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Abstract In this paper we investigate various options for modeling real-time

network communication in an existing industrial component model, the rubus

component model (RCM). RCM is used to develop resource-constrained real-time

and embedded systems in many domains, especially automotive. Our goal is to

extend RCM for the development of distributed embedded and real-time systems

that employ real-time networks for communication among nodes (processors).

The aim of exploring modeling options is to develop generic component types for

RCM capable of modeling real-time networks used in the industry today. The

selection of new component types is based on many factors including compliance

with the industrial modeling standards, compatibility with the existing modeling

objects in RCM, capability of modeling legacy systems and legacy communica-

tions, ability to model and specify timing related information (properties,

requirements and constraints), ease of implementation and automatic generation of

new components, and ability of the modeled application to render itself to early

timing analysis.
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40.1 Introduction

Embedded systems are found in many domains and their applications range from

simple consumer products to sophisticated robotic systems. Approximately 98% of

the processors produced today are embedded processors [1]. The software that runs

on these processors (embedded software) has drastically increased in size and

complexity in the recent years. For example, a modern premium car contains

approximately 100 embedded processors and the embedded software may consist

of nearly 100 million lines of code [2]. In order to deal with such complexity, the

research community proposed model- and component-based development of

embedded systems [3, 4].

In distributed real-time and embedded systems, the functionality of an appli-

cation is distributed over many nodes (processors) and the nodes communicate

with each other by sending and receiving messages over a real-time network.

A component model for the development of these systems is required to support

resource efficient development, abstraction of the application software from

communication infrastructure, modeling of real-time network communication,

development of nodes to be deployed in legacy systems with predefined rules of

communication, early analysis during the development, and efficient development

tools.

In this paper, we explore various options for the development of special purpose

components capable of modeling real-time network communication in distributed

embedded systems. These components are to be added in the rubus component

model (RCM) which is an industrial model used for component-based develop-

ment of resource-constrained real-time and embedded systems in many domains.

In this paper, we focus on component-based development of embedded systems in

automotive domain. RCM has evolved over the years based on the industrial needs

and implementation of the state-of-the-art research results. At present, RCM is

able to develop only single-node real-time and embedded systems. Our aim is to

enable RCM to also model distributed embedded systems that employ real-time

networks for inter-node (inter-processor) communication.

The purpose of the new component types is to encapsulate and abstract the

communications protocol and configuration in a component-based and model-

based software engineering setting. The new components should support state-

of-the-practice development processes of distributed embedded systems where

communications rules are defined early in the development process. The

components should allow the newly developed nodes to be deployed in legacy

systems (with predefined communication rules) and enable the nodes to adapt

themselves to changes in the communication rules (e.g. due to re-deployment

in a new system or due to upgrades in the communication system) without

affecting the internal component design. Moreover, the components should

enable the modeled application to render itself to early timing analysis during

the development.
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40.2 The Rubus Concept

The Rubus concept is based around the Rubus Component Model [5] and its

development environment Rubus-ICE (Integrated Component development

Environment) [6] providing modeling tools, code generators (also generating glue-

code), analysis tools and run-time infrastructure. The overall goal of Rubus is to be

aggressively resource efficient and to provide means for developing predictable

and analyzable control functions in resource-constrained real-time embedded

systems.

40.2.1 The Rubus Component Model

The purpose of RCM is to express the infrastructure for software functions, i.e.,

the interaction between the software functions in terms of data and control

flow. One important principle in RCM is to separate code and infrastructure,

i.e., explicit synchronization or data access should all be visible at the modeling

level. In RCM, the basic component is called a software circuit (SWC).

By separating code and infrastructure RCM facilitates analysis and reuse of

components in different contexts (an SWC has no knowledge how it connects

to other components). The execution semantics of software components

(functions) is simply: upon triggering, read data on data in-ports; execute the

function; write data on data out-ports; and activate the output trigger.

Figure 40.1 shows how components interact with external events and sinks with

respect to both data and triggering in an example real-time system modeled

with RCM. The triggering events can be interrupts, internal periodic clocks,

internal and external events. RCM has the possibility to encapsulate SWCs into

software assemblies enabling the designer to construct the system at various

abstraction levels.

Data Port

Trigger Port

Data Source

Data Sink

External EventExt

Clock

Node

SWC_D SWC_E

SWC_A SWC_B SWC_C

Ext

Fig. 40.1 An example system modeled in RCM
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40.2.2 The Rubus Code Generator and Run-Time System

From the resulting architecture of connected SWCs, functions are mapped to tasks

(run-time entities). Each external event trigger defines a task and SWCs connected

through the triggering chain are allocated to the corresponding task. All clock

triggered ‘‘chains’’ are allocated to an automatically generated static schedule that

fulfills the precedence order and temporal requirements. Within trigger-chains,

inter SWC communication is aggressively optimized to use the most efficient

means of communication possible for each communication link. For example,

there is no use of semaphores in point-to-point communications within a trigger

chain. Another example is the sharing of memory-buffers between ports when

there are no overlapping activation periods. The Rubus tool suite facilitates the

optimization of the construction of schedule and allocation of SWCs to tasks,

e.g., optimization of response times for different types of tasks or memory usage.

The run-time system executes all tasks on a shared stack, thus eliminating the need

for static allocation of stack memory to each individual task.

40.2.3 The Rubus Analysis Framework

RCM supports the end-to-end timing analysis and resource requirement estimations.

It facilitates the expression of real-time requirements and properties on the archi-

tectural level, e.g., it is possible to declare real-time requirements from a generated

event and an arbitrary output trigger along the trigger chain. For this purpose, the

designer has to express real-time properties of SWCs, such as worst-case execution

times and stack usage. The scheduler will take these real-time constraints into

consideration when producing a schedule. For event-triggered tasks, response-time

analysis is performed and the results are compared to the requirements.

40.3 Related Component Models

There are a number of models that support the model-based and component-based

development of distributed systems. For example, distributed component object

model (DCOM) [7], Common object request broker architecture (CORBA) [8],

Enterprise JavaBeans (EJB) [9], etc. These models in their original form are not

suitable for the development of distributed embedded systems which are often

resource constrained and have real-time requirements. This is because these

models require excessive amount of computing resources, have large memory foot

print and have inadequate support for modeling of real-time network communi-

cation. There are very few commercial component models for the development

of distributed embedded and real-time systems in the automotive domain. In the

past few years, the research community and industry focused more on the
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component-based development of automotive embedded systems which led to the

development of various models.

40.3.1 AUTOSAR

AUTOSAR [10] is standardized software architecture for the development of soft-

ware in automotive domain. It can be considered as a distributed component model

[11] in which the application software is defined by means of software components

(SWCs). At design time, the virtual function bus (VFB) is responsible for the dis-

tribution of SWCs in a single node or on several nodes (according to the requirements

of the application). VFB also provides virtual integration of SWCs and communi-

cation among them. The run-time representation of VFB for each electronic control

unit (ECU) is defined by the run-time environment (RTE). The communication

services for SWCs are provided by the basic software (BSW) via RTE.

When AUTOSARwas developed, there was no focus put on the ability to specify

and handle timing related information (real-time requirements, properties and con-

straints) during the process of system development. On the other hand, such

requirements and capabilities were strictly taken into account right from the

beginning during the development of RCM. AUTOSAR enables the development of

embedded software at a relatively higher level of abstraction as compared to RCM.

A SWC in RCM resembles more to a runnable entity in AUTOSAR instead of

AUTOSAR SWC. A runnable entity is a schedulable part of AUTOSAR SWC. As

compared to AUTOSAR, RCM clearly distinguishes between the control flow and

the data flow among SWCs in a node. AUTOSAR hides the modeling of execution

environment. On the other hand, RCM explicitly allows the modeling of execution

requirements, e.g., jitter, deadlines, etc., at an abstraction level that is very close to

the functional modeling and at the same time, abstracts the implementation details.

In RCM, special purpose objects and components are used if SWCs require

inter-ECU communication otherwise SWCs communicate via data and trigger

ports by using connectors. On the other hand, AUTOSAR does not differentiate

between intra-node and inter-node communication at modeling level. Unlike

RCM, there are no special components in AUTOSAR for inter-node communi-

cation. AUTOSAR SWCs use interfaces for all types of communications which

can be of two types, i.e. Sender–Receiver and Client–Server. The Sender–Receiver

communication mechanism in AUTOSAR is very similar to the pipe-and-filter

communication mechanism in RCM.

40.3.2 TIMMO and TADL

TIMing Model (TIMMO) [12] is an initiative to provide AUTOSAR with a timing

model. TIMMO provides a predictable methodology and a language called

Timing Augmented Description Language (TADL) [13]. TADL can express
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timing requirements and timing constraints during all design phases in the

development of automotive embedded systems. TADL is inspired by Modeling

and Analysis of Real Time and Embedded systems (MARTE) [14] which is a

UML profile for model driven development of real-time and embedded systems.

TIMMO uses the structural modeling provided by EAST-ADL [15] (a standard

domain-specific architecture description language for automotive embedded sys-

tems). TIMMO methodology and its model structure abstract the modeling of

communication at implementation level where they propose to use AUTOSAR.

Both TIMMO methodology and TADL have been evaluated on prototype vali-

dators. To the best of our knowledge there is no concrete industrial implementation

of TIMMO. In TIMMO-2-USE project [16], the results of TIMMO will be brought

to the industry.

40.3.3 ProCom

ProCom [17] is a component model for the development of distributed embedded

systems. It is composed of two layers. At the upper layer, called ProSys, it models the

system by means of concurrent subsystems that communicate with each other by

passing messages via explicit message channels. Unlike an SWC in RCM, a sub-

system is active (it has its own thread of execution). At the lower layer, called

ProSave, a subsystem is internallymodeled in terms offunctional components. These

components are implemented as a piece of code, e.g., a C function. Like SWCs in

RCM, ProSave components are passive (they cannot trigger themselves and require

an external trigger for activation). ProCom gets inspiration from RCM. There are a

number of similarities between the ProSave modeling layer and RCM. For example,

components in both ProSave and RCM are passive. Similarly, both the models

separate the data flow from the control flow. Moreover, both the models use pipe-

and-filter mechanism for communication. At modeling level, ProCom does not

differentiate between inter-node and intra-node communication. On the other hand,

RCM clearly distinguishes modeling of inter-node and intra-node communication.

ProCom uses two step deployment modeling, i.e., virtual node modeling and phys-

ical node modeling [18]. At present, physical node modeling is a work in progress.

The validation of a distributed embedded system is yet to be done with ProCom. The

development environment and tools accompanying ProCom are still evolving.

40.3.4 COMDES-II

COMDES-II [19] provides a component-based framework for the development of

distributed embedded control systems. To some extent, it is similar to ProCom as it

models the architecture of a system at two levels. At upper level, an application is

modeled as a network of actors (active components) which communicate with each
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other by sending labeled messages. At the lower level, the functionality of an actor

is modeled by means of function blocks (FBs). Similar to the SWCs in RCM, FBs

are passive. The operating system (OS) employed by COMDES-II implements

fixed-priority timed multitasking scheduling. On the other hand, Rubus-OS

implements hybrid scheduling that combines both static–cyclic scheduling and

fixed-priority preemptive scheduling [20]. COMDES-II is a relatively new

research project and the support for development tools and run-time environment

was provided recently [21]. On the other hand, RCM and its tool suite are rela-

tively mature as they are being used in the industry for the development of

embedded systems for more than 10 years [6].

40.3.5 RT-CORBA, Minimum CORBA and CORBA

Lightweight Services

There are a number of middleware technologies introduced by the object

management group (OMG) such as real-time CORBA, minimum CORBA and

CORBA lightweight services. These middleware technologies can be used for the

development of real-time and distributed embedded systems [22]. In some projects

[23, 24], Real-time CORBA has been used to develop distributed embedded and

real-time systems. Because of higher resource requirements, these models may not

be suitable for the development of distributed embedded systems that are resource

constrained and have hard real-time requirements.

40.3.6 Discussion

By comparing the models discussed in this section with RCM, we propose that

RCM can be considered a suitable choice for the development of resource-

constraint distributed embedded systems for many reasons. Some of the reasons

are: its ability to completely handle and specify the timing related information

(i.e., real-time require-ments, properties and constraints during all the stages of

system development); it has a small run-time footprint (timing and memory

overhead); it implements state-of-the-art research results; it has a strong support

for development and analysis tools, etc.

40.4 Modeling of Real-Time Network Communication

A component model for the development of distributed real-time and embedded

systems is required to automatically generate network communication for any type

of protocol. However, this is often not the practice in the industry because of many
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factors including the dependencies due to existing communications and network

protocols, early design decisions about the network communication, requirement

for early analysis, deployment of the developed system in a legacy system having

predefined rules for communication, etc. In this section, we will introduce the

model representation of a physical network. We will also explore different options

to build new components in RCM capable of modeling real-time network

communication.

40.4.1 Network Specification: Modeling Object

for a Physical Network

In order to represent the model of communication in a physical network, we

propose the addition of a new object type, i.e., the Network Specification (NS) in

RCM. There will be one NS for each network protocol. It is composed of two

parts, i.e., a protocol independent part and a protocol dependent part. The pro-

tocol independent part defines a message and its properties. A message is an

entity that is used to send information from one node to another via a network.

The properties of a message that are defined by NS include message ID, sender

node ID, list of receiver nodes IDs, list of RCM signals included in the message,

etc. A signal in RCM has a name, RCM data-type, resolution, real-time prop-

erties, etc.

The protocol dependent part of NS is uniquely defined for each protocol. For

example, it will be different for different protocols such as CAN (Controller Area

Network) [26], CANopen [27], HCAN (Hägglunds Controller Area Network) [28],

MilCAN (CAN for Military Lands System domain) [29], Flexray, etc. Therefore,

there is one NS per bus. The protocol dependent part of NS contains the complete

information of all the frames which are sent to or received from the bus. Moreover,

it describes the frame properties. A frame is a formatted sequence of bits that is

actually transmitted on the physical bus. In RCM, a frame is a collection of RCM

signals. The properties of a frame described by NS include an identifier, a priority,

a frame type, a transmission type, a sender node ID, a list of receiver nodes IDs,

period or minimum inter-arrival time, deadline, whether a frame is IN or OUT

frame, real-time requirements, etc. The transmission type of a frame can be

periodic, event or mixed (transmitted periodically as well as on arrival of an

event).

RCM clearly distinguishes the data flow from the control flow. The components

inside a single node communicate with each other by using data and control

signals separately. However, if a component on one node communicates with a

component on another node via a network then the signals are packed into frames.

The frames are then transmitted over the network. Here, some questions arise

regarding the network communication. How are the signals packed into the

frames? How are the signals encoded into the frames at the sender node? How are

the signals decoded from the frames and sent to the respective SWCs at the
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receiver node? All the rules concerning the answers to these questions are specified

in the Signal Mapping. The signal mapping is a unique object for each protocol for

network communication and is an integral part of the protocol-dependent part of

NS. The Signal Mapping describes the length of each signal in a frame, the type of

signal encoding in a frame (e.g., signed or unsigned two’s complement), maximum

age of a signal guaranteed by the sender, etc.

40.4.2 Modeling Objects for Network Communication

in a Node

There is a need to introduce special objects for modeling network communica-

tion in a node. These objects should be able to hide the software architecture in a

node from the network protocol and vice versa. If SWCs located on different

nodes intend to communicate with each other, they should only communicate

(using the existing intra-node communication in RCM) with the special objects

on their own node. Hence, the new objects should encapsulate and abstract the

communication protocols and configuration in a node. These special objects

along with NS should be able to facilitate the inter-node communication in a

distributed embedded application.

To support the abstraction of the implementation of network communications in

a node (processor), we will explore different options to develop new object types

in the next subsection. After selecting the most suitable object types (based on the

selection criteria to be discussed in the next section), we will add them in RCM.

This will enable RCM to support state-of-the-practice development processes of

distributed embedded systems where communication rules are defined early in the

development process. The proposed extension of the model will also allow model-

based and component-based development of new nodes that are deployed in the

legacy systems that use predefined rules for network communication.

40.4.3 Options for Modeling Network Communication

in a Node

Option 1: reuse of existing intra-node communication. The first option is to reuse the

model of existing intra-node communication in RCM for modeling of inter-node

communication (network communication). The intra-node communication in RCM

is modeled bymeans of connectors as shown in Fig. 40.1. A connector in RCM links

out-ports of one SWC with in-ports of the other in the same node. RCM allows port-

to-port connections for data and trigger flow separately. In a nutshell, the idea is to

use the same connectors for modeling both inter-node and intra-node communica-

tions by attaching, for example, a Boolean Specifier to it. If the connector is used for

intra-node communication, then it is assigned a value ‘‘0’’. On the other hand, if an
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SWC on one node communicates with an SWC on another node then the specifier is

assigned value equal to ‘‘1’’. We assume that a tool will automagically generate the

run-time architecture for all communications in the modeled application. Moreover,

the tool will perform the deployment of the distributed embedded application.

Figure 40.2 shows a distributed real-time application modeled with this tech-

nique. The application consists of two nodes which are connected to each other via

a real-time network. There are three SWCs in each node. There are two distributed

transactions (Event Chains) in the system. By distributed transaction, we mean that

SWCs are in a sequence (chain) and have one single triggering ancestor

(e.g., a clock, interrupt, external or internal event, etc.). In Fig. 40.2, the first

distributed transaction is composed of SWC1, SWC2, SWC4 and SWC5 whereas

the second is composed of only two SWCs, i.e., SWC6 and SWC3. The first

distributed transaction is activated (triggered) by a clock while the second is

activated by an external event.

The value of Boolean Specifier associated with each connector is ‘‘0’’ in case of

intra-node communication, for example, a connector between SWC1 and SWC2.

Similarly, the value of Boolean Specifier is equal to ‘‘1’’ in case of network

communication, for example, a connector between SWC2 and SWC4. Although,

the communication between SWC2 and SWC4 takes place via the network, a

designer models the system as indicated by the upper portion of Fig. 40.2. The

deployment and synthesis tools along with the run-time support will be responsible

for generating intra-node and inter-node communications.

Option 2: out- and in- SWCs for out and in frames. The second option for

modeling network communication in RCM is to introduce special purpose soft-

ware circuits i.e. out software circuit (OSWC) and in software circuit (ISWC) for

each frame that is to be sent or received by a node, connected to a network,

respectively.

Model of a Distributed Embedded Application

Physical Network Communication

Real-Time Network

Node A Node B

SWC1 SWC2

SWC3

SWC4 SWC5

SWC6

Ext

1

1

1

1 0

0

0

0

0

0

0

0

Data Port

Trigger

Port

External

Event

Clock

Ext

Data

Source

Data

Sink

Inside the

Model

Outside the

Model

0

0

Fig. 40.2 Option1: model of a distributed real-time and embedded application
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Out Software Circuit (OSWC). it is a software circuit which denotes the data

that leaves the model. An OSWC is associated with a LAN object. In RCM, LAN

is an object to represent the connection between two or more nodes in the system.

Formally, a LAN is defined by its name, a list of the connected nodes and NS.

There is exactly one OSWC in a node for every outgoing frame on the network.

Each OSWC describes all the signals that can be sent in a particular frame. As

discussed earlier, a frame constains zero or more signals. An OSWC has only one

trigger in-port and at least one data in-port. Each data in-port is associated with

one signal in NS. Therefore, the number of data in-ports may vary depending upon

the number of signals to be packed in the frame. An OSWC has no data and trigger

output-ports. The OSWC component uses protocol specific rules, specified in the

protocol-specific part of NS, while maping signals to frames and encoding data in

the frames. In this way, OSWC provides a clear abstraction to the SWCs that send

signals to one of its data in-ports. Thus, SWCs are kept unaware of the protocol-

specific details such as signal-to-frame mapping, data-type encoding and trans-

mission patterns of frames.

In Software Circuit (ISWC). it is a software circuit which denotes the data that

enters the model. An ISWC is associated with a LAN object defined in RCM.

There is exactly one ISWC component in a node for every frame received from the

network. Each ISWC describes all the signals that are contained in a particular

received frame. An ISWC has one unconditional trigger out-port. An uncondi-

tional trigger port produces a trigger signal every time the SWC is executed. There

is at least one data out-port in the ISWC component. Each data out-port is asso-

ciated with one signal in NS of the LAN object. Therefore, the number of data out-

ports may vary depending upon the number of signals contained in the received

frame. An ISWC has no data out-ports. There is one trigger in-port in every ISWC

component which can be trig-gered when a frame arrives at a node. Figure 40.3

graphical illustrates OSWC and ISWC.

Consider an example of a node in a distributed embedded application modeled

with OSWC and ISWC as shown in Fig. 40.4. Although, CAN is used for real-time

network communication, this modeling approach can be applied to any real-time

network protocol. Note that the figure is divided into two halves: the upper half

represents the model of a node whereas the lower half depicts the physical com-

munication including CAN controller and CAN network. There are two grey boxes

outside the model called CAN SEND and CAN RECEIVE that are placed just

below the sets of OSWCs and ISWCs, respectively. These gray boxed are specific

for each network protocol. The frames that leave the model are denoted by

Output Software Circuit (OSWC) 

Signals to be sent in one Frame

Input Software Circuit (ISWC)

Signals received from one Frame

Data Port

Trigger Port

Fig. 40.3 Graphical illustration of OSWC and ISWC
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S e.g., S1, S2 and S3. Similarly all the frames that enter the model are denoted by

R e.g., R1 and R2 as shown in Fig. 40.4.

All the signals sent in frame S1 are provided at the data in-ports of OSWC1.

These signals are mapped and encoded into S1 by OSWC1 according to the

protocol-specific information available in NS. Once the frame is ready, it leaves

the model as it is sent to the grey box CAN SEND. In this example, this grey box

represents a CAN controller in the node which is responsible for the physical

transmission of this frame. When a frame arrives at the receiving node, it is

transferred by the physical network drivers to a grey box CAN RECEIVE that

produces an interrupt. The frame enters the model and is transferred to the des-

tination ISWC which extracts the signals, decodes the data and encodes it to RCM

data-type. The data is placed on the data out-port of ISWC connected to the data

in-port of the destination SWC and the corresponding trigger out-port is triggered

(the tracing information is provided in the NS).

Option 3: network interface components for each node. The third option is to

introduce two special purpose modeling component types in RCM: the network

input interface (NII) and the network output interface (NOI) as shown in Fig. 40.5.

Network input interface (NII) component: it is the model representation of

incoming signals from the network. Each node connected to a network will have

one NII. Each NII contains one data-port and one trigger-port for each signal in

every frame. When a frame arrives at the node, the physical bus driver and pro-

tocol-specific implementation of NII extract the signals (zero or more signals per

frame) and encode their data in the RCM data-type. When the signal(s) is deliv-

ered, the data is placed on the data-port which is connected to data in-port of the

destination SWC (the tracing information is provided in NS), and the corre-

sponding trigger-port is triggered.

Model Representation of OSWC and ISWC in one of the Nodes in 
a Distributed Embedded Application

Data Port

Trigger
Port

Physical Network Communication

Real-Time Network (CAN)

FramesFrames

All Signals 
from Frame R1

All Signals 
in Frame S1

All Signals in 
Frame S2

All Signals 
in Frame S3

CAN SEND

OSWC 3OSWC 2OSWC 1

All Signals from 
Frame R2

CAN RECEIVE

(CAN_IRQ)

ISWC 1 ISWC 2
Inside the Model

Outside the Model

Fig. 40.4 Option2: model of a distributed real-time and embedded application
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Network output interface (NOI) component: it is the model representation of the

outgoing signals on a network. Each node connected to a network will have one

NOI component. The major difference from the NII is that the NOI component

does not have any trigger ports. Conceptually, the NOI has an implicit trigger port

for each data port–however, to decrease the burden for the modeler, these ports are

omitted from the model. The NII uses protocol-specific rules on how to map

signals to frames and encode data in the frames specified in the protocol-specific

part of NS. The NII also uses protocol specific rules to decide when to send each

frame. Thus, the SWCs that use the NII are kept unaware about details such as

signal-to-frame mapping, data-type encoding, and transmission patterns (common

transmission patterns are: periodic, on-change, on-change with minimum distance

between messages, etc.).

Consider the model representation of NOI and NII in one of the nodes con-

nected to a real-time network in a distributed embedded application as shown in

Fig. 40.6. The figure is divided into two halves: the upper half represents the

model of a node in RCM whereas the lower half depicts the physical network. All

SWCs in a node, requiring remote communication, send signals to the data in-ports

of the NOI component. The NOI maps these signals into frames and sends the

frames according to the protocol-specific rules defined in NS. When a frame

arrives at a node, NII decodes the frame and extracts signals out of it according to

Network Input Interface 
(NII)

Signals

Data Port

Trigger Port
Network Output Interface 

(NOI)

Signals

Fig. 40.5 Graphical illustration of NOI and NII Components

Physical Network Communication

Model of NOI and NII in one of the Nodes in a Distributed 
Embedded Application

Network Output Interface

Physical Bus Driver

Signals

Network Input Interface

Physical Bus Driver

Signals

Physical Bus (Frames )

Data Port

Trigger
Port

FramesFrames

Inside the
Model

Outside the
Model

Fig. 40.6 Option3: model of a distributed real-time and embedded application
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the information available in NS. Then, it places the extracted data on data output-

port which is connected to the data in-port of the destination SWC and triggers the

corresponding trigger out-port.

40.5 Components for Modeling Real-Time Network

Communication

40.5.1 Selection Criteria

The selection of new component types is based on many factors including com-

pliance with the existing modeling standards in the industry, compatibility with the

existing modeling concepts and compoents in RCM, ability to abstract the

implementation and configurations in distributed embedded sysems, dependencies

due to legacy (already developed) systems and legacy communications, ability to

model real-time properties, ease of implementation of new components, automatic

generation of the new components, ability of the modeled application to render

itself to early analysis, etc. One important factor in the selection is the ease to

model timing information (properties, requirements, constraints) in new compo-

nents that enable the modeled application to render itself to end-to-end timing

analysis early during the developemnt.

40.5.2 Components Selection

Although, the modeling approach in option 1 appears to be very simple and easy to

model, it may not be practical in an industrial setup because of the requirements of

modeling legacy systems and legacy communications, deployment of newly

developed nodes in the existing systems and requirement for early analysis of the

modeled application. Moreover, this approach requires very complex tools capable

of automagically deploying and synthesizing the modeled system and generating

the run-time implementation of all communications in the modeled application.

This approach is not very expressive to perform the response-time analysis which

is one of the most important requirements during the development of real-time

systems.

The modeling approach in option 2 appears to be the most suitable candidate for

the development of special components. One reason is that OSWC and ISWC

component types are consistent with the existing modeling elements in RCM.

These components are very similar to regular SWCs and hence, it is very easy to

add them in the component model. The run-time implementation of these com-

ponents can be easily generated. Another advantage is the generation of OSWC

and ISWC automatically from NS. Moreover, it complies with the existing

modeling standards and network communication protocols used in the automotive
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industry. For any network protocol such as CANopen, HCAN, MilCAN, Flex-

ray, etc., all the modeling objects will remain the same except the protocol-

dependent part of NS. This modeling approach may remain applicable if an

application modeled with RCM uses the communication mechanism of

AUTOSAR. In this case the grey boxes in Fig. 40.4 will represent the

AUTOSAR run-time environment. A node developed with this approach can be

easily deployed in a legacy distributed embedded system. In this case, same

OSWC and ISWC components can be used and the rules of communication

defined by the legacy system are encapsulated in NS. Since the network com-

munication is modeled at frame level in a node, this approach provides an

effective means to specify and trace the timing information for early timing

analysis during the development.

The third modeling approach is a very general approach to model real-time

network communication. It can be used for any type of real-time network protocol.

Similar to the second approach, the protocol specific information is specified in NS

while the implementation of NOI and NII components remains the same for all

protocols including the rules of communication in legacy systems. NOI and NII

can also be automatically generated from NS. This approach is very complex to

implement mainly because these components are very different from the existing

SWCs in RCM. Moreover, if these components are not implemented carefully then

there is a risk of getting redundant rules for sending frames over the network. For

example, assume CAN network in Fig. 40.6. The NOI sends a frame according to

the protocol-specific information in NS where as the frame is physically trans-

mitted by the CAN controller according to the CAN protocol. Although this

approach facilitates to completely specify the timing related information, it is very

difficult to extract the tracing information of event chains from the modeled

application. Therefore an application modeled with this approach does not easily

render itself to end-to-end timing analysis as compared to the second modeling

approach. In future, this approach may be added in RCM because of being concise

and general.

Based on the above discussion, we select the second modeling approach.

Hence, we add special-purpose components OSWC and ISWC along with NS, in

RCM to support modeling of real-time network communication.

40.5.3 Automatic Generation of the Selected Components

Both OSWC and ISWC components can be automatically generated from NS by a

network configuration tool. The input to this tool is the protocol-specific infor-

mation about the network communication and the tracing information of tasks in

all the distributed transactions (event-based and periodic chains) present in the

application. This information is made available from the configuration files that

correspond to NS. The output of this tool is the automatically generated OSWC

and ISWC components for each node in the network. This tool also carries out
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mapping from NS to components and vice versa. All OSWC and ISWC compo-

nents are translated into a set of SWCs to execute the protocol at run-time.

40.6 Conclusion

We explored various options to develop special purpose component types in

the rubus component model (RCM). The purpose of the special components is

to model network communication in distributed real-time and embedded sys-

tems. RCM is an industrial component model for the development of resource-

constrained real-time and embedded systems. We introduced the capability of

modeling real-time network communication in RCM. We investigated three

approaches for modeling of real-time network communication. We presented

the selection criteria to select the most suitable modeling technique from the

three candidates. Accordingly, we added the following objects in RCM: NS

(model representation of physical network); and output and input software

circuit (OSWC and ISWC) component types. These components make the

communications capabilities of a node in distributed embedded system very

explicit, but efficiently hide the implementation or protocol details.

The criteria for the selection of new components is based on many factors, such

as, compliance with the industrial modeling standards, compatibility with the

existing modeling concepts and objects in RCM, ability to abstract the imple-

mentation and configurations in distributed embedded sysems, capability of

modeling legacy (already developed) systems and legacy communications, ability

to model and specify timing related information (properties, requirements, con-

straints, etc.), ease of implementation and automatic generation of new compo-

nents, ability of the modeled application to render itself to early timing analysis,

etc. With the introduction of new modeling capabilities in RCM, it can be con-

sidered a suitable choice for the industrial development of distributed real-time

and embedded systems. There are many reasons to support this proposition such

as: ability to model and specify real-time requirements, properties and constraints

during all the stages of system development; small run-time footprint (timing and

memory overhead); implementation of state-of-the-art research results; ability to

model real-time communication (both intra-node and inter-node); strong support

for development and analysis tools, etc.

In future, we will extract an end-to-end timing model from the modeled

application to perform the holistic response-time analysis. We will also demon-

strate how the periodic and event chains can be traced in a distributed transaction

modeled with RCM. We also plan to automatically generate the implementation of

OSWC and ISWC from configuration files of other specialized protocols for

real-time communication such as CANopen, HCAN, MilCAN, subsets of J1939,

etc. Furthermore, we also plan to build a validator in an industrial setup with the

extended RCM.
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