
A New Way about using Statistical Analysis of Worst-Case Execution Times

Yue Lu1, Thomas Nolte1, Iain Bate2, and Liliana Cucu-Grosjean3

1Mälardalen Real-Time Research Centre (MRTC), Västerås, Sweden
2Department of Computer Science, University of York, York, United Kingdom

3INRIA Nancy-Grand Est, Nancy, France
yue.lu@mdh.se

Abstract—In this paper, we revisit the problem of using
Extreme Value Theory (EVT) in the Worst-Case Execution
Time (WCET) analysis of the programs running on a single
processor. Our proposed statistical WCET analysis method
consists of a novel sampling mechanism tackling with some
problems that hindered the application of using EVT in the
context, and a statistical inference about computation of a
WCET estimate of the target program. To be specific, the
presented sampling mechanism takes analysis samples from
the target program based around end-to-end measurements.
Next, the statistical inference using EVT together with other
statistical techniques, analyzes such timing traces which con-
tain the execution time data of the program, to compute a
WCET estimate with a certain predictable probability of being
exceeded.

I. INTRODUCTION

One very important part of real-time analysis is Worst-
Case Execution Time (WCET) analysis, that determines the
longest time a piece of software will execute. Accurate
WCET estimates are fundamental to most of the research
conducted in the real-time research community. They are
essential in real-time systems development in the substantial
step of creating schedulers and performing Response-Time
Analysis (RTA) and schedulability analysis [1]. A lot of
research has been done in the realm of WCET analysis, and
a good overview can be found in [2]. The result of WCET
analysis is one WCET estimate, i.e., the longest possible
execution time of a program that is running without any
interrupts, on a specific hardware platform. Because of high
complexity, WCET analysis tools are not able to find the
exact WCET in general.

Techniques to perform WCET analysis can broadly be
categorized as follows [3]:

1) Static WCET Analysis (SA) computes a WCET esti-
mate by statically analyzing the program source code
and all its input value combinations together with a
model of the hardware, i.e., a processor model (which
synthesizes the functional and temporal behavior of
the hardware). A static WCET analysis has to make
pessimistic assumptions in uncertain cases1, in order to

1For example, a loop bound given by flow analysis is larger than the
actual value, or low-level analysis clarifies a memory access as a cache
miss even though it always may result in a cache hit.

produce a safe upper bound, i.e., a WCET estimate that
is guaranteed to never be smaller than the actual, real
WCET, as a safe overestimation.

2) Measurement-Based WCET Analysis (MBA) is to per-
form end-to-end measurements of running the target
program on the hardware (or simulator) for the subset
of all input value combinations. The underlying premise
is that the testing regime is representative of real system
operation. Furthermore, with enough testing, the High
Water-Mark Time (HWMT) obtained by measurement-
based WCET analysis lies in close proximity to the
actual WCET. However, using extensive measurements
to ensure enough test case coverage or alternatively
attempting to enforce the program to execute its worst-
case path may be very difficult. Therefore, the selection
of test cases to reach the best path coverage (covers the
worst-case path) is crucial. Measurement-based WCET
analysis may not guarantee to find the actual WCET in
the general case, and may consequently underestimate
the WCET. To remedy the situation, a safe margin or an
ad hoc safety factor is usually to be added to the WCET
estimate given by measurement-based WCET analysis,
which for instance is from engineering wisdom from
previous projects. Nonetheless, there is no systematic
way to determine the appropriate safety margin or
predict how good the WCET estimate will be.

3) Hybrid Measurement-Based WCET Analysis (HMBA)
combines MBA and SA, with the intention of reducing
the potential for underestimation and overestimation
raised by both approaches. To this end, HMBA gleans
the execution time of program segments (i.e., instruc-
tion blocks) via instrumentation points (ipoints) as the
software runs on target. Such observed execution times
are used in the subsequent stage of WCET calculation.
However, the key assumption in HMBA is that the
WCET of each instruction block has been exercised
during testing and that measurements are sufficient to
provide upper loop bounds; otherwise, the safety of the
final estimate is compromised, i.e., it will either under-
estimate or overestimate the actual WCET. An example
of HMBA approaches is pWCET [4], behind which the
technique is based on probabilistically combining the
worst-case effects seen in individual blocks to build



the execution time model of the worst-case path of
the program. The primary weakness of this approach
is that the execution time is modeled directly by an
empirical distribution function, which requires a very
large number of samples to obtain an accurate model
to represent the worst-case (i.e., the tail) behavior of
the Execution Time (ET) distribution. There are also
some interesting work in [5], [6], [7] on using Genetic
Algorithms (GA) [8] to generate test vectors to produce
a WCET estimate which lies in close proximity to the
actual WCET.

4) Parametric (or symbolic) WCET analysis expresses the
WCET estimate as a formula consisting of parameters
of the program, rather than just a single numerical
value. The parameters can be either external, or internal
like a symbolic upper bound on a loop. A parametric
WCET formula contains much more information about
the program, and it can be used for applications like on-
line scheduling of tasks where the value of parameters
are unknown until runtime, or to find which parts of a
code that has the strongest influence on the WCET.
Furthermore, parametric WCET analysis is naturally
more complex than classical static WCET analysis and
should not be used on large systems with millions
of lines of code; rather, the parametric estimation is
most efficiently used on smaller program parts such
as smaller tasks or functions which have input data
dependent execution times [9].

5) There is another set of WCET analysis methods, which
use statistical methods to provide a WCET that is
guaranteed never to be exceeded, under a certain pre-
dictable probability. The ones based around Extreme
Value Theory [10] (EVT hereafter) are introduced in
the following section.

II. PROBLEM SETTING

A. The State of the Art on using EVT in WCET Analysis

Extreme Value Theory (EVT) [15] was first codified in
1958 and is a separate branch of statistics for dealing with
the tail behavior of a distribution. EVT is used to model the
risk of the extreme, rare events, without the vast amount of
sample data required by a brute-force approach. Example
applications of EVT include risk management, insurance,
hydrology, material sciences, telecommunications and so on.

There are two recent approaches to using EVT for WCET
estimation [11], [12]. In [11], the execution time measure-
ments are first fit to the Gumbel Max distribution using an
unbiased estimator. A WCET estimate is then obtained by
using a pertaining excess distribution function. However,
the problem with this approach is that it incorrectly fits
(raw) ET data to the Gumbel Max distribution, as there may
be some dependencies caused by caches in the ET data.
In addition, the Gumbel Max distribution and other EVT
distributions are intended to model random variables that

are the maximum or minimum of a large number of other
random variables. Nonetheless, there is no such case for
execution time measurements. Further, there is no evidence
that any Goodness-Of-Fit (GOF) test is used to ensure if
the estimated parameters of the Gumbel Max distribution
can actually fit the measured data in [11].

Hansen [12] furthers the study by presenting the work
on predicting how likely a WCET estimate generated by
EVT will be exceeded in the future, for a single trace
of the target program. In the context of using EVT for
WCET analysis, they made some changes including using
the GOF hypothesis test when fitting block maxima to
the Gumbel Max distribution, proposing a simple search
algorithm by doubling the block size for the determination of
the best-fit Gumbel Max parameters, validating the method
based around an intensive evaluation, etc. However, none
of these two work actually touched the key points which
are lately discussed in [13] by Griffin (to be introduced in
Section II-B).

B. Problems with using EVT in WCET Analysis

The problems argued in [13] are mainly concerned from
the following two perspectives:

1) Continuous vs. Discrete Distributions:
It is not realistic to use a continuous random variable
i.e., the Gumbel Max distribution, to model the exe-
cution time of the program, since the program cannot
terminate at any point in its control flow graph.

2) I.I.D. Assumption in EVT:
EVT also makes the assumption required by statistics
and probability theory, i.e., the observations (or anal-
ysis samples) have to be independent and identically
distributed (i.i.d.). Unfortunately, the execution times of
programs usually are not independent or identically dis-
tributed, for instance, due to the dependencies between
different states of the data structure in the program.

In summary, the analysis samples used by EVT in WCET
analysis cannot be from the ET sampling distribution of the
program, which is collected in the traditional way of running
a series of sample executions of the program. A new way of
collecting qualified analysis samples (or individuals) which
could be used by EVT is thereof necessary.

C. Our Contributions

The contributions of this paper concern both aspects:
1) In Section III-A, we propose a novel sampling mech-

anism which employs the Simple Random Sampling
technique to collect qualified analysis samples (i.e.,
timing traces) which could be used by EVT without
raising any problems mentioned previously.

2) We propose a statistical WCET analysis method namely
RapidET which computes a WCET estimate of the
program under analysis based around analyzing timing
traces, by using EVT.



III. A STATISTICAL WCET ANALYSIS RAPIDET

A. The Sampling Mechanism for Collecting Timing Traces
Taken from Programs

First, when any type of statistical techniques is applied to
analyze the observations (or samples), there is a key issue of
selecting such samples from the population of all individuals
concerning the desired information, i.e., any bias on the sam-
pling has to be avoided. In this work, we therefore employ
the technique of Simple Random Sample (SRS), which gives
every possible sample of a given size the same chance to be
chosen. In practice, when such samples are taken from target
programs, the SRS can be done in terms of randomizing
program inputs by using the uniform distribution. Next, due
to the existence of dependencies between different states of
the data structure in the program, an upcoming ET data may
not be independent with the ET data previously measured
at program executions, when the SRS technique is used.
This violates another important assumption required by any
statistical methods, i.e., each sample used in the statistical
analysis has to be i.i.d.. This is also the second problem
introduced in Section II-B. In order to tackle with this
problem, we propose the sampling mechanism which first
executes the target program for N times by using the SRS
technique which results in N sub-timing traces, and each
of sub-timing traces contains m ET data. Next, per sub-
timing trace, the highest value of m ET data of the program
measured, will be chosen as a sample to construct the new
sampling distribution of the ET data of the program. Since
there are no dependencies between any maximum of the
ET data of the program from two independent sub-timing
traces, as a result, all the individuals in the new reconstructed
sampling distribution are mutually independent. Hence, the
underline i.i.d. assumption is realistic and satisfied. We call
such new constructed ET data sampling distribution of the
program as the qualified ET data sampling distribution,
hereafter. The implementation of SRS is the function SRS
as shown in line 2 in Algorithm 1 (i.e., pseudo-code for
our proposed statistical WCET analysis which is to be
introduced in Section III-B), where the parameters P and m
represent the program under analysis and a certain number
of timing traces taken from the target program respectively.
It is interesting to note that the SRS technique also gives
us the confidence that no matter how big the population is,
the statistical inference based on the sampling distribution
collected by using SRS can successfully estimate the pa-
rameters of the underline population [14], such as the tail
behavior of the underline population, i.e., the WCET of the
programs under analysis in our case.

B. RapidET

Our proposed statistical WCET analysis method RapidET
is based on EVT and end-to-end measurements. Further,
RapidET is a recursive procedure which, as the first two ar-

guments, takes n reference data sets each of which contains
m simulation traces containing programs’ execution times.
For each reference data set, the algorithm returns the WCET
estimate of the program under analysis with a probability
of being exceeded, e.g., 10−9, which is the third algorithm
argument. For instance, Airbus uses such the value 10−9

which is at the highest development assurance level in the
safety-critical system domain. Next, RapidET will verify if
the sampling distribution consisting of n WCET estimates
given by EVT for all n reference data sets (we refer to such
a sampling distribution as the EVT distribution hereafter)
conforms to a normal distribution or not, according to the
result given by the non-parametric Kolmogorov-Smirnov
test (the KS test hereafter). If it is, then RapidET will
calculate the Confidence Interval (i.e., CI hereafter) of the
EVT distribution, at a given confidence level, and choose
the upper bound on the CI as the final WCET estimate.
Otherwise, if the EVT distribution cannot be fitted to a
normal distribution, some other statistical methods will be
adopted, e.g., a resampling statistic bootstrap [14]. The
detailed implementation of RapidET is described by Algo-
rithm 1.

RapidET consists of the following three steps: 1) con-
struction of the referenced data sets, 2) WCET estimation
of each referenced data set by using EVT, and 3) derivation
of a final WCET estimate that is given by the algorithm. To
be specific, the outline of the algorithm is as follows:

1) Construct n reference data sets for the WCET estimates
by using our sampling mechanism proposed in Sec-
tion III-A.

2) Calculate the WCET estimates of the program under
analysis per each reference data set, i.e., esti where
1 ≤ i ≤ n.
a) Set the initial block size b to 1, for each reference

data set.
b) If the number of blocks k =

⌊m

b

⌋
is less than 30,

the algorithm stops as there are not enough samples
to generate an estimate [12].

c) Segment m execution times into blocks of size b,
and for each of the

⌊m

b

⌋
blocks find the maximum

values.
d) Estimate the best-fit Gumbel parameters µ and β

to the block maximum values by using a proposed
exhaustive search algorithm introduced as shown in
lines 6 to 17 in Algorithm 1.

e) Calculate a WCET estimate based on the best-fit
Gumbel Max parameters estimated through Step d),
i.e., µ, β, and a target acceptance probability Pe.

3) After verifying if the EVT distribution (i.e., EST ←
est1, ..., esti, ..., estn) can successfully be fitted to a
normal distribution by using the KS test, RapidET will
return a result, according to different confidence level
applied in the algorithm, e.g., EST +3σEST (the sum



of the mean value and three standard deviation of the
EVT distribution at the confidence level 99.7%).

Algorithm 1 RapidET (n,m, Pe, cl)
1: for all esti such that 1 ≤ i ≤ n do
2: Xi ← eti,1, ..., eti,m ← SRS(P, m)
3: b ← 1
4: k ←

⌊m

b

⌋

5: success ← false
6: while k ≥ 30 and success = false do
7: Si ← si,1, ..., si,k ← segment(m, b)
8: Yi ← yi,1, ..., yi,k ← maxima(Si)
9: if passChiSquareTest(Yi, GumbelMax) > 0 then

10: success ← true
11: l, s ← ChiSquareTest(Yi)
12: esti ← evtgumbelmax(b, l, s, Pe)
13: else
14: b ← b + 1
15: k ←

⌊m

b

⌋

16: end if
17: end while
18: end for
19: EST ← est1, ..., esti, ..., estn

20: if passKS(EST, Normal) then

21: EST ← 1

n
×

n∑
i=1

esti

22: σEST ←
√√√√ 1

n

n∑
i=1

(esti − EST )2

23: if cl = 0.997 then
24: etest ← EST + 3σEST

25: else
26: if cl = 0.95 then
27: etest ← EST + 2σEST

28: else
29: if cl = 0.682 then
30: etest ← EST + 1σEST

31: else
32: etest ← EST
33: end if
34: end if
35: end if
36: else
37: etest ← bootstraptest(EST )
38: end if
39: return etest

IV. SUMMARY

In this paper we present the ongoing work towards
using our proposed statistical Worst-Case Execution Time
(WCET) Analysis method RapidET, to compute a WCET
estimate of programs running on a single processor. Specifi-
cally, RapidET consists of a novel sampling mechanism and
a statistical inference based around Extreme Value Theory
and other statistical techniques. Future work will focus
on the method evaluation and the selection of good value
of algorithm parameters from the perspective of accuracy
of analysis results, as well as how to use the obtained

WCET estimates and pertaining statistical constraints (i.e.,
certain predictable probabilities) in response time analysis
and schedulability test which consider a system of tasks.

ACKNOWLEDGMENT

This work was partially supported by the Swedish Foun-
dation for Strategic Research (SSF) and the Swedish Re-
search Council (VR).

REFERENCES

[1] Handbook of Real-Time and Embedded Systems. Chapman
and Hall/CRC (July 23, 2007), 2007.

[2] R. Wilhelm et al., “The worst-case execution-time problem—
overview of methods and survey of tools,” Trans. on Embed-
ded Computing Sys., vol. 7, no. 3, pp. 1–53, 2008.

[3] Y. Lu, “Approximation Techniques for Timing Analysis of
Complex Real-Time Embedded Systems,” Lic. dissertation,
School of Innovation, Design and Engineering, October 2010.

[4] G. Bernat, C. A., and S. Petters, “pWCET: A Tool for
Probabilistic Worst-Case Execution Time Analysis of Real-
Time Systems,” in Proc. of LCTES’ 03, 2003.

[5] U. Khan and I. Bate, “WCET Analysis of Modern Processors
Using Multi-Criteria Optimisation,” in Proc. of SSBSE’ 09.
IEEE Computer Society, 2009, pp. 103–112.

[6] J. Wegener and M. Grochtmann, “Verifying Timing Con-
straints of Real-Time Systems by Means of Evolutionary
Testing,” Real-Time Syst., vol. 15, no. 3, pp. 275–298, 1998.

[7] J. Wegener and F. Mueller, “A Comparison of Static Anal-
ysis and Evolutionary Testing for the Verification of Timing
Constraints,” Real-Time Syst., vol. 21, no. 3, pp. 241–268,
2001.

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley Professional,
January 1989.

[9] S. Bygde, “Static WCET Analysis Based on Abstract Inter-
pretation and Counting of Elements,” Lic. dissertation, School
of Innovation, Design and Engineering, March 2010.

[10] J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels, Statistics
of Extremes: Theory and Applications. Wiley Press, 2004.

[11] S. Edgar and B. A., “Statistical Analysis of WCET for
Scheduling,” in Proc. of RTSS’ 01, 2001, pp. 215–224.

[12] J. Hansen, S. Hissam, and G. Moreno, “Statistical-Based
WCET Estimation and Validation,” in Proc. of WCET’ 09,
2009, pp. 123–133.

[13] D. Griffin and A. Burns, “Realism in Statistical Analysis of
Worst Case Execution Times,” in Proc. of WCET’ 10, 2010.

[14] D. S. Moore, G. P. Mccabe, and B. A. Craig, Introduction to
the practice of statistics, 6th ed. New York, NY 10010: W.
H. Freeman and Company, 2009.

[15] E. Gumbel, Statistics of Extremes. Columbia University
Press, 1958.


