
Development of Parallel Algorithms in Data

Field Haskell

?

Jonas Holmerin

1

and Bj�orn Lisper

2

1

Department of Numerical Analysis and Computing Science, Royal Institute of

Technology, S-100 44 Stockholm, SWEDEN, joho@nada.kth.se

2

Dept. of Computer Engineering, M�alardalen University, P.O. Box 883, S-721 23

V�aster�as, SWEDEN, bjorn.lisper@mdh.se

Abstract. Data �elds provide a 
exible and highly general model for in-

dexed collections of data. Data Field Haskell is a dialect of the functional

language Haskell which provides an instance of data �elds. We describe

Data Field Haskell and exemplify how it can be used in the early phase

of parallel program design.

1 Introduction

Many computing applications require indexed data structures. The canonical in-

dexed data structure is the array. However, for sparse, distributed applications,

other, more dynamic indexed data structures are needed. It is desirable to de-

velop such algorithms on a high level �rst, in order to get them right, since the

low level data representations can be intricate.

Data Field Haskell provides an instance of data �elds { a data type for general

indexed structures. This Haskell dialect can be used for rapid prototyping of

parallel computational algorithms which may involve sparse structures.

Various versions of the data �eld model have been described elsewere [1{4].

The contribution of this paper is a description of an implementation and an

example of how it can be used in parallel program design.

2 The Data Field Model

Data �elds are based on the more abstract model of indexed data structures as

functions with �nite domain [1, 2]. This model is simple and powerful, but for

real implementations explicit information about the function domains is needed.

Data �elds are thus entities (f; b) where f is a function and and b is a bound, a

set representation which provides an upper approximation of the domain of the

corresponding function. We require that the following operations are de�ned for

bounds:

{ An interpretation of every bound as a set.

?

This work was supported by The Swedish Research Council for Engineering Sciences

(TFR), grant no. 98-653.



{ A predicate classifying each bound as either �nite or in�nite, depending on

whether its set is surely �nite or possibly in�nite.

{ For every bound b de�ning a �nite set, size(b) which yields the size of the

set and enum(b) which is a function enumerating its elements.

{ Binary operations u, t on bounds (\intersection", \union").

{ The bounds all and nothing representing the universal and empty set, re-

spectively.

These operations are chosen to support the usually assumed set of collection-

oriented operations [7] without revealing the inner structure of the bounds. An

important derived operation is explicit restriction: (f; b) # b

0

= (f; b

0

u b). The

theory of data �elds also de�nes '-abstraction, a syntax for convenient de�nition

of data �elds which parallels �-abstraction for functions. See [3, 4].

3 Data Field Haskell

datafield de�nes data �eld from function and bound

! data �eld indexing

bounds the bound of a data �eld

outofBounds an out-of-bounds error value

predicate forms predicate bound from predicate

join, meet \union" and \intersection" of bounds

<\> explicit restriction of data �eld with bound

inBounds checks if an element belongs to the set de�ned by a bound

foldlDf folds (reduces) �nite data �eld w.r.t. binary operation

Table 1. Some operations on data �elds and bounds.

Data Field Haskell is a Haskell dialect where the arrays have been replaced

by an instance of data �elds, a variation of the sparse/dense arrays of [3, 4].

Our implementation of Data Field Haskell is based on the NHC compiler [6] for

Haskell v. 1.3. The implementation is sequential and we have not implemented

any advanced optimizations.

Data Field Haskell has data types Datafield a b for data�elds and Bounds a

for the corresponding bounds. Table 1 lists some functions for data �elds and

bounds. It has a rich variety of �nite and in�nite bounds: dense bounds, i.e., tra-

ditional array bounds, sparse �nite bounds, which represent general �nite sets,

predicate bounds, which are classi�ed as in�nite, universe which represents the

universal set, and empty which represents the empty set. Product bounds repre-

sent Cartesian products and generalise multidimensional array bounds.



3.1 Forall- and For-abstraction

Data Field Haskell provides '-abstraction, with syntax similar to �-abstraction

in Haskell [5]:

forall apat

1

: : : apat

n

-> exp

The semantics of forall x -> t is datafield (\x -> t) b, where b is com-

puted from bounds of data �elds in t as to give an upper approximation of the

domain of \x -> t. It can be thought of as an implicitly parallel, functional

forall statement where �rst b is computed and then, if needed, \x -> t is

computed for all x in b.

for-abstraction provides a convenient syntax to de�ne a data �eld by cases

over di�erent parts of its domain. The syntax is

for pat in { e

1

-> e

0

1

; : : : ; e

n

-> e

0

n

}

where the e

i

are bounds and the e

0

i

are data �eld values. The semantics is a data

�eld whose bound is restricted by the union of e

1

; : : : ; e

n

and whose value for

each x is e

0

i

! x, for the lowest i such that x belongs to e

i

.

4 An Example

We exemplify the use of Data Field Haskell with simulation of a system of

particles over a range of time. Each particle i has a state (�r

i

; �v

i

) with a position �r

i

and a velocity �v

i

. The state transition function (1) gives the new state after time

�t. These equations are parameterized w.r.t. f

i

, which yields the acceleration

a

i

for each particle i from the spatial distribution of the particles. They are

more or less directly expressed

1

in Data Field Haskell in Fig. 1. The result is

an executable, dimension-polymorphic speci�cation of particle simulation with

time step dt.

(�r

i

; �v

i

) 7! (�r

i

+ �v

i

��t; �v

i

+ �a

i

��t); i 2 Particles

�a

i

= f

i

(h r

j

j j 2 Particles i); i 2 Particles

(1)

This speci�cation can be manually re�ned into a more explicitly parallel al-

gorithm for particle simulation by distributing the particle state onto a set of

processors, and localizing the parallel algorithm by neglecting long-range inter-

actions. The resulting parallel algorithm has a distributed state which consists

of a predicate, a sparse particle data�eld, and a neighbourhood bound for each

processor. A processor \owns" each particle in the area de�ned by its predicate.

After each iteration every processor tests which particles it now owns. This test

is localized to particles originating from the neighbours only. This approxima-

tion is correct only if long-range interactions can be ignored, for instance if we

1

The explicit restriction in p newstate is necessitated by a 
aw in the current deriva-

tion of bounds for forall-abstraction. We expect to rectify it in later releases of

Data Field Haskell.



data Pstate = PS (Datafield Int Float) (Datafield Int Float)

pos (PS r _) = r

vel (PS _ v) = v

p_newstate dt f s =

forall i ->

let ai = f i s in

PS ((forall k-> ((pos (s!i))!k) + ((vel (s!i))!k)*dt)

<\> bounds (pos (s!i)))

(forall k-> ((vel (s!i))!k) + (ai!k)*dt)

data Dstate proc_id part_id = DS ((Datafield Int Float) -> Bool)

(Datafield part_id Pstate)

(Bounds proc_id)

pred (DS p _ _) = p

state (DS _ s _) = s

neigh (DS _ _ b) = b

prunion d1 d2 =

forall x -> if (inBounds x (bounds d1)) then d1!x else d2!x

prUnion = foldlDf prunion (datafield (\x -> outofBounds) empty)

d_newstate dt f dstate =

forall p ->

DS (pred (dstate!p))

(let {

neighstate = prUnion

(for pn in neigh (dstate!p) -> state (dstate!pn));

newstate = (p_newstate dt f neighstate) }

in newstate <\> predicate (\j -> pred (dstate!p) (pos (newstate!j))))

(neigh (dstate!p))

Fig. 1. Data Field Haskell solutions for the simulation problem: executable speci�ca-

tion, and parallelised version.



simulate molecules which interact through collisions only. The set of neighbour

processors is described, for each processor, by its neighbourhood bound. Fig. 1

also gives the data type and transition function d_newstate for the distributed

particle simulation. d_newstate �rst computes, for each processor, the union

of the particles over the neighbours, then a local state transition for these, and

�nally it \masks out" the particles which now belong to it. (Since data �elds are

not sets we must instead of set union use \prunion", which gives priority to its

�rst argument for indices where both arguments are de�ned.) d_newstate does

not modify the predicate �eld, but this is possible and could be used to model

adaptive methods where areas for di�erent processors are changed to balance

the load.

5 Conclusions

We have presented Data Field Haskell, a Haskell dialect with data �elds which

supports a highly 
exible form of collection-oriented programming. A possible

application is for rapid prototyping in the early speci�cation phase of parallel

algorithms. We exempli�ed with the speci�cation and initial development of a

simple parallel particle simulation algorithm. The resulting algorithm speci�-

cation is dimension-polymorphic and easily adaptable to regular and irregular

grids, static or dynamic mappings, and di�erent target architectures.

References

1. P. Hammarlund and B. Lisper. On the relation between functional and data parallel

programming languages. In Proc. Sixth Conference on Functional Programming

Languages and Computer Architecture, pages 210{222. ACM Press, June 1993.

2. B. Lisper. Data parallelism and functional programming. In G.-R. Perrin and

A. Darte, editors, The Data Parallel Programming Model: Foundations, HPF Re-

alization, and Scienti�c Applications, Vol. 1132 of Lecture Notes in Comput. Sci.,

pages 220{251, Les M�enuires, France, Mar. 1996. Springer-Verlag.

3. B. Lisper. Data �elds. In Proc. Workshop on Generic Programming, Marstrand,

Sweden, June 1998. http://wsinwp01.win.tue.nl:1234/WGPProceedings/.

4. B. Lisper and P. Hammarlund. The data �eld model. Technical Report TRITA-IT

R 99:02, Dept. of Teleinformatics, KTH, Stockholm, Mar. 1999.

ftp://ftp.it.kth.se/Reports/TELEINFORMATICS/TRITA-IT-9902.ps.gz.

5. J. Peterson, K. Hammond, L. Augustsson, B. Boutel, W. Burton, J. Fasel,

A. D. Gordon, J. Hughes, P. Hudak, T. Johnsson, M. Jones, E. Meijer, S. L.

Peyton Jones, A. Reid, and P. Wadler. Report on the programming lan-

guage Haskell: A non-strict purely functional language, version 1.4, Apr. 1997.

http://www.haskell.org/definition/.

6. N. R�ojemo. Garbage Collection, and Memory E�ciency, in Lazy Functional Lan-

guages. PhD thesis, Department of Computing Science, Chalmers University of

Technology, Gothenburg, Sweden, 1995.

7. J. M. Sipelstein and G. E. Blelloch. Collection-oriented languages. Proc. IEEE,

79(4):504{523, Apr. 1991.


