
Data Field Haskell

Jonas Holmerin

1

and Bj�orn Lisper

2

1

Department of Numerical Analysis and Computing Science, Royal Institute of

Technology, SE-100 44 Stockholm, SWEDEN

joho@nada.kth.se

2

Dept. of Computer Engineering, M�alardalen University, P.O. Box 883, SE-721 23

V�aster�as, SWEDEN

bjorn.lisper@mdh.se

Abstract. Data �elds provide a
exible and highly general model for in-

dexed collections of data. Data Field Haskell is a Haskell dialect that provides

an instance of data �elds. It can be used for very generic collection-oriented

programming, with a special emphasis on multidimensional structures. We

give a brief description of the data �eld model and its underlying theory. We

then describe Data Field Haskell, and an implementation.

1 Introduction

Indexed data structures are important in many computing applications. The canon-

ical indexed data structure is the array, but other indexed structures like hash tables

and explicitly parallel entities are also common. In many applications the indexing

capability provides an important part of the model: when solving partial di�erential

equations, for instance, the index is often closely related to a physical coordinate,

and explicitly parallel algorithms often use processor ID's as indices.

Since the time of APL [5] it has been recognised that a programming model that

provides operations directly on data structures can be very convenient. This style

of programming is often called collection-oriented programming [27]. Modern array

and data parallel languages like Fortran 90 [3] provide support for this programming

style, as do higher-order functional languages, which usually o�er collection-oriented

list operations.

However, these languages typically restrict the scope of collection-oriented op-

erations to a single kind of data type, and the semantics of these operations can be

somewhat ad-hoc. Data �elds

1

model indexed data structures as partial functions

supplied with explicit information about their domains. This leads to a program-

ming model that is highly uniform over di�erent indexed data structures, and where

the operations are designed according to common semantical principles.

Data Field Haskell is a Haskell dialect where the arrays have been replaced

by an instance of data �elds. This particular instance consists of multidimensional

array-like data �elds, which can be sparse, dense, or sparse in some dimensions and

dense in others. Thus, this dialect is targeted towards rapid prototyping of parallel

algorithms, which may involve sparse structures, but we believe it is useful for a

wide range of applications amenable to collection-oriented programming.

There is reason to believe that, in a few years' time, the advances in semicon-

ductor technology will force the replacement of current processor architectures with

multiprocessors on a chip [7]. When this happens, parallelism will become central

also in mainstream computing. The collection-oriented paradigm provides an attrac-

tive parallel programming model due to its conceptual simplicity. This motivates a

1

\Field" should be understood as in physics, as an entity that is a function of space and

possibly time.

continued investigation in general collection-oriented programming models, and is

one reason for the development of Data Field Haskell.

The rest of this paper is organised as follows. Section 2 gives a brief description

of the underlying data �eld model. Section 3 describes Data Field Haskell, and

Section 4 gives a simple example of its use. Section 5 contains a description of

the current implementation. Section 6 provides an account for related work. In

Section 7, �nally, the story is wrapped up. The limited space does not allow a

complete description of Data Field Haskell here { see [1, 11] for the details.

Various versions of the data �eld model have been described elsewere [8, 16{18].

The use of Data Field Haskell for rapid prototyping of parallel algorithms has been

reported in [12, 19]. The contribution of this paper is a more thorough description

of the language and of an implementation.

2 The Data Field Model

The concept of data �elds is based on the more abstract model of indexed data

structures as functions with �nite domain [8, 16]. An array with range [1..n], for

instance, can be seen as a function from f1; : : : ; ng, but we could also model \irreg-

ular" indexed structures as functions with non-contiguous, possibly non-numerical

domains. In order to give partial functions conventional function types they are

seen as functions that return a distinguished error value �, with algebraic proper-

ties similar to ?, when called with an argument outside their domains.

The partial function model is simple and powerful, and most types of collection-

oriented operations [27] can be de�ned as higher order functions operating on partial

functions [8, 18]. However, certain operations require explicit information about the

function domains. Thus, we consider entities (f; b) { the data �elds { where f is

a function and and b is a bound, a set representation that bounds the domain of

the corresponding function. We require that the following operations are de�ned for

bounds:

{ For each bound an interpretation as a predicate (or set).

{ A predicate classifying each bound as either �nite or in�nite, depending on

whether its set is surely �nite or possibly in�nite.

{ For every bound b de�ning a �nite set, size(b) that yields the size of the set and

enum(b) that is a function enumerating its elements.

{ Binary operations u, t on bounds (\intersection", \union").

{ The bounds all and nothing representing the universal and empty set, respec-

tively.

These operations are chosen to support the operations on partial functions that

require the domain of the functions, without revealing the inner structure of the

bounds. They must have certain properties, see [18].

The theory of data �elds also de�nes '-abstraction, a syntax for convenient

de�nition of data �elds that parallels �-abstraction for functions. The meaning

of 'x:t is a data �eld (�x:t; b) where b provides an upper approximation to the

domain of �x:t. The purpose of '-abstraction is to provide a formal semantics for

collection-oriented operations where the bound of the result is implicitly given by

the bounds of the operands. Such operations are convenient to use and common in

array languages, and the data �eld model extends them beyond arrays.

3 Data Field Haskell

Data Field Haskell is a Haskell dialect where the arrays have been replaced by an

instance of data �elds, a variation of the sparse/dense arrays of [17, 18]. The new

data types are Datafield a b for sparse/dense array data�elds and Bounds a for

the corresponding bounds. a must belong to the classes Ix (array index types) and

Pord (types with partial ordering, which is convenient when de�ning certain oper-

ations on bounds: see [11]). Pord has the same instances as Ix: thus, possible index

types for data �elds are the same as for Haskell arrays (integers, characters, enu-

merations, and single-constructor data types whose components are index types).

We will omit quali�cations \(Pord a,Ix a) =>" when they are evident.

3.1 Basic Operations on Data Fields

datafield builds data �elds from functions and bounds, and bounds provides the

bounds of a data �eld:

datafield :: (a -> b) -> Bounds a -> Datafield a b

bounds :: Datafield a b -> Bounds a

As for Haskell arrays, the in�x operation ! is used for indexing. The constant

outofBounds represents �, and the predicate isoutofBounds tests for this value.

3.2 Bounds

Data Field Haskell has a rich variety of bounds. They are classi�ed as either �nite

or in�nite. There are a number of operations to construct them:

(<:>) :: a -> a -> Bounds a yields dense bounds, i.e., usual array bounds.

For instance, (1,1)<:>(10,20) returns a bound representing the rectangle with

lower left corner (1; 1) and upper right corner (10; 20). Dense bounds are �nite.

sparse :: [a] -> Bounds a creates sparse bounds that represent general �-

nite sets. sparse [(1,2),(17,9),(1,2),(42,44)], for instance, returns a sparse

bound representing f(1; 2); (17; 9); (42; 44)g. Sparse bounds are also �nite.

predicate :: (a -> Bool) -> Bounds a forms predicate bounds. For instance,

predicate (\x -> f x /= 0) represents the set where the function f is nonzero.

Predicate bounds are classi�ed as in�nite.

universe (in�nite) represents the universal set (the bound all) and empty (�-

nite) the empty set (the bound nothing).

(<*>) :: Bounds a -> Bounds b -> Bounds (a,b) de�nes product bounds rep-

resenting Cartesian products. It can be used to create conventional multidimensional

array bounds, e.g.,(1<:>10)<*>(1<:>20) (which equals (1,1)<:>(10,20)), but

also other bounds like (sparse [5,7,13])<*>(1<:>10)and (1<:>10)<*>universe.

b1<*>b2 is �nite precisely when both b1 and b2 are. In general, prod_n forms n-

tuples of bounds

2

. Some two-dimensional bounds are illustrated in Fig. 1.

3.3 Operations on Bounds

The most basic operations on bounds are join and meet (t and u). They essentially

compute the union and intersection, respectively, of their arguments seen as sets (if

the arguments are both dense, then join may compute an overapproximation of

the union, see Fig. 2). The kind of bound computed depends on the arguments as

shown in Table 1. join and meet for product bounds are de�ned elementwise, i.e.,

the equation

(bx1<*>by1) `meet` (bx2<*>by2) = (bx1 `meet` bx2)<*>(by1 `meet` by2)

holds for meet and similarly for join.

2

<*> is syntactic sugar for `prod 2`.

Fig. 1. Some two-dimensional bounds: three product bounds, and a sparse two-dimensional

bound.

b1 b2

b1 ‘join‘ b2

Fig. 2. Join of two one-dimensional dense bounds.

meet E U S D P �

E E E E E E E

U U S D P �

S S S S S

D D S �

P P P

� �

join E U S D P �

E E U S D P �

U U U U U U

S S S P S=P

D D P �

P P P

� �

Table 1. Result \types" of join and meet as a function of the argument \types". E =

empty, U = universe, S = sparse, D = dense, P = predicate, � = product bound.

\S=P" in the table for join means that the result is sparse if the product bound is �nite,

and a predicate otherwise.

join and meet are used primarily to de�ne higher level data �eld constructs. An

example is the explicit restriction operator on bounds, <\>. It satis�es the following

equation:

(datafield f b1) <\> b2 = datafield f (b2 `meet` b1)

We now see why in�nite bounds can make sense: for instance,

(datafield f (1<:>n)) <\> predicate p

will yield a sparse data�eld, de�ned for the points in the range 1..n where p is true.

This provides a data �eld counterpart to array operations that are performed for

the indices where a \mask" is true [15]. Some more operations on bounds are:

{ finite :: Bounds a -> Bool, which tests bounds for �niteness,

{ enumerate :: Bounds a -> [a], which returns the list of elements of the set

de�ned by a �nite bound in the following order: for �nite non-product bounds

in the order given by the \<" operation in the Ord class, and for product bounds

in the lexicographic order de�ned by the orders of the components.

{ size :: Bounds a -> Int, which gives the number of elements in a �nite

bound, and

{ inBounds :: a -> Bounds a -> Bool, which checks for membership in the

set de�ned by a bound.

3.4 Operations on Finite Data Fields

Sometimes it is desirable to force the evaluation of all elements in a data �eld. There

are, for instance, parallel algorithms whose e�ciency depends on the compile-time

knowledge of which computations to perform. This is similar to strictness declara-

tions for functions, which sometimes are necessary to ensure e�cient execution. To

this end, we have de�ned three data �eld evaluators, all of type

(Pord a, Ix a, Eval a) => Datafield a b -> Datafield a b

that evaluate their respective arguments to di�erent degrees. hstrictTab, for in-

stance, evaluates all elements in a hyperstrict fashion (i.e., to the innermost con-

structor).

foldlDf, of type

(Pord a, Ix a, Eval a) => (b -> c -> b) -> b -> (Datafield a c) -> b

is the data �eld equivalent to foldl for lists. It reduces its data �eld argument

in the order given by the enumeration of its bound. The reduction only includes

the values indexed by elements in the domain of the corresponding partial function

(note that the bound may overapproximate this domain: see [11] for details). As for

lists, there are various versions of data �eld folds [11].

The operations in this section are only meaningful for �nite data �elds and will

yield a runtime error if applied to an in�nite data �eld.

3.5 Forall-abstraction

Data Field Haskell provides a form of '-abstraction, with the following syntax

(described in the metasyntax of the Haskell report [23]):

forall apat

1

: : : apat

n

-> exp

Thus, the syntax is analogous to �-abstraction in Haskell and includes such fea-

tures as pattern-matching (which is convenient when de�ning multidimensional data

�elds). Type inference works in the same way as for �-abstraction, although the

identi�ers being abstracted over must be instances of the Pord and Ix classes. The

semantics of forall-abstraction is

forall x -> t = datafield (\x -> t) b

where the bound b is a function of the form of t.

The limited space prohibits a detailed account for how b is computed: the ex-

act rules are found in [1, 11]. Here, we give an informal description supported by

representative examples. First, if a!x occurs in a strict position in the body of

forall x -> ... then bounds a should constrain the bounds of forall x ->

Thus,

bounds (forall x -> a!x + b!x + 17) = (bounds a) `meet` (bounds b)

The principle generalises to forall-abstraction over tuples, which should have prod-

uct bounds where each component constrains the respective variable in the tuple.

Thus,

bounds (forall (x,y) -> a!x * b!y) = (bounds a) <*> (bounds b)

so this expression yields the outer product of a and b with the expected bounds.

For conditionals, any of the branches could be taken for any value of x. Thus,

the bounds from the branches should be joined. Moreover, the conditional is strict

in the condition, thus,

bounds (forall x -> if a!x then b!x else c!x) =

(bounds a) `meet` ((bounds b) `join` (bounds c))

Multidimensional arrays are important in array languages, and they often provide

convenient syntax to select subarrays from matrices. In order to generalise this

feature to data �elds, components of product bounds of multidimensional data

�elds occurring in forall-abstraction can constrain the bound of the abstraction.

Thus, if bounds a = b1<*>b2, we have

3

bounds (forall x -> a!(1,x)) = b2

(selection of row one), and

bounds (forall x -> a!(x,x)) = b1 `meet` b2

(main diagonal). This feature can be combined with forall-abstraction over tuples,

like

bounds (forall (x,y) -> a!(y,x)) = b2 <*> b1

(\data �eld transpose"). If the bound of a is a sparse multidimensional bound, then

the smallest enclosing product bound is �rst computed and the above then applies.

Finally, we allow translations of bounds w.r.t. linear o�sets, e.g., if bounds a =

1<:>5 then

bounds (forall x -> a!(x+1)) = 0<:>4

Sparse bounds are translated similarly, and this feature combines with the others.

If none of the previous cases apply (e.g., forall x -> a!(f x)), then the bound

universe will result.

The \compute bounds �rst" evaluation order of forall-abstraction gives data

�elds a lazy
avour. For instance, one may de�ne a two-dimensional data �eld with

�nitely many in�nitely long columns; rows are then still �nite data �elds.

3

a more exact bound would be if (inBounds 1 b1) then b2 else empty, but the cur-

rent version of Data Field Haskell does not compute this.

3.6 For-abstraction

for-abstraction provides a convenient syntax to de�ne data �elds by cases. It es-

sentially de�nes a data �eld from a list of pairs of bounds and expressions and can

be thought of as a \parallel case" where the di�erent bounds provide the cases. The

syntax is

for pat in { e

1

-> e

0

1

; : : : ; e

n

-> e

0

n

}

with semantics

(forall pat -> if inBounds pat (e

1

) then e

0

1

else if : : :

else if inBounds pat (e

n

) then e

0

n

else outofBounds) <\>

(e

1

) `join` (e

2

) `join` : : : `join` (e

n

)

4 A Simple Example

The limited space only allows a short example, see [1, 12, 19] for more examples.

Consider the linear equation system Ax = b, where A is an n � n lower-triangular

matrix. (1) gives the classical forward-solving algorithm for computing x:

x

i

=

b

i

�

P

i�1

j=1

a

ij

x

j

a

ii

; i = 1; : : : ; n (1)

This algorithm can be more or less directly expressed in Data Field Haskell:

dfSum = foldlDf (+) 0

fsolv a b = forall i ->

(b!i - dfSum (for j in 1<:>(i-1) -> a!(i,j) * (fsolv a b)!j))

/a!(i,i)

Note how \dfSum (for j in 1<:>(i-1) -> ...)" corresponds to \

P

i�1

j=1

: : :".

What is the bound of fsolv a b? It will be constrained by the bound of b,

and the bounds with respect to i derived from dfSum (...) and a!(i,i). If

bounds a = b1<*>b2, then the latter bounds are b1 and b1 `meet` b2, respec-

tively, and we obtain

bounds (fsolv a b) = (bounds b) `meet` b1 `meet` b1 `meet` b2

If (bounds b) = b1 = b2 = 1<:>n, then bounds (fsolv a b) = 1<:>n as ex-

pected. The bound of the data �eld being summed over, �nally, is given by the con-

straints on k: thus, it equals 1<:>(i-1) `meet` b2 `meet` bounds (fsolv a b).

With bounds b, b1, and b2 as above this equals 1<:>(i-1).

Interestingly, the code above works also for sparse a: a sparse version of a dense

matrix can be created with the very generic function sparsify de�ned below:

sparsify x = x <\> predicate (\i -> x!i /= 0)

If x has a �nite bound, then sparsify x will have a �nite sparse bound. If fsolv is

given a sparse a, the current version of Data Field Haskell will �rst create the bounds

b1 and b2 by projecting bounds a as indicated in Fig. 3, and then the above works

as before. Note that this leads to loose approximations: in particular for each i, the

bounds for the summed data �eld really only needs to contain the k in 1<:>(i-1)

where a(i,k) is de�ned. It is possible to de�ne a more complex scheme for deriving

constraints of bounds arising from the use of sparse multidimensional data �elds,

which yields exactly this: the details can be found in [18]. However, Data Field

Haskell does not yet use this scheme.

bounds a
b1

b2

Fig. 3. The two one-dimensional projections of a sparse, two-dimensional bound.

5 Implementation

Our implementation of Data Field Haskell is based on the NHC compiler [25], which

implements Haskell v. 1.3. The execution mechanism is graph reduction, which is

performed by a variant of the G-machine. Our implementation consists of:

{ Modi�cations to the front-end in order to parse and type-check forall and

for-abstractions,

{ automatic derivation of instances for the new type class Pord, and for the Eval

class which has been slightly modi�ed [11],

{ a program transformation of intermediate code with forall- and for-abstrac-

tions into intermediate code without forall and for-abstractions,

{ the abstract data types for Datafield and Bounds implemented in Haskell, and

{ simple exception handling (used to implement outofBounds), implemented mostly

by modi�cations to the back-end.

Portability and development time was deemed more important than execution

speed, thus we have strived to make most of the implementation in Haskell itself.

We have not implemented any advanced optimizations.

The front-end modi�cations are quite straightforward, as the automatic deriva-

tion of instances for the Pord and Eval classes. for- and forall-abstractions are

translated into intermediate code that uses the datafield function to build data

�elds. In this process, calls to join and meet are also introduced. These operations

obey the following equations, and we perform the corresponding simpli�cation of

expressions for bounds in the translation:

universe `meet` x = x

x `meet` universe= x

empty `join` x = x

x `join` empty = x

The implementation of the abstract data types for data �elds and bounds was

not entirely straightforward to do in Haskell. The problem is Bounds a. Ideally,

one would de�ne this as an algebraic data type with constructors for the di�er-

ent kinds of bounds. However, product bounds do not �t into this scheme since

they require that a is a tuple type. It would indeed be possible to de�ne a type

PBounds_n a1 ... an = ... that includes product bounds, but this type could

then not be used for bounds over non-tuple-types and one would have to use dif-

ferent types for bounds and data �elds over tuple types and non-tuple types. Over-

loading the operations on data �elds and bounds through the class system does

not work, since the type constructors Bounds and PBounds_n have di�erent arities.

Pattern-matching in type declarations, like

data PBounds_n (a1,...,an) = ...

would make it possible to de�ne a constructor class for bounds, but this is not

allowed in Haskell.

Thus, we have reverted to a low-level implementation of data �elds and bounds,

done in Haskell but with incorrect types. The implementation has some similarities

with how dictionaries are used to implement overloading in Haskell. Coercion func-

tions, which are manually given (incorrect) function types, are used as interfaces

between the Datafield and Bounds types and their implementations.

Sparse bounds and tabulated data �elds are represented by an abstract data type

for sets, which is based on balanced binary trees. If n is the number of elements

stored in the tree, then membership tests (and lookups) are done in time O(log n),

unions, intersections, enumerations, and folds in time O(n), and the size is calculated

in time O(log

2

n).

The production of ordinary error values in Haskell results in immediate ter-

mination. outofBounds must be handled in a less strict fashion, since data �elds

represent partial functions where the bounds may overapproximate the partial func-

tion domain, and certain operations should only be performed over the elements in

this domain. Thus, it must be possible to just skip occurrences of outofBounds

rather than terminating directly when it appears.

We wanted the implementation of this to be reasonably e�cient. Therefore we

have introduced a simple exception handling mechanism. On the Haskell kernel level

a function handle is introduced that adheres to the following:

handle x y = y -- if x evaluates to outofBounds

handle x y = x -- otherwise

isoutofBounds can now be de�ned as:

isoutofBounds = handle (seq x False) True

handle is implemented by catching exceptions, and outofBounds is implemented

by throwing them.

< n

1

: n

2

: S;G; HANDLE : C;D; E >

)< n

1

: S;G; EVAL : REMOVEHANDLER : C;D; (n

2

; S; C;D) : E >

< S;G; REMOVEHANDLER : C;D; t : E >)< S;G;C;D;E >

< S;G; FAIL : C;D; (n; S

0

; C

0

; D

0

) : E >)< n : S

0

; EVAL : C

0

; D

0

; E >

Fig. 4. State transitions for HANDLE , REMOVEHANDLER and FAIL.

The exception handling was implemented by modifying the G-machine of NHC.

The basic G-machine, as described in [24], has four-tuples < S;G;C;D > as states.

Here, S is a stack of node names, G is the graph, C is the sequence of G-code being

executed, and D is the dump, a stack of pairs of code sequences and stacks. The G-

machine of NHC adheres to this scheme, although its instruction set and low-level

representations are somewhat di�erent. Our modi�ed G-machine has �ve-tuples

< S;G;C;D;E > as states. The new component E, the exception stack, consists

of quadruples (n; S; C;D) of a node name, a stack, a code sequence and a dump.

(S;C;D) saves the current state when the handling of an exception is set up, and n

points to the node to be evaluated on failure. We also need three new instructions:

HANDLE, REMOVEHANDLER, and FAIL. The code generated for outofBounds is simply

FAIL

and the code for handle x y is

<code that puts x on the stack>

<code that puts y on the stack>

HANDLE

The idea is to abort the evaluation of x if FAIL is executed, restore the machine

state to what is was before the evaluation of x began, and evaluate y. The semantics

of the instructions as transitions of the modi�ed G-machine is shown in Figure 4.

The description above is for exception handling in the basic G-machine. Our

actual solution for the G-machine of NHC is slightly di�erent, due to the internal

details of this G-machine, but the basic idea is the same. See [11].

6 Related Work

There is a wealth of collection-oriented languages and it is impossible to give a

full account here. An excellent survey of collection-oriented languages up to around

1990 is found in [27]. Array and data parallel languages like Fortran 90, HPF [15],

and *lisp [29] have been important sources of inspiration for Data Field Haskell.

The language closest to Data Field Haskell is probably FIDIL [26], whose implicit

intersection rule corresponds to the propagation of bounds from strict positions

below a forall-abstraction. The arrays in FIDIL resemble data �elds also in other

respects, for instance they can have a wider variety of shapes than traditional array

bounds.

Examples of functional data parallel and array languages are Connection Ma-

chine Lisp [28], Id [4], Sisal [6], NESL [2], Data Parallel Haskell [10], and pH [21].

These languages are intended for direct parallel implementation whereas Data Field

Haskell targets collection-oriented programming in general, with more emphasis on

expressiveness than e�ciency. Haskell itself [23] is to some extent collection-oriented

through its set of collective list operations, and it has been suggested for data paral-

lel programming [22]. FISh [13] is an imperative array language, which shares some

features with Data Field Haskell such as advanced polymorphism. It is, however

restricted to regular arrays and certain recursion patterns, which enables the gener-

ation of good code but makes it less suitable for speci�cation of sparse or dynamic

algorithms. A survey of the research in parallel functional programming is found

in [9].

\Bulk types", like the ones provided by the STL C++ library [20], provide

generic collection-orientation and are similar in this respect to data �elds. Peyton

Jones [14] has used the class system of Haskell to de�ne bulk types. Bulk types do

not provide any particular support for multidimensional structures, and there is no

counterpart to forall-abstraction and implicit derivation of bounds for expressions.

7 Conclusions and Further Research

We have de�ned and implemented Data Field Haskell, a Haskell dialect where data

�elds replace arrays. Data �elds are designed with the abstract view of indexed

structures as partial functions in mind. This leads to the view of bounds as set

representations, and to the design of forall-abstraction, which is inspired by �-

abstraction. The intention has been to create a language that supports collection-

oriented programming at a very high level. Although our initial inspiration comes

from array and data parallel programming, we believe that the data �eld concept

is general enough to support collection-oriented programming in a variety of appli-

cations.

Data Field Haskell is designed for expressiveness rather than speed. We believe

this is the right place to start, and then investigate how restricted sublanguages can

be given an e�cient implementation and how performance-enhancing features like

mutable data �elds could be introduced. Parallel implementations are also certainly

possible.

The e�ciency of our current implementation can also be greatly improved. We

have furthermore found some cases of forall-abstraction where it would be natural

to have a tighter bound. We plan to upgrade our implementation to Haskell 98: in

this process, we may �x some of the current de�ciencies.

Another desirable feature is elemental intrinsics overloading, which refers to the

ability in some array languages to apply certain \scalar" operators to arrays with the

meaning that it is applied to each element. For data �elds, it would be natural to re-

solve this overloading into forall-expressions, e.g., a+b! forall x-> a!x + b!x

provided that a and b have the proper data �eld type. To some extent this is possible

to do within the class system of Haskell, but the resulting overloading has certain

restrictions and is also likely to lead to ine�ciencies. We are investigating another

scheme for elemental intrinsics overloading that is less restricted, but it is still only

de�ned for explicitly typed languages [30]. An obvious goal is to extend this scheme

to implicitly typed languages.

The low-level representation of data �elds and bounds is somewhat unsatisfac-

tory, since it hurts the portability of the implementation. If Haskell's algebraic type

declarations allowed pattern matching on type parameters then it would be possi-

ble to de�ne classes for bounds and data �elds. We could then do away with the

low level representations. This would also make it possible for users to de�ne their

own types of bounds. The formal data �eld model [18] was speci�cally designed to

support the development of abstract data types for bounds and data �elds, and the

ability to de�ne new types of bounds would be an important enhancement of the

language.

References

1. Data Field Haskell homepage. http://www.it.kth.se/labs/paradis/dfh/.

2. Guy E. Blelloch. Programming parallel algorithms. Comm. ACM, 39(3), March 1996.

3. Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams. Programmer's Guide

to FORTRAN 90. Programming Languages. McGraw-Hill, 1990.

4. Kattamuri Ekanadham. A perspective on Id. In Boleslaw K. Szymanski, editor,

Parallel Functional Languages and Compilers, chapter 6, pages 197{253. Addison-

Wesley, 1991.

5. A.D. Falko� and K.E. Iverson. The Design of APL. IBM Journal of Research and

Development, pages 324{333, July 1973.

6. John T. Feo, David C. Cann, and Rodney R. Oldehoeft. A report on the Sisal language

project. J. Parallel Distrib. Comput., 10:349{366, 1990.

7. Tom R. Halfhill. Sun reveals secrets of \magic". Microprocessor Report, pages 13{17,

August 1999.

8. Per Hammarlund and Bj�orn Lisper. On the relation between functional and data par-

allel programming languages. In Proc. Sixth Conference on Functional Programming

Languages and Computer Architecture, pages 210{222. ACM Press, June 1993.

9. Kevin Hammond and Greg Michaelson, editors. Research Directions in Parallel Func-

tional Programming. Springer-Verlag, 1999.

10. Jonathan M. D. Hill. Data Parallel Haskell: Mixing old and new glue. Tech. Rep. 611,

Queen Mary and West�eld College, December 1992.

11. Jonas Holmerin. Implementing data �elds in Haskell. Technical Report

TRITA-IT R 99:04, Dept. of Teleinformatics, KTH, Stockholm, November 1999.

ftp://ftp.it.kth.se/Reports/paradis/DFH-report.ps.gz.

12. Jonas Holmerin and Bj�orn Lisper. Development of parallel algorithms in Data Field

Haskell. Accepted to Euro-Par 2000, 2000.

13. C. Barry Jay and P. A. Steckler. The functional imperative: shape! In Chris Hankin,

editor, Proc. 7th European Symposium on Programming, volume 1381 of Lecture Notes

in Comput. Sci., pages 139{53, Lisbon, Portugal, March 1998. Springer-Verlag.

14. Simon Peyton Jones. Bulk types with class. In Electronic Proceedings of the 1996

Glasgow Functional Programming Workshop, Ullapool, July 1996.

15. Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele, Jr., and

Mary E. Zosel. The High Performance Fortran Handbook. Scienti�c and Engineering

Computation. MIT Press, Cambridge, MA, 1994.

16. Bj�orn Lisper. Data parallelism and functional programming. In Guy-Rene�e Perrin

and Alain Darte, editors, The Data Parallel Programming Model: Foundations, HPF

Realization, and Scienti�c Applications, Vol. 1132 of Lecture Notes in Comput. Sci.,

pages 220{251, Les M�enuires, France, March 1996. Springer-Verlag.

17. Bj�orn Lisper. Data �elds. In Proc. Workshop on Generic Programming, Marstrand,

Sweden, June 1998. http://wsinwp01.win.tue.nl:1234/WGPProceedings/.

18. Bj�orn Lisper and Per Hammarlund. The data �eld model. Submitted. Preliminary

version avaliable as Tech. Rep. TRITA-IT R 99:02, Dept. of Teleinformatics, KTH,

Stockholm, 2000.

19. Bj�orn Lisper and Jonas Holmerin. Development and veri�cation of parallel algorithms

in the data �eld model. In Sergei Gorlatch and Christian Lengauer, editors, Proc. 2nd

Int. Workshop on Constructive Methods for Parallel Programming, pages 115{130,

Ponte de Lima, Portugal, July 2000.

20. David R. Musser and Atul Saini. STL Tutorial and Reference Guide. Addison-Wesley,

Reading, MA, 1996.

21. Rishiyur S. Nikhil, Arvind, James E. Hicks, Shail Aditya, Lennart Augustsson, Jan-

Willem Maessen, and Y. Zhou. pH language reference manual, version 1.0. Technical

Report CSG-Memo-369, Massachussets Institute of Technology, Laboratory for Com-

puter Science, January 1995.

22. John T. O'Donnell. Data parallelism. In Hammond and Michaelson [9], chapter 7,

pages 191{206.

23. John Peterson, Kevin Hammond, Lennart Augustsson, Brian Boutel, Warren Burton,

Joseph Fasel, Andrew D. Gordon, John Hughes, Paul Hudak, Thomas Johnsson, Mark

Jones, Erik Meijer, Simon L. Peyton Jones, Alastair Reid, and Philip Wadler. Report

on the programming language Haskell: A non-strict purely functional language, version

1.4, April 1997. http://www.haskell.org/definition/.

24. Simon L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall International Series in Computer Science. Prentice Hall, 1987.

25. Niklas R�ojemo. Garbage Collection, and Memory E�ciency, in Lazy Functional Lan-

guages. PhD thesis, Department of Computing Science, Chalmers University of Tech-

nology, Gothenburg, Sweden, 1995.

26. Luigi Semenzato and Paul Hil�nger. Arrays in FIDIL. In Lenore M. R Mullin, Michael

Jenkins, Ga�etan Hains, Robert Bernecky, and Guang Gao, editors, Arrays, Functional

Languages, and Parallel Systems, chapter 10, pages 155{169. Kluwer Academic Pub-

lishers, Boston, 1991.

27. Jay M. Sipelstein and Guy E. Blelloch. Collection-oriented languages. Proc. IEEE,

79(4):504{523, April 1991.

28. Guy L. Steele and W. D. Hillis. Connection Machine LISP: Fine grained parallel

symbolic programming. In Proc. 1986 ACM Conference on LISP and Functional

Programming, pages 279{297, Cambridge, MA, 1986. ACM.

29. Thinking Machines Corporation, Cambridge, MA. Getting Started in *Lisp, June 1991.

30. Claes Thornberg. Towards Polymorphic Type Inference with Elemental Function Over-

loading. Licentiate thesis, Dept. of Teleinformatics, KTH, Stockholm, May 1999. Re-

search Report TRITA-IT R 99:03.

