
Probabilistic Scheduling Guarantees in Distributed
Real-Time Systems under Error Bursts

Hüseyin Aysan1, Radu Dobrin1, Sasikumar Punnekkat1, and Julián Proenza2

1Mälardalen University, Västerås, Sweden
2University of the Balearic Islands, Palma de Mallorca, Spain

{huseyin.aysan, radu.dobrin, sasikumar.punnekkat}@mdh.se, julian.proenza@uib.es

ABSTRACT
Dependable communication is becoming a critical factor due
to the pervasive usage of networked embedded systems that
increasingly interact with human lives in many real-time
applications. However, these systems are often subject to
faults that manifest as error bursts and affect the timing
properties of the messages used in the communication. Con-
troller Area Network (CAN) has gained wider acceptance
as a standard in a large number of distributed industrial
and control applications, mostly due to its cost effectiveness,
efficient bandwidth utilization, ability to provide real-time
guarantees, as well as its fault-tolerant capability. Research
so far has focussed on rather simplistic error models which
assume only singleton errors separated by a minimum in-
terarrival time. However, error bursts of various lengths
during message transmissions have an adverse effect on the
message response times that needs to be accounted for. In
this paper we propose a methodology which enables the pro-
vision of appropriate probabilistic real-time guarantees in
distributed real-time systems under error bursts. The pro-
posed approach introduces a comprehensive probabilistic er-
ror model together with appropriate schedulability analysis
for the particular case of real-time message scheduling on
CAN.

Keywords
Distributed Real-time Systems, CAN, Dependability, Fault
tolerance, Time redundancy.

1. INTRODUCTION
Networked embedded systems are deployed ubiquitously in
applications that interact and control our lives including in
safety critical applications. These systems are increasingly
interacting with each other in a distributed manner and pro-
viding reliable communications in such contexts is an impor-
tant research question. In order to be able to provide accu-
rate analysis of such systems, it is essential to use a realistic
error model that takes into account not only the severity,
but also the duration of errors. Controller Area Network

(CAN) has been widely used in the automotive and automa-
tion industries due to its ease in use, low cost and provided
reduction in wiring complexity. The priority-based message
scheduling used in CAN has a number of advantages, some
of the most important being the efficient bandwidth utiliza-
tion, flexibility, simple implementation and small overhead.
Moreover, CAN provides for real-time guarantees as well
as fault-tolerance for messages under transient errors. How-
ever, error bursts typically affect several message retransmis-
sion attempts and contribute to potentially large response
time that may deem the system unschedulable. Addition-
ally, the existing schedulability analysis on CAN does not
take into account the interplay between the minimum in-
terarrival time between bursts, minimum interarrival time
between errors within a burst and the burst duration.

CAN was designed in the 1980s at Robert Bosch GmbH
([15]) with a special focus on automotive real-time require-
ments. The most important feature of CAN from the real-
time perspective is its predictable behavior. CAN provides
means for prioritized control of the transmission medium by
using an arbitration mechanism which guarantees that the
highest priority message that enters an arbitration will be
transmitted first. This makes CAN amenable to response
time analysis akin to those performed on fixed priority task
sets. Volcano methodology used by Volvo [8] is an example
of the acceptance of such analysis by the industry.

The model underlying the basic CAN analysis assumes an
error free communication bus, i.e. all messages sent are as-
sumed to be correctly received, which may not always be
true. For instance, in applications such as automobiles,
the systems are often subjected to high degrees of Elec-
tro Magnetic Interference (EMI) from the operational en-
vironment which can potentially cause transmission errors.
The common causes for such interference include cellular
phones and other radio equipments inside the vehicle and
electrical devices like switches and relays, radio transmis-
sions from external sources and lightning in the environ-
ment. Electro Magnetic Compatibility (EMC) has been se-
riously considered by the automotive industry for more than
40 years, and several legislations and directives are in effect
to tackle the interference problem [16]. However, even today
it has not been possible to completely eliminate the effects
of EMI since exact characterization of all such interferences
defy comprehension. Though usage of an all-optical network
could greatly eliminate EMI problems, it is not favored by
the cost-conscious automotive industry.

These interferences cause errors in the transmitted data,
which could indirectly lead to catastrophic failures. To re-
duce the risks due to erroneous transmissions, CAN de-
signers have provided elaborate error checking and error
confinement features in the protocol. Basic philosophy of
these features is to identify an error as fast as possible and
then retransmit the affected message. This implies that
in systems without spatial redundancy of communication
medium/controllers, the fault-tolerance (FT) mechanism em-
ployed is time redundancy which could have an adverse im-
pact on the latencies of message sets; potentially leading to
violation of timing requirements.

Majority of the earlier research efforts were based on a sim-
plified error model assumption that only singleton errors can
occur in the systems and that they are separated at least by
a known minimum interarrival time. However, error bursts
of varying lengths are not uncommon during message trans-
missions and they have an adverse effect on the message re-
sponse times. Hence the versatility and applicability of the
existing models are limited, in the sense that they are inca-
pable of representing complex scenarios and interdependent
errors, thus potentially resulting in inaccurate schedulability
analyses.

In this paper we propose a generalized parametric error
model which is essential to provide an accurate representa-
tion of faults and associated errors, and provide a probabilis-
tic schedulability analysis for distributed real-time tasks.
We instantiate the proposed framework to real-time message
scheduling on CAN and extend the existing CAN response
time analysis [20, 5] to cope with burst errors modeled with
an improved accuracy that enables the specification of a
range of new parameters including e.g., burst length and
intensity.

The remainder of the paper is organized as follows. In the
next section, we present the real-time system model and in
Section 3, we present our error model. Section 4 gives a
brief summary of the Controller Area Network. Section 5
describes our proposed methodology together with an illus-
trative example, and finally Section 6 concludes the paper.

2. REAL-TIME SYSTEM MODEL
We assume a distributed real-time architecture consisting of
sensors, actuators and processing nodes communicating over
CAN. The communication is performed via a set of periodic
messages, Γ = {M1,M2, . . .}. For the sake of generality,
we assume that a message consists of one or more frames.
However, the analysis presented in this paper applies to the
particular case of single frame messages as well. While the
CAN network communication is non-preemptive during the
frame transmissions, messages composed of more than one
frame can preempt each other at frame boundaries. Ad-
ditionally, the non-preemptiveness of message frames may
cause a higher priority message to be blocked by a lower
priority message for at most one frame length, if the high pri-
ority message is released during the transmission of a lower
priority frame. This priority inversion phenomenon can af-
fect all messages except the lowest priority one, and only
once per message period, before the transmission of the first
message frame ([11]).

Each CAN message Mi has a period Ti, a relative deadline
Di which is assumed to be equal to the period, a priority Pi
(defined by the message identifier), the number of frames Ni
that forms the message and a worst case transmission time
Ci of the message in an error-free scenario:

Ci = Ni ∗ fmax ∗ τbit (1)

where fmax is the maximum frame size in number of bits,
and τbit is the time it takes to transmit a single bit on CAN.

3. ERROR MODEL
Safety-critical embedded systems typically work in harsh en-
vironments where they are exposed to frequent transient
faults such as power supply jitter, network noise and ra-
diation. Pizza et. al. [17] observed from published statistics
that the ratio between the frequencies of transient and per-
manent faults varies from 4 to 1000. We follow the depend-
ability concepts presented by Laprie [14] and Avizienis et.
al.[3], and assume that systems are exposed to faults with
probabilities depending on the characteristics of the systems
and the environments that they are operating in.

Once an error occurs, it is likely that the fault causing this
error will be in effect for a certain duration and will cause
more errors during that period. Burton and Sullivan [7]
defined error bursts consisting of errors that are occurring
during the period that a fault is in effect and if two succes-
sive errors within that duration does not exceed a certain
maximum error-free period. As the errors in a burst are
caused by a single fault source, they will have a different
probability of occurrence than the errors caused by inde-
pendent faults. This probability depends on several factors,
such as the type and the severity of the fault, the resistance
of the hardware to the fault, and the reaction of the fault
detection and fault tolerance mechanisms to the fault. Fur-
thermore, the error bursts can have different durations due
to various reasons. For example, if we imagine a vehicle as
our system under observation, which passes through a field
with strong electromagnetic interference, the duration of the
exposure to this fault is related to the area of this field as
well as the velocity of the vehicle. Ferreira [12] shows that
90% of the errors occurred on a CAN network are in the
form of error bursts with an average length of 5µsec in an
aggressive environment (factory conditions). However, the
probability distribution of the burst length is highly depen-
dent to the environment and more experimental studies are
required in order to determine valid distributions for differ-
ent domains. An example of such a study was performed by
[7] for telecommunication systems.

In our work, we assume that, each frame failure is detected
as soon as it occurs by the built in CAN error detection
mechanisms and upon each frame failure, an identical frame
to the failed frame is scheduled for re-transmission following
the error frame.

Our error model consists of the following parameters:

1. TE: The minimum interarrival time between indepen-
dent error bursts.

2. T burstE : The minimum interarrival time between errors
within a burst.

3. l: The length of the error burst.

Consequently, we obtain the following probability functions:

1. Prerror(t): The probability of error occurrence within
a time interval of length t can be calculated by us-
ing the Poisson probability distribution as described
by [6]. The errors can occur either in form of single er-
rors or error bursts. Poisson distribution is a discrete
probability distribution used for finding the probabil-
ity of a number of events occurring in a fixed time
period, assuming that the events occur at a constant
rate and their occurrences are independent. In our
case, the events are error occurrences, hence the error
occurrence rate for transient errors is assumed to be
constant. This rate (the expected number of events
in a unit time as denoted by λ) not only depends on
the system but also on the type of environment. For
a given system, the common values for λ range from
102 errors per hour in aggressive environments to 10−2

errors per hour in lab conditions as presented by [12]
and [19].

The probability of m events during a time period of t
is calculated as shown below.

Prm(t) =
e−λt(λt)m

m!

If we assume that the event is an error, then the prob-
ability of no error during the lifetime or mission time
(L) of the system is given by

Prno error(t = L) = e−λL

Thus, the probability of at least one error during L is

Prat least one error(t = L) = 1− e−λL

The lifetime or mission time of a system can vary
largely depending on the domain, typically ranging
from 1 hour for a plane to take a short trip to 15 years
for a satellite to complete its lifetime.

In this paper, we are interested in the probabilities of
the messages meeting their deadlines under the error
rate assumptions.

2. f(l): The probability mass function for the error burst
length l which is a function that gives the probability
that an error burst length is exactly equal to some
value.

3. Prerror|burst(t): The probability of an error under an
error burst during a time interval of length t which is
a function of the error burst length l and λburst.

4. CONTROLLER AREA NETWORK (CAN)
CAN is a broadcast bus designed to operate at speeds of
up to 1 Mbps. Data is transmitted in messages containing
between 0 and 8 bytes of data. An 11 bit identifier is asso-
ciated with each message frame. There is also an extended
CAN format with a 29 bit identifier, but since this format is
identical in all other respects, it will not be considered here.
The identifier is required to be unique, in the sense that two
simultaneously active message frames originating from dif-
ferent sources must have distinct identifiers. The identifier
serves two purposes: (1) assigning a priority to the message
frame, and (2) enabling receivers to filter message frames.
A station filters message frames by only receiving message
frames with particular bit patterns. The use of the identifier
as priority is the most important part of CAN with respect
to real-time performance.

CAN is a collision-detect broadcast bus, which uses deter-
ministic collision resolution to control access to the bus. The
basis for the access mechanism is the electrical characteris-
tics of CAN bus: if multiple stations are transmitting con-
currently and one station transmits a ‘0’ then all stations
monitoring the bus will see a ‘0’. Conversely, only if all sta-
tions transmit a ‘1’ will all processors monitoring the bus
see a ‘1’. This behavior is used to resolve collisions: each
station waits until the bus is idle. When silence is detected,
each station begins to transmit the highest priority mes-
sage frame held in its output queue whilst monitoring the
bus. The identifier is the first part of the message frame to
be transmitted; the identifier is transmitted from the most-
significant to the least-significant bit. If a station trans-
mits a recessive bit (‘l’), but monitors the bus and sees a
dominant bit (‘0’), then it stops transmitting since it knows
that its message frame is not the highest priority message
frame currently being transmitted in the system. Because
identifiers are deemed unique within the system, a station
transmitting the last bit of the identifier without detecting
a collision must be transmitting the highest priority queued
message frame, and hence can start transmitting the body
of the message frame.

The CAN message frame format contains 47 bits of protocol
control information (the identifier, CRC data, acknowledge-
ment and synchronization bits, etc.). The data transmission
uses a bit stuffing protocol which inserts a stuff bit after five
consecutive bits of the same value. The frame format is
specified such that only 34 of the 47 control bits are subject
to bit stuffing. Hence, the maximum number of stuff bits in

a message frame with n bytes of data is b (n∗8+34−1)
4

c (since
the worst case bit pattern is ‘0000011110000...’). This means
that a message frame is transmitted with between 0 and 24
stuff bits. Hence, the size of a transmitted CAN message
frame, denoted by f , is between 47 and 135 bits:

f = (n ∗ 8 + 47 + b (n ∗ 8 + 34− 1)

4
c) (2)

where n is the number of data bytes.

4.1 Response Time Analysis of CAN
In [20] the authors present analysis to calculate the worst-
case latencies of CAN messages. This analysis is based on

the standard fixed priority response time analysis for CPU
scheduling proposed by [2], and later refined by [10]. Cal-
culating the response times requires a bounded worst case
queuing pattern of messages. The standard way of express-
ing this is to assume a set of traffic streams, each generating
messages with a fixed priority. The worst case behavior of
each stream is to periodically queue messages. In analogy
with CPU scheduling, we obtain a model with a set of mes-
sages (corresponding to CPU tasks).

For an ideal CAN controller (the non-ideal case is presented
by [21]) the worst-case latency Ri of a CAN message Mi is
defined by

Ri = Ji + qi + Ci (3)

where Ji is the queuing jitter of message Mi, inherited from
the sender task which queues the message. We have assumed
that the minimum delay from the point in time t, relative
to the time message Mi is queued, is 0 (t is typically the
start of the period). In other cases we need to add a term
Jsmallesti to Equation 3, since jitter is defined as the differ-
ence between the biggest and smallest delay from t. The
worst-case queuing delay qi is given by,

qi = Bi +
∑

j∈hp(i)

⌈
qi + Jj + τbit

Tj

⌉
Cj (4)

where Bi, in the general case, is either the non-preemptive
transmission of a lower priority message frame, or the non-
preemptive transmission of a message frame belonging to the
previous instance of the message Mi [10]. When using the
system model presented in this paper, this is equivalent to
the worst-case blocking time of the longest possible message
frame (i.e., the worst-case transmission time of a CAN mes-
sage frame with 8 bytes of data and worst-case bit stuffing).
Moreover, hp(i) is the set of messages with priorities higher
than that of Mi, Jj is the queuing jitter of message Mj ,
and τbit caters for the difference in arbitration start times at
the different nodes, due to propagation delays and protocol
tolerances.

In [18] the authors extended the above analysis and pre-
sented an approach to schedule messages in a fault-tolerant
manner using fixed priority scheduling (FPS). Broster et.
al. [5] addressed the reliability of message transmission on
CAN assuming probabilistic fault models. Bartolini et. al.
[4] presented an approach to reduce the response time of
multi-frame messages in CAN by using the Priority Inheri-
tance Protocol. Our work extends the existing approaches
by providing a more generalized error model as well as in-
corporating probabilistic schedulabiliy analysis.

4.2 Error Handling Features in CAN
In CAN, errors may occur due to different sampling points
or switching thresholds in different nodes, or due to sig-
nal dispersion during propagation. To handle these, the
CAN protocol provides elaborate error detection and self-
checking mechanisms as presented by [9], specified in the
data link layer of [13]. The error detection is achieved by
means of transmitter-based-monitoring, bit stuffing, Cyclic
Redundancy Check (CRC) message frame format check, and
frame acknowledgment.

To make sure that all nodes have a consistent view, errors

detected in one node must be globalized. This is achieved by
allowing the detecting node to transmit an error flag contain-
ing 6 bits of same polarity. Upon reception of an error frame,
each node will discard the erroneous message, which then
will be automatically re-transmitted by the sender. Note
that, the re-transmitted message could be subjected to ar-
bitration during re-transmission. This implies that if any
higher priority messages gets queued during the transmis-
sion and error signaling of the current message, then those
messages will be transmitted before the erroneous message
is re-transmitted.

Specification documents of CAN claim that the error de-
tection mechanisms can detect and globalize all transmitter
errors. Bursts are guaranteed to be detected on the receiver
side up to a length of 15 (which is equal to the degree of
f(x) in CRC sequence). Most longer error bursts are also
detected. Even though there is a positive probability for
undetected errors, we shall assume that all errors are de-
tected. The probability for undetected errors is negligibly
small, as indicated by the following quote from the CAN
specification documents: ”with an operating time of eight
hours per day on 365 days per year and an error rate of 0.7
s, one undetected error occurs every thousand years (statis-
tical average)”.

Active Error Frame

Passive Error Frame

6 bits 0..6 bits 8 bits

Superposed

Error Flag Delimiter

 Error Error Flag

6 bits 0..6 bits 8 bits

Superposed

Error Flag

 Error Flag

Error

Error

 Error

Delimiter

Re-transmit3 bits

InterframeSuspend

8 bits

Transmission Space

Incomplete
Frame

Incomplete
Frame 3 bits Re-transmit

Interframe
 Space

Figure 1: Error frame formats in CAN

Error signaling is done with an error frame that is between
17 to 31 bits long. Figure 1, shows formats of the CAN error
frames (details are given in [1]). The error flags are different
depending on whether the node that signals the error is in
the error active or the error passive state, since a node in
the error passive state is not guaranteed to be able to ensure
globalization of errors. Note that this is very important,
since it may cause inconsistencies. This happens when some
nodes in the passive state decide that a frame has errors and,
since they are unable to enforce the error detection by the
remaining active nodes, which eventually accept the affected
frame. As a result, some nodes receive a frame that is not
received by others. This lack of consistency is a real problem
in distributed systems and hence it is advisable to change
a node to bus-off before it gets into the error passive state
(when the error warning notification is issued). In this way
a node is either ensuring consistency or disconnected, but
not causing undetected inconsistencies.

Going into the details, a node in the passive state signals
errors with passive error flags consisting of six consecutive
recessive bits. However, it should be noted that only if the
node is the transmitter of the original data frame, the struc-
ture of the error frames corresponds to what is shown in
Figure 1 as passive error frame. This is so because only in
that case the transmission of a passive error flag can force
the other nodes to detect additional errors. Moreover, even
if the transmitter is the first to detect an error, if the detec-
tion occurs in the EOF field, the transmission of the passive
error flag will not be detected by the other nodes and no
globalization will be achieved. In any case, it is true that if
the passive error flag is detected by all nodes, what is shown
in Figure 1 would be the maximum interference caused by
the errors. Furthermore, suspend transmission only causes
the corresponding additional delay in case the error passive
transmitter of the frame affected by the errors is the one
that is going to win the arbitration for the next message
(because only said transmitter suspends transmission not
the other nodes). However again adding suspend transmis-
sion to the error flag though it corresponds to the worst case,
is an additional source of pessimism.

We assume that all nodes are in the error active state (and
then only consider active error frames) because when a sig-
nificant number of errors are detected (but lower than the
number required to go to error passive) nodes are directly
sent to the bus-off state in order to prevent the potential
inconsistencies that such state may cause. At the end real-
time systems must be reliable (even more when proposing
fault-tolerant scheduling) and message inconsistencies are a
fundamental source of unreliability in distributed systems
(e.g. replica non-determinism). However, mechanisms for
taking care of those inconsistencies are beyond the scope of
this paper and we assume that the maximum delays caused
by the signalling of errors are those shown in Figure 1.

5. METHODOLOGY
Our ultimate goal is to find the probability that the message
set is schedulable. Our methodology for achieving this goal
is outlined in the following steps, and illustrated in Figure
2. In this paper we assume that lower bound for the the
error burst minimum interarrival time, TE , as well as both
the lower and upper bounds for the minimum interarrival
time between errors within a burst, T burstE are known.

STEP 1: Sensitivity analyses: In this step, a series
of sensitivity analyses are performed for each l in the
probability mass function f(l) in order to derive com-
binations of the minimum interarrival times of error
bursts (TE) and the minimum interarrival times of er-
rors under error bursts (T burstE) that renders the mes-
sage set schedulable. The schedulability test proposed
in this paper is used as a tool for performing these
sensitivity analyses.

STEP 2: Probability calculations of the shortest error
minimum interarrival times: This step involves the us-
age of statistical approaches to find the probability of
the errors occurring with interarrival times larger than
or equal to the TE and T burstE thresholds from the λ,
and λburst values together with the mission time L.
The TE and T burstE threshold combination that gives

Probability mass
function f(l)

Error rates
(λ and λburst)

Select l

Message
attributes

Select TEburst

(starting from upper bound)

Select TE

Sensitivity
Analysis

Perform schedulability test
using selected TE and Teburst and l

(Starting from lower bound)

no

STEP 1

Schedulable?Increment TE

Decrement TEburst
Teburst above

lower bound?

yes

no

no

Calculate probability of schedulability
for given l and derived pairs of TE,TEburst

More l in f(l)?

yes

no

yes

STEP 2

Calculate cumulative
probability of schedulability

Find minimum threshold combination
of TE,Teburst for each l

STEP 2

STEP 3

Figure 2: Methodology overview

the largest probability of having no anomalies is de-
fined as the minimum threshold combination.

STEP 3: Calculation of the cumulative probability of
schedulability: Finally, the probabilities of having no
anomalies under the minimum threshold combination
for each discrete burst length l, and the probabilities
of the burst lengths are used to derive the cumulative
probability of schedulability.

In the scope of this paper, we present a schedulability anal-
ysis under error bursts which is the main tool to perform
the sensitivity analyses mentioned in the first step above.

5.1 Response Time Analysis under Error Bursts
The response time analysis given in this section will show
us if the message set is schedulable under a combination
of error interarrival time thresholds (minimum interarrival
time of independent errors TE and errors within a burst
T burstE) and a burst length (l).

The worst-case response-time calculations will differ in the
following scenarios depending on the relationship between
the error burst length l, minimum interarrival time of the
independent errors TE and the message periods. Figure 3
shows the threshold between different scenarios based in the
relationship between l and TE . In case l exceeds the thresh-

old, no frame can be guaranteed to be successfully transmit-
ted before its deadline.

l

1
1M 1

1M

bite max
iT

bitf max

bitf max

Figure 3: Interplay between l and Ti

SCENARIO 1: l < TE and l ≤ Ti−(emax+2fmax)τbit;
The burst length is less than the minimum interarrival
time of the independent errors, and at least one mes-
sage frame can be successfully transmitted before its
deadline.

SCENARIO 2: l < TE and l > Ti−(emax+2fmax)τbit;
Burst length is less than the minimum interarrival time
of the independent errors, but the error burst length
exceeds the threshold, such that no frame can be guar-
anteed a successful transmission before its deadline.

SCENARIO 3: l ≥ TE ; Burst length is greater than
or equal to the minimum interarrival time of the in-
dependent errors. In this case, a new error burst can
occur before the current burst finishes, therefore the
worst case response time analysis assumes that an er-
ror burst can affect the transmission of the message
instances from the start of the queueing to the com-
pletion of the message transmission.

In these scenarios the worst-case response time calculations
are similar to response time analysis of CAN under periodic
messages and sporadic faults introduced by Tindell et al.
[20], where an additional term, Ei, for the maximum error
interference is added to Equation 4:

qi = Ei +Bi +
∑

j∈hp(i)

⌈
qi + Jj + τbit

Tj

⌉
Cj (5)

In Scenario 1 error bursts can affect only parts of the re-
sponse time. A simple example is shown in Figure 4 where
two bursts occur with a separation of TE and three errors
occur with a separation of T burstE during each burst.

l l

1
1M 1

2M 1
2M1

2M 1
2M 2

2M 2
1M 2

1M 2
1M 2

1M

biteburst
ETET

Figure 4: FT execution under error bursts

In this Scenario, the worst-case response-time calculations
will differ also in the following cases depending on the min-
imum interarrival time of the errors within an error burst
T burstE :

CASE 1: T burstE < (emax + fmax)τbit: In this case, if
the errors within an error burst occur with a separation
of T burstE , it may not be possible to transmit any frame
between any two consecutive errors during the burst
(Figure 5). Therefore, the worst case error overhead
Ei in Equation 5 becomes:

Ei =

⌈
qi + Ci
TE

⌉
((fmax + emax)τbit + l) (6)

The left hand product term of Equation 6 gives the
maximum number of error bursts that can occur until
the end of the message transmission (i e., the message
response time). The right hand product term includes
the transmission time of the largest frame in the worst
case scenario, i e., when the first error in the burst hits
its last bit. The other components of the right hand
product term are the transmission time of the largest
error frame and the whole length of the error burst,
since in the worst case, no frame can be transmitted
during this time. Figure 5 shows an example scenario
in Case 1. The largest message frame and the largest
error frame in Equation 6 are the frames before and
after the error burst respectively.

l

1
iM 2

iM 2
iM 2

iM 2
iM

bite max
jihepj

C
)(

max

Figure 5: Worst case error overhead in Case 1

CASE 2: T burstE ≥ (emax + fmax)τbit: In this case,
one or more frames can successfully be transmitted be-
tween two errors within an error burst. Therefore only
certain sections of the error burst length contribute to
the error induced overhead. The worst case overhead
due to error bursts, Ei, in this case, is given by:

Ei =

⌈
qi + Ci
TE

⌉
((fmax + emax)τbit + p) (7)

The left hand product term of Equation 7 similarly
gives the maximum number of error bursts that can
occur until the end of the message transmission. The
right hand product term includes the transmission time
of the largest frame, the largest error frame, and the
error overhead (denoted by p) during l. Note that in
this case, the error overhead p is strictly less than the
burst length l.

p =

⌊
l

T burstE

⌋
(emaxτbit + r) (8)

The left hand product term of Equation 8 gives the
maximum number of errors that can occur during an
error burst, minus the last error (which only contributes
to the error overhead Ei with its corresponding error
frame). The right hand product term gives the worst
case error overhead caused by one error during the
burst, and includes the transmission time of the largest
error frame, as well as the frame hit by the next error,
and denoted by r (e g., M3

2 in Figure 6. In our calcu-
lations we assume that all the successfully transmitted
frames between two errors are of the maximum frame
size.

r = (T burstE − emaxτbit)(mod fmaxτbit) (9)

l

1
1M 1

2M 1
2M 2

2M 3
2M 2

1M3
2M 3

1M 3
1M

burst
ETjihepj

C
)(

max
 bite max

Figure 6: Worst case error overhead in Case 2

Figure 6 shows an example scenario in Case 2. The
largest message frame and the largest error frame in
Equation 7 are the frames before and after the error
burst respectively. The error frames and the remain-
ders in Equation 8 are the ones that come after the
first two errors in the error burst.

In Scenarios 2 and 3, the maximum number of errors that
can occur from the time that the first message frame is
queued to the completion time of the last message frame
is given by: ⌈

qi + Ci
T burstE

⌉
The same logic behind using Equation 9 applies here as well.
Therefore, except for the first error, the worst case overhead
induced by each remaining error is equal to emaxτbit + r
where r is given in Equation 9. Hence,

Ei = (fmax + emax)τbit

⌊
qi + Ci
T burstE

⌋
(emaxτbit + r) (10)

5.2 Probabilistic Schedulability Bounds
In this paper, we make an assumption similar to the one in
[6], which states that, during a mission time, if the actual
shortest time interval between any two errors is less than
the assumed minimum interarrival time, then the system is
unschedulable. In detail, for the two cases described in the
previous section, we assume:

1. Case 1 (T burstE < (emax + fmax)τbit): If the actual
shortest time interval between any two error bursts
W , during mission time L, is less than the assumed
minimum interarrival time TE , then the message set

is unschedulable. In this case, the probability of un-
schedulability is:

Pr(U) ≡ Pr(W < TE)

2. Case 2 (T burstE ≥ (emax + fmax)τbit): If the actual
shortest time interval between any two error bursts
W , during mission time L, is less than the assumed
minimum interarrival time between two error bursts
TE , or if the actual shortest time interval between
any two errors within a burst W burst, during all the
bursts with length l, within mission time L, is less
than the assumed minimum interarrival time between
errors within a burst T burstE , then the message set is un-
schedulable. In this case, the probability of unschedu-
lability is:

Pr(U) ≡ Pr((W < TE) or (W burst < T burstE))

Assuming that L is an even integer multiple of TE , Burns
et al., [6], presented the upper bound for Pr(W < TE) as
shown below:

Theorem 1. If L/(2TE) is a positive integer then

Pr(W < TE) <

1 + [e−λTE (1 +λTE)]
L

TE
−1− 2[e−2λTE (1 + 2λTE)]

L
2TE (11)

Proof. Presented in [6]

Assuming that L is an even integer multiple of TE , and l
is an even integer multiple of T burstE , we present the upper
bound for Pr((W < TE) or (W burst < T burstE)) as follows:

Theorem 2. If L/(2TE) and l/(2T burstE) are both posi-
tive integers then

Pr((W < TE) or (W burst < T burstE)) <

1 + [e−λTE (1 + λTE)]
L

TE
−1 − 2[e−2λTE (1 + 2λTE)]

L
2TE

+1 + [e−λT
burst
E (1 + λT burstE)]

l

⌈
L

TE

⌉
Tburst
E

−1

−2[e−2λT burst
E (1 + 2λT burstE)]

l

⌈
L

TE

⌉
2Tburst

E (12)

Proof. In the proposed approach we assume that the
cause(s) of two bursts occurring within a time interval shorter
than TE and the cause(s) resulting in two errors occurring
within a time interval shorter than T burstE are independent of
each other. For example, driving a car near police stations
or airports, and thus exposing it to electromagnetic inter-
ference (EMI), is the cause of having error bursts. On the
other hand, the intensity of the EMI, as well as the distance
to the source, are the factors that contribute to potential

occurrence of errors within a burst. Thus, the logical ”OR”
in the probability function is represented by the addition
operator:

Pr((W < TE) or (W burst < T burstE)) ≡

Pr(W < TE) + Pr(W burst < T burstE) (13)

While the representation of the first term in the probability
function, i.e., Pr(W < TE), is formalized in [6], we focus
on the derivation the second term, i.e., the probability of
mishap caused by errors occurring within a time interval
shorter than T burstE : Pr(W burst < T burstE). The proof is
similar to the one of Theorem 1, with the following differ-
ences:

• The minimum interarrival time between bursts TE is
substituted with the minimum interarrival time be-
tween errors within bursts T burstE

• The mission time L is substituted with the cumulative
length of the maximum number of bursts (

⌈
L
TE

⌉
) of

length l that can occur within L: l ∗
⌈
L
TE

⌉
Hence, upper bound for the probability Pr(W burst < T burstE)
is represented as:

Pr(W burst < T burstE) < 1+[e−λT
burst
E (1+λT burstE)]

l

⌈
L

TE

⌉
Tburst
E

−1

−2[e−2λT burst
E (1 + 2λT burstE)]

l

⌈
L

TE

⌉
2Tburst

E (14)

Combining 11, 13 and 14, the theorem is proved.

5.3 Illustrative Example
We consider a distributed embedded system where 4 devices
exchange messages over a CAN network. The message set
consists of 4 messages (1 message per device) as shown in
Table 1 where columns P, N, T and D represent the priority,
number of message frames, period and the deadline respec-
tively. Priorities are ordered from 1 to 4 where 4 is the lowest
priority. The time unit is milliseconds. Each message con-

Task P N T D

A 1 8 4 4
B 2 12 4 4
C 3 16 12 12
D 4 12 16 16

Table 1: Example message set

sists of 8 data bytes, hence fmax = 135 and emax = 31 bits.
We assume a mission time of 1 hour (L = 1h), a bus speed of
1Mbit/s (τbit = 1µs), and a discrete probability distribution
for burst length l as shown in Figure 7. Expected number
of error bursts and errors within a burst in unit time are
assumed to be λ = 10−1 and λburst = 102 respectively.

0.3

0.1 0.1
0.15 0.15

0.2

0 1 2 3 4 5)(msl

Figure 7: Probability mass function f(l)

To find the probability of schedulability under error bursts,
we first used the proposed schedulability test to perform a
series of sensitivity analyses for each error burst length l in
the probability mass function f(l). As we are assuming that
l is an even integer multiple of T burstE , for each l, we started
from the largest T burstE that satisfied the assumed condition
(T burstE = l

2
) and reduced it until we reached the T burstE value

that also satisfied the condition for Case 2 in Subsection
5.1 (T burstE < (emax + fmax)τbit). Then, for each T burstE

for the given l, we found the minimum TE at which the
message set is guaranteed to be schedulable. As a result, the
analyses gave us a number of TE and T burstE combinations for
each error burst length l. We used the statistical formulas
presented in Subsection 5.2 and derived the probabilities
of unschedulability for each TE and T burstE combination as
shown in Table 2.

TE T burstE l P r(U)

1.501 0 0 6.2542x10−9

3.4 0.25 0.5 1.5319x10−4

6.674 0.125 0.5 2.7808x10−8

3.36 0.5 1 6.1989x10−4

6.634 0.25 1 1.5704x10−4

13.181 0.125 1 5.4921x10−8

2.719 0.75 1.5 1.7228x10−3

6.594 0.375 1.5 3.5541x10−4

6.594 0.1875 1.5 1.7773x10−4

- 0.0937 1.5 1

2.679 1 2 3.1067x10−3

6.554 0.5 2 6.3560x10−4

13.101 0.25 2 1.5906x10−4

- 0.125 2 1

2.5 1.25 2.5 5.1975x10−3

4.511 0.675 2.5 1.5577x10−3

4.511 0.3125 2.5 7.2142x10−4

- 0.1577 2.5 1

4.471 1.5 3 4.1866x10−3

4.471 0.75 3 2.0951x10−3

13.021 0.375 3 3.5999x10−4

13.021 0.1875 3 1.8004x10−4

- 0.0937 3 1

Table 2: Probabilities of unschedulability

Finally we selected the minimum threshold combinations
that gave the highest probabilities of schedulability P (S) =
1 − P (U), and based on these probabilities as well as the
probability of each l extracted from f(l), we calculated the

cumulative probability of schedulability P (S)cumulative as
shown on Figure 3.

l f(l) P (S)
0 0.1 0.99999999374583

0.5 0.15 0.99999997219166
1 0.25 0.99999994507913

1.5 0.2 0.99982226780869
2 0.15 0.9998409355277

2.5 0.1 0.99927857698501
3 0.05 0.99981996174267

P (S)cumulative 0.99985943114964

Table 3: Minimum threshold combinations

This analysis showed that the example message set is schedu-
lable with a probability of 0.99985943114964 during a 1 hour
mission where λ = 10−1, λburst = 102 and burst length prob-
abilities are as given by the f(l).

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a methodology which en-
ables the provision of probabilistic real-time guarantees in
distributed real-time systems under error bursts. The pro-
posed approach introduces a comprehensive probabilistic er-
ror model that has the capability of modeling independent
errors as well as errors within a burst, together with an ap-
propriate schedulability analysis for the particular case of
real-time message scheduling on CAN. The fault tolerance
technique considered in this paper is redundancy in the tem-
poral domain as it is the often preferred method in many
dependable embedded applications to recover from the most
common transient and intermittent errors.

Our ongoing research includes consideration of multiple crit-
icality levels of messages for efficient usage of resources.

7. REFERENCES
[1] CAN in Automation, CAN Specifications.

http://www.can-cia.org.

[2] N. C. Audsley, A. Burns, M. Richardson, K. Tindell,
and A. Wellings. Applying New Scheduling Theory to
Static Priority Pre-emptive Scheduling. Software
Engineering Journal, 8(5):284–292, September 1993.

[3] A. Avizienis, J. Laprie, and B. Randell. Fundamental
Concepts of Dependability. Research Report N01145,
LAAS-CNRS, 2001.

[4] C. Bartolini, G. Lipari, and L. Almeida. Using
Priority Inheritance Techniques to Override the Size
Limit of CAN Messages. 7th IFAC International
Conference of Fieldbuses and Networks in Industrial
and Embedded Systems (FET), 2007.

[5] I. Broster. Flexibility in Dependable Real-time
Communication. Department of Computer Science,
University of York, 2003.

[6] A. Burns, S. Punnekkat, L. Strigini, and D. Wright.
Probabilistic Scheduling Guarantees for Fault-Tolerant

Real-Time Systems. Dependable Computing for
Critical Applications 7, 1999, pages 361–378, Nov
1999.

[7] H. Burton and D. Sullivan. Errors and Error Control.
Proceedings of the IEEE, pages 1293–1301, 1972.

[8] L. Casparsson, A. Rajnak, K. Tindell, and
P. Malmberg. Volcano - a Revolution in On-board
Communication. Volvo Technology Report 98-12-10,
1998.

[9] J. Charzinski. Performance of the Error Detection
Mechanisms in CAN. 1st International CAN
Conference, Mainz, September 1994.

[10] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien.
Controller Area Network (CAN) Schedulability
Analysis: Refuted, Revisited and Revised. Real-Time
Systems, 35(3):239–272, 2007.

[11] M. Di Natale. Scheduling the CAN Bus with Earliest
Deadline Techniques. IEEE Real-Time Systems
Symposium, pages 259–268, November 2000.

[12] J. Ferreira. An Experiment to Assess Bit Error Rate
in CAN. 3rd International Workshop of Real-Time
Networks, pages 15–18, 2004.

[13] ISO-11898. Road Vehicles - Interchange of Digital
Information - Controller Area Network (CAN) for
High Speed Communication. 1993.

[14] J.-C. Laprie. Dependable Computing and
Fault-Tolerance: Concepts and Terminology.
International Symposium on Fault-Tolerant
Computing, ’ Highlights from Twenty-Five Years’.,
1995.

[15] N. Navet. Controller Area Networks: CAN’s use
within Automobiles. IEEE Potentials, pages 12–14,
October/November 1998.

[16] I. Noble. EMC and the Automotive Industry. IEE
Electronics & Communication Engineering Journal,
pages 263–271, October 1992.

[17] M. Pizza, L. Strigini, A. Bondavalli, and F. D.
Giandomenico. Optimal Discrimination between
Transient and Permanent Faults. 3rd IEEE
International Symposium on High-Assurance Systems
Engineering, pages 214–223, 1998.

[18] S. Punnekkat, H. Hansson, and C. Norström.
Response Time Analysis under Errors for CAN. 6th

IEEE Real-Time Technology and Applications
Symposium, May-June 2000.

[19] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and
L. Rodrigues. Fault-Tolerant Broadcasts in CAN.
Twenty-Eighth Annual International Symposium on
Fault-Tolerant Computing, 1998. Digest of Papers.,
pages 150–159, 1998.

[20] K. Tindell, A. Burns, and A. Wellings. Calculating
Controller Area Network (CAN) Message Response
Times. Control Engineering Practice, 3:1163–1169,
1995.

[21] K. W. Tindell, A. H. Hansson, and A. J. Wellings.
Analysing Real-Time Communications: Controller
Area Network (CAN). IEEE Real-Time Systems
Symposium, pages 259–265, December 1994.

