; �v

i

) with a position �r

i

and a velocity �v

i

. The state transition function (1) gives the new state after time

�t. These equations are parameterized w.r.t. f

i

, which yields the acceleration

a

i

for each particle i from the spatial distribution of the particles. They are

more or less directly expressed

1

in Data Field Haskell in Fig. 1. The result is

an executable, dimension-polymorphic speci�cation of particle simulation with

time step dt.
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This speci�cation can be manually re�ned into a more explicitly parallel al-

gorithm for particle simulation by distributing the particle state onto a set of

processors, and localizing the parallel algorithm by neglecting long-range inter-

actions. The resulting parallel algorithm has a distributed state which consists

of a predicate, a sparse particle data�eld, and a neighbourhood bound for each

processor. A processor \owns" each particle in the area de�ned by its predicate.

After each iteration every processor tests which particles it now owns. This test

is localized to particles originating from the neighbours only. This approxima-

tion is correct only if long-range interactions can be ignored, for instance if we

1

The explicit restriction in p newstate is necessitated by a 
aw in the current deriva-

tion of bounds for forall-abstraction. We expect to rectify it in later releases of

Data Field Haskell.



data Pstate = PS (Datafield Int Float) (Datafield Int Float)

pos (PS r _) = r

vel (PS _ v) = v

p_newstate dt f s =

forall i ->

let ai = f i s in

PS ((forall k-> ((pos (s!i))!k) + ((vel (s!i))!k)*dt)

<\> bounds (pos (s!i)))

(forall k-> ((vel (s!i))!k) + (ai!k)*dt)

data Dstate proc_id part_id = DS ((Datafield Int Float) -> Bool)

(Datafield part_id Pstate)

(Bounds proc_id)

pred (DS p _ _) = p

state (DS _ s _) = s

neigh (DS _ _ b) = b

prunion d1 d2 =

forall x -> if (inBounds x (bounds d1)) then d1!x else d2!x

prUnion = foldlDf prunion (datafield (\x -> outofBounds) empty)

d_newstate dt f dstate =

forall p ->

DS (pred (dstate!p))

(let {

neighstate = prUnion

(for pn in neigh (dstate!p) -> state (dstate!pn));

newstate = (p_newstate dt f neighstate) }

in newstate <\> predicate (\j -> pred (dstate!p) (pos (newstate!j))))

(neigh (dstate!p))

Fig. 1. Data Field Haskell solutions for the simulation problem: executable speci�ca-

tion, and parallelised version.



simulate molecules which interact through collisions only. The set of neighbour

processors is described, for each processor, by its neighbourhood bound. Fig. 1

also gives the data type and transition function d_newstate for the distributed

particle simulation. d_newstate �rst computes, for each processor, the union

of the particles over the neighbours, then a local state transition for these, and

�nally it \masks out" the particles which now belong to it. (Since data �elds are

not sets we must instead of set union use \prunion", which gives priority to its

�rst argument for indices where both arguments are de�ned.) d_newstate does

not modify the predicate �eld, but this is possible and could be used to model

adaptive methods where areas for di�erent processors are changed to balance

the load.

5 Conclusions

We have presented Data Field Haskell, a Haskell dialect with data �elds which

supports a highly 
exible form of collection-oriented programming. A possible

application is for rapid prototyping in the early speci�cation phase of parallel

algorithms. We exempli�ed with the speci�cation and initial development of a

simple parallel particle simulation algorithm. The resulting algorithm speci�-

cation is dimension-polymorphic and easily adaptable to regular and irregular

grids, static or dynamic mappings, and di�erent target architectures.
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